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ABSTRACT

The ability of AI agents to follow natural language (NL) instructions is important for
Human-AI collaboration. Training Embodied AI agents for instruction-following
can be done with Reinforcement Learning (RL), yet it poses many challenges.
Among which is the exploitation versus exploration trade-off in RL. Previous
works have shown that NL-based state abstractions can help address this challenge.
However, NLs descriptions have limitations in that they are not always readily
available and are expensive to collect. In order to address these limitations, we
propose to use the Emergent Communication paradigm, where artificial agents
learn an emergent language (EL) in an unsupervised fashion, via referential games.
Thus, ELs constitute cheap and readily-available abstractions. In this paper, we
investigate (i) how EL-based state abstractions compare to NL-based ones for RL
in hard-exploration, procedurally-generated environments, and (ii) how properties
of the referential games used to learn ELs impact the quality of the RL exploration
and learning. We provide insights about the kind of state abstractions performed by
NLs and ELs over RL state spaces, using our proposed Compactness Ambiguity
Metric. Our results indicate that our proposed EL-guided agent, entitled EReLELA,
achieves similar performance as its NL-based counterparts. Our work shows that
RL agents can leverage unsupervised EL abstractions to greatly improve their
exploration skills in sparse reward settings, thus opening new research avenues
between Embodied AI and Emergent Communication.

1 INTRODUCTION

Natural Languages (NLs) have some properties, such as compositionality and recursive syntax, that
allow us to talk about infinite meanings while only using a finite number of words (or even letters,
or phonemes...). In other words, it enables us to be as expressive as one might needs. However,
it may be interesting sometimes to use language to abstract away from the details and only focus
on the essence of a specific experience, or a specific sensory stimulus. Thus, even though NLs can
sometimes be used with high expressiveness, they also can work as abstractions. Discrete (natural)
language abstractions are inherently abstract, meaning they can be used to relate superficially distinct,
but causally- or semantically-related situations, by using the same or similar referring expressions.
On the contrary to continuous embeddings, this is possible because (natural) language abstractions
have been shaped through (natural/human) communication processes to capture such relationships.

Tam et al. (2022) investigated leveraging such abstractions for training Reinforcement Learning
(RL) agents in simulated 3D environments. In effect, some unique utterances can be found to refer
to a lot of semantically-similar but visually-different observations of the agent. For instance, the
utterance ’one can see a purple key and a green ball’ can refer to many first-person perspective
of an embodied agent, irrespective of some orientational and positional aspects of that embodied
agent. Tam et al. (2022) referred to that phenomena as compacting/clustering a state/observation
space, which is in effect segmenting it into a set of less-detailed but more-meaningful sub-spaces.
We employ the term meaningful here with respect to the task that the embodied agent is possibly
trained for. For instance, if the task consists of picking and placing objects, then it is meaningful for
utterances to contain information about objects and places, but not so much to contain information
about other agents in the environment, if any. In this paradigm, Tam et al. (2022) and Mu et al.
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(2022) provided some arguments towards the compacting/clustering assumption of NLs, as they
used NL oracles to build abstractions over 3D and 2D environments. Those abstractions were then
leveraged in state-of-the-art exploration algorithms, such as Random Network Distillation (RND -
Burda et al. (2018)) and Never-Give-Up (NGU - Badia et al. (2019)), which can be difficult to deploy
compared to, for instance, a count-based method. Indeed, count-based methods involves (i) fewer
moving parts (.e.g state-count buffer versus e.g. RND’s random and predictor networks, and predictor
optimizer), (ii) they can be deemed simpler to implement (no tricks required on the contrary to RND’s
tricks like reward normalization and observation clipping and normalization that are critical), and
(iii) they involve fewer hyperparameters to finetune (e.g. only a reward-mixing coefficient on the
contrary to e.g. RND’s reward mixing coefficient, architectures of random and predictor networks,
hyperparameters of the predictor optimizer, and different intrinsic and extrinsic discount factors).

Thus, in this work, we aim to simplify the process of using languages as abstractions and address
the limitation of using NLs, which are expensive to harvest and not necessarily the most meaningful
abstractions for any given task. Indeed, instead of state-of-the-art exploration algorithms, we show
that simpler count-based approaches combined with language abstractions can be leveraged for
hard exploration tasks. And, in order to remove the reliance on NLs, we look at the field of
Emergent Communication (EC) (Lazaridou & Baroni, 2020; Brandizzi, 2023) which have shown that
artificial languages, that we refer to as Emergent Language (EL), can emerge through unsupervised
learning algorithms, such as Referential Games and variants (Denamganaï & Walker, 2020a), with
structure and properties similar to NLs (Brandizzi, 2023; Rita et al., 2020). Our experimental
evidences show that ELs, acquired over an embodied agent’s observations in an online fashion and in
parallel of its RL training, can be leveraged for hard-exploration tasks. We investigate what are the
properties of NLs and ELs in terms of their abstraction building abilities by proposing a novel metric
entitled Compactness Ambiguity Metric (CAM). Measures show that ELs abstractions are aligned
but not similar to NLs in terms of the abstractions they perform, as the EC context successfully
picks up on the meaningful features of the environment, which gives them strong advantages over
their NL counterparts. Indeed, the abstractions produced by our proposed method, Exploration in
Reinforcement Learning via Emergent Language Abstractions (EReLELA), primarily reflect colors in
the MultiRoom-N7-S4 environment which only features coloured, unlocked doors, but no distracting
objects, or shapes in the KeyCorridor-S3-R2 environment where it is important to pickup a relevant
key, among other distractingly-shaped objects, in order to open the locked door-shaped object and pick
up the object behind it. We continue by reviewing EC and RL backgrounds and notations in Section 2.
After detailing our method in Section 3, we present experimental results on procedurally-generated,
hard-exploration task from the MiniGrid (Chevalier-Boisvert et al., 2023) benchmarks in Section 4.
Finally, we discuss in Section 5 the results presented in light of some related works and highlight
possible future works.

2 BACKGROUND & NOTATION

2.1 EXPLORATION VS EXPLOITATION IN REINFORCEMENT LEARNING

An RL agent interacts with an environment in order to learn a mapping from states to actions that
maximises its reward signal. Initially, both the reward signal and the dynamics of the environment
(the impact that the agent actions may have on the environment) are unknown to the agent. It must
explore the environment and gather information. Yet, all the while it is exploring, it cannot exploit the
best strategy that it has found so far to maximise the known parts of the reward signal. This dilemma
is known as the Exploration-vs-Exploitation trade-off of RL (Sutton & Barto, 2018; Kaelbling et al.,
1996). This dilemma is not the only challenge, as it can even get worse, especially in sparse reward
environments where the reward signal is mainly zero most of the time. This context makes it very
difficult for agents to learn anything, because RL algorithms derive feedback (i.e. gradients to update
their parameters) from the reward signal that they observe from the environment. It is referred to as
extrinsic reward signal because it comes from the environment. As the extrinsic reward is mostly
zero in spare reward environments, agents must exploit another signal to derive information about the
currently-unknown environment. This other signal can be found in relation to the observation/state
space, as agents can learn to seek novelty or surprise around the observation/state space and attempt
to manipulate it efficiently by choosing relevant actions. Focusing on this novelty, agents can harvest
another feedback signal, that is referred to as intrinsic reward signal. Note that this intrinsic reward
signal is very different from the extrinsic one, because it does not inform agents about the task they
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must perform in the environment. Ideally, though, it provides a dense signal they can use to start
learning something about the environment and its dynamics. This is inspired by intrinsic motivation
in psychology (Oudeyer & Kaplan, 2008). Exploration driven by curiosity/novelty might be an
important way for children to grow and learn. Here, we focus on novelty to derive the intrinsic
rewards but it could be correlated with e.g. impact (Raileanu & Rocktäschel, 2019), surprise (Burda
et al., 2018) or familiarity of the state. The intrinsic reward signal is only a proxy for agents to start
to make progress into learning about the environment and eventually, hopefully encounter some
non-null extrinsic reward signal along the way.

Stanton & Clune (2018) identifies two categories of exploration strategies, to wit across-training,
where novelty of states, for instance, is evaluated in relation to all prior training RL episodes, and intra-
life, where it is evaluated solely in relation to the current RL episode. Historically, we can identify
two types of intrinsic motivation explorations depending on how the intrinsic reward is computed,
either relying on count-based or prediction-based methods. Prediction-based methods (Pathak et al.,
2017; Burda et al., 2018) historically fit into the across-training category and count-based methods
can actually fit in both categories but they have mainly been instantiated in the literature as across-
training methods after extension of intra-life core mechanisms (Bellemare et al., 2016; Ostrovski
et al., 2017) (cf. Appendix B for more relevant details). Our proposed EReLELA architecture relies
on an intra-life count-based method (cf. Section 3.1).

Finally, task-related nuance regarding the difficulty of the exploration task must be made; depending
on whether the environment remains the same from one episode to the next (singleton) or changes
from one episode to another, for instance by being procedurally generated. Exploration tasks
involving procedurally-generated environments are referred to as hard-exploration tasks, and they
are notoriously difficult for count-based exploration methods (Raileanu & Rocktäschel, 2019; Zha
et al., 2021). Indeed, when states are procedurally-generated, almost all states will be showing ‘novel’
features, most times irrespectively of whether it is relevant to the task or not. It will follow that
their state (pseudo-)count will always be low and therefore the RL agent will get feedback towards
reaching all of them indefinitely, but if every state is ‘novel’ then there is nothing to guide the agent
in any specific direction that would amount to good exploration.

2.2 EMERGENT COMMUNICATION

Emergent Communication is at the interface of language grounding and language emergence. While
language emergence raises the question of how to make artificial languages emerge, possibly with
similar properties to NLs, such as compositionality (Baroni, 2019; Guo et al., 2019; Li & Bowling,
2019; Ren et al., 2020), language grounding is concerned with the ability to ground the meaning of
(natural) language utterances into some sensory processes, e.g. the visual modality. On one hand, the
compositionality of ELs has been shown to further the learnability of said languages (Kirby, 2002;
Smith et al., 2003; Brighton, 2002; Li & Bowling, 2019) and, on the other hand, the compositionality
of NLs promises to increase the generalisation ability of the artificial agent that would be able to rely
on them as a grounding signal, as it has been found to produce learned representations that generalise,
when measured in terms of the data-efficiency of subsequent transfer and/or curriculum learning
(Higgins et al., 2017; Mordatch & Abbeel; Moritz Hermann et al.; Jiang et al., 2019). Yet, emerging
languages are far from being ‘natural-like’ protolanguages (Kottur et al., 2017; Chaabouni et al.,
2019a;b), and the questions of how to constrain them to a specific semantic or a specific syntax remain
open problems. Nevertheless, some sufficient conditions can be found to further the emergence of
compositional languages and generalising learned representations (Kottur et al., 2017; Lazaridou
et al., 2018; Choi et al., 2018; Bogin et al., 2018; Guo et al., 2019; Korbak et al., 2019; Chaabouni
et al., 2020; Denamganaï & Walker, 2020c).

