
OpenBox: Annotate Any Bounding Boxes in 3D

In-Jae Lee1 Mungyeom Kim1 Kwonyoung Ryu2 Pierre Musacchio1 Jaesik Park1

1Seoul National University 2POSTECH

Figure 1: We introduce OpenBox, which utilizes a 2D vision foundation model to annotate 3D
bounding boxes automatically. It annotates instances of vehicles, pedestrians, and cyclists. We
demonstrate it with Waymo Open Dataset [33]. Best viewed in color and zoomed in.

Abstract

Unsupervised and open-vocabulary 3D object detection has recently gained at-
tention, particularly in autonomous driving, where reducing annotation costs and
recognizing unseen objects are critical for both safety and scalability. However,
most existing approaches uniformly annotate 3D bounding boxes, ignore objects’
physical states, and require multiple self-training iterations for annotation refine-
ment, resulting in suboptimal quality and substantial computational overhead. To
address these challenges, we propose OpenBox, a two-stage automatic annotation
pipeline that leverages a 2D vision foundation model. In the first stage, OpenBox
associates instance-level cues from 2D images processed by a vision foundation
model with the corresponding 3D point clouds via context-aware refinement. In the
second stage, it categorizes instances by rigidity and motion state, then generates
adaptive bounding boxes with class-specific size statistics. As a result, OpenBox
produces high-quality 3D bounding box annotations without requiring self-training.
Experiments on the Waymo Open Dataset (WOD), the Lyft Level 5 Perception
dataset, and the nuScenes dataset demonstrate improved accuracy and efficiency
over baselines.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

1 Introduction

3D object detection has become increasingly important across a wide range of applications, including
autonomous driving [16, 21, 23, 42], robotics [29, 41], and virtual reality [15, 37]. In autonomous
driving, it provides essential inputs for motion prediction that, in turn, inform path planning and
vehicle control. As a result, the accuracy of 3D object detection is directly tied to the overall safety
and reliability of the system. While recent advances in deep learning have significantly improved
detection performance, most existing frameworks [16, 21, 23, 42] remain limited to a fixed set of
object categories and are heavily reliant on large-scale, human-annotated datasets. This closed-set
assumption becomes particularly problematic in open-world autonomous driving scenarios. In such
settings, the system must be able to detect a wide range of object types, including rare or previously
unseen instances.

Integrating open-vocabulary detection enables models to recognize arbitrary categories based on
semantic descriptions, thereby overcoming the limitations of a fixed label space. In the 2D image
domain, open-vocabulary perception has been accelerated by the availability of large-scale image-text
paired datasets and the emergence of vision foundation models. These models demonstrate strong
generalization capabilities across tasks such as classification [30, 34], detection [22, 24, 48], and
segmentation [14, 19, 31].

Despite the advances above, creating large-scale annotated 3D datasets remains a major bottleneck.
Unlike 2D images, LiDAR point clouds provide precise geometric structure but lack rich semantic
context, making them difficult to align with text-based supervision and challenging to annotate
manually. To address these limitations, several unsupervised methods [40, 43, 45, 46] have been
proposed. These typically follow a pipeline in which ground points are removed from raw LiDAR
scans, spatial clustering is applied to extract object instances, and scene flow [1, 25, 26] or a
persistence point score (PP Score) [40, 43, 46] is used to identify motion states. The resulting 3D
bounding boxes are then refined through multiple rounds of self-training [43, 45, 46] or sampling
strategies [46]. However, these methods generally do not consider physical properties of instances
for box annotation, which leads to low-quality boxes and remains computationally expensive due
to their iterative refinement. More recently, several works [18, 26, 46] incorporate image semantics
to assist automatic annotation. Nevertheless, [46] fuses modality-specific 3D bounding boxes at the
output level without geometric alignment, and [18] does not fully leverage visual cues to improve 3D
annotation quality.

This paper proposes a two-stage pipeline, OpenBox, that automatically annotates 3D bounding box
for arbitrary classes. Our approach leverages high-quality instance-level information from 2D vision
foundation models (e.g., Grounding DINO [22], SAM2 [31]) as supervisory signals, thereby reducing
the cost and time of manual annotation. In the first stage (Cross-modal Instance Alignment), 2D
instance-level information is unprojected onto the 3D point cloud. To address noisy or incomplete
instance point clouds caused by the vision foundation model, we apply a context-aware refinement
step to enhance the quality of instance-level points. Subsequently, the refined instances are categorized
into three physical types: static rigid, dynamic rigid, and deformable. Based on category-specific
object size statistics, we generate 3D bounding boxes for each category. Specifically, we construct
a mesh for static rigid objects using the Signed Distance Function (SDF) [36] and filter out noise
points through majority voting. We then further refine the bounding box via 3D-2D IoU alignment
and visibility. We conduct experiments on the WOD [33], Lyft [12], and nuScenes [2] datasets.
Qualitative results on real-world data show that our method produces high-quality and robust 3D
annotations, as illustrated in Fig. 1.

Our contributions are summarized as follows:

• We propose OpenBox, a novel automatic annotation pipeline that requires only synchronized
ego poses, images, and LiDAR point clouds, without self-training.

• To improve point cloud quality, we introduce a two refinement process: context-aware
refinement and surface-aware noise filtering based on the SDF. We also generate bounding
boxes adaptively based on the physical types of instances.

• Training with OpenBox-generated annotations achieves 70.49% AP3D for the vehicle class
of the WOD [33] at 0.5 IoU. On the Lyft dataset [12], OpenBox outperforms state-of-the-art
approach by +19.94% AP3D when directly compared to human annotation boxes.

2

Cross-modal
Instance Alignment Adaptive 3D Bbox Generation

Sec 3.1

Input Images and
LiDAR scans 3D Bbox Annotation

Sec 3.2

Figure 2: Pipeline Overview of OpenBox. With time-synchronized, unlabeled images and LiDAR
scans, cross-modal instance alignment (Sec 3.1) associates 2D instance cues with corresponding
point clouds. Adaptive 3D bounding box generation (Sec 3.2) independently chooses the most
suitable fitting strategy for each instance, yielding high-quality 3D bounding boxes.

