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Abstract

Federated Learning (FL) has emerged as a privacy-preserving framework for train-
ing models on data generated at the edge. However, the heterogeneity of data silos
(e.g., label skew and domain shift) often leads to inconsistent learning objectives
and suboptimal model performance. Inspired by the data-driven approach, we
propose Flick, a novel data generation framework for heterogeneous Federated
Learning with Commonsense Knowledge from Large Language Models (LLMs).
In Flick, the client performs the local data summary to capture client-specific
knowledge in textual form. The central server then distills task-relevant, high-
quality knowledge from the out-of-the-box LLM – guided by cross-client-specific
insights – to generate informative text prompts. These prompts direct a generative
model in producing synthetic data, enabling global model fine-tuning and local
data compensation. This process gradually aligns the label and feature distributions
across clients. Extensive results on three datasets demonstrate that Flick improves
the global model accuracy by up to 11.43%, and accelerates convergence by up to
12.9×, validating its effectiveness in addressing data heterogeneity. The code can
be found at https://github.com/Ran-ZHU/Flick.

1 Introduction

With the proliferation of mobile devices equipped with sensing capabilities, edge-generated data
has unlocked new opportunities for cyber-physical services. Meanwhile, advances in computing
and networking at the edge have driven the adoption of edge computing, where deploying deep
learning models near data sources enables agile and efficient AI applications within distributed
systems [1–3]. In this context, Federated Learning (FL) has emerged as a key paradigm that enables
collaborative model training on decentralized data while preserving data privacy [4–6]. FL proceeds
in communication rounds, where participating devices (clients) perform several steps of Stochastic
Gradient Descent (SGD) on local data and send the updated models to a central server for aggregation
into a global model. A commonly used algorithm is FedAvg [5], which alternates between local
updates on clients and global parameter aggregation among clients by a central server. However, the
performance of the global model is often hindered by the non-identically and/or non-independently
distributed (non-IID) nature of data silos across clients. Specifically, when data distributions are
heterogeneous – due to class imbalance or domain shifts (e.g, sketch vs. photo) – clients may learn
inconsistent objectives. This leads to slower convergence and reduced generalization in the resulting
global model (Figure 1(left)).

To solve this problem, previous works proposed solutions such as 1) modifying loss functions for local
models [7–10], 2) re-weighting central aggregation for the global model [11–13], or 3) using adaptive
hyper-parameters for local training [14–16]. However, since the local objective is only computable on
clients, those model-driven methods that align the global optimum with local (surrogate) objectives
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Figure 1: Problem (left figure): Heterogeneous data across clients–specifically label skew and
domain shift–leads to cross-domain variance and inferior overall accuracy, rendering the degraded
global model in FL. Solution (middle figure): In data-driven approaches, most existing frameworks
compensate for heterogeneous data by generating samples locally. However, a server-based generation
framework offers the potential to run computationally intensive image generation models, thus
providing high-quality synthetic samples. Flick’s Gain (right figure): Flick improves the test
accuracy by a large margin while requiring fewer generated samples.

cannot fundamentally eliminate the model bias caused by heterogeneous local data. A few recent
works aiming at addressing this issue are based on data-driven methods by utilizing generative models
– either on the server or client side – to produce pseudo samples or synthetic data for fine-tuning
the global model or enriching local datasets, which requires sensitive information shared between
clients and the server such as local data distribution, a small portion of local data or a large number
of data features [17–20]. These approaches raise severe privacy concerns. On the other hand, many
frameworks [18, 21–23] perform generative models directly on the client side to avoid transmitting
privacy information to the server. While this allows for efficient data augmentation tailored to locally
observed data, only client-specific augmentation remains insufficient for addressing domain shift
challenges. Also, the effectiveness and efficiency of local generation are inherently constrained by the
limited scope of knowledge and computational resources of clients. We ask the following question:

Can we design a generative framework utilizing limited low-sensitivity cross-client knowledge and
task-relevant commonsense of LLMs to quickly promote FL’s performance under data heterogeneity?

In this paper, we propose Flick, a novel server-side data generation framework to mitigate data
heterogeneity, with a particular focus on label skew and domain shift. Flick, in a nutshell, provides
a novel design to distill client-specific knowledge while leveraging Large Language Models (LLMs) –
as an extra informative source – to instill task-relevant commonsense knowledge into data generation.
The synthetic data is then used to refine both local data silos and the global model. Specifically,
at the beginning of each communication round, the participating client selectively captions the
local samples using a pre-trained image-to-text model [24] and reports the local summaries (in the
form of token sequences) to the server. This process extracts and converts salient yet sensitive
local information into a relatively low-sensitive textual format. The central server in Flick then
employs a carefully designed prompt template to instruct an out-of-the-box LLM in analyzing local
information (referred to as cross-client-specific knowledge) while incorporating the LLM’s inherent
commonsense knowledge to produce informative text prompts. These text prompts are subsequently
fed into an image-generation model, benefiting from the powerful computational resources to run
a computationally intensive model on the server side, and thus can generate high-quality synthetic
samples. These data points serve two key purposes: 1) the server sends the generated samples
back to the clients to compensate for heterogeneous data silos, and 2) the server fine-tunes the
aggregated global model on the generated samples. These designs distinguish Flick from existing
data augmentation methods. For the gain (Figure 1(right)), Flick improves the global model accuracy
by up to 8.1% compared to local augmentation with the same amount of generated samples, and the
global model in Flick achieves comparable accuracy to local augmentation while the latter requires
6.3× generated samples. We attribute this performance gap to the effective distillation of task-relevant
commonsense knowledge from LLMs, which is further facilitated by cross-client-specific insights. In
summary, we make the following key contributions:

• We design Flick, a framework to enhance FL’s performance on non-IID data by blending local
and server-generated samples. It integrates low-sensitive cross-client-specific knowledge and
LLMs’ commonsense knowledge, enabling clients to progressively acquire unbiased data in
both label and domain aspects.
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• We design a local summary method to encode client-specific knowledge into token sequences to
facilitate task-specific data generation at the server. The generated samples serve two purposes –
local data compensation and global model fine-tuning – to enhance FL’s overall performance.

• Extensive evaluations on three datasets demonstrate Flick significantly enhances FL’s perfor-
mance, achieving up to 11.43% higher model accuracy and 12.9× faster convergence. Moreover,
our study highlights Flick as a flexible pipeline adaptable to various LLMs and image-generation
models.

2 Related Work

Existing works to solve heterogeneous FL can broadly be classified as model-driven and data-driven.

Model-driven Heterogeneous FL. Model-driven methods seek to mitigate the diverse model updates
caused by inconsistent local objectives through modifications to the loss function, robust aggregation
methods, or adaptive hyper-parameter settings. For the skewed label distribution, some works [7–9]
introduce penalty terms into the local loss function. Alternatively, FedNova [12] re-weights the
local updates during central aggregation, while FedOpt [13] and FedAvgM [11] take aggregation
as an optimization problem and apply various optimizers to average the updates. In terms of
domain shift, FedHEAL [25] selectively aggregates weight parameters based on their importance
to performance improvement, and FedBN [26] excludes the parameters of batch normalization
layers from aggregation. Futhermore, concurrent frameworks also adapt hyper-parameters across
communication rounds to solve the data heterogeneity issue, such as learning rate and weight decay
for SGD solvers [16] or the proportion of participating clients [15].

Data-driven Heterogeneous FL. In data-driven paradigms, auxiliary data/pseudo samples are
synthesized via generative models deployed on either the client or server side, which are leveraged
to refine the global model or augment local training distribution. Based on the entity generating
data, works can be categorized into local generative and server generative approaches. In local
generative methods, clients typically maintain a local generator that is periodically updated. For
instance, the conditional Generative Adversarial Network (GAN) in FAug [17] and the Conditional
AutoEncoder (CVAE) in FedDA [18]. The Gen-FedSD [22] and ReGL [23] generate synthetic data
more directly by feeding a local Stable Diffusion (SD) model with textual prompts from predefined
templates. Alternatively, FRAug [21] performs augmentation in the feature embedding space rather
than in the input space. In server generative methods, such as FedFTG [19] and DynaFed [27],
pseudo-samples are generated based on knowledge distilled from the global model. FGL [20]
shares a similar motivation with Flick, as both use client-side information to guide server-side data
generation. However, FGL requires clients to caption all local images, incurring substantial overhead
and exposing sensitive information such as local data distributions. It also relies on large volumes
of synthetic data for global model fine-tuning, increasing computational cost. In contrast, Flick
minimizes the client-side effort during the local summary phase, while achieving efficient data
generation by integrating cross-client-specific insights with commonsense knowledge distilled from
out-of-the-box LLMs.

3 Flick Design

In FL, the server searches for the optimal global model W∗ by aggregating local updates from a set
of clients J , iterating over N ∈ N communication rounds. In round n ∈ [N ] ([N ] = {1, · · · , N}),
a subset of clients J n ⊆ J perform SGD on their local data {Dj}j∈J in parallel where Dj =
{(xk

j , y
k
j ) ∈ Rd × NC |k ∈ [|Dj |]}, with d, C (number of classes) representing the dimensions of

input and output space. The global objective function L(W) is the weighted sum of local objectives:

W∗ = argmin
W

L(W) = argmin
W

∑
j∈J

pjLDj
(W), (1)

where the weights for local objectives {LDj (W)}j∈J satisfy
∑

j∈J pj = 1; the fraction of local
samples pj = |Dj |/

∑
j∈J |Dj |. Specifically, the local objective of j-th client is the empirical loss

over the local data, that is, LDj
(W) =

∑
(x,y)∈Dj

l(W;x, y)/|Dj | where l is the loss function.

3



Tokens

Local Summary

Data SiloUpdates

∑(        , ⋯,        )
Model Aggregation

Local Compensation 

Synthetic Data
AugmentedOriginal

Fine-Tuned
Data Pool

Global Fine-tuning 

Global

Data Generation

Client-specific 
Knowledge 

Generative 
ModelLLM Text Prompts Samples

Common-sense 
Knowledge 

Figure 2: Flick overview: it bootstraps participating clients to summarize their local data, distilling
client-specific knowledge into low-sensitivity tokens. The central server uses an out-of-the-box LLM
to analyze local summaries and instill inherent commonsense knowledge into generated text prompts.
A text-to-image model then produces synthetic samples, which are used in two ways: to compensate
for the local datasets of clients and to fine-tune the aggregated global model.

In the context of data heterogeneity, the local data distribution Dj ∼ Pj(x, y) differs between
clients, meaning Pj1(x, y) ̸= Pj2(x, y), ∀j1, j2 ∈ J , j1 ̸= j2. Following the taxonomy of non-
IID data in [28], we rewrite Pj(x, y) as Pj(x|y)Pj(y). In this paper, we focus on two types of
data heterogeneity: label skew and domain shift, where the marginal distribution Pj(y) and the
conditional distribution Pj(x|y) may vary across clients, respectively. To address this problem,
we propose Flick, a data-driven approach where the central server generates new data points D̃n

j
for each participating client j ∈ J n. In this way, the local data is progressively updated over
communication rounds, such that Dn

j = Dn−1
j ∪ D̃n

j . For the stale client j ̸∈ J n, the local dataset
remains unchanged, i.e., Dn

j = Dn−1
j . The data across clients progressively approaches an IID

condition, where Pj1(x|y) ≃ Pj2(x|y) and Pj1(y) ≃ Pj2(y) with ∀j1, j2 ∈ J , j1 ̸= j2. All
notations used throughout this paper are summarized in the Appendix A.