The backbone of the field rests on games that emphasise the functionality of languages, namely,
the ability to efficiently communicate and coordinate between agents. The first instance of such an
environment is the Signalling Game or Referential Game (RG) by Lewis (1969), where a speaker
agent is asked to send a message to the listener agent, based on the state/stimulus of the world that it
observed. The listener agent then acts upon the observation of the message by choosing one of the
actions available to it in order to perform the ‘best’ action given the observed state depending on the
notion of ‘best’ action being defined by the interests common to both players. In RGs, typically, the
listener action is to discriminate between a target stimulus, observed by the speaker and prompting
its message generation, and some other distractor stimuli. Distractor stimuli are selected using a
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Figure 1: EReLELA agent in the context of the common RL feedback loop, detailing how the intrinsic
reward generator leverages the state abstraction performed by the RG speaker agent to compute
an intrinsic reward which is then linearly combined with the RL environment’s extrinsic reward.
The intrinsic reward generator consists of an intra-life count-based exploration method. In its most
general form, EReLELA is a wrapper around any off-/on-policy RL algorithm. Optionally, the
weights between the RL algorithm’s observation encoder and the RG players’ stimulus encoder may
be shared, following an unsupervised auxiliary task framing (Jaderberg et al., 2016).

distractor sampling scheme, which has been shown to impact the resulting EL (Lazaridou et al.,
2016; 2018). The listener must discriminate correctly while relying solely on the speaker’s message.
The latter defined the discriminative variant, as opposed to the generative variant where the listener
agent must reconstruct/generate the whole target stimulus (usually played with symbolic stimuli).
Visual (discriminative) RGs have been shown to be well-suited for unsupervised representation
learning, either by competing with state-of-the-art self-supervised learning approaches on downstream
classification tasks (Dessi et al., 2021), or because they have been found to further some forms of
disentanglement Higgins et al. (2018); Kim & Mnih (2018); Chen et al. (2018); Locatello et al. (2020)
in learned representations (Xu et al., 2022; Denamganaï et al., 2023). Such properties can enable
“better up-stream performance” (van Steenkiste et al., 2019), greater sample-efficiency, and some
form of (systematic) generalization (Montero et al., 2021; Higgins et al.; Steenbrugge et al., 2018).
Thus, this paper aims to investigate visual discriminative RGs as auxiliary tasks for RL agents.

3 METHOD

In this section, we start by presenting the EReLELA architecture that leverages EL abstractions in
an intra-life count-based exploration scheme for RL agents, in Section 3.1. We acknowledge a gap
in evaluating the state abstractions that different languages perform over different state/observation
spaces. Thus, we continue by introducing our Compactness Ambiguity Metric (CAM) that attempts
to fill in that gap, in Section 3.2.

3.1 ERELELA ARCHITECTURE

This section details the EReLELA architecture, which stands for Exploration in Reinforcement
Learning via Emergent Language Abstractions. EReLELA is a wrapper around any off-/on-policy
RL algorithm that augments the reward signal by linearly combining the original extrinsic reward
signal with an intrinsic reward signal derived using a baseline intra-life count-based exploration
method, which relies on a state abstraction obtained from the speaker agent of a RG, effectively
embedding complex, high-dimensional observations/states into captions in the emergent language
of the RG game training. It relies on a hashing-like function (cf. Appendix B), implemented by the
speaker agent of a RG, to turn continuous and high-dimensional observations/states into discrete,
variable-length sequences of tokens.
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Formally, we study a single agent in a Markov Decision Process (MDP) defined by the tuple
(S,A, T,R, γ), referring to, respectively, the set of states, the set of actions, the transition function
T : S ×A → P (S) which provides the probability distribution of the next state given a current state
and action, the reward function R : S × A → r, and the discount factor γ ∈ [0, 1]. The agent is
modelled with a stochastic policy π : S → P (A) from which actions are sampled at every time step
of an episode of finite time horizon T . The agent’s goal is to learn a policy which maximises its
discounted expected return at time t, defined in equation 1.

Rt = Est+k+1∼T (st+k,at+k)
at+k+1∼π(st+k+1)

[

T∑
k=0

γkR(st+k+1, at+k+1)]
(1)

Intrinsic Motivation. We further define R = λextRext +
λintRint as the weighted sum of the extrinsic and intrinsic re-
ward functions, respectively,Rext,Rint, with weights λext, λint.
Indeed, while the extrinsic reward is provided by the environ-
ment, the intrinsic reward is computed by the Intrinsic Reward
Generator (cf. Figure 1) using the output of the RG speaker
agent. Formally, we define the RG speaker agent as the function SpRG : S 7→ V L where V is the
vocabulary and L the maximum sentence length of the RG. Thus, as an intra-life count-based method,
the EReLELA’s intrinsic reward function takes as input the current state st and is conditioned on all
the previously-observed states so far in the episode (as opposed to over the whole training process,
referred to as across-training), τ<t = (sk)k∈[0,t−1], as follows:

∀t,Rint(st|τ<t,SpRG) =

{
1 if SpRG(st) /∈ SpRG(τ<t)

0 otherwise
. (2)

Referential Game Training. As the intrinsic rewards generator relies on the abstractions over
state space of the EL spoken by the RG speaker agent, we detail how it is trained. We follow the
nomenclature proposed in Denamganaï & Walker (2020b) and employ a descriptive object-centric
(partially-observable) 2-players/L = 10-signal/N = 0-round/K-distractor RG variant (cf. Figure 13
in Appendix G). The descriptiveness implies that the target stimulus is not always passed to the
listener agent, but instead sometimes replaced with a descriptive distractor (cf. Appendix G for
implementation details). The object-centrism is achieved via application of data augmentation
schemes before feeding stimuli to any RG agent, following Dessi et al. (2021) but using Gaussian
Blur transformation alone, as it was found sufficient in practice. We optimize the RG agents with
either the Impatient-Only STGS loss and the STGS-LazImpa loss (detailed in Appendix G.1). We
train the RG agents with K = 256 distractors, every TRG = 32768 gathered RL observations, on
a dataset DRG consisting of the most recent |DRG| = 8192 observations, among which 2048 are
held-out for validation-purpose, over a maximum of NRG−epoch = 32 epochs or until they reach a
validation/testing RG accuracy greater than a given threshold accRG−thresh = 90%.

Our preliminary experiments in Appendices D.1 and D.2 show, respectively, that increasing the
RG accuracy threshold accRG−thresh increases the sample-efficiency of the EL-guided RL agent,
and that the number of distractors K ∈ [15, 128, 256] is critical (even more so than the distractor
sampling scheme - which we set to be uniform unless specified otherwise), and that it correlates
positively with the performance of the RL agent. More specific details about the RG and its agents’
architectures can be found in Appendices F and G and our open-source implementation1.

Optionally, the weights between the RL algorithm’s observation encoder and the RG players’ stimulus
encoder may be shared, following an unsupervised auxiliary task framing (Jaderberg et al., 2016).
We refer to the architecture with and without shared weights, respectively, as shared and agnostic.

3.2 COMPACTNESS AMBIGUITY METRIC

Intuition. Let us consider an embodied agent navigating in an environment towards fulfilling a given
goal. For instance, the goal could be to pick up a specific object from one of the rooms of a house
filled with many objects of different shapes and colours. Let us consider the captions that myopic
and astigmatic individual would produce when observing the agent’s first-person viewpoint. Their
captioning would only detail the colour of the closest visible object, failing to describe its shape due
to astigmatism, and failing to detail anything about further away. This captioning is an example of
state abstraction in this environment. Let us now consider the captions that a colour-blind and myopic

1HIDDEN_FOR_REVIEW_PURPOSE
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individual would produce. Because of their colour-blindness, they would only describe the shape of
objects, and restrict themselves to the closest object due to being myopic.

We now focus on the differences in captioning that they would produce when prompted with the
very same embodied agent trajectory. Since those captionings are state abstractions, they must
be ambiguous in the sense that each caption would refer to many states/observations. We would
expect all those states that map to the same caption from either captioner to be temporally correlated
to each other, at least, since the embodied agent does not teleport from one room to another, but
rather moves step by step and its surroundings and observations maintian some consistency from
one step to the next. In effect, captionings would be grouping/compacting together states that are
temporally-correlated. Those groupings would be especially salient features when considering the
captions over consecutive timesteps in the embodied agent’s trajectory. For instance, all while the
embodied agent is passing by and facing multiple blue objects, e.g. a ball and then a key, then we
would expect the myopic-and-astigmatic captions to remain constant over many timesteps saying
‘I can see a blue object’. On the other hand, the colour-blind-and-myopic captions would group
together states differently depending on which of the blue object is the closest at any given time,
being constant firstly with ‘I can see a ball’, before then switching to ‘I can se a key’. From this
concrete example, we derive the intuition that state abstractions must be characterizable by the kind
of compacting of states that they perform, and more precisely in terms of the kind of temporality
in the compacting that they perform, i.e. for how many consecutive timesteps does a given caption
remains unchanged.

Algorithm 1: Compactness Ambiguity Metric (CAM)
Given :

• D: Dataset of ND RL trajectories of length T ;
• Spl: Speaker agent for language l being

evaluated;
• N : Number of histogram bins;
• (λi)i∈{0,1,...,N−1} ∈ [0, 1]N : partition

hyperparameters;
Initialize :

• H ← 0 ∈ RN ;

• RAl(D)← |D|
#Spl(D) ;

• ∀i ∈ {0, 1, . . . , N − 1} initialise Ti with Eq. 4;
/* Estimate compactness counts: */

1 tstart ← 0;
2 foreach t, st ∈ enumerate(D) do
3 ut ← Spl(st);
4 if t > 0 and ut ̸= ut−1 then
5 c← t− tstart;
6 δlD(ut−1)← δlD(ut−1) ∪ {c};
7 tstart ← t;
8 end
9 end
/* Last state’s regularisation: */

10 δlD(uT ·ND−1)← δlD(uT ·ND−1)∪{T ·ND−1−tstart};
/* Generate histogram: */

11 foreach u ∈ Spl(D) do
12 foreach c ∈ δlD(u) do
13 Find bin index i ∈ [0, N − 1] s.t.