2 Related Work

2.1 Open-vocabulary 3D Object Detection

The rapid progress of 2D vision foundation models [11, 20, 22, 30, 34] has spurred active research in
open-vocabulary 3D object detection. Most existing methods [8, 26, 44] focus on accurately aligning
2D visual cues with 3D spatial information. UP-VL [26] enhances the MI-UP [25] auto-labeling
pipeline by incorporating OpenSeg [11] to generate semantically aligned amodal 3D bounding
boxes for open-vocabulary transfer. Additionally, it introduces a loss function that facilitates 2D-3D
mapping, allowing the model to learn point-level features guided by distillation loss. Find and
Propagate [8] generates frustum-shaped 3D proposals using 2D open-vocabulary detectors [20, 24],
followed by multi-view alignment and density-based filtering to improve the detection of distant
objects. OpenSight [44] lifts 2D bounding boxes obtained from Grounding DINO [22] into 3D space
to enable generic object perception followed by semantic interpretation. Whereas prior work redesign
3D object detectors for the open-vocabulary setting, we focus on annotating the dataset to allow
open-vocabulary 3D detection.

2.2 Unsupervised 3D Object Detection

LiDAR-based. Most unsupervised 3D object detection methods [1, 25, 40, 43, 45] solely rely on
LiDAR point clouds to perform automatic annotation. Common pipelines first estimate motion states
using PP score [40, 43] or scene flow [1, 25], and then perform ground removal followed by point
cloud clustering [3, 7]. Except for [40], which utilizes class-wise size statistics, these limitations
primarily stem from the lack of semantic information inherent in LiDAR, especially when compared
to RGB images. As a result, they generally train and evaluate models in a class-agnostic manner.
Moreover, CPD [40] incurs additional computational overhead by jointly using dense prototypes
(CProto) and downsampled point clouds, resulting in significantly longer training time.

Multi-modal based. Several approaches [18, 26, 46] use 2D vision foundation models to incorporate
image information. LiSe [46] integrates 3D bounding boxes obtained from the LiDAR branch
(via [43]) and the image branch (via [14, 22, 38]) in a distance-aware manner. UNION [18] leverages
appearance from 2D images to cluster and distinguish between mobile and immobile objects.

Unlike these approaches, which depend on iterative self-training [43, 46] and do not consider physical
properties of instance [18, 26, 40, 43, 46], our method is designed to produce physical-state-specific
annotations and to alleviate the need for iterative refinement.

3 Method

This section explains the role and design choices of each module in our proposed automatic 3D
bounding box annotator, OpenBox. As shown in Fig. 2, our system consists of two main stages: (1)
Cross-modal Instance Alignment and (2) Adaptive 3D Bounding Box Generation.

3

Refined Point
Cloud

Multi-frame
LiDAR Point Clouds

Instance-level
Point Cloud

Point Cloud Cluster

Text Prompts

Multi-view &
Multi-frame Images

{Mask, 2D bbox,
Instance ID}

Instance-Level
Point Cloud

G
rounding
D

IN
O

SA
M

 2

Car, Truck,
Cyclist, Bus, …

Pretrained Model

C
ontext-aw

are
R

efinem
ent

H
D

B
SC

A
N

G
round

R
em

oval

Figure 3: Cross-modal Instance Alignment. To obtain a refined point cloud, the pipeline generates
two complementary point cloud clusters. The LiDAR (upper) branch removes ground points and
applies HDBSCAN [3] to produce coarse 3D clusters. The image-LiDAR (lower) branch uses
Grounding DINO [22] followed by SAM2 [31] to generate 2D instance masks. This information is
unprojected to a point cloud. Context-aware refinement fuses the two proposals, discarding noisy
points and incorporating adjacent points from the point cloud cluster, yielding a refined per-object
point cloud.

3.1 Cross-modal Instance Alignment
Instance-level Feature Extraction. As shown in Fig. 3, to leverage the strong capabilities of
vision foundation models [22, 31] trained on large-scale datasets, we establish a mapping between a
2D image I(t)j ∈ R3×H×W which include N instance IDs T (t)

j , c class labels C(t)j , N segmentation

masksM(t)
j , and 3D to 2D mapping function Πj and a corresponding 3D point cloud P(t) ∈ RM×3

captured at time t from the j-th camera. These information are obtained using a 2D detection network
Ψ [22] and a segmentation network Φ [31] as follows:

B(t)j , C(t)j = Ψ(I(t)j), M(t)
j , T (t)

j = Φ(B(t)j , txt), V(t)
j = Πj(P(t), I(t)j), (1)

where H, W, B(t)j ∈ RN×4 , V(t)
j ∈ RN×2 and txt denote the height, width of the image I(t)j ,

2D bounding boxes, pixel coordinates of P(t) projected to I(t)j and text prompts respectively. By
associating the image pixel with a point cloud which is projected on to mask, we can obtain the
instance-level point clouds F (t)

j = {F (t)
ij ∈ RM ′×6}i. Here, F (t)

ij is the i-th instance-level point
cloud, which contains 3D coordinate (x, y, z), semantic class, instance presence, and instance ID.
However, the boundaries of the masks obtained from [31] are imprecise, due to calibration errors,
so directly unprojecting them into 3D can result in noisy point clouds. To mitigate this issue, we
adopt the adaptive erosion proposed in [13], which erodes masks based on object size to eliminate
boundary noise while preserving instance structure. For convenience, we omit the subscripts t and j
from this point onward.