3.1 Flick Overview

The overall framework of Flick is illustrated in Figure 2. Flick introduces two additional phases
into the FL workflow: local summary and data generation. Clients first summarize their local
data by selectively captioning samples. The server then generates new data points by analyzing
the collected captions using an LLM guided by a designed prompt, fusing client-specific insights
with commonsense knowledge embedded in the LLM. Generated samples are stored in a server-
maintained data pool, which supports both global model fine-tuning and local data compensation.
Flick is designed to ensure effective data generation and efficient utilization of synthetic data, aiming
to enhance global performance and convergence. However, designing Flick is non-trivial: 1) the
server requires clients to report information about local data, raising potential privacy concerns; 2)
data generation has to balance the sample quality and sample quantity within limited budgets (e.g.,
maximum generation cost, generation latency), necessitating careful prompt design and generative
database management; 3) two types of generated sample usage are complementary and equally
important for improving global model performance: progressively providing clients with additional
samples to approach the IID condition yields long-term benefits while fine-tuning the global model
provides a more straightforward yet slight improvement. Detailed designs are presented in the
following sections.

3.2 Local Summary Phase

In round n, clients J n initialize their models with the latest global weights W(n,0)
j = Wn−1, and per-

form τj ∈ Z+ steps of SGD on the local data Dn−1
j : W(n,τj)

j = Wn−1−η
∑τj−1

k=0 ∇LB(n,k)
j

(W(n,k)
j ),

where ∇LB(n,k)
j

(W(n,k)
j ) is stochastic gradient over a mini-batch B(n,k)

j ⊆ Dn−1
j at step k ∈ [τj ]. η
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main subject.
Your response should use the following format: ["prompt1":, …, 
"prompt {𝐺}"]. If none of the captions are related to the category {𝑖}, 
return an empty list: [].

["there is a colorful painting of a dog wearing a hat surrounded by balloons",
"an image of a dog playing fetch with a frisbee in a sunny park",
"a cartoon dog dressed as a superhero flying through the sky with a cape",
…
"a black and white sketch of a dog lying on a cozy rug next to a fireplace"]
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Figure 3: Illustration of the data generation phase: by feeding the designed prompt containing cross-
client-specific knowledge T n, the server obtains the text prompts for data generation in the i-th class
(e.g., dog) from the LLM output. To reduce generation cost, Flick first retrieves historical samples
from the server-held data pool based on the Sentence-BERT (SBERT) embeddings [36] similarity
between the LLM-generated and historical text prompts. For remaining text prompts that fail to find
matches in the historical data, the server uses a generative image model to produce synthetic samples.

is the learning rate. The post-training summary phase extracts client-specific knowledge from local
data, providing the server with references for data generation. To achieve this, each participating client
selects representative samples and uses an image-to-text model as a caption generator to transform
samples into low-sensitivity textual information, which is then offloaded to the server.

Sample Selection. To minimize the privacy risk and local captioning overheads, the representative
samples D̂n−1

j ⊆ Dn−1
j of the j-th client for captioning should be limited in size, while still ensuring

coverage of all classes held by the client. In this way, we propose a loss-based sample selection
strategy where samples are chosen based on their informativeness for the updated model W(n,τj)

j .
Specifically, client j calculates the class-wise loss of the local model across the holding classes Cn−1

j :

lnj,c =
1

|Dn−1
j,c |

∑
(x,y)∈Dn−1

j,c

l(W(n,τj)
j ;x, y), (2)

where Dn−1
j,c refers to the set of local samples in the class c, and Dn−1

j =
⋃

c∈Cn−1
j

Dn−1
j,c . We define

the average class-wise loss as l̄nj =
∑

c∈Cn−1
j

lnj,c/|C
n−1
j |.

The sample selection follows the criteria: for each class c ∈ Cn−1
j , if the class-wise loss lnj,c ≤ l̄nj , we

select the sample from Dn−1
j,c with the largest loss in that class. Conversely, if lnj,c > l̄nj , we select the

sample with the smallest loss. The rationale behind this is that, for classes where the updated model
performs above average, we choose the sample with the largest loss, as it has a significant influence
on model training [29]. For classes where the model has inferior performance, selecting the sample
with the smallest loss ensures that the representative samples are less likely to be noisy or distorted.

Sample Captioning. Each clients extracts a set of representative samples D̂n−1
j for captioning. As

the text generation task, the learning-based image captioning provides natural language descriptions
for visual content using the encoder-decoder model structure [30–32]. Among existing methods,
we employ VLP model [33, 24, 34] pre-trained on large-scale image-text pairs for local captioning.
Each client feeds images D̂n−1

j into the VLP model for inference, generating a set of output token
sequences T̃ n

j , which are captions for corresponding representative samples.

Privacy Consideration. Compared to frameworks where clients offload raw local data or latent
features to the server [17, 18], Flick has a privacy-conscious design for the local summary, adhering
to the data minimization and anonymization principles defined in work [35]. Specifically, it offers a
minimally invasive method by selectively captioning a small subset of representative local samples
into token sequences, providing the server with essential yet low-sensitive information for data
generation. We also conduct the privacy assessment of the local summary design in Appendix E.
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3.3 Data Generation Phase

In round n, the central server collects locally updated models {W(n,τj)
j }j∈Jn and token sequences

of local representatives {T̃ n
j }j∈Jn . The server aggregates local updates for a global model W̄n =

1∑
j∈Jn |Dj |

∑
j∈Jn |Dj |W

(n,τj)
j . In parallel, the server decodes the token sequences T̃ n

j into the

text captions T n
j and pools them into T n =

⋃
j∈Jn

T n
j . Based on the analysis of T n supported

by LLMs, the server provides clients with new data points {D̃n
j }j∈Jn , where D̃n

j = {(xk
j , y

k
j ) ∈

Rd ×NC |k ∈ [|D̃n
j |]}, to compensate for local data distribution by blending each local dataset Dn−1

j .
Simultaneously, the server fine-tunes the aggregated global model with generated samples to update
the model weights from W̄n to Wn.

Generative Data Pool. The server in Flick maintains a generative dataset Gs = {(xk
s , y

k
s ,m

k
s)|k ∈

[|Gs|]} to pool the pairs of data points (xs, ys) along with corresponding text prompts ms used to
generate each data point. Specifically, by feeding text prompts into a generative model fWG , for
instance, a latent diffusion model (LDM) [37], the server generates synthetic sample x = fWG(m)
in the class y. The server-held dataset Gs is tightly coupled with the data generation process by using
it in three ways: as a validation dataset for evaluating local updates on task-specific classes, as a
database for retrieving historical samples, and as a fine-tuning dataset for global model enhancement.
Compared to previous frameworks [38–40] constructing the public/auxiliary dataset residing in the
server, Gs differs in two aspects: 1) the public dataset typically requires either web-sourced data
or soliciting data from paid anonymous workers, whereas Gs in Flick is entirely self-contained and
generated from scratch; 2) server-side datasets in previous work are usually static while Gs is dynamic
and evolves over the communication rounds by updating with new samples.

Algorithm 1: Data generation and usage.
input :Captions T n; Local updates {Wj}j∈Jn ;

Sever-held dataset Gn−1
s ; Thresholds Tv , Ts;

Generative model fWG ; Budget G.
output : Fine-tuned global model weightsWn;

Compensated local dataset {Dj}j∈Jn .

Server Executes Data Generation:
/* obtain decision matrix */

1 ValC×|Jn| ← validate {Wj}j∈Jn on Gn−1
s

2 Dn
C×|Jn| ← 1(Val ≤ Tv)

3 Mn
s ← extract historical text prompts in Gn−1

s

4 for i = 1, 2, · · · , C do
5 if

∑
j∈Jn Di,j > 0 then
/* obtain text prompts */

6 Mn
i ← feed LLM prompt (T n, G, i)

7 Sim← pair-wise similarity (Mn
i ,Mn

s )
/* retrieval-based samples */

8 (M′n
i ,M′n

s )← 1(Sim ≥ Ts)

9 D(n,i)
retr ← samples from Gn−1

s byM′n
s

/* generation-based samples */
10 D(n,i)

gen ← feed fWG text promptsMn
i \M′n

i

11 Dn
i ← D

(n,i)
retr ∪ D

(n,i)
gen

/* local data compensation */
12 for j ∈ J n do
13 D̃n

j ←
⋃

i∈[C]D
n
i × 1(Di,j = 1)

14 Dn
j ← send D̃n

j to client j executing Dn−1
j ∪ D̃n

j

/* global model fine-tuning */
15 Gns ← update server-held dataset by

⋃
i∈[C]D

n
i

16 Wn ← fine-tune global model by Gns

Synthetic Data Generation To gener-
ate the task-required samples, the server
first determines class-level data require-
ments for each client based on valida-
tion accuracy of local models on the cur-
rent server-side dataset Gn−1

s , as shown
in Algorithm 1 (line 1-2). We use matrix
Dn ∈ NC×|Jn| to record decisions in n-
th round, where the entry Di,j ∈ {0, 1}
in the i-th row and j-th column indicates
whether supplementing client j with sam-
ples of class i. The value of Di,j de-
pends on the performance of local model:
Di,j = 1 when the validation accuracy
of W(n,τj)

j on class i is below the prede-
fined threshold Tv, suggesting that client
j would benefit from additional samples
of class i to improve local training, and
Di,j = 0 otherwise.

The server then generates samples for
classes In = {i|i ∈ [C],

∑
j∈Jn Di,j >

0}. The generation procedure follows
three steps: 1) Given a generation budget
G (equal for each class), an out-of-the-
box LLM generates text prompts Mn

i =
{mk

i |k ∈ [G]} following the designed
prompt shown in Figure 3. The prompt
template instructs LLM in extracting in-
formation from the provided cross-client-
specific knowledge T n while instilling in-
herent commonsense knowledge to pro-
duce informative text prompts for the i-th class. 2) To reduce generation overheads, the server
retrieves historical samples from the data pool Gn−1

s by comparing the similarity between generated
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text prompts Mn
i and pooled text prompts Mn

s = {mk
s |mk

s ∈ Gn−1
s }. We calculate the cosine

similarity of Sentence-BERT (SBERT) embeddings [36] for each pair of text prompts from Mn
i

and Mn
s . For the text prompts M′n

i ⊆ Mn
i where the highest pairwise similarity with historical

text prompts M′n
s ⊆ Mn

s exceeds a predefined threshold Ts, the server includes the corresponding
data points D(n,i)

retr = {(xk
s , y

k
s )|(xk

s , y
k
s ,m

k
s) ∈ Gn−1

s ,mk
s ∈ M′n

s }, thereby avoiding the need to
generate new samples. 3) For the remaining text prompts Mn

i \M′n
i , the server employs an image

generator fWG(·) to synthesize new data points D(n,i)
gen = {(fWG(mk

i ), y
k
i )|mk

i ∈ Mn
i \M′n

i }. In
this way, the server provides each class i ∈ In with samples obtained by either retrieval or generation:
Dn

i = D(n,i)
retr ∪ D(n,i)

gen . Algorithm 1 (line 5-11) describes the overall data generation process. More
data generation details, including synthetic samples, are provided in Appendix G.

3.4 Generated Data Usage

The server uses the generated samples in two ways: for global model fine-tuning and for local
data compensation, as described in Algorithm 1 (line 12-16). The server sends the corresponding
generated samples to j-th client: D̃n

j =
⋃

i∈In Dn
i ·1(Di,j = 1), where 1(·) is the indicator function.

