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Abstract

Misclassification detection is an important problem in machine learning, as it allows
for the identification of instances where the model’s predictions are unreliable.
However, conventional uncertainty measures such as Shannon entropy do not
provide an effective way to infer the real uncertainty associated with the model’s
predictions. In this paper, we introduce a novel data-driven measure of uncertainty
relative to an observer for misclassification detection. Interestingly, according to
the proposed measure, soft-predictions that correspond to misclassified instances
can carry a large amount of uncertainty, even though they may have low Shannon
entropy. We demonstrate improvements over multiple image classification tasks,
outperforming state-of-the-art misclassification detection methods.

1 Introduction

Critical applications, such as autonomous driving and automatic tumor segmentation, have benefited
greatly from machine learning algorithms. This motivates the importance of understanding their
limitations and urges the need for methods that can detect patterns on which the model uncertainty
may lead to dangerous consequences [1]. A recent thread of research addresses misclassifications
by augmenting the training data for better representation [23, 22, 15]. However, in order to build
the detectors, these approaches rely on some statistics of the posterior distribution output by the
model, e.g., the entropy, interpreting it as an expression of the model’s confidence. Regrettably, these
measures suffer from two major inconveniences: they are invariant to relabeling of the underlying label
space, and, more importantly, they lead to very low uncertainty values for overconfident predictions,
even if they are wrong, making them unfit for the purpose of detection of misclassification instances.

In this work, we propose a data-driven measure of relative uncertainty inspired by [16]. By learning
to minimize the uncertainty on positive instances and to maximize it on negative instances, our metric
can effectively capture meaningful information to differentiate between the underlying structure
of distributions corresponding to two categories of data. Our measure is “relative”, as it is not
characterized axiomatically, but only serves the purpose of measuring uncertainty of positive
instances relative to negative ones from the point of view of a subjective observer d. Our
contributions are three-fold:
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1. We leverage a novel statistical framework for categorical distributions to devise a learnable
measure of relative uncertainty (REL-U) for a model’s predictions, which induces large
uncertainty for negative instances, even if they may lead to low Shannon entropy;

2. We propose a closed-form solution for training REL-U in the presence of positive and
negative instances;

3. We report significantly favorable and consistent results over different models and datasets,
considering both natural misclassifications within the same statistical population, and in
case of distribution shift, or mismatch, between training and testing distributions.

2 From Uncertainty to Misclassification Detection

Let X ⊆ Rd be a (possibly continuous) feature space and let Y = {1, . . . , C} denote the label space
related to some task of interest. Moreover, we denote by pXY the underlying probability density
function (pdf) on X × Y . We assume that a machine learning model is trained on some training data,
which ultimately yields a model that, given features x ∈ X , outputs a probability mass function (pmf)
on Y , which we denote as a vector p̂(x). This may result from a soft-max output layer, for example.
A predictor f : X → Y is then constructed, which yields f(x) = argmaxy∈Y p̂(x)y . We note that
we may also interpret p̂(x) ∈ [0, 1]|Y| as the probability distribution of Ŷ , which, given X = x, is
distributed according to pŶ |X(y|x) ≜ p̂(x)y .

We define the indicator of the misclassification event as E(X) ≜ 1[f(X) ̸= Y ]. The occurrence
of the “misclassification" event is then characterized by E = 1. Misclassification detection is a
standard binary classification problem, where E needs to be estimated from X. We will denote the
misclassification detector as g : X → {0, 1}. The underlying pdf pX can be expressed as a mixture
of two random variables: X+ ∼ pX|E(x|0) (positive instances) and X− ∼ pX|E(x|1) (negative
instances), where pX|E(x|1) and pX|E(x|0) represent the pdfs conditioned on the error event and
the event of correct classification, respectively.

3 A Data-Driven Measure of Uncertainty
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Figure 1: Intuitive example illustrating the advantage of REL-U compared to entropy-based methods:
REL-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than
Doctor [6]; a detailed analysis is provided in Section 4.

In stark contrast with measures of information uncertainty such as Shannon entropy [19, Sec. 6], Rényi
entropy [18], q-entropy [20], as well as several divergence measures, capturing a notion of distance
between probability distributions, such as Kullback-Leibler divergence [12], f -divergence [3], and
Rényi divergence [18], we propose a notion of “relative” uncertainty that is not invariant w.r.t.
relabeling of the underlying label space, thus preserving the semantic meaning of the labels.