Context-aware Refinement. As shown in Fig. 4-(c), LiDAR points are often projected onto
background objects (e.g. guardrail and wall) that occlude the actual foreground instance, resulting in
inaccurate unprojection. These noisy points, located outside the true object region, tend to yield 3D
bounding boxes that are improperly scaled. To address this issue, we refine the unprojected instance-
level point clouds F . We perform majority voting within clustered regions {R1,R2, . . . ,RN ′},
where each cluster Rk ∈ Rmk×3 is obtained from the ground-removed raw LiDAR point cloud
P using HDBSCAN [3], following ground segmentation based on [17]. For each segment Rk,
we compare it with all instance-level point clouds Fi and compute bidirectional proximity-based
inclusion ratios. Specifically, we determine the proportion of points in Rk that overlap with any
point in Fi, and vice versa. If mutual overlap between the two clusters is sufficient, the clusterRk is
assigned the instance ID i and retained; otherwise, it is discarded. This process can be formulated as
follows:

4

(d) Refined Point Cloud ()(a) Reference Image () (b) Point Cloud Cluster () (c) Instance-level Point Cloud ()

Figure 4: Context-aware Refinement. (a) Reference image. (b) Point cloud clustersR after using
HDBSCAN [3] on ground-removed LiDAR point cloud. (c) Noisy instance-level point clouds F . (d)
Result of the Context-aware refinement Fref.

|{p ∈ Rk | dist(p,Fi) < δ}|
|Rk|

> α,
|{p ∈ Rk | dist(p,Fi) < δ}|

|Fi|
> β ⇒ Rk ← i, (2)

where | · | denotes the cardinality of a set, and dist(p,Fi) < δ holds if and only if there exists f ∈ Fi

such that ∥p− f∥2 < δ.

3.2 Adaptive 3D Bounding Box Generation

Most prior methods [13, 43, 46] generate boxes without considering the physical properties of
individual objects. This often leads to inaccurate localization and reduces the consistency of the
data used to train 3D object detection networks. To address this issue, we propose an adaptive
box-generation strategy that accounts for the physical types of each instance.

Static & Dynamic Points Decomposition. The refined instance-level LiDAR point clouds Fref
obtained in the previous step remain sparse. Yet, by aggregating consecutive point cloud frames to a
global coordinate system, the instance-level point cloud can be significantly densified. Incorporating
point clouds from dynamic objects is challenging, as it may introduce motion artifacts [40]. Thus, we
use the PP score [43] to estimate the ephemerality of each point in the refined point cloud.

Initial Bounding Box Generation. Empirically, we found that categorizing each instance based
on its physical properties leads to better performance. In particular, we divide instances Fref into
three types: rigid and static FS

ref, rigid and dynamic FD
ref, and deformable Fdeform

ref . For each type,
we generate a corresponding 3D bounding box. We use ChatGPT [27] to determine the object type
based on the given semantic class to distinguish between rigid and deformable objects. Then, using
this classification in conjunction with motion cues estimated via the PP score [43], we generate an
appropriate 3D bounding box for each instance. We initially generate a bounding box for all three
object types using an approach [47] that maximizes the closeness of points to edges. However, due
to the sparsity of the point cloud and occlusion, the resulting bounding box may underestimate the
actual object size. To address this, we use ChatGPT [27] to retrieve the typical size of the object class
in terms of length, width, and height. If any of the initial bounding box dimensions are smaller than
80% of the typical size, we adjust the box size as described in the following sections.

Handling Static & Rigid Instances. Although we densify the aggregated static instance point
cloud FS

ref, it still contains noise due to limitations of the context-aware refinement. To suppress it,
we apply a surface-aware filtering method based on proximity voting over mesh vertices. Specifically,
we reconstruct a mesh surface S from the point cloud using SDF [36]. For each vertex v ∈ S, we
identify nearby foreground and background points using the proximity function PC(·, v) defined
in Eq.3, where τ denotes the distance between the point and the vertex from the mesh. We retain
vertices where foreground associations dominate, forming the refined surface Sref as defined in Eq. 4.
The final refined static point cloud FS,(2)

ref is then constructed by collecting all foreground points near
the filtered surface vertices.

PC(F , v) = {p ∈ F | ∥p− v∥2 < τ}, (3)

Sref =
{
v ∈ S

∣∣ |PC(FS
ref, v)| > |PC(FC

ref, v)|
}
, FS,(2)

ref =
⋃

v∈Sref

PC(FS
ref, v). (4)

5

Static Instance Point Cloud Fref
𝑆

Background Point Cloud Fref
𝐶

3D Surface 𝑆

Refined Surface 𝑆ref

Refined Static Point Cloud Fref
𝑆,(2)

Bounding Box

Candidates

Filter noisy points

Final Bounding Box

Projected

Bounding Boxes

Grounding DINO

Bounding Box

2D IoU

Common Statistics from LLM

Vertex

Remain

Remove
Count

∙∙∙

𝑣1 𝑣2 𝑣3 𝑣𝑛−1 𝑣𝑛

(a) Surface-aware refinement (b) 3D-2D IoU alignment

Vertex-level voting

Figure 5: Handling Static & Rigid Instances. (a) We filter noisy points in the aggregated static
point cloud via vertex-level voting on the reconstructed surface, producing FS,(2)

ref and Sref. (b) We
then adjust the bounding box using surface normals and statistical priors, and select the final box
based on 2D IoU with projected boxes and Grounding DINO [22] boxes.

To refine the initial bounding box, we extract the corresponding instance-level surface mesh Sins

from S. As shown in Fig. 5, if the box is too small, we determine the resizing direction using surface
normal vectors, rather than searching over 8 directions as in [13]. We rotate the surface into the
ego coordinate system. Then, we compute the dot product between surface normals and the four
orthonormal reference vectors to determine which sides of the object are represented. If all four
sides are covered, no resizing is needed. Otherwise, we generate two resized box candidates based
on statistical priors. This is because the longer side of the initial box cannot be reliably assumed to
represent the object’s actual length. (Please see Sec. C.3 for more details.) To select the optimal box,
we match each 3D candidate with 2D bounding boxes (from Sec. 3.1) using instance ID, project them
onto multiple views and time series images, and compute their 2D IoUs. The box with the higher IoU
is selected as the final result.

Box normal

Box extension

LiDAR Ray

Init box

Refined box

X

YCase 1

Case 2

Figure 6: Visibility-based box extension.
Case 1 has one negative value from the dot
product between the ray and the normal, yield-
ing a one-sided extension, whereas Case 2 has
two negative values, leading to a two-sided
extension.