Each client then compensates for its local data distribution by updating Dn
j = Dn−1

j ∪ D̃n
j , ∀j ∈ J n.

In parallel, Flick updates the server-held data pool Gn−1
s by replacing the stale samples with latest

generated samples
⋃

i∈In Dn
i , keeping the dataset size constant. The server then uses the updated

dataset Gns to fine-tune the aggregated global model, updating the weights from W̄n to Wn.

4 Experiments

4.1 Experimental Setup

Datasets and Models. We extensively evaluate Flick on the multi-domain image classification task,
where data of different domains exhibit heterogeneous appearances but share the same labels. We
use three datasets: (1) PACS [41], consisting of 9,991 images in 7 classes across the following
four domains: Photo, Art Painting, Cartoon, and Sketch; (2) Office-Caltech [42], containing 10
overlapping classes between the Office dataset [43] and Caltech256 dataset [44], with data from
four domains: Amazon, Caltech, DSLR, and Webcam; (3) DomainNet [45], a large-scale benchmark
covering six domains: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch, each originally
containing 345 object classes. Following prior work [20, 26, 46], we construct a subset of DomainNet
by selecting the top 10 most common classes for our experiments.

In our experiments, we simulate federated settings with heterogeneous data distributions. For the
PACS dataset, we use 20 clients, and for Office-Caltech, we adopt 8 clients. Data from each
domain is partitioned into 5 (PACS) or 2 (Office-Caltech) subsets using a Dirichlet distribution with
concentration parameter α = 0.1 and α = 0.05, respectively. To evaluate the scalability of Flick
in large-scale federated settings, we further conduct experiments on the DomainNet dataset with
100 clients, where 20% are randomly selected to participate in each communication round. Each
domain is split into 15 or 17 subsets using a Dirichlet distribution with α = 0.1. Across all three
datasets, each client receives data from a single domain with a skewed label distribution, effectively
simulating real-world scenarios characterized by both domain shift and label skew. Following prior
works [21, 25, 47], we employ ResNet-18 as the shared model architecture for PACS and DomainNet,
and ResNet-10 [48] for Office-Caltech across all compared methods.

Baselines and Metric. Our evaluation is based on four baselines: the vanilla FedAvg [5] and three
model-driven methods– FedProx [9], FedDyn [49], and FedNAR [16]–designed for heterogeneous
FL. Building upon each baseline, we incorporate Flick and compare it with seven counterparts:
methods tailored to mitigate domain shift such as FedBN [26] and FedHEAL [25]; and generative
methods including DynaFed [27], FedFTG [19], and FGL [20] (server-side), as well as FRAug [21]
and Gen-FedSD [50] (client-side). We run all methods three times per setup and report the average
and standard deviation of Top-1 accuracy. Model convergence is assessed by the round-to-accuracy
performance (#Round) defined as the number of rounds required to reach the target accuracy (i.e., the
best accuracy of baseline methods). As a generative method, we also report statistics on generated
data points, including the number of samples at the target accuracy (#Sample) and the total generated
samples over all rounds (#Total Sample). Evaluation on the temporal scale is provided in Appendix D.
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Table 1: Global model accuracy (%) under both domain shift and label skew. AVG denotes the
average accuracy across all domains, and ∆ indicates the accuracy gain compared with vanilla
methods. Best in bold. Acronyms in the PACS dataset: Photo (P), Art Painting (A), Cartoon (C), and
Sketch (S); In the Office-Caltech dataset: Amazon (A), Caltech (C), DSLR (D), and Webcam (W).

PACS Office-CaltechMethods
P A C S AVG ∆ ↑ #Round ↓ A C D W AVG ∆ ↑ #Round ↓

FedAvg [5] 73.54 86.37 84.82 87.49 83.06±1.19 - 142 68.52 62.44 79.46 72.92 70.84±1.31 - 135
+FedBN [26] 80.70 84.82 90.33 90.29 86.54±0.45 3.48 81 66.58 62.89 82.14 80.83 73.11±0.71 2.27 135
+FedHEAL [25] 85.19 86.91 93.45 85.96 87.88±0.14 4.82 50 73.23 63.56 79.76 80.56 74.28±0.96 3.44 48
+DynaFed [27] 74.39 85.03 87.95 89.34 84.18±1.46 1.12 79 78.91 62.45 72.10 72.34 71.45±0.72 0.61 99
+FedFTG [19] 75.61 89.81 88.10 88.64 85.54±0.17 2.48 90 72.69 62.89 72.10 64.00 67.92±0.80 -2.92 -
+FGL [20] 88.96 87.69 97.62 85.09 89.84±0.60 6.78 22 67.36 62.22 85.71 80.00 73.82±1.72 2.98 45
+Flick 91.99 94.59 97.74 93.91 94.49±0.10 11.43 11 75.82 64.00 96.43 77.78 78.51±0.56 7.67 37
FedProx [9] 74.82 87.53 86.98 87.69 84.25±1.17 - 142 65.93 60.11 79.46 76.25 70.44±0.68 - 135
+FedBN [26] 77.43 87.05 88.39 89.02 85.47±0.25 1.22 113 64.77 62.22 82.14 78.33 71.87±0.51 1.43 59
+FedHEAL [25] 84.10 86.84 94.79 84.20 87.48±0.17 3.23 50 76.68 64.89 78.57 68.33 72.12±0.54 1.68 59
+DynaFed [27] 77.43 85.77 87.05 87.94 84.55±0.49 0.30 81 77.65 61.11 79.24 69.00 70.25±1.33 -0.19 -
+FedFTG [19] 73.79 89.17 84.52 91.62 84.78±0.60 0.53 115 70.47 62.89 75.67 65.67 68.68±1.72 -1.76 -
+FGL [20] 87.99 91.51 95.68 88.13 90.83±0.24 6.58 21 72.54 65.56 82.14 76.67 74.23±0.11 3.79 69
+Flick 91.87 94.16 98.07 93.27 94.34±0.09 10.09 19 74.96 64.59 96.43 79.44 78.86±0.47 8.42 40
FedDyn [49] 75.12 83.76 91.07 87.50 84.36±0.20 - 22 70.98 59.11 82.14 80.83 73.27±0.54 - 100
+FedBN [26] 78.76 85.56 89.88 88.58 85.70±0.22 1.34 22 75.39 64.67 83.93 78.33 75.58±1.45 2.21 97
+FedHEAL [25] 80.22 85.67 91.22 86.68 85.95±0.27 1.59 26 74.09 60.00 78.57 86.67 74.83±0.98 1.56 50
+DynaFed [27] 78.80 87.47 91.17 83.80 85.31±0.63 0.95 15 75.73 60.45 77.67 74.34 72.05±0.46 -1.22 -
+FedFTG [19] 79.05 85.56 91.77 85.66 85.51±0.55 1.15 20 75.47 62.07 78.14 73.78 72.37±0.52 -0.90 -
+FGL [20] 81.96 87.33 91.87 84.05 86.30±0.49 1.94 18 72.80 60.89 82.14 80.83 74.17±0.20 0.90 37
+Flick 87.50 93.42 95.24 93.40 92.39±0.14 8.03 12 77.85 63.33 91.07 83.75 79.00±0.71 5.73 22
FedNAR [16] 81.19 87.47 93.60 80.52 85.70±0.46 - 142 67.88 60.89 76.79 78.33 70.97±0.46 - 135
+FedBN [26] 82.77 89.17 94.49 88.96 88.85±0.82 3.15 35 69.95 60.22 78.57 81.67 72.60±0.48 1.63 129
+FedHEAL [25] 83.37 83.35 95.39 84.77 87.22±0.20 1.52 81 73.06 63.56 85.71 71.67 73.50±0.35 2.90 45
+DynaFed [27] 86.08 87.90 94.74 86.93 88.91±0.53 3.21 46 68.03 63.33 79.24 65.67 69.09±0.63 -1.88 -
+FedFTG [19] 80.95 91.72 93.15 86.04 87.97±0.88 2.27 100 78.91 65.11 61.38 65.67 67.78±1.83 -3.19 -
+FGL [20] 87.99 87.90 96.58 85.85 89.58±0.81 3.88 22 69.43 62.45 85.71 70.83 72.11±0.32 1.14 47
+Flick 92.35 91.83 97.47 92.83 93.62±0.31 7.92 12 73.96 62.22 91.96 80.42 77.14±0.49 6.17 43

Implementation Details. For fair comparisons, all methods are implemented using the same settings.
We use SGD as an optimizer with a learning rate of 0.01; the weight decay is 4e−5 and the momentum
is 0.9. The batch size for local training is 64 and 32 for the two datasets, respectively, with four clients
participating in each round. The communication rounds are set to 150. We utilize “Salesforce/blip-
image-captioning-large” [24] for the image captioning and “sd-legacy/stable-diffusion-v1-5” [51]
for the image generation, sourced from Hugging Face. We also use “gpt-4o-mini” from OpenAI
API [52] to analyze offloaded captions. More details are given in Appendix B.

4.2 Performance Evaluation

Flick Effectiveness. Table 1 presents performance under the heterogeneous setting with both domain
shift and label skew. We observe that Flick outperforms all counterpart methods across integrated
baselines, consistently yielding substantial improvements in global model accuracy and requiring
significantly fewer rounds to reach the target accuracy. Specifically, Flick improves the Top-1 accuracy
by up to 11.43% on the PACS dataset and 8.42% on the Office-Caltech dataset while reducing #Round
from 142 and 100 to 11 and 22, respectively. The performance of DynaFed and FedFTG heavily
depends on the quality of generated pseudo samples, posing significant challenges when facing
relatively high-resolution data such as 224×224×3 images adopted in our experiments, resulting
in severe variance across the two datasets. FGL [20] constructs a large IID synthetic dataset before
FL training using captions from all local data, with its size matched to Flick for a fair comparison,
which is used to fine-tune the global model to boost FL performance. However, due to its reliance on
local data side information, FGL underperforms compared to Flick. Additionally, creating a large
synthetic dataset in advance introduces substantial overhead, making it difficult to reach the target
accuracy within a short time frame (see Appendix D). Besides, we investigate the performance of
Flick’s under the domain shift-only setup where each client holds data from a single domain while
maintaining balanced label distributions across clients. Figure 5 shows the superior performance of
Flick compared to domain shift-specific methods (i.e., FedBN and FedHEAL) across two datasets.
These results highlight that Flick effectively fuses cross-client-specific knowledge while installing
commonsense insights from the LLMs into synthetic data, significantly mitigating the heterogeneity
problem in FL. More experimental results can be found in Appendix C.2.
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Table 2: Performance across local generative methods.

PACSMethods
P A C S AVG ↑ #Round ↓

FRAug [21] 79.85 85.99 90.48 84.39 85.18±0.32 21
Transformation [50] 87.94 90.16 95.04 90.57 90.93±0.52 31
Gen-FedSD [22] 90.78 94.27 96.73 93.15 93.73±0.27 19
Flick 91.99 94.59 97.74 93.91 94.49±0.10 11

Office-CaltechMethods
A C D W AVG ↑ #Round ↓

FRAug [21] 58.03 50.67 82.14 85.00 68.96±0.66 -
Transformation [50] 72.88 62.52 75.00 77.22 71.91±1.84 138
Gen-FedSD [22] 77.98 64.44 83.93 75.00 75.34±0.21 48
Flick 75.82 64.00 96.43 77.78 78.51±0.56 37

Comparison with Local Generative
Methods. We also compare Flick with
local generative methods: FRAug, Gen-
FedSD, and a transformation-based local
augmentation method that locally gener-
ates data points through random transfor-
mations such as cropping, rotation, and
image mirroring [50]. For Gen-FedSD
and transformation-based methods, the
number of samples per class depends
on the local data distribution, with more
samples generated for underrepresented
classes. To ensure a fair comparison, we
keep the consistent budget of generated samples across all methods with Flick. Table 2 shows that
local generative methods, by leveraging their own determined data distributions, can perform precise
augmentation to balance local datasets effectively. This leads to notable performance gains over other
model-driven approaches and even some server-side methods. Among them, sample-wise methods
(i.e., Gen-FedSD and Transformation) consistently outperform the feature-wise method (i.e., FRAug)
across two benchmarks. Although Flick is a server-side data-driven framework, it avoids introducing
data generation overhead on clients while achieving superior performance by centralizing LLMs
usage and leveraging cross-client-specific knowledge.