Ti ≤ c < Ti+1;
14 H(i)← H(i) + 1;
15 end
16 end

Output : H: Histogram of compactness counts;

As such, we propose the Compactness
Ambiguity Metric (CAM) to measures
the qualities of the state abstraction per-
formed by languages. It relies on evalu-
ating their compacting/clustering quali-
ties over stimuli. It assumes temporally-
correlated stimuli as inputs. For instance,
inputs can be a set of video-like stream
of frames and their captions. The CAM
evaluates the language used in the cap-
tions. To do so, it sorts into different
bins of an histogram the different cap-
tions. This sorting is based on the length
of the time interval that each caption oc-
cupies over the video stimuli. For in-
stance, the caption from time step t to
t+k of a video may all be the same, over
k consecutive frames. Therefore it would
be sorted into the histogram’s bin corre-
sponding to length k. This time interval
length corresponds to a measure of the
ambiguity of said caption. The longer
the time interval is, the more (temporally)
ambiguous the caption is. The metric as-
sumes that the more ambiguous a caption
is the more details it abstracts. We will
discuss below how this assumption is im-
perfect, but still useful. Different time
interval lengths will correspond to differ-
ent qualities of abstractions. Thus, the
resulting histogram yields a distribution
of the qualities of the abstractions. Dif-
ferent languages create distinct abstrac-
tion histograms when computed over the
same video stimuli. We can then com-
pare these histograms by computing dis-
tance metrics. This allows us to quantify
how different languages abstract things.
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Formalism. A CAM measure consists of a distribution, represented by an histogram of N bins,
where N is one of the two hyperparameters of the metric. We refer to the counts in the bins as CAM
scores. The CAM takes as inputs (i) a video-like input framed as a dataset of ND RL trajectories
of length T : D = {st ∈ S|t ∈ [1, T · ND]}, and (ii) a speaker agent whose utterances are in the
language l that we want to evaluate with the metric. In order to formally define the speaker agent,
we first define a language l as a subset of V L where V is a vocabulary with |V | tokens and L is the
maximum length of each utterance/caption. Thus, for each language l ⊆ V L, we define a speaker
Spl : S 7→ V L, such that Spl(D) = l.

Next, we refer to the length of the time-interval that each utterance u ∈ l occupies over dataset
D (video input) as a compactness count of the said utterance. At each timestep t, if a caption
ut = Sp(st) ∈ l occurs and it differs from the one at t− 1, then a compactness count is associated to
utterance ut (cf. lines 4-8 in Alg. 1).

This association is captured by a mapping from utterances u ∈ l to sets of compactness counts. We
denote it as the compactness count function defined as δlD : l → 2N for language l over dataset
D. In other words, for each u ∈ l over D, the set δlD(u) contains the numbers of consecutive
timesteps for which u was uttered by Spl, without being uttered in the previous timestep. For
instance, if we consider u ∈ l such that the inverse function of the speaker Sp−1

l : V L 7→ S
yields Sp−1

l (u) = {st1 , st1+1, st1+2, st2}, with (t1, t2) ∈ [0, T ]2 such that t2 > t1 + 3, then
δlD(u) = {3, 1} ∈ 2N because u occurred 2 non-consecutive times over D. Those non-consecutive
occurrences lasted for, respectively, 3 and 1 consecutive timesteps, which amounts to compactness
counts of 3 and 1.

Next, we focus on the histogram that the metric returns. To sort compactness counts in this histogram,
it is necessary to associate to each bin a partition of admissible compactness counts. Since compact-
ness counts refer to time intervals, each bin of the histogram must refer to a range of time, between 0
and the maximum length T of an RL trajectory/episode in the given environment. We assume that the
start of the range associated with a given bin is the end of the range associate with the previous bin.
Therefore, we can naïvely associate to each bin i ∈ {0, 1, . . . , N − 1} a time interval start Ti, defined
relatively to the maximal length T . This framing is shown in Equation 3, with ⌈·⌉ being the ceiling
operator. It is obtained by partitioning the whole range with the second and last hyperparameters
(λi)i∈{0,1,...,N−1} ∈ [0, 1]N such that ∀(j, k), j < k =⇒ λj < λk:

Ti = 1 + ⌈λi · T ⌉ (3)
For regularisation purposes, we define TN = T . Thus, by definition, bin i ∈ 0, 1, . . . , N − 1 will
contain all the compactness counts c belonging to the timespan [Ti, Ti+1] (cf. lines 11-16 in Alg. 1).

In Appendix E.1, we show that this framing is sufficient to grant internal validity to our metric,
meaning that this framing of the CAM (i) enables us to discriminate between different languages that
are known to build different state-abstractions (e.g. synthetic languages that refers to all or only one
specific attribute of objects, such as color or shape, used to caption a video stream that is egocentric
viewpoint of an agent randomly walking in a 3D room with many randomly-placed objects), and (ii)
maps languages without consistent state-abstractions (e.g. shuffled captions over a video stream)
close to a null distribution histogram.

Despite this framing yielding internal validity, it is not optimal in our RL context. Indeed, we show
in Appendix C that this naïve framing is not only sensitive to abstractions performed by the language
but also to redundancy in the dataset D. Redundancy can occur in our RL-focused framing when
k ≥ 2 consecutive states are identical, for instance when the RL agent uses an action that does not
affect its observations. These state-level redundancy situations artificially inflate compactness counts,
which our metric captures as language abstractions whereas they are not. We show in Appendix C
that framing the bin’s thresholds Ti with respect to the relative ambiguity of the tested language,
instead of the maximal length T of an RL trajectory in the environment, yields greater sensitivity to
abstractions and reduces the impact of redundancy onto the metric. We define the relative ambiguity
of a language l asRAl(D) = |D|

#Spl(D) , where | · | being the size operator over collections (differing
from sets in the sense that they allow duplicates, and the | · | operator accounting for them) and # the
set cardinality operator. The framing based on relative-ambiguity is shown in Equation 4:

Ti = 1 + ⌈λi · RAl(D)⌉ (4)
In the remainder of the paper, we report CAM measures using this framing.
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CAM Distances. As the CAM returns a distribution in the form of an N -binned histogram, many
different distance metric could be computed between two such distributions. In this paper, we choose
to define the CAM distance as an euclidean distance in RN by considering the N CAM scores (the
count in each bin of the histogram) as vectors in RN .

4 EXPERIMENTS

Agents Our RL agent is optimized using the R2D2 algorithm (Kapturowski et al., 2018) with the
Adam optimizer Kingma & Ba (2014). Importantly, as it aims to maximise the weighted sum of
the extrinsic and intrinsic reward functions following equation 1, throughout this paper, we use
λint = 0.1 and λext = 10.0 in order to make sure that the agent pursues the external goal once
the exploration of the environment has highlighted it. Further details about the RL agent can be
found in Appendix F. For our RG agents, we consider optimization using either the Impatient-Only
or the LazImpa loss function from Rita et al. (2020), but the latter is adapted to the context of
a Straight-Through Gumbel-Softmax (STGS) communication channel (Havrylov & Titov, 2017;
Denamganaï & Walker, 2020c). We refer to it as STGS-LazImpa. The details of the loss including
the two hyperparameters β1, β2 can be found in Appendix G.1. Indeed, the LazImpa loss function
has been shown to induce Zipf’s Law of Abbreviation (ZLA) in the ELs. Thus, we can investigate
in the following experiments how does structural similarity between NLs and ELs affect the kind
of abstractions they perform, as well as the resulting RL agent. Further details about the RG in
EReLELA can be found in Appendix G. We propose a summary of tested agent settings in Table 1.

Table 1: Summary of tested agent settings.

Agent RG Observation Encoder
Training Weights Sharing

Synthetic Natural Language Abstraction N/A N/A
STGS-LazImpa-5-1 EReLELA (agnostic) LazImpa (β1 = 5, β2 = 1) No
STGS-LazImpa-10-1 EReLELA (shared) LazImpa (β1 = 10, β2 = 1) Yes

STGS-LazImpa-10-1 EReLELA (agnostic) LazImpa (β1 = 10, β2 = 1) No
Impatient-Only EReLELA (shared) Impatient-Only Yes

Impatient-Only EReLELA (agnostic) Impatient-Only No
RANDOM No N/A

Environments. After having considered in our preliminary experiments (cf. Appendix E.4) the 2D
environment MultiRoom-N7-S4, we propose below experiments in the more challenging KeyCorridor-
S3-R2 environment from MiniGrid (Chevalier-Boisvert et al., 2023). Indeed, it involves complex
object manipulations, such as (distractors) object pickup/drop and door unlocking, which requires
first picking up the relevantly-colored key object.

Synthetic Natural Language Oracles. Like Tam et al. (2022), we employ language oracles that
provides NL descriptions/captions of the state. Like them, we mean to use the adjective ‘natural’
to specify the quality and form of the caption rather than the process in which it is obtained (i.e.
programmatically as opposed to having human beings producing them). Nevertheless, in order to
make the distinction clear, we will refer to those oracles as Synthetic Natural Language (SNL) oracles.

That being said, we mean to emphasise that our considerations and results are agnostic to the process
through which the NL captions are obtained, as we only indeed care about their quality and form,
i.e. which vocabulary and grammar are being used, which here refers to that of the English natural
language. We flag this as a limitation of our study because using NL captions produced from human
beings would have yield a more varied and rich distribution, which would possibly impact the
resulting RL agent’s performance (detrimentally supposedly). We make the choice here to only use
synthetically-generated NL captions because they can be generated “accurately and reliably, and at
scale” (Tam et al., 2022).

Our implementation of SNL oracles are simply describing the visible objects in terms of their colour
and shape attributes, from left to right on the agent’s perspective, whilst also taking into account
object occlusions. For instance, around the end of the trajectory presented in Figure 6, the green key
would be occluded by the blue cube, therefore the SNL oracle would provide the description ‘blue
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cube red cube’ alone. We also implement colour-specific and shape-specific language oracles, which
consists of filtering out from the SNL oracle’s utterance the information that each of those language
abstract away, i.e. removing any shape-related word in the case of the colour-specific language, and
vice-versa.