Handling Dynamic & Rigid Instances. In these
cases, we rely on point clouds from a single moment
in time, which makes it harder to accurately estimate
the object’s position, orientation, and size. To deal
with this problem, OpenBox uses the fact that the ori-
entation of a dynamic object is approximately aligned
with the direction of the position difference in adja-
cent frames. OpenBox first estimates the object’s
orientation by the direction of the object trajectory
associated with 2D tracking IDs. We then rotate the
initial bounding box to align it with the estimated
orientation angle. After aligning the orientation, we
refine the box size. For each face along the X and Y
axes, we compute the dot product between the out-
ward surface normal and the LiDAR ray direction at
the face center. As shown in Fig. 6, OpenBox extends
the box only when the dot product between the ray
and face normal is negative. We determine the final
box size using standard object-size statistics.

Handling Deformable Instances. Deformable instances such as pedestrians, animals, or cyclists
exhibit articulated or non-rigid motion, causing spatial inconsistencies across frames that often
lead to ghosting or distorted geometry when aggregated [4]. Due to their limited surface structure,
geometry-based refinement is ineffective. To maintain reliability, we generate bounding boxes from a
single frame by tightly fitting the visible region using the closeness-to-edge algorithm [47], which
provides robust representations without relying on rigid geometric assumptions.

6

Table 1: 3D object-detection results on the WOD [33] validation set. * indicates trained and
evaluated in the camera-frustum region, while others use full 360° coverage. † and ‡ denote models
trained with CST and CBR from CPD [40], using the training settings given in the next sentence. For
†, we flip the OpenBox annotations and point clouds to obtain 360◦ coverage; for ‡, we fill the region
outside the camera frustum with CPD annotations. All values denote AP3D at each IoU threshold.
Bold means best performance, underlined means second-best. Only L1 results are shown here; we
provide the full L2 results in the Table 7.

Method Modality Vehicle
IoU0.5 / IoU0.7

Pedestrian
IoU0.3 / IoU0.5

Cyclist
IoU0.3 / IoU0.5

CPD* [40] LiDAR 30.30 / 20.90 14.28 / 11.22 3.47 / 3.08
OpenBox* (Ours) LiDAR + Camera 70.49 / 32.41 57.95 / 17.11 20.81 / 2.15

DBSCAN [7] LiDAR 2.32 / 0.29 0.51 / 0.00 0.28 / 0.03
MODEST [43] LiDAR 18.51 / 6.46 11.83 / 0.17 1.47 / 1.14
OYSTER [45] LiDAR 30.48 / 14.66 4.33 / 0.18 1.27 / 0.33
CPD [40] LiDAR 57.79 / 37.40 21.91 / 16.31 5.83 / 5.06
OpenBox† (Ours) LiDAR + Camera 66.89 / 39.14 55.71 / 37.82 21.00 / 7.08
OpenBox‡ (Ours) LiDAR + Camera 59.09 / 40.68 39.09 / 28.16 8.27 / 6.23

Human Annotation - 93.31 / 75.70 87.25 / 77.93 58.84 / 54.88

Table 2: 3D object-detection results on the Lyft [12] validation set. Following [46], we evaluate
in class-agnostic manner at IoU = 0.25, and each value represents APBEV / AP3D. Bold means best
performance, underlined means second-best.

Method Modality 0–30m 30–50m 50–80m 0–80m

MODEST-PP (T = 0) [43] LiDAR 46.4 / 45.4 16.5 / 10.8 0.9 / 0.4 21.8 / 18.0
LiSe (T = 0) [46] LiDAR + Camera 54.5 / 54.0 24.2 / 22.8 1.4 / 1.2 29.2 / 27.5
OpenBox (Ours) LiDAR + Camera 62.4 / 62.3 56.6 / 50.6 19.9 / 19.5 49.6 / 43.3

Human Annotation - 82.8 / 82.6 70.8 / 70.3 50.2 / 49.6 69.5 / 69.1

4 Experiments

4.1 Experimental Setup

Dataset and Implementation Details. We conduct experiments on Waymo Open Dataset
(WOD) [33], Lyft Level 5 Perception Dataset (Lyft) [12] and nuScenes [2]. For 3D object de-
tection networks, we train Voxel R-CNN [6] for WOD [33], PointRCNN [32] for Lyft [12] and
CenterPoint [42] for nuScenes [2] with annotation following the baselines [18, 40, 43, 46]. We refer
the reader to WOD [33], Lyft [12] and nuScenes [2] for detailed descriptions of the evaluation metrics.
Our code is based on OpenPCDet [35] and MMDetection3D [5]. Additional details for training,
hyperparameter and network are in the Appendix B.

Baselines. In the WOD [33] benchmark, the state-of-the-art method CPD [40] evaluates the relia-
bility of 3D bounding boxes using the CSS score and constrains network training by jointly learning
dense CProtos within those boxes. For the Lyft [12] dataset, LiSe [46] fuses 3D bounding boxes from
an image branch [38] and a LiDAR branch [43] based on distance. Finally, for nuScenes [2], UNION
distinguishes mobile objects by leveraging visual appearance features extracted with DINOv2 [28].
Since our method in WOD [33] performs annotation only on point clouds that fall within the camera
frustum field of view (FOV), we conduct experiments under two different settings.

Experiments Scenarios. We conduct experiments under two scenarios to comprehensively evaluate
the quality of our automatic annotations. Scenario 1 trains a 3D object detector on automatically
annotated data and evaluates it on a human-annotated validation dataset. Scenario 2 directly compares
the automatic annotations with the human annotations on the training set.

7

Table 3: Annotation performance on Lyft [12] training dataset. We evaluate our automatically
annotated dataset with a human-annotated dataset. Following [46], we evaluate in class-agnostic
manner at IoU = 0.25, and each value represents AP3D. Bold means best performance.

Method 0–30m 30–50m 50–80m 0–80m

LiSe [46] 17.47 6.87 1.35 6.31

OpenBox (Ours) 56.62 28.10 6.47 26.25

Table 4: 3D object-detection results on the nuScenes [2] validation set. Following [18], we
evaluate for 3 classes, and each value represents AP3D. Bold means best performance.