Table 3: Ablation study on the PACS dataset.

LS CK DR LC GF AVG #Round #Sample #TotalSample

✘ ✔ ✔ ✔ ✔ 91.82±0.29 19 430 1218
✔ ✘ ✔ ✔ ✔ 92.92±0.22 27 312 400
✔ ✔ ✘ ✔ ✔ 94.75±0.13 11 339 1665
✔ ✔ ✔ ✘ ✔ 89.11±0.40 26 630 3239
✔ ✔ ✔ ✔ ✘ 93.75±0.04 19 504 1169
✔ ✔ ✔ ✔ ✔ 94.49±0.10 11 270 1083

Ablation Study. To assess the effec-
tiveness of key components in Flick, we
conduct an ablation study on the PACS
dataset with five breakdowns: Local Sum-
mary (LS), Commonsense Knowledge
(CK), Data Retrieval (DR), Local Com-
pensation (LC), and Global Fine-tuning
(GF). Results in Table 3 show that the
variant of Flick without the local sum-
mary phase leads to a 2.67% accuracy
drop, as the server generates the data solely based on class names. It highlights the importance of
cross-client-specific knowledge in acquiring task-related information from LLMs. Flick without
commonsense knowledge directly uses client-specific captions for data generation, relying solely
on the local summary. As training progresses, local compensation depends primarily on retrieved
samples rather than high-quality data generated through the integration of cross-client insights and
commonsense knowledge, leading to fewer generated samples, slower convergence, and reduced
model accuracy. The variant of Flick without local compensation brings more data generation over-
head while introducing limited performance improvement. Besides, Flick without data retrieval does
not significantly affect performance; however, it results in more samples being generated, introducing
extra overhead without proportional gains. Figure 4 further showcases the benefits of synthetic
data usage: global fine-tuning speeds up the model convergence at the beginning, and the combi-
nation of local compensation and global fine-tuning yields consistent and substantial performance
improvements throughout training. More ablation studies can be found in Appendix C.3.

Scalability Analysis. To further evaluate the scalability of Flick in large-scale federated learning, we
extend our analysis to the DomainNet dataset [45] with 100 clients. As illustrated in Figure 6, Flick
consistently delivers superior performance in both model accuracy and round-to-accuracy (#Round)
across four different baseline methods, demonstrating its robustness under highly heterogeneous and
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Figure 6: Model performance across various baseline methods on the DomainNet dataset.

large-population FL scenarios. In particular, Flick improves accuracy by up to 11.35%, 12.11%,
5.82%, and 6.50%, and accelerates convergence by up to 10.36×, 5.48×, 3.58×, and 4.17× compared
with the respective baselines. Notably, although FGL achieves fast convergence by fine-tuning the
global model on a large IID synthetic dataset, this comes at the expense of substantial computational
and generative overhead, making Flick more appealing in resource-constrained federated settings.
Comprehensive configurations and detailed results are included in Appendix C.4.

5 Discussion

We provide extensive quantitative analyses in the Appendix D, E, F, offering deeper insights into
Flick’s system efficiency, privacy preservation, and practical deployability. Flick improves global
performance without exposing raw data, as only lightweight and low-sensitivity token summaries
are transmitted, inherently reducing privacy risks. Although server-side synthetic data generation
introduces additional computation, this cost is fully offloaded from clients and is largely offset by
the fast convergence enabled through rich LLM knowledge infusion. Moreover, directly deploying
large models on clients is infeasible in real-world edge intelligence due to strict resource constraints,
and querying cloud-based LLMs could cause privacy leakage. In contrast, Flick allows compact
client models to inherit the knowledge of LLMs in a cost-effective and communication-efficient
manner. We believe Flick highlights that foundation models and lightweight client models play
complementary roles: while large models provide rich knowledge, small models remain the only
practical and privacy-preserving learners at the edge, making their collaboration essential in real
deployments.

6 Conclusion

In this paper, we design a novel generative framework Flick to address the data heterogeneity,
including both label skew and domain shift issues in FL, where the central server generates synthetic
samples by integrating cross-client-specific knowledge with the commonsense knowledge embedded
in out-of-the-box LLMs. Flick allows clients to selectively caption their samples, distilling client-
specific knowledge into low-sensitivity textual information that is then explored by the server to
generate data with the power of LLMs to boost FL training. We also explore the generated data for
local data compensation and global model fine-tuning, further enhancing the global model accuracy
and convergence performance. Extensive experiments on three datasets have been conducted to
validate the effectiveness of Flick. Specifically, Flick improves global model accuracy by up to 11.43%
and facilitates round-to-accuracy performance from 142 to 11. Besides, Flick produces consistently
superior performance against other counterparts on DomainNet with 100 clients, demonstrating its
potential to enhance model performance in large-scale heterogeneous scenarios.
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Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan McMahan, et al. Towards
federated learning at scale: System design. Proceedings of machine learning and systems, 1:
374–388, 2019.

[7] Xin-Chun Li and De-Chuan Zhan. Fedrs: Federated learning with restricted softmax for label
distribution non-iid data. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pages 995–1005, 2021.

[8] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc:
Federated learning with non-iid data via local drift decoupling and correction. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 10112–10121,
2022.

[9] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429–450, 2020.

[10] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pages 5132–5143. PMLR, 2020.

[11] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

[12] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

[13] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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Appendix

A Notations

All notations used in this paper are summarized in Table 4. We omit the superscript of symbols
indicating temporal information, e.g., J n refers to a set of participating clients in communication
round n.

Table 4: Symbols and notations in the paper.
Symbol Explanation

J Set of clients
Dj , D̂j Set of local/representative samples of client j
D̃j Set of generated samples for client j

T̃j , Tj Tokens sequences/text captions from client j
Gs Data pool maintained by server
Mi Set of text prompts for class i
Wj Weights of updated local model

W̄ , W Weights of aggregated/fine-tuned global model
D Decision matrix for data generation
I Set of classes of generated samples
τj Number of local SGD steps for client j
N Number of communication rounds
C Number of task-specific classes
G Budget for the number of generated samples

Tv , Ts Threshold for validation accuracy/text similarity

B Experimental Details

B.1 Visualization of the PACS, Office-Caltech, and DomainNet datasets

We evaluate the performance of Flick and its counterparts on three benchmark image datasets:
PACS [41], Office-Caltech [42], and DomainNet [45]. Each benchmark is a multi-class classification
task, where each class includes samples from different domains. The PACS dataset comprises seven
classes: dog, elephant, giraffe, guitar, horse, house, and person. The Office-Caltech dataset contains

Photo

Sketch

Dog Elephant Giraffe Guitar Horse House Person

Cartoon

Art Painting

Figure 7: Example samples from different classes and domains in the PACS dataset [41].
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Figure 8: Example samples from different classes and domains in the Office-Caltech dataset [42].
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Infograph

Painting

Quickdraw

Real

Sketch

airplane clock axe basketball bicycle bird strawberry flower Pizza Bracelet

Figure 9: Example samples from different classes and domains in the DomainNet dataset [45].

ten classes: backpack, bike, calculator, headphones, keyboard, laptop, monitor, mouse, mug, and
projector. Following prior work [20, 26, 46], we construct a sub-dataset of the DomainNet dataset
for our experiments by selecting the top ten most common classes: airplane, clock, axe, basketball,
bicycle, bird, strawberry, flower, pizza, bracelet. Figures 7, 8, and 9 illustrate the diverse domains
within individual classes. In the PACS dataset, significant feature variations across domains within
the same class are clearly observable, making domain differences explicit. In contrast, domain
differences in Office-Caltech are more latent, for instance, variations with background, view, and
clarity of the object, posing additional challenges in effectively addressing the domain shift problem
within this benchmark. DomainNet contains six highly heterogeneous domains, where the appearance
gap of the same class across domains can be extremely large, making our experiments on this dataset
more realistic and representative of real-world scenarios. To simulate heterogeneous FL settings with
domain shifts, we partition the data and assign data from one domain exclusively to each client.

B.2 Hyperparameter Settings

Here, we provide more details about the experimental training parameter settings. All methods are
implemented in Python, with neural networks developed using PyTorch. In local training, local
epochs are set to 5, and the input data size is fixed at 224× 224. We set the server-held data pool size
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|Gs| to 25, and the data generation budget G to 5 for both datasets. We use “stable-diffusion-v1-5”
for the image generator and “gpt-4o-mini” and out-of-the-box LLMs for generating text prompts by
analyzing the uploaded client-specific knowledge combined with embedded commonsense knowledge.
A comprehensive robustness evaluation of Flick under different image generators and out-of-the-box
LLMs is provided in Appendix C.1. Additionally, for the PACS dataset, we set text similarity
threshold Ts = 0.8 and validation threshold Tv = 0.9, which guide the construction of the decision
matrix D. For the Office-Caltch dataset, we adopt Ts = 0.7 and Tv = 0.8 as the default settings.

In baseline methods, FedProx uses a hyperparameter to control the proximal term’s weight in the
objective function. We tune this hyperparameter within the [0.001, 0.01, 0.1, 1] following [9], and
report the best result. Specifically, the value of 0.1 is adopted in both datasets. For FedDyn, we
provide its best performance by fine-tuning the weight of penalized risk within [0.001, 0.01, 0.1]. We
set this value to 0.1 for PACS and 0.01 for Office-Caltech. For FGL, we adopt the multi-round-syn
variant, where the global model is initially trained on a synthetic dataset generated in the first round
and subsequently fine-tuned using synthetic data throughout the following communication rounds.
To ensure a fair comparison, we match the total amount of synthetic data to that produced by our
method, Flick, under each experimental setting. For other counterparts, we keep the default settings
they provided.

C More Results and Analysis

C.1 Sensitivity Analysis

In this section, we demonstrate that Flick consistently maintains superior performance across a range
of hyperparameter settings and model choices, indicating the robust generalization of Flick without
reliance on extensive tuning.

Impact of text similarity Ts, validation accuracy Tv, and data pool size. Figure 10(a) shows the
model performance improvements with a larger text similarity threshold Ts. The number of generated
samples required to reach the target accuracy (i.e., FedAvg’s best accuracy) rises with a higher Ts,
while #Sample decreases because fewer rounds are needed. When Ts reaches 0.9, no samples are
retrieved. For validation accuracy threshold Tv, a lower value generates fewer samples per round
but requires more rounds to reach the target accuracy. With a fixed number of rounds, the accuracy
is lower at smaller values of Tv. As shown in Figure 10(b), Tv = 0.9 or 1.0 serves as an effective
threshold, yielding better performance with fewer required samples. Figure 10(c) shows that the
accuracy performance does not change much across different sizes of the server-held data pool. Here,
x-axis denotes storage capacity per class in the data pool; we can observe that a larger pool size
significantly benefits the global model’s fine-tuning, greatly reducing #Sample. However, a larger
data pool size requires more storage.
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Figure 10: The performance of Flick under varying hyperparameters on the PACS dataset.