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity
investigated in [16]. Recall that the quantity p̂(x) is the posterior distribution output by the model
given the input x. Let s : X → R be the uncertainty measure in (1) that assigns a score s(x) to every
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feature x in the input space X defined as

sd(x) ≜ E[d(Ŷ , Ŷ ′)|X = x] =
∑
y∈Y

∑
y′∈Y

d(y, y′)p̂(x)yp̂(x)y′ , (1)

where d ∈ D is in a class of distance measures and, given X = x, the random variables Ŷ , Ŷ ′ ∼ p̂(x)
are independently and identically distributed according to p̂(x). We can derive a misclassification
detector g by fixing a threshold γ ∈ R, g(x; s, γ) = 1 [s(x) ≤ γ], where g(x) = 1 when E = 1.

The statistical framework we are introducing here offers great flexibility by allowing for an arbitrary
function d that can be learned from data, as opposed to fixing a predetermined distance as in [16].
In essence, we regard the uncertainty in equation 1 as relative to a given observer d, which
appears as a parameter in the definition. To the best of our knowledge, this is a fundamentally
novel concept of uncertainty.

We first rewrite sd(x) (1) in order to make it amenable to learning the metric d. By defining the
C × C matrix D ≜ (dij) using dij = d(i, j), we have sd(x) = p̂(x)D p̂(x)⊤. For sd(x) to yield a
good detector g, we design a contrastive objective, where we would like E[sd(X+)], which is the
expectation over the positive samples, to be small compared to the expectation over negative samples,
i.e., E[sd(X−)]. This naturally yields to the following objective function, where we assume the usual
properties of a distance function d(y, y) = 0 and d(y′, y) = d(y, y′) ≥ 0 for all y, y′ ∈ Y .
Definition 1. Let us introduce our objective function with hyperparameter λ ∈ [0, 1],

L(D) ≜ (1− λ) · E
[
p̂(X+)D p̂(X+)

⊤]− λ · E
[
p̂(X−)D p̂(X−)

⊤] (2)

and for a fixed K ∈ R+, define our optimization problem as follows:

minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ Y
dij ≥ 0, ∀i, j ∈ Y
dij = dji, ∀i, j ∈ Y
Tr(DD⊤) ≤ K

(3)

The first constraint in equation 3 states that the elements along the diagonal are zeros, which ensures
that the uncertainty measure is zero when the distribution is concentrated at a single point. The second
constraint ensures that all elements are non-negative, which is a natural condition so the measure
of uncertainty is non-negative. The natural symmetry between two elements stems from the third
constraint, while the last constraint imposes a constant upper-bound on the Frobenius norm of the
matrix D, guaranteeing that a solution for the underlying learning problem exists.
Proposition 1 (Closed form solution). The constrained optimization problem defined in (3) admits a
closed form solution D∗ = 1

Z (d∗ij), where

d∗ij =

ReLU

(
λ · E

[
p̂(X−)

⊤
i p̂(X−)j

]
− (1− λ) · E

[
p̂(X+)

⊤
i p̂(X+)j

])
i ̸= j

0 i = j
. (4)

The multiplicative constant Z is chosen such that D∗ satisfies the condition Tr(D∗(D∗)⊤) = K.

The proof is based on a Lagrangian approach and relegated to Appendix A.1. Finally, we define the
Relative Uncertainty (REL-U) score for a given feature x as

sREL-U(x) ≜ p̂(x)D∗ p̂(x)⊤. (5)

Remark. Note that the Gini coefficint H2(Ŷ |x) = − log
∑

y∈Y (p̂(x)y)
2 proposed in [6] is a

special case of (5) when dij = 1 if i ̸= j and dii = 0. Thus, s1−d(x) = sgini(x) when choosing d to
be the Hamming distance, which was also pointed out in [16, Note 1].

4 Experiments and Discussion

In this section, we present the experiments conducted to validate our measure of uncertainty in the
context of misclassification considering both the case when the training and test distributions match,
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and the case in which the two distributions mismatch. Although our method requires additional
positive and negative instances, we show that lower amounts are needed (hundreds or few thousands)
compared to methods that involve re-training or fine-tuning (hundreds of thousands).