Method Modality Car Pedestrian Cyclist

UNION [18] LiDAR + Camera 30.1 41.6 0.0

OpenBox (Ours) LiDAR + Camera 40.9 62.7 5.2

4.2 Main results

Comparison on WOD. Table 1 presents the LEVEL_1 AP3D results of experiments conducted on
the WOD [33] under Scenario 1. For a fair comparison with the state-of-the-art method CPD [40],
we conduct the experiments for two FOV (Field of View). Under the camera frustum view setting,
our method consistently outperforms CPD [40] for vehicle and pedestrian classes, even though CPD
incorporates additional training techniques (e.g., CST and CBR) beyond its annotation pipeline.
The inferior performance of the cyclist class can be attributed to our use of the prompt “bicycle” in
Grounding DINO [22], which often yields undersized bounding boxes compared to those enclosing
the entire cyclist. Furthermore, we evaluate two extended settings: (1) applying CPD’s [40] training
schemes (CST and CBR) to our boxes, and (2) combining our boxes with CPD’s [40] and then
training with CST and CBR. Both approaches lead to performance improvements across all classes,
with particularly notable gains for pedestrian and cyclist categories. We attribute this to a fundamental
design difference: CPD [40] annotates only stationary objects, resulting in low recall. Furthermore, it
relies on class-agnostic tracking and classifies based on box-size statistics. In contrast, our method
identifies the object class using a 2D vision foundation model [22], and generates adaptive bounding
boxes that reflect each class’s physical properties, resulting in more accurate annotations.

Comparison on Lyft. Table 2 shows the results of class-agnostic 3D object detection on the
Lyft [12] dataset under Scenario 1, using an IoU threshold of 0.25. To ensure a fair comparison, we
evaluate against baseline methods [43, 46] that do not assume multiple traversals and do not apply
self-training strategies. Our method demonstrates improved performance in both APBEV and AP3D

across all distance ranges compared to baselines. In particular, for long-range scenarios (50–80m), our
method outperforms Lise [46] by +18.5% in APBEV and +18.4% in AP3D. Furthermore, as shown
in Table 3, we evaluate the performance of automatic annotations in the Scenario 2 environment. Our
method consistently outperforms LiSe [46] across all ranges. This performance gap arises because
LiSe [46] integrates 3D boxes from the image branch, generated using the method of [38], and from
the LiDAR branch, based on [43]. However, neither of these components explicitly considers the
physical properties or semantics of the object classes, which limits their precision.

Comparison on nuScenes. As shown in Table 4, we observe performance improvements across
all classes under Scenario 1. One key reason for the significant gains is that, unlike OpenBox,
UNION [18] omits the refinement process for point clouds and 3D bounding boxes. In particular, it
does not explicitly consider the camera-lidar calibration error when projecting LiDAR point clouds
on DINOv2 [28] feature maps which leads to noise at the boundary of the objects. Additionally,
UNION [18] neither resizes nor relocalizes the initial 3D bounding boxes, leading the model to
predict suboptimal bounding boxes.

8

(a) OYSTER

(A)

(B)

(b) CPD

(a) Ours

(A)

(A)

(B)

(B)

(C)

(C)

(C)

Figure 7: Comparison of automatic annotation on WOD [33] training set. Each row compares
automatically annotated boxes with human-annotated boxes, while each column corresponds to a
different scene. Blue boxes represent the automatically generated boxes, and red boxes indicate
the human-annotated boxes. We visualize CPD [40] annotations filtered by a minimum CSS score
threshold. Best viewed in color and zoomed in.

Table 5: Ablation study on the Vehicle class for WOD [33] training set. Surface-aware, Context-
aware, and 3D-2D IoU refer to Surface-aware Refinement, Context-aware Refinement, and 3D-2D
IoU alignment respectively. All results stand for the Vehicle class using AP3D at IoU = 0.4.

(a) Point-level refinement
Surface-aware Context-aware AP3D

✓ 30.34
✓ 32.52

✓ ✓ 38.65

(b) Box-level refinement
Visibility-based 3D-2D IoU AP3D

✓ 30.49
✓ 34.71

✓ ✓ 38.65

4.3 Ablation study

To analyze the impact of each module on automatic annotation, we conduct an ablation study under
the Scenario 2. In Table 5-(a), we observe that applying both point-level refinement modules yields
the highest performance. This is because Context-aware Refinement is applied to all instances
regardless of their physical properties, whereas Surface-aware Refinement is specifically designed
for rigid and static instances. Furthermore, some effects of Surface-aware Refinement are partially
covered by Context-aware Refinement, which explains its relatively larger contribution when applied
alone. Similarly, Table 5-(b) presents an ablation study focusing on modules that contribute to
box-level refinement. The 3D-2D IoU alignment module is designed to resize and relocate boxes for
static and rigid instances, while the visibility-based module is applied to dynamic and rigid instances.
3D-2D IoU alignment has a greater overall impact when combined with the visibility-based method
for two main reasons: (1) the number of static vehicles in the WOD [33] dataset is significantly larger
than that of dynamic vehicles, and (2) the two candidate boxes considered by 3D-2D IoU alignment
typically differ by 90°, leading to a more substantial effect on the AP3D.

9

Text Prompt: Stroller Text Prompt: Fire Hydrant Text Prompt: Dog

Figure 8: Our automatic annotation results on novel classes in WOD [33]. In the visualization, red
points represent instance-level point clouds, while cyan boxes indicate the automatically generated
annotations. Best viewed in color and zoomed in.

4.4 Qualitative Result

As shown in Fig. 7, we compare 3D bounding boxes from automatic and human annotations. Overall,
OpenBox shows higher precision and recall compared to the baselines [40, 45]. Region (A) illustrates
a static travel trailer. Since [40, 45] generate boxes without considering an instance’s physical
properties, it remains unannotated despite being static. In contrast, OpenBox recognizes it as static,
enabling annotation even with sparse point evidence. In region (B), our approach successfully detects
a static car and a pedestrian inside a garage, which the baselines miss or mislocalize. This is because
our method refines the point cloud to isolate instance-specific points. Region (C) shows that our
method can automatically annotate vehicles on the opposite lane, even when no corresponding human
annotations exist. Although both the baseline and our method detect these vehicles, ours localizes
them more accurately by extending to both rigid and dynamic instances and by jointly leveraging
a vision foundation model, resulting in higher recall. In addition, OpenBox enables automatic
annotation of open-vocabulary objects beyond the predefined classes in existing autonomous-driving
datasets [2, 10, 12, 33, 39]. As shown in Fig. 8, it successfully annotates objects such as strollers, fire
hydrants, and dogs, which are essential to consider in real-world driving scenarios.