Impact of Data Generation Budget G. In our designed prompt illustrated in Figure 3, the server
hosting the LLM can generate text prompts of varying sizes for class i under a specified hyperpa-
rameter G. This design flexibility in our Flick allows the server to adapt to the practical deployment
with the given data generation budget. In the experiments, we evaluate the performance of Flick
under different data generation budgets G ∈ {5, 10, 15}. We keep the experimental setup for the
two benchmarks consistent with the experiments in Table 1, with FedAvg as the baseline method,
except for varying G and the server-held data pool size fixed at |Gs| = 40. The results are shown in
Table 5. We can observe that a larger G indeed improves the global model accuracy in the long run by
generating more samples enriched with commonsense knowledge. Additionally, G = 10 and G = 15
speed up the model convergence on the Office-Caltech dataset compared to G = 5, as evidenced by
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Table 5: The performance of Flick under different data generation budget G on both datasets.
PACS

G
P A C S AVG ↑ #Round ↓ #Sample ↓

G = 5 91.99 91.51 97.62 93.27 93.60±0.17 7 188
G = 10 92.72 94.06 96.43 93.65 94.21±0.20 7 276
G = 15 93.93 93.84 97.17 93.53 94.62±0.14 7 420

Office-Caltech
G

A C D W AVG ↑ #Round ↓ #Sample ↓
G = 5 76.68 65.78 88.10 80.56 77.78±0.12 33 146
G = 10 77.98 63.56 94.64 79.17 78.84±0.22 24 253
G = 15 77.72 65.33 96.43 78.33 79.45±0.18 24 317

the enhanced round-to-accuracy performance (i.e., #Round). However, G = 5 requires the fewest
generated samples (i.e., #Sample) to reach the target accuracy, revealing a trade-off between training
performance (e.g., accuracy and latency) and data generation overheads. It underscores the impor-
tance of carefully selecting the G to balance data generation costs and performance improvements in
practical applications. In the rest of the evaluations in this paper, we use G = 5 as the default setting.

Impact of different image captioning methods. In Flick, clients perform image captioning on a
small set of representative local samples during the summary phase. This summarization captures
essential local insights that play a crucial role in guiding the server to extract task-relevant, high-
quality commonsense knowledge from LLMs – an effect validated in our ablation study. To assess
the sensitivity of Flick to different image captioning strategies, we evaluate its performance using
three representative captioning models: “blip-image-captioning-large", “blip-image-captioning-base",
and “vit-gpt2-image-captioning". As shown in Figure 11, the results on both datasets indicate that
Flick is agnostic to the choice of captioning model and consistently maintains superior performance.
This demonstrates the flexibility and generalization of our approach.
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Figure 11: The performance of Flick over different image captioning methods: blip-image-captioning-
large, blip-image-captioning-base, and vit-gpt2-image-captioning.
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Figure 12: The performance of Flick over different out-of-the-box LLMs: gpt-4o-mini, gpt-4o, gpt-4,
and gpt-3.5-turbo-0125.

Impact of different out-of-the-box LLMs. The server in Flick employs LLM to analyze the
collected local summary and generate text prompts for subsequent data generation. The designed
prompt template instructs the LLM to extract class-specific information from collected local captions
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and fuse it with inherent commonsense knowledge, thereby enhancing the quality of the output text
prompts. To demonstrate the compatibility of the Flick workflow with out-of-the-box LLMs, we
use the same prompt template as illustrated in Figure 3 and evaluate the performance of Flick by
configuring the LLM to “gpt-3.5-turbo-0125”, “gpt-4”, “gpt-4o”, and “gpt-4o-mini” (default LLM in
this paper). The experimental results are given in Figure 12. We can see that the choice of LLM has a
negligible impact on the text prompt generation, evidenced by the similar global model performance
and data generation decisions. These valuation results validate the compatibility of our designed
prompt template across a wide range of LLMs.

Impact of Image Generator fWG(·). As a key component of the Flick workflow, a text-to-image
model is employed to generate synthetic samples taking input text prompts. Since the data generation
runs on the server side, the availability of rich computational resources allows for extending the
choice within advanced generative image models, thereby enabling the generation of high-quality
data points for further usage in Flick. To this end, Figure 13 reports the performance of Flick when
using various generative models. We investigate the LDMs publicly available in HuggingFace,
including “stable-diffusion-v1-5” (default model in this paper), “stable-diffusion-v1-4”, and “stable-
diffusion-xl-base-1.0”. We also incorporate the “DALL-E-2” embedded in ChatGPT/OpenAI API
for comparison. The results indicate that synthetic samples provided by all four image generators
significantly enhance FL performance compared to the baseline FedAvg that achieves 83.06% on
PACS and 70.84% on Office-Caltech. Note that the models with more advanced designs improve the
global model’s performance better, at the cost of higher computational demands. E.g., “DALL-E-2”
model leads to higher accuracy, potentially due to its ability to produce samples in diverse artistic
styles [53].
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Figure 13: The performance of Flick over different image generators: stable-diffusion-v1-5, stable-
diffusion-v1-4, stable-diffusion-xl-base-1.0, and DALL-E-2.

C.2 Detailed Evaluation under Domain Shift

The data generation process in Flick considers the class-wise performance of local models (i.e.,
through the decision matrix D) and the domain knowledge variations across clients (i.e., the collection
of local summaries T used in LLM prompt). This highlights the capability of Flick to solve domain
shift and label skew in heterogeneous FL jointly and therefore distinguishes Flick from other model-
driven [49, 16, 9] or data-driven [17, 18, 21, 22] methods that solely address imbalanced local
datasets across clients. To validate the performance gain by Flick attributed to mitigating domain
shift, Table 6 reports experimental results where each client holds balanced local data in label
space but only from one domain. It shows that Flick consistently yields significant improvement
in model accuracy and reduces the number of communication rounds (#Round) to reach the target
accuracy–defined as the best accuracy of the baseline methods (i.e., FedAvg, FedProx, FedDyn,
FedNAR). Among generation-based counterparts, DynaFed and FedFTG have limited performance
gain under the heterogeneous settings with domain shift alone and even show inferior performance to
the baselines on the Office-Caltech dataset. For FGL, we match the synthetic data volume to that
of Flick. For example, under the FedAvg baseline on the PACS dataset, Flick generates only 300
synthetic samples in total. This limited amount of auxiliary data constrains the performance of FGL –
a finding consistent with its released paper. In contrast, the same amount proves sufficient for Flick to
deliver significant performance improvements. More importantly, compared to methods specifically
designed to address domain shift (i.e., FedBN and FedHEAL), Flick further improves the global
model performance and convergence by a large margin. Combined with the results from Table 1, it is
clear that Flick shows great performance in addressing data heterogeneity issues regarding label skew
and domain shift.
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Table 6: Global model accuracy performance (%) under domain shift only. AVG denotes the average
accuracy calculated across all domains, and ∆ indicates the accuracy gain compared with vanilla
methods. Best in bold. Acronyms in the PACS dataset: Photo (P), Art Painting (A), Cartoon (C), and
Sketch (S); In the Office-Caltech dataset: Amazon (A), Caltech (C), DSLR (D), and Webcam (W).

PACS Office-CaltechMethods
P A C S AVG ∆ ↑ #Round ↓ A C D W AVG ∆ ↑ #Round ↓

FedAvg [5] 91.85 94.16 95.98 87.88 92.47±0.11 - 84 77.47 63.33 70.37 88.56 74.93±0.70 - 59
+FedBN [26] 89.53 93.35 95.63 90.91 92.36±0.1 -0.13 - 77.60 64.22 72.22 88.98 75.76±0.35 0.83 45
+FedHEAL [25] 91.00 94.69 95.09 91.37 93.04±0.22 0.57 79 76.43 65.11 75.93 91.10 77.14±1.18 2.21 38
+DynaFed [27] 90.27 92.71 95.93 89.68 92.15±0.45 -0.32 - 79.69 65.33 70.37 84.75 75.03±0.94 0.10 55
+FedFTG [19] 89.78 92.99 90.77 92.39 91.48±0.63 -0.99 - 82.29 65.00 67.96 78.03 73.32±0.90 -1.61 -
+FGL [20] 89.90 90.13 95.09 89.97 91.27±0.05 -1.20 - 61.04 62.22 85.19 81.19 72.41±0.40 -2.52 -
+Flick 91.48 94.48 96.88 92.20 93.76±0.07 1.29 24 81.60 65.48 87.65 91.53 81.56±0.54 6.63 21
FedProx [9] 88.56 93.63 94.05 91.50 91.94±0.25 - 84 78.52 62.56 75.00 90.68 76.69±0.34 - 59
+FedBN [26] 89.05 93.74 94.94 89.59 91.83±0.14 -0.11 - 74.35 64.11 78.70 88.56 76.43±1.65 -0.26 -
+FedHEAL [25] 90.88 95.12 95.39 90.99 93.09±0.11 1.15 41 79.95 67.33 74.07 91.53 78.22±0.71 1.53 66
+DynaFed [27] 90.02 91.44 95.04 89.97 91.62±0.45 -0.32 - 82.30 64.44 72.22 80.51 74.87±1.67 -1.82 -
+FedFTG [19] 87.23 93.95 91.52 89.21 90.48±0.34 -1.46 - 81.25 64.89 74.26 81.27 75.42±1.23 -1.27 -
+FGL [20] 90.43 89.53 94.94 89.47 91.09±0.31 -0.85 - 68.77 63.78 85.19 86.27 76.00±0.15 -0.69 -
+Flick 91.36 94.27 95.83 93.46 93.73±0.16 1.79 16 80.21 65.33 85.19 94.92 81.41±0.15 4.72 16
FedDyn [49] 83.94 91.93 92.11 91.75 89.93±0.44 - 22 79.17 62.44 83.33 88.14 78.27±0.12 - 68
+FedBN [26] 86.78 91.30 92.66 91.50 90.56±0.50 0.63 22 81.64 65.44 84.26 90.68 80.51±0.43 2.24 79
+FedHEAL [25] 87.59 92.57 94.94 91.56 91.67±0.10 1.74 16 73.44 61.11 87.04 94.92 79.13±0.26 0.86 73
+DynaFed [27] 87.75 91.86 94.25 90.61 91.12±0.29 1.19 20 79.67 64.67 76.89 91.11 78.09±0.71 -0.18 -
+FedFTG [19] 86.62 93.10 93.45 91.62 91.20±0.47 1.27 20 80.73 65.44 80.18 84.14 77.62±0.69 -0.65 -
+FGL [20] 88.69 93.63 92.86 92.01 91.79±0.06 1.86 13 82.29 67.85 82.72 93.22 81.52±0.76 3.25 89
+Flick 90.02 95.01 95.39 93.15 93.39±0.33 3.46 16 84.11 65.56 87.03 94.07 82.69±0.59 4.42 23
FedNAR [16] 89.86 92.92 96.03 89.81 92.16±0.13 - 84 77.99 63.00 75.93 92.80 77.43±0.86 - 66
+FedBN [26] 90.75 92.57 94.94 90.61 92.22±0.34 0.06 142 80.90 64.00 76.54 89.27 77.68±0.70 0.25 131
+FedHEAL [25] 91.24 95.12 95.24 90.61 93.05±0.47 0.89 30 80.21 63.56 77.78 91.53 78.27±0.64 0.84 59
+DynaFed [27] 89.90 92.94 94.72 89.88 91.86±0.39 -0.30 - 81.52 67.56 74.04 88.81 77.98±0.72 0.55 101
+FedFTG [19] 88.81 93.84 91.96 89.72 91.08±0.72 -1.08 - 82.73 65.11 73.81 81.34 75.75±1.06 -1.68 -
+FGL [20] 90.39 90.76 95.09 89.78 91.51±0.12 -0.65 - 72.99 64.33 83.33 84.34 76.25±0.10 -1.18 -
+Flick 92.34 93.74 95.98 92.70 93.69±0.18 1.53 16 80.38 65.33 88.89 88.70 80.83±0.54 3.40 25

Table 7: Extended ablation study on the components of client-side local summary and server-side data
generation in Flick. We compare Flick with its variants: Flick with random local sample captioning
(Random Captioning) and Flick with random historical sample retrieval (Random Retrieval).