Hypotheses. We seek to validate the following hypotheses. Firstly, we consider whether a simple
count-based approach over (synthetic) NL abstractions is sufficient to solve hard-exploration RL tasks
(H1). We refer to the corresponding agent using (synthetic) NL abstractions to compute intrinsic
rewards as SNLA. We carry on with the hypothesis that a simple count-based approach over EL
abstractions is similarly sufficient (H2). In doing so, we will also investigate to what extent do
ELs compare to SNLs in terms of abstractions, using our proposed CAM. Using our proposed
CAM, we consider two state abstractions to be aligned when their CAM distance is low. As the
MultiRoom-N7-S4 environment only shows differently-coloured doors in a partial observation context,
the most important type of state abstraction is related to the colour of visible objects. On the other
hand, since the KeyCorridor-S3-R2 environment requires picking up an object behind a (unique)
locked door, after having unlocked said door with a key, the most important type of state abstraction
is related to the shape of visible objects. We consider a state abstraction to be meaningful in a given
environment if it is aligned with the language oracle’s abstraction that is the most important in said
environment. Thus, we expect ELs to perform meaningful abstractions (H3), i.e. being aligned with
the colour-specific language’s abstractions in the MultiRoom-N7-S4 environment, and being aligned
with the shape-specific language’s abstractions in the KeyCorridor-S3-R2 environment.

Evaluation. We employ 3 random seeds for each agent. We evaluate (H1) and (H2) using both the
success rate and the manipulation count, in the hard-exploration task of KeyCorridor-S3-R2. The
manipulation count is a per-episode counter incremented each time an object is successfully picked
up or dropped by the RL agent over the course of each episode. In order to evaluate (H3), we use the
CAM to measure the kind of abstractions performed by ELs, and compare those measures with those
of the oracles’ languages that we previously detailed. We report the CAM distances between ELs and
oracle languages. As we remarked that an agent’s skillfullness at the task would induce very different
trajectories (e.g. in MultiRoom-N7-S4, staying in the first room and only ever seeing the first door, for
an unskillfull agent, as opposed to visiting multiple rooms and observing multiple colored-doors, for
a skillfull agent), we emphasise that we critically compute the CAM scores of the oracle languages
on the exact same trajectories than used to compute each EL’s CAM scores.

Figure 2: Success rate learning curve (left), computed as running averages over 1024 episodes each
time (i.e. 32 in parallel, as there are 32 actors, over 32 running average steps), and barplot (right),
along with per-episode manipulation count (middle) in KeyCorridor-S3-R2 from MiniGrid (Chevalier-
Boisvert et al., 2023), for different agents: (i) the Natural Language Abstraction agent (SNLA) refers
to using the SNL oracle to compute intrinsic reward, (ii) the STGS-LazImpa-β1-β2 EReLELA agents
with β1 = 5 (agnostic only) or β1 = 10 (shared and agnostic), and β2 = 1, (iii) the Impatient-Only
EReLELA agents (shared and agnostic), and (iv) the RANDOM agent referring to an ablated version
of EReLELA without RG training.

4.1 ERELELA LEARNS SYSTEMATIC NAVIGATIONAL & MANIPULATIVE EXPLORATION
SKILLS FROM SCRATCH

We present in Figure 2 both the success rate of the different agents (as line plot through learning -left-,
or barplot at the end of learning -right-), and the per-episode manipulation count (middle). From
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Figure 3: CAM distances to SNL (left), Color language (middle), and Shape language (right), for ELs
brought about in KeyCorridor-S3-R2 from MiniGrid (Chevalier-Boisvert et al., 2023), with different
agents: (i) the STGS-LazImpa-β1-β2 EReLELA agents with β1 = 5 (agnostic only) or β1 = 10
(shared and agnostic), and β2 = 1, (ii) the Impatient-Only EReLELA agents (shared and agnostic),
and (iii) the RANDOM agent referring to an ablated version of EReLELA without RG training.

the fact that both the SNLA and EReLELA agent performance converges higher or close to 80% of
success rate (except the STGS-LazImpa-10-1), we validate hypotheses (H1) and (H2), meaning that
it is possible to learn systematic exploration skills from both SNL or EL abstractions with a simple
count-based exploration method, in 2D environments (cf. further evidence in Appendix D.1 with the
MultiRoom-S7-R4 environment). This result puts into perspective the directions of previous literature
designing complex exploration algorithms (Burda et al., 2018; Badia et al., 2019).

The sample-efficiency is better for SNLA than it is for most EL-based agents, except the Agnostic
STGS-LazImpa-10-1 agent, possibly because of the fact that ELs are learned online in parallel of the
RL training, as opposed to the case of SNLA which makes use of a ready-to-use oracle. Concerning
the most-sample-efficient Agnostic STGS-LazImpa-10-1 agent, we interpret its success to be the
result of benefiting from both a language structure ascribing to the ZLA and a performed abstraction
that is more optimal than SNL oracle’s ones, because it is learned from the stimuli themselves.

Among the different Agnostic EReLELA agents, the final performance are not statistically-
significantly distinguishable, meaning that learning systematic exploration skills with EReLELA can
be done with some robustness to the anecdotical differences in qualities of the different ELs. On the
other hand, the shared/non-agnostic EReLELA agents’s performance are statistically-significantly
distinguishable from each other and from their agnostic versions, achieving lower performance or
even failing to learn anything in the case of the STGS-LazImpa-10-1 EReLELA agent. We interpret
these results as being caused by some kind of interference between the RG training and the RL
training, preventing any valuable representations from being learned in the shared observation encoder
(cf. Figure 1), thus warranting the need for future works to investigate whether a synergy can be
achieved.

Finally, acknowledging the RANDOM agent, which is the ablated version of EReLELA without
RG training, enabling still a median performance around 70% of success rate, we recall the Random
Network Distillation approach from Burda et al. (2018), for they both share a randomly initialised
networked from which feedback is harvested to guide an RL agent. Thus, even more so in a 2D
environment, this ablated version is not to be confused with a lower-bound baseline but rather an
interesting ablation that enables us to show the impact of the RG training, increasing the sample-
efficiency and final performance of the RL agent.

4.2 ERELELA LEARNS MEANINGFUL ABSTRACTIONS

Regarding hypothesis (H3), we show in Figure 3 the CAM distances between the different agent’s
ELs and the natural, colour-specific, and shape-specific languages. We recall that in the KeyCorridor-
S3-R2 environment, the most important feature is object shape as the agent must pickup a key from
all other distractor objects and then use it to unlock the locked door. Thus, as we observe that
most ELs’ abstractions are closer to the shape-specific language than the others, we conclude that
EReLELA learns meaningful abstractions, thus validating hypothesis (H3) (cf. Appendix E.3 for
further evidence in the context of MultiRoom-N7-S4). Further, we remark that the failing STGS-
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LazImpa-10-1 EReLELA agent is indeed failing because its EL’s abstractions are not highlighting
shape features. When considering the shared/non-agnostic agents only, we can see that they require
many more RG training epochs, meaning that they reach the accuracy threshold less often than their
agnostic counterparts. We take this as further evidence for our interpretation that there might be
interference between the RL objective and the RG objective.

We note that abstractions from ELs brought about in the contexts of the Agnostic STGS-LazImpa
agents and the Agnostic Impatient-Only agents are the closest to that of the shape-specific language
ones, and their evolution throughout learning are similar. Yet, the Agnostic STGS-LazImpa agents
achieves statistically-significantly better sample-efficiency (cf. Figure 5). We interpret this as being
caused by the ZLA structure of the ELs in the context of the Agnostic STGS-LazImpa agents, thus
showing that NL-like structure is impacting the kind of abstractions being performed in ways that are
yet to be unveiled by future works.

Limitations. With regards to the external validity of EReLELA, we acknowledge that the current
work only addresses a 2D environment and therefore, despite being procedurally-generated, it presents
less challenges to count-based exploration methods than in the context of 3D procedurally-generated
environments. Although we provide some results in Appendix E.3 showing that EReLELA is able
to learn meaningful abstractions in a 3D environment, we leave it to future work to ascertain the
external validity of EReLELA by testing it in a procedurally-generated 3D environment that pose
purely-navigational or navigational and manipulative exploration challenges.

5 DISCUSSION

We investigated the compacting/clustering hypothesis for ELs, questioning how do NLs and ELs
compare in terms of the abstractions they perform over state/observation spaces. To answer this
question, we proposed a novel metric entitled Compactness Ambiguity Metric (CAM), for which we
analysed the sensitivity and performed internal validation. We then leveraged this metric to show
that ELs abstractions are more meaningful than NLs ones, as the Emergent Communication context
successfully picks up on the meaningful features of the environment.

Then, we have proposed the Exploration in Reinforcement Learning via Emergent Language
Abstractions (EReLELA) agent, which leverages ELs abstractions to generate intrinsic motivation
rewards for an RL agent to learn systematic exploration skills. Our experimental evidences showed
the performance of EReLELA in procedurally-generated, hard-exploration 2D environments from
MiniGrid (Chevalier-Boisvert et al., 2023). Moreover, in the parallel optimization of the RG players,
we evidenced how the STGS-LazImpa loss function, which induces EL to abide by ZLA like most
NLs, impacts the kind of abstraction being performed compared to baseline Impatient-Only loss
function, and yields better sample-efficiency for the RL agent training.

Future work ought to investigate different loss functions and distractor sampling schemes, especially
if playing discriminative RGs like here, as we expect, for instance, that sampling distractors more
contrastively, e.g. like in Choi et al. (2018), may induce the emergence of more complete, and
therefore more meaningful ELs. By complete, we mean that the ELs would still be abstracting away
details but also capturing more information about the underlying structure of the stimuli space, e.g.
capturing both colour- and shape-related information of visible objects. In this light, we would also
expect generative RGs to propose a possibly different picture that is worth investigating. While we
leave it to subsequent work to investigate the external validity of EReLELA and whether it transfers
similarly well to 3D environments, our results open the door to a new application of the principles
of Emergent Communication and ELs towards influencing/shaping the learned representations and
behaviours of Embodied AI agents trained with RL.
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ACRONYMS

CAM Compactness Ambiguity Metric. 2, 4, 6–9, 22

EC Emergent Communication. 2, 11

EL Emergent Language. 2–5, 9, 11, 16

EReLELA Exploration in Reinforcement Learning via Emergent Language Abstractions. 2, 4, 5, 11

NL Natural Language. 1, 2, 8, 9, 11, 16

RG Referential Game. 3–5, 11, 16

RL Reinforcement Learning. 1, 2, 4, 7–9, 18

SNL Synthetic Natural Language. 8–10

GLOSSARY

Compactness Ambiguity Metric is a metric that measures the qualities of discrete state abstrac-
tions, e.g. languages, over a set of sequences of temporally-correlated data/stimuli, e.g.
a set of video streams. In effect, it measures how big are sets of temporally-close/-
connected/consecutive stimuli that are mapped together onto the same state abstraction, e.g.
how big are sets of consecutive frames of a video stream that are mapped onto the same
caption. 2, 4, 6, 16, 22

Emergent Communication is a subfield of Natural Language Processing that studies the properties
of ELs on their own or in relation to the properties of NLs. . 2, 11, 16