5 Conclusion

In this paper, we propose OpenBox, a novel automatic 3D bounding box annotation pipeline. OpenBox
effectively leverages 2D vision foundation models to generate open-vocabulary 3D annotations. To
ensure high-quality box generation, it refines instance-level point clouds and performs adaptive
3D bounding-box generation tailored to the physical properties of each instance. Our extensive
experiments on diverse autonomous driving datasets validate the superiority of the proposed method
in annotation quality over prior baselines, while our comprehensive ablation study substantiates the
effectiveness of each component in the annotation pipeline. We hope that our method can contribute
to future research on foundation models for 3D perception.

Limitations. Adverse weather reduces contrast and obscures edges, which makes 2D vision models
unreliable. The 3D annotations built on those models inherit the errors and often miss instances,
resulting in imprecise box boundaries. Deformable categories such as pedestrians and cyclists also
suffer because pose variation makes full-extent inference unstable. The method then falls back to
fixed class-level sizes, which frequently under- or over-size the box. At long range, LiDAR returns
become too sparse to constrain geometry, so box fitting is ill-conditioned and localization becomes
less precise.

6 Acknowledgments

This work was supported by IITP grant (RS-2021-II211343: AI Graduate School Program (Seoul Na-
tional University) (5%), No.2021-0-02068: AI Innovation Hub (10%), 25-InnoCORE-01: InnoCORE
program of the Ministry of Science and ICT (10%)) and NRF grant (2023R1A1C200781211 (75%))
funded by the Korea government (MSIT).

10

References
[1] Stefan Baur, Frank Moosmann, and Andreas Geiger. Liso: Lidar-only self-supervised 3d object detection.

In Proc. European Conference on Computer Vision (ECCV), 2024.

[2] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,
Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[3] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on
hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu, editors, Advances in Knowledge Discovery and Data Mining, 2013.

[4] Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, B. Ivanovic, Or Litany,
Zan Gojcic, S Fidler, Marco Pavone, Li-Na Song, and Yue Wang. Omnire: Omni urban scene reconstruction.
In International Conference on Learning Representations (ICLR), 2025.

[5] MMDetection3D Contributors. MMDetection3D: OpenMMLab next-generation platform for general 3D
object detection. https://github.com/open-mmlab/mmdetection3d, 2020.

[6] Jiajun Deng, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and Houqiang Li. Voxel r-cnn:
Towards high performance voxel-based 3d object detection. In Proceedings of the AAAI conference on
artificial intelligence (AAAI), 2021.

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proc. Second International Conference on Knowledge
Discovery and Data Mining (KDD), 1996.

[8] Djamahl Etchegaray, Zi Huang, Tatsuya Harada, and Yadan Luo. Find n’ propagate: Open vocabulary 3d
object detection in urban scenes. In Proc. European Conference on Computer Vision (ECCV), 2024.

[9] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Commun. ACM, 24(6), 1981.

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[11] Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling open-vocabulary image segmentation with
image-level labels. In Proc. European Conference on Computer Vision (ECCV), 2022.

[12] John Houston, Guido Zuidhof, Luca Bergamini, Yawei Ye, Long Chen, Ashesh Jain, Sammy Omari,
Vladimir Iglovikov, and Peter Ondruska. One thousand and one hours: Self-driving motion prediction
dataset. In Conference on Robot Learning. PMLR, 2021.

[13] Rui Huang, Henry Zheng, Yan Wang, Zhuofan Xia, Marco Pavone, and Gao Huang. Training an open-
vocabulary monocular 3d detection model without 3d data. In Advances in Neural Information Processing
System (NeurIPS), 2024.

[14] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick. Segment anything.
In Proc. IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[15] Linh Kästner, Vlad Catalin Frasineanu, and Jens Lambrecht. A 3d-deep-learning-based augmented reality
calibration method for robotic environments using depth sensor data. In IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[16] In-Jae Lee, Sihwan Hwang, Youngseok Kim, Wonjune Kim, Sanmin Kim, and Dongsuk Kum. Crab:
Camera-radar fusion for reducing depth ambiguity in backward projection based view transformation. In
IEEE International Conference on Robotics and Automation (ICRA), 2025.

[17] Seungjae Lee, Hyungtae Lim, and Hyun Myung. Patchwork++: Fast and robust ground segmentation
solving partial under-segmentation using 3d point cloud. In Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

[18] Ted Lentsch, Holger Caesar, and Dariu M Gavrila. UNION: Unsupervised 3D object detection using object
appearance-based pseudo-classes. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

11

https://github.com/open-mmlab/mmdetection3d

[19] Feng Li, Hao Zhang, Peize Sun, Xueyan Zou, Shilong Liu, Chunyuan Li, Jianwei Yang, Lei Zhang, and
Jianfeng Gao. Segment and recognize anything at any granularity. In Aleš Leonardis, Elisa Ricci, Stefan
Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol, editors, Proc. European Conference on Computer
Vision (ECCV), 2025.

[20] Liunian Harold Li*, Pengchuan Zhang*, Haotian Zhang*, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao. Grounded
language-image pre-training. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[21] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, and Jifeng Dai.
Bevformer: Learning bird’s-eye-view representation from multi-camera images via spatiotemporal trans-
formers. In Proc. European Conference on Computer Vision (ECCV), 2022.

[22] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei Yang,
Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for open-set object
detection. In Proc. European Conference on Computer Vision (ECCV), 2024.

[23] Zhijian Liu, Haotian Tang, Alexander Amini, Xingyu Yang, Huizi Mao, Daniela Rus, and Song Han. Bev-
fusion: Multi-task multi-sensor fusion with unified bird’s-eye view representation. In IEEE International
Conference on Robotics and Automation (ICRA), 2023.