PACSMethods
P A C S AVG ↑ #Round ↓ #Sample ↓

Random Retrieval 89.81 91.40 96.28 93.21 92.67±0.07 19 423
Random Captioning 91.87 91.61 97.32 93.08 93.47±0.33 19 430
Flick 91.99 94.59 97.74 93.91 94.49±0.10 11 270

Office-CaltechMethods
A C D W AVG ↑ #Round ↓ #Sample ↓

Random Retrieval 78.24 65.78 89.29 73.33 76.66±0.52 45 295
Random Captioning 75.13 61.33 92.86 79.17 77.12±0.20 43 235
Flick 75.82 64.00 96.43 77.78 78.51±0.56 37 150

C.3 Extended Evaluation on Flick Variants

In Table 3, we conduct the ablation study on Flick by evaluating its performance without the Local
Summary (LS) phase or the Data Retrieval (DR) during the data generation phase. To further explore
the effectiveness of our LS and DR designs – specifically the loss-based LS and similarity-based DR
strategies – we compare Flick with its variants: random local sample captioning (Random Captioning)
and random historical sample retrieval (Random Retrieval). Table 7 summarizes the results under the
setup of FedAvg as the baseline method for both benchmarks. For a fair comparison, the server in
the Random Retrieval retrieves the same number of samples as Flick but randomly selects from the
server-held data pool. This ensures that Random Retrieval maintains the same proportion of retrieved
samples Dretr and generated samples Dgen as Flick during the entire data generation phase across
all communication rounds. The experimental results clearly reveal the benefits of selective local
sample summarization and guided historical sample retrieval in Flick over their random counterparts.
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Random local sample captioning results in inefficient extraction of client-specific knowledge, as it
lacks the focus on captioning the representative local samples provided by the loss-based criteria.
Furthermore, the negative impact of introducing randomness into data retrieval is even more severe
in Random Retrieval, where the central server randomly sends diverse synthetic samples that fail
to align with the specific requirements of local data compensation, thereby degrading the training
efficiency.

C.4 Scalability Analysis on DomainNet Dataset

To evaluate the scalability of Flick in large-scale federated settings, we experiment on the DomainNet
dataset [45] with 100 clients, where 20% are randomly selected to participate in each communication
round. The DomainNet dataset consists of natural images with six different domains: Clipart,
Infograph, Painting, Quickdraw, Real, and Sketch. Following prior work [20, 26, 46], we construct a
sub-dataset for our experiments by selecting the top ten most common classes: airplane, clock, axe,
basketball, bicycle, bird, strawberry, flower, pizza, bracelet. We partition each domain into 15 or 17
subsets using a Dirichlet distribution with concentration parameter α = 0.1. Each client receives
data from a single domain with a skewed label distribution, simulating a scenario with both label
skew and domain shift. We fix the synthetic data volume for FGL at 1500, while the total number
of generated samples (#Total Sample) in Flick is lower – 1457, 1133, 1412, and 1299 for FedAvg,
FedProx, FedDyn, and FedNova, respectively. Besides, the number of samples required to reach the
target accuracy is only 427, 414, 417, and 477, highlighting that Flick achieves superior performance
with substantially less generative overhead.

Table 8: Global model accuracy performance (%) under both domain shift and label skew on
DomainNet dataset. AVG denotes the average accuracy calculated across all domains, and ∆
indicates the accuracy gain compared with vanilla methods. Best in bold.

DomainNetMethods
Clipart Infograph Painting Quickdraw Real Sketch AVG ∆ ↑ #Round ↓

FedAvg [5] 82.59 46.99 71.60 77.63 85.95 80.00 74.13±0.38 - 144
+FedBN [26] 83.64 52.00 72.41 69.78 91.30 77.36 74.41±0.17 0.28 94
+FedHEAL [25] 86.50 53.18 74.33 72.42 90.65 80.00 76.18±0.30 2.05 53
+DynaFed [27] 86.13 50.31 69.22 85.90 87.16 81.40 76.68±1.27 2.55 100
+FedFTG [19] 84.31 50.00 71.20 80.87 87.69 74.69 74.79±0.32 0.66 114
+FGL [20] 91.09 55.56 79.71 79.07 92.21 84.80 80.41±0.39 6.28 5
+Flick 92.11 63.90 83.88 91.40 92.91 90.34 85.76±0.07 11.63 11
FedProx [9] 85.32 52.59 72.99 83.37 88.15 80.76 77.20±0.60 - 144
+FedBN [26] 83.48 52.73 72.34 66.63 91.49 77.66 74.06±0.02 -3.14 -
+FedHEAL [25] 87.36 54.84 74.88 75.91 92.33 81.86 77.86±0.12 0.66 58
+DynaFed [27] 86.94 53.94 73.18 82.60 87.56 81.79 77.67±0.11 0.47 115
+FedFTG [19] 86.82 51.79 73.86 86.07 89.72 81.45 78.28±0.30 1.08 114
+FGL [20] 91.40 54.98 80.98 81.00 92.79 85.03 81.03±0.48 3.83 14
+Flick 92.81 64.94 84.94 91.60 93.07 89.66 86.17±0.05 8.97 21
FedDyn [49] 88.06 55.39 77.08 75.60 90.32 81.03 77.91±0.22 - 34
+FedBN [26] 87.22 54.79 78.82 77.90 89.72 80.48 78.16±0.33 0.25 45
+FedHEAL [25] 86.51 56.97 74.66 75.03 91.89 82.68 77.96±0.21 0.05 93
+DynaFed [27] 84.41 53.53 74.11 81.73 89.46 81.03 77.38±0.21 -0.53 -
+FedFTG [19] 86.13 54.05 74.50 82.20 88.80 81.93 77.94±0.59 0.03 31
+FGL [20] 87.35 54.67 76.55 80.17 89.99 82.76 78.58±0.13 0.67 31
+Flick 89.68 60.37 83.09 87.87 91.14 87.03 83.20±0.13 5.29 26
FedNAR [16] 89.88 56.85 75.36 86.10 91.69 81.93 80.30±0.40 - 150
+FedBN [26] 85.50 58.22 76.50 78.90 93.33 81.17 78.94±0.14 -1.36 -
+FedHEAL [25] 88.43 57.05 77.37 77.87 93.87 83.69 79.71±0.02 -0.59 -
+DynaFed [27] 89.77 56.08 77.16 83.63 92.60 84.38 80.60±0.21 0.30 150
+FedFTG [19] 90.72 53.10 74.63 84.50 94.71 84.41 80.34±0.10 0.03 114
+FGL [20] 90.38 57.47 81.11 83.83 92.65 85.24 81.78±0.07 1.48 79
+Flick 91.30 64.73 84.02 90.40 93.11 89.10 85.44±0.17 5.14 36

D Overheads

Compared to the model-driven methods for heterogeneous FL, the data-driven Flick introduces
additional overheads to the clients, including extra training and captioning latency. However, the
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Figure 14: Evaluation on the temporal scale: (a) Wall-clock training time of Flick and its model-
driven counterparts on the PACS dataset, running on an NVIDIA A40 GPU; (b) Wall-clock local
latency of a specific client, running on an NVIDIA Jetson AGX Orin, across participating rounds,
including training on both original and synthetic data points, as well as local captioning.

Table 9: Resource usage comparison between model-driven FedProx and data-driven Flick across
three benchmarks. We report per-round and accumulated-to-target (with target defined as the best
performance of FedProx, highlighted in gray) resource consumption using four metrics: Peak GPU
Memory (PGM), GPU Memory Hours (GMH), Energy (E), and Running Time (RT). For GMH and E,
we provide the dynamic range observed across the communication rounds. Lowest in bold.

PACS Office-Caltech DomainNetMetrics
FedProx Flick FedProx Flick FedProx Flick

PGM (GB) 8.33 14.53 4.77 10.50 13.74 20.47
GMH (GB·hour) [0.049, 0.064] [0.152, 0.353] [0.016, 0.022] [0.084, 0.376] [0.529, 0.681] [1.407, 2.110]
E×10−4 (kWh) [0.89, 80.62] [5.64, 164.60] [1.81, 52.47] [1.89, 90.90] [8.23, 273.60] [8.06, 1207.00]
RT (hour) 0.96 0.52 0.55 0.50 6.82 2.11
GMH (GB·hour) 7.91 5.92 2.63 5.25 91.79 34.61
E (kWh) 0.149 0.075 0.063 0.050 1.329 0.444

performance gain from Flick remains significant: it facilitates the model convergence, as reflected in
both reduced round-to-accuracy (#Round) and training time, while also improving the top-1 accuracy
of the global model in the long run.

Figure 14(a) shows the learning curves of Flick and its counterparts, integrated into the baseline
method FedAvg, with time-to-accuracy performance evaluated on an NVIDIA A40 GPU. The faster
convergence offered by Flick significantly counteracts the negative impact from additional overheads.

We also trace local latency variation over communication rounds by measuring the time consumption
of a single client running on an NVIDIA Jetson AGX Orin, as shown in Figure 14(b). We break
down the additional overheads into training on synthetic data and captioning the representative
samples, which employs the “Salesforce/blip-image-captioning-large" with ViT and BERT as image
and text encoders. It is obvious that the local overheads of Flick stabilize over time and constitute
only a small fraction of the overall local latency as training proceeds. In contrast, FGL – the
best-performing counterpart – incurs substantial delay in the first communication round due to the
extensive preparation of synthetic data, leading to a longer time to reach the target accuracy.

We further investigate storage and GPU memory requirements across three VLP-based captioning
models: BLIP-Large requires 1.88 GB of storage and 3.19 GB of GPU memory; BLIP-Base requires
0.97 GB of storage and 2.30 GB of GPU memory; ViT-GPT2 requires 0.96 GB of storage and 2.48
GB of GPU memory. Moreover, Flick shows consistent performance gains across these three image
captioning models as shown in Figure 11. Such flexibility enables clients to choose models that are
best suited to their available computational budgets.

Additionally, we compare the resource usage of data-driven Flick with the model-driven baseline
FedProx from three aspects: 1) peak GPU memory (GB) during training, 2) GPU memory hours
(GB·hour), akin to GPU hours but weighted by runtime memory usage, and 3) energy consumption
(kilowatts·hour). We collect these statistics on an NVIDIA A40 GPU for both FedProx and Flick
across the three benchmarks. The Table 9 reports the per-round resource usage and the accumulated
usage required to reach the target accuracy (i.e., best accuracy of FedProx). Since GPU memory
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hours and energy consumption vary across communication rounds, we provide both the dynamic
range and the average value over all rounds. For Flick, GPU memory hours and energy consumption
show a wider dynamic range because the overhead from key components changes across rounds.
Specifically, Flick relies ‘heavily’ on LLM and LDM for synthetic data generation during the early
training stage, which takes the majority of the overall cost. As training progresses, both GPU memory
hours and energy consumption per round in Flick decrease. In contrast, the variation in these two
per-round measurements for FedProx is mainly due to the randomness of participating clients in each
round, where heterogeneous data silos introduce varying local training overhead.