Emergent Language is an artificial language that emerges through an unsupervised learning ap-
proach relying on variants of RG from the original formulation by (Lewis, 1969) (also
denoted in the literature as signalling game). . 2, 16

Exploration in Reinforcement Learning via Emergent Language Abstractions is our proposed
RL agent architecture instantiating an intra-life exploration scheme. It relies on computing
intrinsic novelty-based rewards by leveraging the state abstraction performed by the RG
speaker agent. The intrinsic reward is then linearly combined with the RL environment’s
extrinsic reward. In its most general form, EReLELA is a wrapper around any off-/on-policy
RL algorithm. Optionally, the weights between the observation encoder of the RL algorithm
and the stimulus encoder of the RG players may be shared, following an unsupervised
auxiliary task framing (Jaderberg et al., 2016). 2, 4, 11, 16

Referential Game is a communication game, sometimes refer to as the Signalling Game from Lewis
(1969), where a speaker agent is asked to send a message to a listener agent, based on
the state of the world that it observes, which can be a target stimulus for instance. Upon
observing the speaker’s message, the listener agent acts by choosing one of the actions
available to it, in order to perform the ‘best’ action given the observed state, depending
on the notion of ‘best’ action being defined by the interests common to both players. In
RGs, typically, the listener action is to try to correctly identify the target stimulus from a set
of candidate/distractor stimuli. Denamganaï & Walker (2020b) proposed a nomenclature
to capture under the same umbrella all the different variants. A descriptive object-centric
(partially-observable) 2-players/L-signal/N=0-round/K-distractor variant is illustrated in
Figure 13. 3, 16

Synthetic Natural Language refers to utterances in natural language that have been produced
programmatically, rather than by human beings speaking. . 8, 16
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A BROADER IMPACT

No technology is safe from being used for malicious purposes, which equally applies to our research.
However, we view many of the ethical concerns surrounding research to be mitigated in the present
case. These include data-related concerns such as fair use or issues surrounding use of human subjects,
given that our data consists solely of simulations.

With regards to the ethical aspects related to its inclusion in the field of Artificial Intelligence, we argue
that our work aims to have positive outcomes on the development of human-machine interfaces since
we investigate, among other things, alignment of emergent languages with natural-like languages.

The current state of our work does not allow extrapolation towards negative outcomes. We believe
that this work is of benefit to the research community of reinforcement learning, language emergence
and grounding, in their current state.

B FURTHER DETAILS ON EXPLORATION METHODS IN RL

Following up from Section 2.1, in the context of an intrinsic reward signal correlated with surprise,
then it is necessary to quantify how much of surprise each observation/state provides. Intuitively, we
can count how many times a given observation/state has been encountered and derive from that count
our intrinsic reward. The reward would guide the RL agent to prefer rarely visited/observed states
compared to common states. This is referred to as the count-based exploration method. Count-based
exploration method were originally only applicable to tabular RL where the state space is discrete and
it is easy to compare states together. When dealing with continuous or high-dimensional state spaces,
such method is not practical. Thus, Bellemare et al. (2016) proposed (and extended in Ostrovski
et al. (2017)) a pseudo-count approach which was derived from increasingly more efficient density
models, and they showed success in applying it to image-based exploration environments from Atari
2600 benchmark, such as Montezuma’s Revenge, Private Eye, and Venture.

Another approach to counting states from continuous and/or high-dimensional state spaces is by rely-
ing on hashing functions, so that states become tractable. Indeed, Tang et al. (2016) have shown that
a generalisation of classical counting techniques through hashing can provide an appropriate signal
for exploration in continuous and/or high-dimensional environments where informed exploration is
required. In effect, they proposed to discretise the state space S with a hash function ϕ : S → Zk,
with k ∈ N \ {0}, to derive an exploration bonus of the form r+(s) = β√

n(ϕ(s))
where β ∈ R+ is a

bonus coefficient and n(.) is a count initialised at zero for the whole range of ϕ and updated at each
step t of the RL loop by increasing by 1 the count n(ϕ(st)) related to the current observation/state
st. Performance is dependent on the hash function ϕ, and especially in terms of granularity of the
discretisation it induces. Indeed, it would be desirable that the ‘similar’ states result in hashing
collisions while the ‘distant’ states would not. To this end, they propose to use locality-sensitive
hashing (LSH) such as SimHash (Charikar, 2002), resulting in the following:

ϕ(s) = sgn(Ag(s)) ∈ {−1, 1}k, (5)

where sgn is the sign function, A ∈ Rk×D is a matrix with each entry drawn i.i.d. from a standard
Gaussian distribution, and g : S → RD is an optional preprocessing function. Note that increasing
k leads to higher granularity and therefore decreases the number of hashing collisions. Tang et al.
(2016) reports great results on the Atari 2600 benchmarks, both with and without a learnable g that is
modelled as the encoder of an autoencoder (AE).
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C COMPARING FRAMEWORKS OF THE COMPACTNESS AMBIGUITY METRIC

We consider the ambiguity of a given language l, defined as Al =
#unique stimuli

#unique utterances with # the set
cardinality operator. Dealing with stimuli being states of a (randomly-walking) RL agent, gathered
into a dataset D, the number of unique states or stimuli cannot be estimated reliably when dealing
with complex, continuous stimuli. Thus, the best we can rely on is a measure of relative ambiguity
over a dataset, that we define as RAl(D) = #stimuli

#unique utterances = |D|
#Spl(D) , with | · | being the size

operator over collections (differing from sets in the sense that they allow duplicates). In those terms,
the relative ambiguity is minimized if and only if (i) #D = |D|, and (ii) Spl is injective. On the other
hand, considering that a language l performs an abstraction over D is tantamount to some stimuli
(s, s′) ∈ D2 sharing the same utterance u = Spl(s) = Spl(s

′), i.e. consisting of a hash collision,
meaning that the mapping Spl from D to l would not be injective and therefore Spl would not be
bijective.

Incidentally, the relative ambiguityRAl(D) cannot be minimized, leading to the language l being
ambiguous over D. In this consideration, we can see that the ambiguity of a language (over a given
dataset) can be impacted by either the extent to which an abstraction is performed (meaning that
most colliding states occur on consecutive timesteps) or the extent to which the dataset is redundant,
with many duplicate states which may or may not be consecutive (meaning #D << |D|). This
allows us to identify two possibly sources of ambiguity. Therefore, in order to build a metric that
measures abstractions’ qualities, it is important to focus on sources of ambiguities that are the result
of consecutive-timesteps states colliding, more than sources of ambiguities that are the result of
redundancy in the given dataset.

Thus, we propose to build the CAM in a way that minimises its sensibility to redundancy-induced
ambiguity. This is achieved at the level of the timespan-focused buckets. Indeed, for a given
language l and datasetD, we define the buckets’ related timespans in relation to the relative ambiguity
RAl(D) = 1

REl(D) = |D|
#Spl(D) , as shown in Equation 6 with λi ∈ [0, 1] s.t. ∀(j, k), j < k =⇒

λj < λk, and ⌈·⌉ being the ceiling operator. This is in lieu of naïve definition in relation to the
maximal length T of an episode in the environment, as shown in Equation 7.

∀i ∈ [0, N − 1], Ti = 1 + ⌈λi · RAl(D)⌉ (6)

∀i ∈ [0, N − 1], T ′
i = 1 + ⌈λi · T ⌉ (7)

∀i ∈ [0, N − 1], CA(l,D)Ti =
∑
u∈l

#δlD
≥Ti(u)

#δlD(u)
(8)

More formally, let us first acknowledge decomposition of relative ambiguity over two independent
quantities, one for each of its sources being either abstraction or redundancy, such that RAl =

RAredundancy
l + RAabstract

l . Then note that the relative ambiguity is equal to the mean number of
consecutive timesteps, or compactness count, for which a given utterance would be used when the
unique utterances are uniformly distributed over the dataset D. Thus, in the metric, we propose to
absorb variations of relative ambiguity due to redundancy by changing the metric’s bucket setup,
from Equation 7 to Equation 6. Doing so, it is true that the metric’s bucket setup will also vary when
the abstraction-induced relative ambiguity varies, we remark that the metric would not build invariant
to this source of relative ambiguity since it is taken into accounts when sorting out the different
unique utterances into their relevant bucket, based on the maximal number of consecutive timesteps
in which they occur. This mechanism is shown in equation 8 where δlD : l→ 2N is the compactness
count function that associates each utterances u ∈ l to its related set of compactness counts over
dataset D, i.e. the set that contains numbers of consecutive timesteps for which u ∈ l was uttered
by Spl, each time it was uttered without being uttered in the previous timestep. For instance, recall
that if we consider u ∈ l such that Sp−1

l (u) = {st1 , st1+1, st1+2, st2}, with (t1, t2) ∈ [0, T ]2 such
that t2 > t1 + 3, then δD(u) = {3, 1} because u occurred 2 non-consecutive times over D and those
occurrences lasted for, respectively, 3 and 1 consecutive timesteps, i.e. for compactness counts of
3 and 1. The superscript ≥ Ti in δlD

≥Ti implies filtering of the output set based on compactness
counts being greater or equal to Ti. We provide in appendix C.1 an analysis of the sensitivity of our
proposed metric, and in appendix E.1 experimental results that ascertain the internal validity of our
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proposed metric, we consider a 3D room environment of MiniWorld (Chevalier-Boisvert et al., 2023),
filled with 5 different, randomly-placed objects (cf. Figure 6).

C.1 SENSITIVITY ANALISYS OF THE COMPACTNESS AMBIGUITY METRIC

Based on derivative-based local sensitivity analysis, we propose an intuitive proof of our claim that
defining timespans in relation to the relative ambiguity reduces the sensibility to variations induced
by redundancy-based ambiguity in the resulting metric, compared to defining timespans in relation to
the the maximal length T of an agent’s trajectory in the environment. To do so, we assume:

(i) that there exists two differentiable function fi.f
′
i such that for all i ∈ [1, N ], we have

CA(D)Ti = fi(D,RAredundancy
l ,RAabstract

l ) when Ti is defined according to Equation 4,
and respectively with f ′

i when using T ′
i from Equation 3, and

(ii) that their partial derivatives with respect to Ti or T ′
i are negative. Indeed, Ti and T ′

i
are involved into filtering operations reducing the value of the numerator in Equation ??,
therefore any increase of their values would result in decreasing the overall metric output,
which implies that their partial derivatives with fi and f ′

i must be negative.

With those assumptions, we show that fi’s sensitivity to redundancy-induced ambiguityRAredundancy
l

is less than that of f ′
i :

Proof.