[24] Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovit-
skiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai,
Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detection. In Proc. European Conference
on Computer Vision (ECCV), 2022.

[25] Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott Ettinger, and Dragomir Anguelov.
Motion inspired unsupervised perception and prediction in autonomous driving. In Proc. European
Conference on Computer Vision (ECCV), 2022.

[26] Mahyar Najibi, Jingwei Ji, Yin Zhou, Charles R. Qi, Xinchen Yan, Scott Ettinger, and Dragomir Anguelov.
Unsupervised 3d perception with 2d vision-language distillation for autonomous driving. In Proc.
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

[27] OpenAI. ChatGPT: language model (Mar 2024 version). https://chat.openai.com, 2024. Accessed:
2024-05-09.

[28] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas,
Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu
Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr
Bojanowski. DINOv2: Learning robust visual features without supervision. Transactions on Machine
Learning Research, 2024.

[29] Mihir Prabhudesai, Hsiao-Yu Fish Tung, Syed Ashar Javed, Maximilian Sieb, Adam W Harley, and
Katerina Fragkiadaki. Embodied language grounding with 3d visual feature representations. In Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

[30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Proc. International Conference on
Machine Learning (ICML), 2021.

[31] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala,
Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer. Sam 2: Segment
anything in images and videos, 2024.

[32] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and detection
from point cloud. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2019.

[33] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, Vijay Vasudevan, Wei Han, Jiquan Ngiam, Hang Zhao,
Aleksei Timofeev, Scott Ettinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang, Jonathon Shlens,
Zhifeng Chen, and Dragomir Anguelov. Scalability in perception for autonomous driving: Waymo open
dataset. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

12

https://chat.openai.com

[34] Zineng Tang, Long Lian, Seun Eisape, XuDong Wang, Roei Herzig, Adam Yala, Alane Suhr, Trevor
Darrell, and David M. Chan. Tulip: Towards unified language-image pretraining, 2025.

[35] OpenPCDet Development Team. Openpcdet: An open-source toolbox for 3d object detection from point
clouds. https://github.com/open-mmlab/OpenPCDet, 2020.

[36] Ignacio Vizzo, Tiziano Guadagnino, Jens Behley, and Cyrill Stachniss. Vdbfusion: Flexible and efficient
tsdf integration of range sensor data. Sensors, 2022.

[37] Daniel Weber, Enkelejda Kasneci, and Andreas Zell. Exploiting augmented reality for extrinsic robot
calibration and eye-based human-robot collaboration. In Proc. ACM/IEEE International Conference on
Human-Robot Interaction, HRI ’22, 2022.

[38] Yi Wei, Shang Su, Jiwen Lu, and Jie Zhou. FGR: Frustum-Aware Geometric Reasoning for Weakly
Supervised 3D Vehicle Detection. In IEEE International Conference on Robotics and Automation (ICRA),
2021.

[39] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal,
Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, Deva Ramanan, Peter Carr,
and James Hays. Argoverse 2: Next generation datasets for self-driving perception and forecasting. In
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks), 2021.

[40] Hai Wu, Shijia Zhao, Xun Huang, Chenglu Wen, Xin Li, and Cheng Wang. Commonsense prototype for
outdoor unsupervised 3d object detection. In Proc. IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[41] Yanmin Wu, Xinhua Cheng, Renrui Zhang, Zesen Cheng, and Jian Zhang. Eda: Explicit text-decoupling
and dense alignment for 3d visual grounding. In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2023.

[42] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-based 3d object detection and tracking. In
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[43] Yurong You, Katie Luo, Cheng Perng Phoo, Wei-Lun Chao, Wen Sun, Bharath Hariharan, Mark Campbell,
and Kilian Q. Weinberger. Learning to detect mobile objects from lidar scans without labels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[44] Hu Zhang, Jianhua Xu, Tao Tang, Haiyang Sun, Xin Yu, Zi Huang, and Kaicheng Yu. Opensight: A simple
open-vocabulary framework for lidar-based object detection. In Proc. European Conference on Computer
Vision (ECCV), 2024.

[45] Lunjun Zhang, Anqi Joyce Yang, Yuwen Xiong, Sergio Casas, Bin Yang, Mengye Ren, and Raquel
Urtasun. Towards unsupervised object detection from lidar point clouds. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

[46] Ruiyang Zhang, Hu Zhang, Hang Yu, and Zhedong Zheng. Approaching outside: Scaling unsupervised 3d
object detection from 2d scene. In Proc. European Conference on Computer Vision (ECCV), 2024.

[47] Xiao Zhang, Wenda Xu, Chiyu Dong, and John M. Dolan. Efficient l-shape fitting for vehicle detection
using laser scanners. In IEEE Intelligent Vehicles Symposium (IV), 2017.

[48] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting twenty-
thousand classes using image-level supervision. In Proc. European Conference on Computer Vision
(ECCV), 2022.

13

https://github.com/open-mmlab/OpenPCDet

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce our contributions (Cross-modal Instance Alignment and Adaptive
Bounding Box Generation) in the abstract and introduction part.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our method in the Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: Our method does not include theoritical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We contain configuration of implementation details in the supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: Code will be released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the information of dataset used for the experiment. We also include
the additional details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We could not because of the limited computing resource.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include those information in the appendix due to page limit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and understand the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research is related to social impact in autonomous driving area.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that no risk is involved.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the reference paper, code and data properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the well-documented assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not conduct any research related to crowd sourcing and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not conduct any research related to crowd sourcing and research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use ChatGPT [27] for part of our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Overview

In this supplementary material, we provide additional details of OpenBox. Appendix B describes
the experiment details. Appendix C provides a detailed approach for height refinement and surface
estimation. We further present more experimental results in Appendix D.