From the results, we observe that for the Office-Caltech dataset, Flick requires more GPU memory
hours than FedProx to reach the target accuracy. This is because the additional GPU memory for LLM
and LDM far exceeds that required for local training, thereby counteracting the resource savings from
faster convergence (i.e., fewer communication rounds). However, Flick still offers shorter training
latency to the target and achieves a higher best accuracy than FedProx. For more complex tasks, such
as the DomainNet benchmark with large-scale clients and data, Flick outperforms conventional FL
across all metrics: it reaches the same performance as counterpart FL frameworks with lower training
latency, GPU memory usage, and energy cost; furthermore, it achieves better accuracy in the long run.
To conclude, although Flick introduces additional overhead, primarily on the server, it enables faster
convergence of the global model compared to FedProx. In most cases, Flick further reduces resource
consumption to achieve the same target accuracy, particularly in challenging settings with large-scale
clients and datasets. Furthermore, with continued training, Flick offers substantial accuracy gains; for
example, on the PACS dataset, Flick achieves 11.43% higher accuracy than FedProx after the same
number of communication rounds.

E Privacy Analysis

Flick can ensure the ϵ-DP guarantee by adding noise sampled from the Laplace distribution to the
token sequences, with the scale parameter in the Laplace mechanism set to 1/ϵ. It provides stronger
privacy protection as ϵ decreases. Table 10 shows the trade-off between system utility (i.e., Flick
performance) and privacy level, with the ϵ ranging from 0.05 to 0.5. Note that the performance
gradually degrades towards the Flick w/o Local Summary variant as the ϵ decreases. Even under strict
privacy constraints, Flick maintains promising model performance.

Table 10: The performance of Flick across different ϵ values.
PACS Office-Caltech

ϵ AVG ↑ ∆ ↑ #Round ↓ AVG ↑ ∆ ↑ #Round ↓
ϵ = 0.5 94.32±0.21 11.26 11 78.24±0.15 7.40 38
ϵ = 0.1 93.78±0.24 10.72 25 77.61±0.33 6.77 43
ϵ = 0.05 92.99±0.31 9.93 31 77.05±0.32 6.21 43

Table 11: Privacy assessment of local summary phase in Flick. The server utilizes five image
generation models to reconstruct the data from collected local summaries. The similarity between
original raw local data and reconstructed data is measured by three widely used metrics, with reference
ranges provided to indicate the threshold below/beyond which pair-wise images can be considered
dissimilar. PSNR [54]: peak signal-to-noise ratio; SSIM [55]: structural similarity index measure;
LPIPS [56]: learned perceptual image patch similarity.

Metrics dall-e-2 dall-e-3 v1.5 v1.4 xl-base-1
PSNR (< 20) 7.77 8.11 7.79 7.80 9.37
SSIM (< 0.3) 0.20 0.16 0.17 0.14 0.20
LPIPS (> 0.6) 0.72 0.74 0.78 0.77 0.72

Besides, we assess the potential information leakage in local summaries from a different angle: the
difficulty for the server to infer raw data from collected token sequences. To this end, the central
server feeds the local summaries (in the textual format) to a text-to-image model, and we evaluate five
different models. Table 11 reports the reconstruction quality based on three widely used metrics–peak
signal-to-noise ratio (PSNR) [54], structural similarity index measure (SSIM) [55], and learned
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perceptual image patch similarity (LPIPS) [56]–which measure the similarity between reconstructed
images generated by server-held models and the original raw local images. For PSNR and SSIM,
higher values indicate greater similarity, whereas for LPIPS, lower values indicate higher similarity.
The results across all five image generators show that reconstructed images remain significantly
dissimilar to the original raw data across three metrics, demonstrating that uploading local summaries
in Flick presents a low privacy risk.

F Practical Impact

Although versatile foundation models are rapidly advancing and becoming increasingly accessible, the
design of Flick remains centered on training task-specific lightweight models – a crucial requirement
for edge deployment under privacy constraints and limited computational resources. To articulate the
practical impact of Flick, we recognize it is important to clarify the following two questions:

Given the rapid advancement of versatile foundation models, what role do conventional models (e.g.,
ResNet) still play?

and the follow-up:

How can such powerful foundation models be leveraged to benefit the training of lightweight, task-
specific models, especially in a privacy-preserving federation way?

For the first question, despite foundation models offering broad generalization capabilities across
a wide range of tasks, directly deploying them in real-world applications, especially on resource-
constrained edge devices, is still challenging (exceeding resource budgets) and is overkill (leading to
unacceptable latency) for specific tasks. Alternatively, relying on remote cloud-based inference via
APIs introduces significant privacy risks, as it requires users to upload private or sensitive raw data to
third-party services. Together, these limitations indicate that both the versatile LLMs and lightweight
models offer practical values depending on deployment constraints such as resource budgets, latency
tolerance, and privacy preferences. Consequently, there remains a strong and persistent demand for
lightweight task-specific models that balance efficiency and effectiveness in deployment.

Table 12: Performance comparison between Qwen-series MLLMs and a lightweight ResNet-18 on
the DomainNet dataset. Note that ResNet-18 is trained under a federated setting with both domain
shift and label skew across silos. AVG denotes the average accuracy calculated across all domains.

DomainNetMethods
Clipart Infograph Painting Quickdraw Real Sketch AVG

Qwen2-VL-7b [57] 96.97 91.08 93.53 63.13 97.05 98.07 89.97
Qwen2-VL-2b [57] 97.37 90.66 92.21 62.07 96.78 97.79 89.48
Qwen2.5-VL-7b [58] 97.77 92.32 94.32 62.73 97.31 98.21 90.44
Qwen2.5-VL-3b [58] 96.36 88.59 92.73 57.27 97.18 96.55 88.11
FGL [20] 91.09 55.56 79.71 79.07 92.21 84.80 80.41
Flick 92.11 63.90 83.88 91.40 92.91 90.34 85.76

To support our claims, we investigate the runtime performance of Qwen-series [57, 58] Multimodal
Large Language Models (MLLMs) on the DomainNet benchmark, and report the inference latency on
an NVIDIA Jetson AGX Orin. Under GPU-mode, Qwen2.5-VL-3B takes 7.05 seconds per sample,
while the lighter Qwen2-VL-2B still requires 5.94 seconds. The latency is severely exacerbated under
CPU-only mode: 239.43 seconds for the Qwen2.5-VL-3B and 169.93 seconds for the Qwen2-VL-2B.
We emphasize that the Jetson AGX Orin is already considered powerful hardware for edge computing.
In contrast, ResNet-18 requires only 4.73 seconds per sample under the same CPU-only configuration.
When using GPU acceleration, the inference time is further reduced to 0.4 seconds per sample.

We further compare the classification performance of Qwen-series MLLMs with a lightweight
ResNet-18 trained under Flick framework on the DomainNet benchmark, as shown in Table 12.
We emphasize two points for fairly assessing the ResNet-18 performance and Flick contributions:
1) training under heterogeneous FL settings inherently degrades model performance compared to
centralized training; and 2) our data-driven Flick addresses such challenges more effectively than
the similar LLM-based FGL by efficiently incorporating commonsense knowledge from LLMs. The
results show that Flick achieves competitive global accuracy on DomainNet while maintaining edge
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practicality. We also note an interesting observation from the DomainNet results, particularly on
the two challenging domains, ‘Infograph’ and ‘Quickdraw’: all four MLLMs perform relatively
well on the ‘Infograph’ domain, while showing generally inferior performance on the ‘Quickdraw’
domain. As described in DomainNet [45], ‘Quickdraw’ images are collected from Google’s ‘Quick,
Draw!’ game, where the drawings are very simple, abstract line sketches; ‘Infograph’ images are
typically informational graphics such as posters, diagrams, and other structured visual layouts. This
distinct performance gap between the two domains suggests that: 1) MLLMs inherently have a strong
understanding of complex icons, symbols, and text arranged in a structured format; and 2) they still
have limitations in handling certain tasks. This observation underscores the value of FL frameworks,
which allow privacy-preserving model training for such domain-specific tasks using task-relevant,
decentralized data.

By answering the follow-up questions, we aim to highlight the contribution of our data-driven Flick
in improving the performance under heterogeneous FL by effectively leveraging powerful foundation
models. In the FL context, conventional approaches focus on optimizing training over distributed data
silos, which inherently limits the upper bound of accessible knowledge. This performance ceiling
can be lifted by distilling external task-related knowledge embedded in foundation models, which is
actually our target in Flick.

G Data Generation Details

In Section 3.3, we have introduced the data generation process in Flick. In this section, we provide
some more details – specifically for the LLM usage and data retrieval – by showing the intermediate
results.

The data generation phase bootstraps the server to obtain the class-wise decision matrix D. After
that, an LLM is employed to generate text prompts for each class. Figure 15 provides a detailed
case example to supplement Figure 3 in the paper, illustrating how the LLM produces G = 5 text
prompts for the class dog, using a collection of local captions T as reference. Recall that, for
privacy considerations, our design in the local summary phase only requires participating clients to
report captions of representative local samples while omitting class information. Consequently, the
LLM has to first identify and select class-related captions from the pool T . From the LLM output in
Figure 15, it is evident that the LLM can effectively select captions relevant to the class dog, extending
beyond simple keyword matching. For instance, it also identifies captions containing terms like

Given a list of captions: {𝒯𝒯𝑛𝑛}, select those that are relevant to the main subject {dog}. Then, 
analyze the selected captions, which depict various scenes and contexts but consistently 
center around the main subject {dog}. 
Based on this analysis, generate {5} new text prompts that still focus on the main subject of 
{dog}. You may fuse domains, styles, entities, or contexts from the provided captions, but 
ensure that any new elements introduced do not detract from or obscure the main subject, 
which must remain the central focus. Introducing new elements is encouraged, but they 
should enrich the context rather than shift the focus away from the main subject.
Your response should use the following format: ["prompt1":, …, "prompt {5}"]. If none of 
the captions are related to the category {dog}, return an empty list: [].