∂fi

∂RAredundancy
l

=
∂fi

∂CCD
· ∂CCD

∂RAredundancy
l

+
∂fi
∂Ti
· ∂Ti

∂RAredundancy
l

(from Assump. (i) about fi)

⇐⇒ ∂fi

∂RAredundancy
l

=
∂f ′

i

∂RAredundancy
l

+
∂fi
∂Ti
· ∂Ti

∂RAredundancy
l

(from Assump. (i) about f ′
i )

⇐⇒ ∂fi

∂RAredundancy
l

=
∂f ′

i

∂RAredundancy
l

+
∂fi
∂Ti
· λi

=⇒ | ∂fi

∂RAredundancy
l

| ≤ | ∂f ′
i

∂RAredundancy
l

| (since ∂fi
∂Ti
· λi ≤ 0 from Assump. (ii))
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D PRELIMINARY EXPERIMENTS

D.1 IMPACT OF REFERENTIAL GAME ACCURACY

In this experiments, we investigate whether the RG accuracy impacts the RL agent training, in the
context of the MultiRoom-N7-S4 environment from MiniGrid (Chevalier-Boisvert et al., 2023), with
an RL sampling budget of 1M observations.

Hypothesis. We seek to validate the following hypotheses, (PH1) : the sample-efficiency of the
RL agent is dependant on the quality of the RG players, as parameterised by the accRG−thresh

hyperparameter.

Evaluation. We report both the success rate and the coverage count in the hard-exploration task of
MultiRoom-N7-S4. To compute the coverage count, we overlay a grid of tiles over the environment’s
possible locations/cells of the agents and we count the number of different tiles visited by the RL
agent over the course of each episode. We use 3 random seeds for each agent. In order to evaluate the
impact of the RG accuracy strictly in terms of the kind of abstractions that are being performed by the
resulting EL, we use the Impatient-Only loss function (removing the impact of the hyperparameter of
the scheduling function α(·) from the Lazy term of the STGS-LazImpa loss function), and we employ
an agnostic version of our proposed EReLELA agent, i.e. without sharing the observation encoder
between the RG players and the RL agent. We present results for two different RG accuracy
threshold accRG−thresh = 60% (green) or accRG−thresh = 80% (red), and compare against, as an
upper bound the Natural Language Abstraction agent (blue), which refers to using the NL oracle to
compute intrinsic reward, and, as a lower bound an ablated version of EReLELA without RG training
(orange).

Figure 4: Success rate (left), test-time relative expressivity (middle), and per-episode coverage count
(right) in MultiRoom-N7-S4 from MiniGrid (Chevalier-Boisvert et al., 2023), computed as running
averages over 256 episodes each time (i.e. 32 in parallel, as there are 32 actors, over 8 running
average steps), for different agents: (i) the Natural Language Abstraction agent (blue) refers to using
the NL oracle to compute intrinsic reward, the Agnostic Impatient-Only EReLELA agent refers to our
proposed architecture without sharing the observation encoder between the RG players and the
RL agent, using the Impatient-Only loss function to optimize the RG players, with an RG accuracy
threshold accRG−thresh = 60% (ii - green) or accRG−thresh = 80% (iii - red), and (iv) an ablated
version without RG training (orange).

Results. We present results in Figure 4. We observe statistically significant differences between
the performances (in terms of success rate, cf. Figure 4(left)) of the two EReLELA agents with
accRG−thresh = 60% or accRG−thresh = 80%, thus validating hypothesis (PH1). We observe that
higher RG accuracy threshold lead to higher sample-efficiency.

As a sanity check, we plot the results of the ablated EReLELA agent without RG training, and we were
expecting it to perform poorer than any other agent since the quality of its RG players is the lowest, at
chance level. Yet, we observe that it performs on par with the best accRG−thresh = 80%-EReLELA
agent. While puzzling, we propose a possible explanation in the observation that the test-time relative
expressivity of the ablated agent is higher than that of the least-performing, accRG−thresh = 60%-
EReLELA agent, and on par with that of the best-performing, accRG−thresh = 80%-EReLELA
agent, at the beginning of the RL agent training process. Thus, we interpret this as follows: the
randomly-initialised ablated agent’s EL is possibly performing an abstraction over the observation
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space that is good-enough for the RL agent to start learning exploration skills, the same way the
random network in the context of the RND agent from Burda et al. (2018) probably does, and
increasing the quality of the RG players may only be a sufficient condition to increasing the sample-
efficiency of the EL-guided RL agent.

D.2 IMPACT OF REFERENTIAL GAME DISTRACTORS

In this experiments, we investigate whether the RG’s number of distractors K and distractor sampling
scheme impacts the RL agent training, in the context of the KeyCorridor-S3-R2 environment from
MiniGrid (Chevalier-Boisvert et al., 2023), with an RL sampling budget of 1M observations.

Hypothesis. We seek to validate the following hypotheses, (PH2) : the sample-efficiency of the RL
agent is dependant on the number of distractors K and the distractor sampling scheme.

Evaluation. We report the success rate in the hard-exploration task of KeyCorridor-S3-R2. We
use 3 random seeds for each agent. Like previously, we use the Impatient-Only loss function (to
remove the impact of the hyperparameter of the scheduling function α(·) from the Lazy term of
the STGS-LazImpa loss function), and we employ an agnostic version of our proposed EReLELA
agent, i.e. without sharing the observation encoder between the RG players and the RL agent.
We present results for three different number of distractors K ∈ [15, 128, 256] and two different
sampling scheme between UnifDSS corresponding to uniformly sampling distractors over the whole
training dataset, or Sim50DSS corresponding to sampling distractors 50% of the time from the same
RL episode than the current target stimulus is from and, the rest of the time following UnifDSS.
Following results in Appendix D.1, we set the RG accuracy threshold accRG−thresh ∈ [80%, 90%].

Results. We present results in Figure 5. We observe statistically significant differences between the
performances of the different EReLELA agents, thus validating hypothesis (PH2). Our results show
that (i) the number of distractors K is the most impactful parameter and it correlates positively with
the resulting performance, irrespective of the distractor sampling scheme used, and, indeed, (ii) while
the Sim50DSS seems to provide better performance than UnifDSS for low numbers of distractors
K = 15, although not statistically-significantly, the table is turned when considering high number of
distractors K = 256 where the UnifDSS yields statistically significantly better performance than the
Sim50DSS.

Figure 5: Final success rate barplot (left) and success rate throughout learning (right) in KeyCorridor-
S3-R2 from MiniGrid (Chevalier-Boisvert et al., 2023), computed as running averages over 1024
episodes each time (i.e. 32 in parallel, as there are 32 actors, over 32 running average steps), for the
Agnostic Impatient-Only EReLELA agent, which refers to our proposed architecture without sharing
the observation encoder between the RG players and the RL agent, using the Impatient-Only loss
function to optimize the RG players, with different number of distractors K and distractors sampling
schemes: with RG accuracy threshold accRG−thresh = 80%, (i) K = 15 and UnifDSS or Sim50DSS,
(ii) K = 1128 and UnifDSS or Sim50DSS, or with RG accuracy threshold accRG−thresh = 90%,
(iii) K = 256 and UnifDSS or Sim50DSS.
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E FURTHER EXPERIMENTS

E.1 EXPERIMENT #1: INTERNAL VALIDITY OF THE COMPACTNESS AMBIGUITY METRIC

Figure 6: Top-view visualization of a wall-free
3D environment with different objects (e.g. red
and blue cubes, purple and green keys, and green
ball) showing the trajectory (from blue to red
dots) of a randomly-walking embodied agent,
with first-person perspectives highlighted at rel-
evant timesteps using colored cones - showing the
agent’s viewpoint direction when a new utterance
is used to describe the first-person perspective us-
ing an oracle speaking in NL.

Environment. We consider a 3D room environ-
ment of MiniWorld (Chevalier-Boisvert et al.,
2023), where the agent’s observation is egocen-
tric, as a first-person viewpoint. The room is
filled with 5 different, randomly-placed objects,
with different shapes (among ball, box or key)
and colours (among). The dimensions simulate
a 12 by 5 meters room, like shown in a top-view
perspective in Figure 6.

Hypothesis. In this experiments, we seek to
validate two hypotheses, (H1.1) : the Compact-
ness Ambiguity Metric captures something that
is related to the kind of abstraction a language
performs, and (H1.2) : the Compactness Ambi-
guity Metric allows a graduated comparison of
different kind of abstractions being performed,
meaning that it allows discrimination between
different kind of abstractions.

Evaluation. In order to compute the metric, we
use 5 seeds to gather random walk trajectories
in our environment, for each language. In order
to evaluate (H1.1), we propose to measure a
language that is built to present no meaningful
abstractions and we expect the measure to be
close to null. We build a language that performs no meaningful abstraction from the natural language
oracles by shuffling its utterances over the set of agent trajectories that are used to compute the metric,
meaning that the mapping between temporally-sensitive stimuli and linguistic utterances is rendered
completely random.

Then, in order to evaluate (H1.2), we show experimental evidences that the metric allows qualitative
discrimination between the different languages built above from the natural language oracles, which
are build to perform different kind of abstractions.

Figure 7: Interval validity measures of Compactness Ambiguity Metric for N = 6 timespans/thresh-
olds, with λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, for
different languages built to perform different kind of abstraction. We can qualitatively discriminate
between each languages, and validate that the shuffled (natural) language’s meaningless abstraction
scores almost null.
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Results. We present results of the metric with N = 6 timespans in Figure 7, for λ0 = 0.0306125,
λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75. As the shuffled (natural) language
measure is almost null on all timespans/thresholds, we validate hypothesis (H1.1).

We observe that we can qualitatively discriminate between each evaluated language’s measures since
the histograms are statistically different. Moreover, language abstractions scores are inversely corre-
lated with the amount of information being abstracted away, i.e. attribute-value-specific languages’
abstraction score lower than colour/shape-specific languages abstraction, which score lower than
natural language abstractions. Thus, we can see that the metric is graduated and that the graduation
follows the amount of abstraction being performed by each language. This allows us to validate
hypothesis (H1.2).

Figure 8: Measures of Compactness Ambiguity Metric for N = 6 timespans/thresholds, with
λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, comparing ELs
(Type I and II) with different oracles’ languages built to perform different kind of abstraction.