B Implementation Details

Table 6: Training and network details for experiment

configs Voxel R-CNN [6] Point RCNN [32] CenterPoint [42]
optimizer AdamW AdamW AdamW
base learning rate 1e-2 1e-2 1e-4
weight decay 1e-3 1e-2 1e-2
momentum 0.9 1e-2 —
momentum range [0.95, 0.85] [0.95, 0.85] —
learning rate decay 0.1 0.1 —
learning rate clip 1e-7 1e-7 —
gradient norm clip 10 10 35
batch size 16 2 32
epoch 20 60 20

We train models [6, 32, 42] on 8 NVIDIA A6000 GPUs (48GB) and 2 AMD EPYC 7763 CPUs.
We also employ VDBFusion [36] for SDF. In the Context-aware Refinement part (see Sec. 3.1), the
hyperparameters α, β, and δ are set to 0.3, 0.2, and 0.1, respectively. In addition, the threshold τ used
in the Handling Static & Rigid Instance part (see Sec. 3.2) is set to 0.15.

C Additional details for method

C.1 ChatGPT prompt

To obtain 3D bounding box size priors and determine the rigidity of objects, we utilized the following
prompts with ChatGPT-4 [27]:

Prompt: Please provide the typical 3D bounding box size for
[class].

Response: Here are the typical 3D bounding box dimensions
(Length × Width × Height in meters) for [class], based on common
datasets like nuScenes, KITTI, and the Waymo Open Dataset.

Prompt: Is [class] deformable or rigid?

Response: A [class] is considered a deformable / rigid object.

Below is the list of categories we provided to GroundingDINO [22] as text prompts:

[Car, Bus, Person, Truck, Construction Vehicle, Trailer,
Barrier, Bicycle, Motorcycle, Traffic Cone, Dog, Fire Hydrant,
Stroller]

C.2 Height Refinement

In section 3.1, we exclude points whose z-coordinates are below a predefined threshold to remove
remaining ground points after the RANSAC [9] based ground removal. This preliminary step can lead

21

Case 1

Case 2

Case 3

Orthonormal Vector
Surface normal

Bird’s Eye View

(b)(a) (c)

①

②

③

④

Figure 9: Illustration of Surface Estimation.

to bounding boxes appearing elevated above the actual object. To address this issue, we propose an
additional refinement step to accurately estimate the z-coordinate of each bounding box. Specifically,
given an instance with length l and width w, we calculate a radius as:

Lb =

√
l2 + w2

2
. (5)

We then define the set of points within this radius from the ego-position pego of the instance:

P ′ = {p ∈ P | |pego − p|2 < Lb}, (6)

where P denotes the point cloud corresponding to the frame in which the instance is located. After
sorting points in P ′ by their z-coordinate in ascending order, we select the z-coordinate at the 1%,
effectively removing potential noise and LiDAR reflectance outliers near the ground. This procedure
ensures a robust estimation of the ground level near the instance.

C.3 Surface Estimation

We determine the surface direction of instance-level surfaces Sins to facilitate 3D-2D IoU alignment,
as described in the Handling Static & Rigid Instance section (Sec. 3.2). Specifically, we compute
the dot product between the normal vectors of Sins and a set of four orthonormal reference vectors to
identify the surface direction.

As illustrated in Fig. 9, in (a), only the ③ direction yields a dot product greater than the predefined
threshold γ = 0.8, allowing us to identify the surface direction. In (b), both ② and ③ exceed γ, while
in (c), ①, ②, and ③ all surpass the threshold, indicating the presence of multiple surface orientations.

D More Experimental Results

Quantitative Results Table 7 presents the AP3D results under the LEVEL_2 of the WOD [33]
validation split. Compared to the results under the LEVEL_1 criterion shown in Table 1, which
reflects performance in easier scenarios, the overall performance is lower. Nevertheless, our approach
outperforms other baselines [7, 40, 43, 45], indicating that the proposed dataset annotations enable
the 3D object detection network [6] to learn effectively even under more challenging conditions.

Qualitative Results We demonstrate OpenBox on the WOD [33] dataset in two scenarios. Scenario
1 compares annotation quality on the original WOD training set for vehicle, pedestrian, and cyclist
classes. Scenario 2 presents annotation results for novel object categories. A detailed visualization of
both scenarios is provided in the attached video (supple_video.mp4).

22

Table 7: 3D object-detection results on the WOD [33] validation set. Models marked with * are
trained and evaluated in the camera-frustum region, while others use full 360° coverage. † and ‡

denote models trained with CST and CBR from CPD [40], using the training settings given in the
next sentence. For †, we flip the OpenBox annotations and point clouds to obtain 360◦ coverage; for
‡, we fill the region outside the camera frustum with CPD annotations. All values denote AP3D at
each IoU threshold for LEVEL_2. Bold means best performance, underlined means second-best.

Method Modality Vehicle
IoU0.5 / IoU0.7

Pedestrian
IoU0.3 / IoU0.5

Cyclist
IoU0.3 / IoU0.5

CPD* [40] LiDAR 26.09 / 17.91 11.87 / 9.30 3.34 / 2.96
OpenBox* (Ours) LiDAR + Camera 62.74 / 28.03 51.55 / 15.06 20.08 / 1.88

DBSCAN [7] LiDAR 1.94 / 0.25 0.19 / 0.00 0.20 / 0.00
MODEST [43] LiDAR 15.83 / 5.48 8.96 / 0.10 0.43 / 0.20
OYSTER [45] LiDAR 26.21 / 14.10 3.52 / 0.14 1.24 / 0.32
CPD [40] LiDAR 50.18 / 32.13 18.01 / 13.22 5.61 / 4.87
OpenBox† (Ours) LiDAR + Camera 58.42 / 33.72 47.78 / 31.77 20.19 / 6.81
OpenBox‡ (Ours) LiDAR + Camera 51.70 / 34.95 33.02 / 23.50 7.95 / 5.99

23

	Introduction
	Related Work
	Open-vocabulary 3D Object Detection
	Unsupervised 3D Object Detection

	Method
	Cross-modal Instance Alignment
	Adaptive 3D Bounding Box Generation

	Experiments
	Experimental Setup
	Main results
	Ablation study
	Qualitative Result

	Conclusion
	Acknowledgments
	Overview
	Implementation Details
	Additional details for method
	ChatGPT prompt
	Height Refinement
	Surface Estimation

	More Experimental Results