LLM Response

Input Prompt 
⁕ "there is a black and white drawing of a dog with a stick in its mouth"
⁕ "drawing of a man sitting on a bench with his arms crossed"
⁕ "an image of a black and white drawing of a person ' s hand holding a toothbrush"
⁕ "there is a black and white drawing of a horse on a white background"
⁕ "drawing of an elephant with a bow on its head"
⁕ "four cartoon dogs with wings and bones in different poses"
⁕ "an image of a cartoon house with a basketball hoop in front of it"
⁕ "an image of a brown cow with a hat on its head"
⁕ "there is an elephant that is standing in the middle of the picture"
⁕ "a vibrant painting of a golden retriever lounging on a sunny patio"
⁕ "there is a painting of a group of people sitting on the grass"
⁕ "there is a giraffe that is standing next to another giraffe"
⁕ "there is a painting of a cottage with a thatched roof"
⁕ "there is a painting of a white horse that is standing on its hind legs" 
⁕ "A playful puppy chasing butterflies in a sunny park filled with flowers"
⁕ "there is a man that is standing in the middle of a crowded bus"
⁕ "there is a picture of a guitar on a wooden table"
⁕ "there is a painting of an elephant that is walking in the water"

Local Captions

<Selecting target class-related captions>
The relevant captions that focus on the subject of "dog" include:
1. "there is a black and white drawing of a dog with a stick in its mouth"
2. "four cartoon dogs with wings and bones in different poses"
3. "a vibrant painting of a golden retriever lounging on a sunny patio"
4. "A playful puppy chasing butterflies in a sunny park filled with flowers"
<Reasoning>
These captions depict various scenes involving dogs, showcasing their emotions, playful
nature, and different poses.
Based on this analysis, I will create new captions that maintain the focus on dogs while
introducing new elements that enhance the context.
<Generating text prompts>
Output the 5 new captions strictly in the following format:
["there is a colorful painting of a dog wearing a party hat surrounded by balloons",
"an image of a dog playing fetch with a frisbee in a sunny park",
"a cartoon dog dressed as a superhero flying through the sky with a cape",
"there is a whimsical drawing of a dog sitting on a cloud with a rainbow in the background",
"there is a black and white sketch of a dog lying on a cozy rug next to a fireplace"]

↤ 𝒎𝒎𝒊𝒊
𝟏𝟏

↤ 𝒎𝒎𝒊𝒊
𝟐𝟐

↤ 𝒎𝒎𝒊𝒊
𝟑𝟑

↤ 𝒎𝒎𝒊𝒊
𝟒𝟒

↤ 𝒎𝒎𝒊𝒊
𝟓𝟓

Generation

Retrieval

𝒎𝒎𝒊𝒊
𝟏𝟏

𝒎𝒎𝒊𝒊
𝟐𝟐 𝒎𝒎𝒊𝒊

𝟑𝟑 𝒎𝒎𝒊𝒊
𝟒𝟒 𝒎𝒎𝒊𝒊

𝟓𝟓

Figure 15: Detailed illustration of LLM-based text prompt generation: given cross-client-specific
knowledge T n, the central server obtains the text prompts for the class dog in the PACS dataset. The
underlined words are recognized by LLM as related to class dog.
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Given a list of captions: {𝒯𝒯𝑛𝑛}, select those that are relevant to the main subject {headphones}. 
Then, analyze the selected captions, which depict various scenes and contexts but consistently 
center around the main subject {headphones}. 
Based on this analysis, generate {5} new text prompts that still focus on the main subject of 
{headphones}. You may fuse domains, styles, entities, or contexts from the provided captions, 
but ensure that any new elements introduced do not detract from or obscure the main subject, 
which must remain the central focus. Introducing new elements is encouraged, but they should 
enrich the context rather than shift the focus away from the main subject.
Your response should use the following format: ["prompt1":, …, "prompt {5}"]. If none of the 
captions are related to the category {headphones}, return an empty list: [].

LLM Response

Input Prompt Local Captions

<Selecting target class-related captions>
The relevant captions that focus on the subject of " headphone" include:
1. "there is a pair of headphones sitting on a table with a brick wall in the background"
2. "there is a pair of red headphones sitting on a gray surface"
3. "there is a pair of black headphones on a wooden table"
<Reasoning>
These captions consistently depict headphones in various contexts, such as being placed on 
surfaces, or in a workspace setting.
Based on this analysis, I will generate new captions that maintain the focus on headphones 
while introduce different contexts and elements to enrich the descriptions. 
<Generating text prompts>
Output the 5 new captions strictly in the following format:
["a vibrant pair of headphones rests on a sleek black desk, illuminated by soft natural light",
"a pair of headphones lying on a sandy beach, with ocean waves in the distance",
"a pair of noise-canceling headphones with a soft cushion on a cozy couch",
"a pair of wireless headphones floating above a city skyline at sunset",
"a pair of headphones positioned next to a laptop, with colorful sound waves illustrated in the 
background"]

↤ 𝒎𝒎𝒊𝒊
𝟏𝟏

↤ 𝒎𝒎𝒊𝒊
𝟐𝟐

↤ 𝒎𝒎𝒊𝒊
𝟑𝟑

↤ 𝒎𝒎𝒊𝒊
𝟒𝟒

↤ 𝒎𝒎𝒊𝒊
𝟓𝟓

⁕ "an image of a laptop computer with a small screen on top of it"
⁕ "an image of a white and blue mini - sketch machine on a white background"
⁕ "there is a cell phone that is laying on the ground surrounded by leaves"
⁕ "there is a bike with a bag on the back of it and a bag on the back of it" 
⁕ "there is a pair of headphones sitting on a table with a brick wall in the background" 
⁕ "there is a computer mouse that has a message on the back of it" 
⁕ "the coffee mug is black and has a handle on it"
⁕ "there is a laptop computer sitting on a wooden desk with a white chair" 
⁕ "there is a man with a red backpack walking on a trail in the mountains"
⁕ "this is an image of a laptop with a keyboard on top of it"
⁕ "there is a computer desk with a keyboard, mouse, and monitor on it"
⁕ "a close up of a calculator on a white background"
⁕ "there is a white bicycle with a basket of flowers on the back of it"
⁕ "there is a pair of red headphones sitting on a gray surface"
⁕ "there is a computer keyboard and a mouse on a desk"
⁕ "there is a plate with a piece of pastry on it next to a plate with a spoon and a plate" 
⁕ "there is a white laptop computer sitting on top of a white table"
⁕ "there is a white laptop with a black keyboard on a white surface"
⁕ "this is an image of a computer monitor and keyboard on a desk"
⁕ "this is an image of a portable device sitting on a wooden table"
⁕ "there is a calculator sitting on a wooden table with a calculator in front of it"
⁕ "there is a bike that is leaning against a wall in a room"
⁕ "there is a pair of black headphones on a wooden table"
⁕ "there is a coffee cup that is sitting on a wooden table"
⁕ "there is a backpack that is sitting on the floor next to a wall"
⁕ "there is a laptop computer sitting on top of a wooden desk next to a cup of coffee"
⁕ "there are two calculators sitting next to each other on a white surface"
⁕ "this is a picture of a mouse and a badge on a mouse pad"
⁕ "there is a computer with a stethoscope next to a keyboard and mouse"
⁕ "there is a colorful backpack sitting on a bench in the park"
⁕ "there is a picture of a laptop with a picture of people on the screen"
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Retrieval

𝒎𝒎𝒊𝒊
𝟐𝟐 𝒎𝒎𝒊𝒊
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Figure 16: Detailed illustration of the LLM-based text prompt generation for the class headphones in
the Office-Caltech dataset.

“golden retriever” or “puppy”. During the reasoning phase, the LLM analyzes the selected captions
and recombines extracted features (i.e., cross-client-specific knowledge) with new elements (i.e.,
commonsense knowledge embedded in the LLM) to generate text prompts for the subsequent text-to-
image model. Besides, Figure 16 illustrates the text prompts generation for the class headphones in the
Office-Caltech benchmark where the LLM showcases similar capabilities in extracting class-related
knowledge and instilling commonsense knowledge.

To reduce the data generation overheads, the server in our Flick does not directly feed all text prompts
into a generative model for new data points. Instead, it first retrieves historically generated samples
from the server-held data pool Gs. The qualified historical samples are retrieved based on the pairwise
similarity between the historical text prompt mp

s ∈ Ms and the generated text prompt mq
i ∈ Mi.

Specifically, each prompt pair (mp
s ,m

q
i ) is transformed into SBERT embeddings used for calculating

cosine similarity. In Figure 17, we provide more examples of the data retrieval step across two
benchmarks and their respective four domains. For detailed illustrations, Figure 17 presents the text
prompt pairs (mp

s ,m
q
i ) and their SBERT similarity scores, as well as the sample corresponding to the

historical text prompt mp
s that the server retrieves.

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.8014

𝒎𝒎𝒔𝒔
𝒑𝒑:"a vibrant artwork of a 

giraffe surrounded by colorful 
flowers in a field"
𝒎𝒎𝒊𝒊

𝒒𝒒:"a giraffe wandering 
through a vibrant meadow filled 
with colorful blooms"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.9146

𝒎𝒎𝒔𝒔
𝒑𝒑:"a man gazing thoughtfully 

out of a large window"
𝒎𝒎𝒊𝒊

𝒒𝒒:"a man standing by a 
window, lost in contemplation"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.9253

𝒎𝒎𝒔𝒔
𝒑𝒑:"a quirky cartoon horse 

sporting a bright blue mohawk 
and a cheeky grin"
𝒎𝒎𝒊𝒊

𝒒𝒒:"a whimsical cartoon horse 
sporting a bright green mane 
and a cheerful expression"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.8657

𝒎𝒎𝒔𝒔
𝒑𝒑:"a monochrome sketch of a 

horse galloping across a blank 
canvas"
𝒎𝒎𝒊𝒊

𝒒𝒒:"a monochrome sketch of a 
horse's profile against a plain 
backdrop"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.7783

𝒎𝒎𝒔𝒔
𝒑𝒑:"there is a projector displaying 

a presentation in a dimly lit room 
with a coffee cup nearby"
𝒎𝒎𝒊𝒊

𝒒𝒒:"there is a projector on a table 
surrounded by notebooks and a 
cup of coffee"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.8105

𝒎𝒎𝒔𝒔
𝒑𝒑:"a vibrant gaming keyboard 

illuminated in neon colors on a 
dark background"
𝒎𝒎𝒊𝒊

𝒒𝒒:"there is a mechanical 
keyboard with vibrant RGB 
lighting on a wooden table"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.8372

𝒎𝒎𝒔𝒔
𝒑𝒑:"a blue jansporter backpack 

resting on a white table next to 
a laptop"
𝒎𝒎𝒊𝒊

𝒒𝒒:"there is a blue backpack 
resting on a desk next to a 
laptop and a notebook"

Similarity(𝒎𝒎𝒔𝒔
𝒑𝒑,𝒎𝒎𝒊𝒊

𝒒𝒒
) = 0.9257

𝒎𝒎𝒔𝒔
𝒑𝒑:"a sleek monitor displaying a 

vibrant landscape on a modern 
desk"
𝒎𝒎𝒊𝒊

𝒒𝒒:"there is a computer monitor 
displaying a vibrant landscape 
image on a sleek desk"

Figure 17: Illustration of the retrieved samples in two datasets: PACS (top) and Office-Caltech
(bottom). In each example, mp

s and mq
i represent historical text prompt and generated text prompt,

respectively. In Flick, the server retrieves samples from the data pool for which the corresponding
text prompts show high similarity to the generated text prompts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our key contribution: our Flick
greatly promotes global model performance in heterogeneous FL by distilling task-relevant,
high-quality commonknowledge from LLMs, guided by cross-client-specific information.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss and analyze the limitations of our work with respect to privacy
(Appendix E) and computational overhead (Appendix D).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

27



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information required to reproduce the results is provided in Section 3.
In particular, Algorithm 1 outlines the specific implementation process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets involved in this paper are publicly available, and we have included
a link to the code in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify them in Section 4 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the performance comparison, we report both mean accuracy with its variance
under each setup three times.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are detailed in Appendix B. We report time cost in
Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: There is no societal impact of the work performed since our research focuses
on the general studies in the FL.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: While our paper involves data generation using LLMs and generative models,
we do not release any generated data. We have taken steps to ensure responsible use. The
generated data are fully synthetic, guided by task-specific prompts, and used solely for
experimental purposes.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers or websites that produce the code package or
datasets.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs are an integral part of our propose method. Specifically, we leverage
them to distill task-relevant, high-quality commonsense knowledge – guided by cross-client-
specific knowledge – to enable effective learning in heterogeneous FL.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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