For a given model architecture and dataset, we split the test set into two: one portion for tuning
the our method and beselines and the other for evaluating it. Consequently, we can compute all
hyperparameters in an unbiased way and cross-validate performance over many splits generated from
ten random seeds. For details on temperature and input pre-processing, see Appendix A.4. As of
evaluation metric, we consider the false positive rate (fraction of misclassifications detected as being
correct classifications) when 95% of data is true positive (fraction of correctly classified samples
detected as being correct classifications), denoted as FPR at 95% TPR (lower is better). This metric is
commonly used in the literature of misclassification and out-of-distribution detection [9]. Our main
results are reported in Table 1 , Table 2 in Appendix A.4, and Figure 2. We observed gains in FPR
and the AUROC results are similar among methods (see Figure 3 in the appendix). In Appendix A.4,
we ablate on the impact of each hyperparameter, studies the impact of calibration, and detection
performance on inputs with corrupted covariates or belonging to novel classes.

Table 1: Misclassification detection performance in terms of average FPR at 95% TPR (lower is
better) in percentage with one standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP ODIN Doctor REL-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)
OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)

RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)
OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)

RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

10 20 30 40 50
Split (%)

20.0

25.0

30.0

FP
R

 a
t 9

5%
 T

P
R Doctor

Rel-U

(a) CIFAR-10

10 20 30 40 50
Split (%)

38.0

40.0

42.0

FP
R

 a
t 9

5%
 T

P
R Doctor

Rel-U

(b) CIFAR-100

Figure 2: Impact of the tuning split size on the misclassification performance on a ResNet-34 model
trained with supervised CE loss for our method and the Doctor. Hyperparameters are set to default
values (T = 1.0, ϵ = 0.0, and λ = 0.5), so that only the impact of the validation split size is observed.

Empirical Interpretation of the Relative Uncertainty Matrix. Figure 1 exemplifies the advantage
of our method over the entropy-based methods. In particular, the left-end side heatmap represents the
D matrix learned by optimizing (2) on CIFAR-10. Clearly, by only using the information required
in (2) (no class labels or predictions required, only the probability vectors), our method is able to
describe the uncertainty over different, and differently hard to predict, classes: darker shades of
blue indicate higher uncertainty, while lighter shades of blue indicate lower uncertainty. The central
heatmap is the predictor’s class-wise true confusion matrix. The vertical axis represents the true class,
while the horizontal axis represents the predicted class. For each combination of two classes ij, the
corresponding cell reports the count of samples of class j that were predicted as class i. The correct
matches along the diagonal are dashed for better visualization of the mistakes. The confusion matrix
is computed on the same validation set used to compute the D matrix. Crucially, our uncertainty
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matrix can express different degrees of uncertainty depending on the specific combination of classes
at hand. Let us focus for instance on the fact that most of the incorrectly classified dogs are predicted
as cats, and vice-versa. Our matrix D fully captures this by assigning high uncertainty to the cells
at the intersection between these two classes. Conversely, entropy-based methods assign the same
uncertainty to all the cells, regardless of the specific combination of classes at hand.

5 Summary and Concluding Remarks

In this paper, we propose a method for uncertainty assessment that departs from the conventional
practice of directly measuring uncertainty through the entropy of the output distribution. REL-
U uses a metric that leverages higher uncertainty score for negative data w.r.t. positive data, e.g.,
incorrectly and correctly classified samples in the context of misclassification detection, and attains
favorable results on matched and mismatched data. In addition, our method stands out for its flexibility
and simplicity, as it relies on a closed form solution to an optimization problem.
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A Appendix

A.1 Proof of Proposition 1

We have the optimization problem

minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ {1, . . . , C};
dij − dji = 0, ∀i, j ∈ {1, . . . , C}
Tr(DD⊤)−K ≤ 0

−dij ≤ 0, ∀i, j ∈ {1, . . . , C}

(6)

in standard form [2, eq. (4.1)] and can thus apply the KKT conditions [2, eq. (5.49)]. We find

∇L(D∗)−
∑
i,j

ξ∗ij∇d∗ij +
∑
i

µ∗
i∇d∗ii +

∑
ij

ν∗ij∇(d∗ij − d∗ji) + κ∗∇(Tr(D∗(D∗)⊤)−K) = 0

(7)

as well as the constraints

d∗ii = 0 d∗ij − d∗ji = 0 (8)

−d∗ij ≤ 0 ξ∗ij ≥ 0 (9)

ξ∗ijdij = 0 κ∗ ≥ 0 (10)

κ∗(Tr(D∗(D∗)⊤)−K) = 0 (11)

We have

∇L(D∗) = (1− λ) · E
[
p̂(X+)

⊤p̂(X+)
]
− λ · E

[
p̂(X−)

⊤p̂(X−)
]

(12)

∇(Tr(D∗(D∗)⊤)−K) = 2D∗ (13)

and thus2

0 = (1− λ) · E
[
p̂(X+)