E.2 EXPERIMENT #2: QUALITIES OF EMERGENT LANGUAGES ABSTRACTIONS IN 3D
ENVIRONMENT

In this experiment, we investigate what kind of abstractions do ELs perform over a 3D environment,
in comparison to some natural languages abstractions, as detailed at the beginning of Section 4. For
further precision, we also implement attribute-value-specific language oracles with the same filtering
approach. For instance, for the green value on the colour attribute, we would obtain a green-only
language oracle whose utterances could be ‘EoS’ if no visible object is green, or ‘green green’ if there
are two green objects visible in the agent’s observation. We consider the same 3D room environment
of MiniWorld (Chevalier-Boisvert et al., 2023) as in Section E.1, i.e. the agent’s observation is
egocentric, as a first-person viewpoint and the room is filled with 5 different, randomly-placed objects,
with different shapes (among ball, box or key) and colours (among). The dimensions simulate a 12
by 5 meters room, like shown in a top-view perspective in Figure 6.

Hypothesis. We seek to validate the following hypotheses, (H2.1) : ELs build meaningful abstractions,
and (H2.2) : ELs brought about using the STGS-LazImpa loss function (type II) perform more
meaningful abstractions than Impatient-Only baseline (type I).

Evaluation. In order to make the CAM measures, we use 5 seeds to gather random walk trajectories
in our environment, for each language. In order to evaluate both (H2.1) and (H2.2), we use the CAM
to measure the kind of abstractions performed by ELs brought about in the two different EReLELA
settings, with Impatient-Only or STGS-LazImpa losses, and compare those measures with those of
the oracles’ languages that we previously studied.

Results. We present results of the metric with N = 6 timespans in Figure 8. We observe statistically
significant differences between ELs of type I and II, with type I’s abstraction being similar to a Blue-
specific language’s abstraction (timespans 0− 4) or a Ball-specific language’s abstraction (timespans
1− 3), and type II’s abstraction not really resembling any of the oracle languages’ abstractions, but
still being meaningful with scores increasing along with the length of the considered timespans. Thus,
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we validate hypothesis (H2.1), but cannot conclude on hypothesis (H2.2), unless we consider that
CAM scores related to longer timespans are more meaningful, for instance.

E.3 EXPERIMENT #3: LEARNING PURELY-NAVIGATIONAL SYSTEMATIC EXPLORATION
SKILLS FROM SCRATCH

In the following, we present an experiment in the MultiRoom-N7-S4 environment from Mini-
Grid (Chevalier-Boisvert et al., 2023), which is possibly less challenging than KeyCorridor-S3-R2,
presented in the Section 4, for it does not involve as many complex object manipulation (e.g. only
open/close doors, no unlocking of doors – which requires the corresponding key to be firstly picked
up – nor pickup/drop keys or other objects as distractors), but still poses a purely-navigational
hard-exploration challenge. We report results on the agnostic version of our proposed EReLELA
architecture, that is to say without sharing the observation encoder between both RG players
and the RL agent, in order to guard ourselves against the impact of possible confounders found in
multi-task optimization, such as possible interference between the RL-objective-induced gradients
and the RG-training-induced gradients. We use an RG accuracy threshold accRG−thresh = 65% and
a number of training distractors K = 3 (like at testing/validation time).

Hypotheses. We consider whether NL abstractions can help for a purely-navigational hard-
exploration task in RL with a count-based approach (H3.0), and refer to the relevant agent using
NL abstractions to compute intrinsic rewards as NLA. Then, we make the hypothesis that ELs can
be used similarly (H3.1), and we investigate to what extent do ELs compare to NLs in terms of
abstraction performed, in this purely-navigational task. In the case of (H3.1) being verified, we would
expect ELs to perform similar abstractions as NLs (H3.2).

Evaluation. We evaluate (H3.0) and (H3.1) using both the success rate and the coverage count.To
compute the coverage count, we overlay a grid of tiles over the environment’s possible locations/cells
of the agents and we count the number of different tiles visited by the RL agent over the course of
each episode. To evaluate (H3.2), we compute the CAM scores of both the ELs and the oracles’
natural, color-specific, and shape-specific languages. As we remarked that an agent’s skillfullness at
the task would induce very different trajectories (e.g. in MultiRoom-N7-S4, staying in the first room
and only ever seeing the first door, for an unskillfull agent, as opposed to visiting multiple rooms
and observing multiple colored-doors, for a skillfull agent), we compute the oracle languages CAM
scores on the exact same trajectories than used to compute each EL’s CAM scores.

Figure 9: Success rate (left) and per-episode coverage count (right) in MultiRoom-N7-S4 from
MiniGrid (Chevalier-Boisvert et al., 2023), computed as running averages over 1024 episodes each
time (i.e. 32 in parallel, as there are 32 actors, over 32 running average steps), for different agents: (i)
the Natural Language Abstraction agent (NLA) refers to using the NL oracle to compute intrinsic
reward, (ii) the STGS-LazImpa EReLELA agent refers to our proposed architecture, EReLELA, using
the STGS-LazImpa loss function to optimize the RG players, and (iii) the Impatient-Only EReLELA
agent refers to the same architecture without the lazy-speaker loss to optimize the RG players.

Results. We present in Figure 9(left) the success rate of the different agents, and the per-episode
coverage count in Figure 9(right).From the fact that both the NLA and EReLELA agent performance
converges higher or close to 80% of success rate, we validate hypotheses (H0) and (H3.1), in the
context of the MultiRoom-N7-S4 environment. We remark that the sample-efficiency is slightly better
for NLA than it is for EL-based agents, possibly because of the fact that ELs are learned online
in parallel of the RL training, as opposed to the case of NLA which makes use of a ready-to-use
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Figure 10: Performance and qualities of the ELs brought about in the context of both (i) the STGS-
LazImpa EReLELA agent, and (ii) the Impatient-Only EReLELA agent, with respect to both the
training- and validation/testing-time RG accuracy (left), the validation/test-time Instantaneous Coordi-
nation (Jaques et al., 2018; Lowe et al., 2019; Eccles et al., 2019)(middle), and the validation/testing-
time length of the speaker’s messages (as a ratio over the max sentence length L = 128 - right).

oracle. Among the two EReLELA agents, the learning curves are not statistically-significantly
distinguishable, meaning that learning systematic exploration skills with EReLELA can be done with
some robustness to the anecdotical differences in qualities of the different ELs due to using different
optimization losses. Indeed, we also report in Figure 10 both the training- and validation/testing-time
RG accuracies (on the left), the validation/testing-time Instantaneous Coordination (in the middle
– Jaques et al. (2018); Lowe et al. (2019); Eccles et al. (2019)), and the validation/testing-time
length of the RG speaker’s messages (on the right), showing that the ELs brought about in the two
different contexts perform differently in terms of their RG objective and have different qualities, but
these discrepancies do not seem to impact the RL agents learning equally well from the different
abstractions they perform (as evidenced in the next paragraph).

Next, with regards to hypothesis (H3.2), we investigate whether the two contexts bring about ELs
that perform different abstractions, and how do these relate to the abstractions performed by natural,
colour-specific, and shape-specific languages, by showing in Figure 11 their CAM scores. We
observe that both contexts result in ELs performing abstractions similar or better than colour-specific
languages, which is to be expected as (door) colours are the most salient features of the environment.
Indeed, the only two shapes or objects visible are ‘wall’ and ‘door’, whereas there are more than
7 different colours of interest. In the context of the Impatient-Only EReLELA agent, the EL’s
abstractions are scoring very similarly to NL abstractions, as we consider longer timespans (from
timespans #2 to #5). We could hypothesise that without the lazy-ness constraint the speaker agent
may be given enough capacity to compress/express information pertaining to the location of visible
objects, as this information is the only one that is captured by the NL oracle but not captured by the
shape- and colour-specific languages.

E.4 EXPERIMENT #4: QUANTIFYING RL AGENTS’ LEARNING PROGRESS?

In the context of RGs, the speed at which a language emerges (in terms of sampled observations, or
number of games played) may possibly remain constant, when the data and the player architectures
are fixed. Thus, when the data changes, the rate of language emergence may change too. Incidentally,
we are entitled to ponder whether some properties of the data, which here are RL trajectories, would
influence the rate of language emergence and how?

Hypothesis. We hypothesise that as the RL agent gets more skillful, the expressivity of the emergent
language increases (H4.1). Indeed, at each RG training epoch, the size of the dataset is fixed, and as
the stimuli gets more diverse when the RL agent gets more skillful at exploring, the RG training will
prompt the EL to increase its expressivity.

Evaluation. To verify our hypothesis, we propose to measure the skillfullness of the RL agent in
terms of exploration using the per-episode coverage count metric, and we measure the expressivity of
the EL via the test-time (Relative) Expressivity after each RG training epoch.

Results. We present results in Figure 12, that show the (relative) expressivity of the ELs does exhibit
variations throughout the learning process of the RL agent. And, if we perform a regression analysis
with each runs in terms of the per-episode coverage count of the RL agent on the x-axis and the
expressivity of the ELs on the y-axis, we obtain a high coefficient of determination between the two
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Figure 11: Comparison of Compactness Ambiguity Metric scores for N = 6 timespans/thresholds,
with λ0 = 0.0306125, λ1 = 0.06125, λ2 = 0.125, λ3 = 0.25, λ4 = 0.5 and λ5 = 0.75, between the
abstractions performed by ELs brought about in the context of both (i) the STGS-LazImpa EReLELA
agent (in green, first rows) and (ii) the Impatient-Only EReLELA agent (in purple, bottom rows), and
the abstractions performed by the natural, colour-specific, and shape-specific languages, computed
on the very same agent trajectories.

metrics, R2 = 0.4642. Thus, we conclude that the (relative) expressivity of the ELs in EReLELA can
provide a way to quantify the progress of the RL agent, at least when it comes to exploration skills.

Limitations. Exploration skills translates directly into diversity of the stimuli being observed, and
therefore it prompts any RG players to increase the expressivity of their communication protocol,
but it is remains to be seen whether this effect is valid in any environment. For instance, it is unclear
whether a skillfull player in any other video game would induce the same effect on the diversity of
the stimuli encountered. Thus, it is worth investigating whether this correlation holds for other genre
of environments and skills, which we leave to future works.

Figure 12: Relative expressivity of the EL as a function of the per-episode coverage of the RL agent, at
the end of training, over multiple runs with different hyperparameters during a W&B Sweep (Biewald,
2020).
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F AGENT ARCHITECTURE

The ERELELA architecture is made up of three differentiable agents, the language-conditioned RL
agent and the two RG agents (speaker and listener). Each agent contains at least a visual/observation
encoder module that can be shared between agents.Both RG agents contain a language module that is
not shared. The listener agent additionally incorporates a third decision module that combines the
outputs of the other two modules. The RL agent similarly incorporates a third decision module with
the addition that this third module contains a recurrent network, acting as core memory module for
the agent. Using the Straight-Through Gumbel-Softmax (STGS) approach in the communication
channel of the RG, the speaker agent is prompted to produce the output string of symbols with a
Start-of-Sentence symbol and the visual module’s output as an initial hidden state while the listener
agent consumes the string of symbols with the null vector as the initial hidden state. In the following
subsections, we detail each module architecture in depth.

Visual Module. The visual module f(·) consists of the Shared Observation Encoder, which can be
shared between all the different agents.The former consists of three blocks of convolutional layers
of sizes 8, 4, 3 with strides 4, 3, 1, each followed by a 2D batch normalization layer and a ReLU
non-linear activation function. The two first convolutional layers have 32 filters, whilst the last one
has 64. The bias parameters of the convolutional layers are not used, as it is common when using
batch normalisation layers. Inputs are stimuli consisting of RGB frames of the environment resized
to 64× 64.

Language Module. The language module g(·) consists of some learned Embedding followed by
either a one-layer GRU network (Cho et al., 2014) in the case of the RL agent, or a one-layer LSTM
network (Hochreiter & Schmidhuber, 1997) in the case of the RG agents. In the context of the listener
agent, the input message m = (mi)i∈[1,L] (produced by the speaker agent) is represented as a string
of one-hot encoded vectors of dimension |V | and embedded in an embedding space of dimension
64 via a learned Embedding. The output of the listener agent’s language module, gl(·), is the last
hidden state of the RNN layer, hl

L = gL(mL, h
l
L−1). In the context of the speaker agent’s language

module gS(·), the output is the message m = (mi)i∈[1,L] consisting of one-hot encoded vectors of
dimension |V |, which are sampled using the STGS approach from a categorical distribution Cat(pi)
where pi = Softmax(ν(hs

i )), provided ν is an affine transformation and hs
i = gs(mi−1, h

s
i−1).

hs
0 = f(st) is the output of the visual module, given the target stimulus st.

Decision Module. From the RL agent to the RG’s listener agent, the decision module are very
different since their outputs are either, respectively, in the action space A or the space of distributions
over K + 1 stimuli (i.e. discriminating between distractors and target stimuli). For the RL agent, the
decision module takes as input a concatenated vector comprising the output of visual module, after it
has been procesed by a 3-layer fully-connected network with 256, 128 and 64 hidden units with ReLU
non-linear activation functions, and some other information relevant to the RL context (e.g. previous
reward and previous action selected, following the recipe in Kapturowski et al. (2018)). The resulting
concatenated vector is then fed to the core memory module, a one-layer LSTM network (Hochreiter
& Schmidhuber, 1997) with 1024 hidden units, which feeds into the advantage and value heads of a
1-layer dueling network (Wang et al., 2016).

Regarding optimization of the RL agent, Table 2 highlights the hyperparameters used for the off-
policy RL algorithm, R2D2(Kapturowski et al., 2018). More details can be found, for reproducibility
purposes, in our open-source implementation at HIDDEN-FOR-REVIEW-PURPOSES.

Each run can be done on less than 2Gb of VRAM, and the amount of training time for a run, with e.g.
one NVIDIA GTX1080 Ti, is between 24 and 48 hours depending on the architecture (e.g. shared or
agnostic).
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Table 2: Hyper-parameter values relevant to R2D2 in the EReLELA architecture presented. All
missing parameters follow the ones in Ape-X (Horgan et al., 2018).

R2D2

Number of actors 32
Actor update interval 1 env. step
Sequence unroll length 20
Sequence length overlap 10
Sequence burn-in length 10
N-steps return 3
Replay buffer size 1× 104 obs.
Priority exponent 0.9

Importance sampling exponent 0.6

Discount γ 0.98
Minibatch size 64
Optimizer Adam (Kingma & Ba, 2014)
Learning rate 6.25× 10−5

Adam ϵ 10−12

Target network update interval 2500
updates

Value function rescaling None

Figure 13: Illustration of a descriptive object-centric (partially-observable) 2-players/L = 10-
signal/N = 0-round/K-distractor Referential Game variant, following the nomenclature from
Denamganaï & Walker (2020b). Object-centrism is achieved via data augmentation schemes that are
applied on to each stimulus before being fed to the different agents. As a N = 0-round variant, the
Speaker agent only sends one message to the listener who cannot communicate back to, for instance
ask questions. Based on this single message, the listener must be able to identify the target stimulus
from the set of shuffled stimuli it receives, if it is present, or else specify that it is not present. Indeed,
as a descriptive variant, the descriptive sampling can substitute the target stimulus for a descriptive
distractor stimulus at a given frequency, in order to apply an extra pressure onto the listener agent.

G ON THE REFERENTIAL GAME IN ERELELA

As detailed in Section 3.1, we focus on a descriptive object-centric (partially-observable) 2-
players/L = 10-signal/N = 0-round/K-distractor RG variant (Denamganaï & Walker, 2020b),
as illustrated in Figure 13.

We follow baseline implementation of the RG’s listener from Havrylov & Titov (2017), i.e. the
decision module builds a probability distribution over a set of K + 1 stimuli/images (s0, ..., sK),
consisting of K distractor stimuli and the target stimulus, provided in a random order, given a message
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m using the scalar product:

p((di)i∈[0,K]|(si)i∈[0,K];m) = Softmax
(
(hl

L · f(si)T )i∈[0,K]

)
. (9)

However, our setting consist of a descriptive variant, on top of being discriminative. The descriptive-
ness implies that the target stimulus may not be passed to the listener agent, but instead replaced with
a descriptive distractor. In effect, the listener agent’s decision module therefore outputs a K + 2-logit
distribution where the K + 2-th logit represents the meaning/prediction that a descriptive distractor
has been introduced and none of the K + 1 stimuli is the target stimulus that the speaker agent was
‘talking’ about. The addition is made following Denamganaï et al. (2023) as a learnable logit value,
logitno−target, it is an extra parameter of the model. Thus, in our case, the decision module output is
no longer as specified in Equation 9, but rather as follows:

p((di)i∈[0,K+1]|(si)i∈[0,K];m) = Softmax
(
(hl

L · f(si)T )i∈[0,K] ∪ {logitno−target}
)
. (10)

The object-centrism is achieved via application of data augmentation schemes before feeding stimuli
to any RG agent, following Dessi et al. (2021) but using Gaussian Blur transformation alone, as it
was found sufficient in practice. We optimize the RG agents with either the Impatient-Only STGS
loss and the STGS-LazImpa loss.

In the remainder of this section, we detail the STGS-LazImpa loss that we employed to optimize the
referential game agents.

G.1 STGS-LAZIMPA LOSS

Emergent languages rarely bears the core properties of natural languages (Kottur et al., 2017;
Bouchacourt & Baroni, 2018; Lazaridou et al., 2018; Chaabouni et al., 2020), such as Zipf’s law of
Abbreviation (ZLA). In the context of natural languages, this is an empirical law which states that the
more frequent a word is, the shorter it tends to be (Zipf, 2016; Strauss et al., 2007). Rita et al. (2020)
proposed LazImpa in order to make emergent languages follow ZLA.

To do so, Lazimpa adds to the speaker and listener agents some constraints to make the speaker
lazy and the listener impatient. Thus, denoting those constraints as LSTGS−lazy and Limpatient, we
obtain the STGS-LazImpa loss as follows:

LSTGS−LazImpa(m, (si)i∈[0,K]) = LSTGS−lazy(m) + Limpatient(m, (si)i∈[0,K]). (11)

In the following, we detail those two constraints.

Lazy Speaker. The Lazy Speaker agent has the same architecture as common speakers. The
‘Laziness’ is originally implemented as a cost on the length of the message m directly applied to the
loss, of the following form:

Llazy(m) = α(acc) · |m| (12)
where acc represents the current accuracy estimates of the referential games being played, and α

is a scheduling function as follows: α : accuracy ∈ [0, 1] 7→ accuracyβ1

β2
, with (β1, β2) = (45, 10).

It is aimed to adaptively penalize depending on the message length. Since the lazyness loss is
not differentiable, they ought to employ a REINFORCE-based algorithm for the purpose of credit
assignement of the speaker agent.

In this work, we use the STGS communication channel, which has been shown to be more sample-
efficient than REINFORCE-based algorithms (Havrylov & Titov, 2017), but it requires the loss
functions to be differentiable. Therefore, we modify the lazyness loss by taking inspiration from the
variational autoencoders (VAE) literature (Kingma & Welling, 2013).

The length of the speaker’s message is controlled by the appearance of the EoS token, wherever
it appears during the message generation process that is where the message is complete and its
length is fixed. Symbols of the message at each position are sampled from a distribution over all
the tokens in the vocabulary that the listener agent outputs. Let (Wl) be this distribution over all
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tokens w ∈ V at position l ∈ [1, L], such that ∀l ∈ [1, L], ml ∼ (Wl). We devise the lazyness loss
as a Kullbach-Leibler divergence DKL(·|·) between these distribution and the distribution (WEoS)
which attributes all its weight on the EoS token. Thus, we dissuade the listener agent from outputting
distributions over tokens that deviate too much from the EoS-focused distribution (WEoS), at each
position l with varying coefficients β(l). The coefficient function β : [1, L]→ R must be monotically
increasing. We obtain our STGS-lazyness loss as follows:

LSTGS−lazy(m) = α(acc) ·
∑

l∈[1,L]

β(l)DKL

(
(WEoS)|(Wl)

)
(13)

Impatient Listener. Our implementation of the Impatient Listener agent follows the original work of
Rita et al. (2020): it is designed to guess the target stimulus as soon as possible, rather than solely
upon reading the EoS token at the end of the speaker’s message m. Thus, following Equation 9, the
Impatient Listener agent outputs a probability distribution over a set of K + 1 stimuli (s0, ..., sK) for
all sub-parts/prefixes of the message m = (m1, ...,ml)l∈[1,L] = (m≤l)l∈[1,L] :

∀l ∈ [1, L], p((d≤l
i )i∈[0,K]|(si)i∈[0,K];m

≤l) = Softmax
(
(h≤l · f(si)T )i∈[0,K]

)
, (14)

where h≤l is the hidden state/output of the recurrent network in the language module after consuming
tokens of the message from position 1 to position l included.

Thus, we obtain a sequence of L probability distributions, which can each be contrasted, using the
loss of the user’s choice, against the target distribution (Dtarget) attributing all its weights on the
decision dtarget where the target stimulus was presented to the listener agent. Here, we employ
Havrylov & Titov (2017)’s Hinge loss. Denoting it as L(·), we obtain the impatient loss as follows:

Limpatient/L(m, (si)i∈[0,K]) =
1

L

∑
l∈[1,L]

L((d≤l
i∈[0,K], (Dtarget)). (15)
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