⊤p̂(X+)
]
− λ · E

[
p̂(X−)

⊤p̂(X−)
]
− ξ∗ + diag(µ∗)

+ ν∗ − (ν∗)⊤ + κ∗2D∗ (14)

D∗ =
1

2κ∗

(
− (1− λ) · E

[
p̂(X+)

⊤p̂(X+)
]
+ λ · E

[
p̂(X−)

⊤p̂(X−)
]
+ ξ∗ − diag(µ∗)

− ν∗ + (ν∗)⊤
)

(15)

As ∇L(D∗) in (12) is already symmetric, we can choose ν∗ = 0. We choose3 µ∗ = diag(∇L(D∗))
to ensures d∗ii = 0. The non-negativity constraint can be satisfied by appropriately choosing
0 ≤ ξ∗ = ReLU(−∇L(D∗)). Finally, κ∗ is chosen such that the constraint Tr(D∗(D∗)⊤) = K is
satisfied. In total, this yields D∗ = 1

Z ReLU(d∗ij), where

d∗ij =

{
− (1− λ) · E

[
p̂(X+)

⊤
i p̂(X+)j

]
+ λ · E

[
p̂(X−)

⊤
i p̂(X−)j

]
i ̸= j

0 i = j
. (16)

The multiplicative constant Z = 2κ∗ > 0 is chosen such that D∗ satisfies the condition
Tr(D∗(D∗)⊤) = K.
Remark. A technical problem may occur when d∗ij as defined in (16) is equal to zero for all
i, j ∈ {1, 2, . . . , C}. In this case, D∗ cannot be normalized to satisfy Tr(D∗(D∗)⊤) = K and
the solution to the optimization problem in (6) is the all-zero matrix D∗ = 0. I.e., no learning is
performed in this case. We deal with this problem by falling back to the Gini coefficient (17), where
similarly no learning is required, where the Gini coefficient [5] is defined as:

sgini(x) ≜ 1−
∑
y∈Y

(p̂(x)y)
2 (17)

2We use X = diag(x) for a vector x to obtain a matrix X with x on the diagonal and zero otherwise.
3Slightly abusing notation, we also write x = diag(X) to obtain the diagonal of the matrix X as a vector x.
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Equivalently, one may also add a small numerical correction ε to the definition of the ReLU function,
i.e., ReLU(x) = max(x, ε). Using this slightly adapted definition when defining D∗ = 1

ZReLU(d∗ij)
naturally yields the Gini coefficient in this case.

A.2 Limitations.

We presented machine learning researchers with a fresh methodological outlook and provided machine
learning practitioners with a user-friendly tool that promotes safety in real-world scenarios. Some
considerations should be put forward, such as the importance of cross-validating the hyperparameters
of the detection methods to ensure their robustness on the targeted data and model. As a data-driven
measure of uncertainty, to achieve the best performance, it is important to have enough samples at
the disposal to learn the metric from. As every detection method, our method may be vulnerable to
targeted attacks from malicious users.

A.3 Temperature Scaling an Input Pre-Processing

Temperature scaling involves the use of a scalar coefficient 1/T ∈ R+ that is multiplied by the logits
of the network before computing the softmax. This has an effect on the network confidence and the
posterior output probability distribution. The final temperature-scaled-softmax function is given by:

σ(z) =
exp (z/T )∑
j exp (zj/T )

.

Moreover, the perturbation is applied to the input image in order to increase the network “sensitivity"
to the input. In particular, the perturbation is given by:

x′ = x− ε× sign [−∇x log (sREL-U(x)] ,

for ε > 0.

A.4 Extra Results on Misclassification Detection

Table 1 showcases the misclassification detection performance in terms of FPR at 95% TPR of our
method and the strongest baselines (MSP [9], ODIN [13], Doctor [6]) on different neural network
architectures (DenseNet-121 [10], ResNet-34 [8]) trained on different datasets (CIFAR-10, CIFAR-
100 [11]) with different learning objectives (Cross Entropy loss, LogitNorm [21], MixUp [22],
RegMixUp [15], OpenMix [23]). We observe that, on average, our method performs best 11/20
experiments and is equal to the second best in 4/9 out of the remaining experiments. It works
consistently better on all the models trained with cross-entropy loss and the models trained with
RegMixUp objective, which achieved the best accuracy among them. We observed some negative
results when training with logit normalization, but also, the accuracy of the base model decreases.
Results on Bayesian methods and an MLP directly trained on the tuning data are reported to Table 3
together with additional results in the Appendix A.4.

The performance of REL-U is comparable to other methods in terms of AUROC while outperforming
them in high-TPR regions and reducing the risk of classification errors when abstention is desired
(coverage) as observed in Figure 3.

We also compared our method to Bayesian baselines and an MLP network trained on the same data
we used to tune our method. Their results are reported in Table 3.

Ablation study. Figure 2 displays how the amount of data reserved for the tuning split impacts the
performance of the best two detection methods. We demonstrate how our data-driven uncertainty
estimation metric generally improves with the amount of data fed to it in the tuning phase, especially
on a more challenging setup such as on CIFAR-100 model. Figure 4 illustrates three ablation
studies conducted to analyze and comprehend the effects of different factors on the experimental
results. A separate subplot represents each hyperparameter ablation study, showcasing the outcomes
obtained under specific conditions. We observe that λ ≥ 0.5, low temperatures, and low noise
magnitude achieve better performance. Overall, the method is shown to be robust to the choices of
hyperparameters under reasonable ranges.

Does calibration improves detection? There has been growing interest in developing machine
learning algorithms that are not only accurate but also well-calibrated, especially in applications
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Figure 3: Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our
method for high TPR regime. The risk and coverage (RC) curves also looks similar between methods,
with a small advantage to our method in terms of AURC.

Table 2: Misclassification detection results across two different architectures trained on CIFAR-10
and CIFAR-100 with five different training losses. We report the average accuracy of these models
and the detection performance in terms of average FPR at 95% TPR (lower is better) in percentage
with one standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP ODIN Doctor REL-U

DenseNet-121
(CIFAR-10)

CrossEntropy 94.0 32.7 (4.7) 24.5 (0.7) 21.5 (0.2) 18.3 (0.2)
LogitNorm 92.4 39.6 (1.2) 32.7 (1.0) 37.4 (0.5) 37.0 (0.4)

Mixup 95.1 54.1 (13.4) 38.8 (1.2) 24.5 (1.9) 37.6 (0.9)
OpenMix 94.5 57.5 (0.0) 53.7 (0.2) 33.6 (0.1) 31.6 (0.4)

RegMixUp 95.9 41.3 (8.0) 30.4 (0.4) 23.3 (0.4) 22.0 (0.2)

DenseNet-121
(CIFAR-100)

CrossEntropy 73.8 45.1 (2.0) 41.7 (0.4) 41.5 (0.2) 41.5 (0.2)
LogitNorm 73.7 66.4 (2.4) 60.8 (0.2) 68.2 (0.4) 68.0 (0.4)

Mixup 77.5 48.7 (2.3) 41.4 (1.4) 37.7 (0.6) 37.7 (0.6)
OpenMix 72.5 52.7 (0.0) 51.9 (1.3) 48.1 (0.3) 45.0 (0.2)

RegMixUp 78.4 49.7 (2.0) 45.5 (1.1) 43.3 (0.4) 40.0 (0.2)

where reliable probability estimates are desirable. In this section, we investigate whether models
with calibrated probability predictions help improve the detection capabilities of our method or not.
Previous work [24] has shown that calibration does not particularly help or impact misclassification
detection on models with similar accuracies, however, they focused only on calibration methods and
overlooked detection methods.

9



Table 3: Misclassification detection results across two different architectures trained on CIFAR-10
and CIFAR-100 with CrossEntropy loss. We report the detection performance in terms of average
FPR at 95% TPR (lower is better) in percentage with one standard deviation over ten different seeds
in parenthesis.

Model Dataset MC-Dropout Ensemble MLP REL-U

DenseNet-121 CIFAR-10 30.3 (3.8) 25.5 (0.8) 37.3 (5.8) 18.3 (0.2)
DenseNet-121 CIFAR-100 47.6 (1.2) 45.9 (0.7) 78.4 (1.4) 41.5 (0.2)

ResNet-34 CIFAR-10 25.8 (4.9) 14.8 (1.4) 33.6 (2.7) 14.1 (0.1)
ResNet-34 CIFAR-100 42.3 (1.0) 37.4 (1.9) 63.3 (1.0) 32.7 (0.3)
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Figure 4: Ablation studies for temperature, lambda, and noise magnitude effects. The x-axis represents
the experimental conditions, while the y-axis shows the performance metric.

To assess this problem in the optics of misclassification detectors, we calibrated the soft-probabilities
of the models with a temperature parameter [7]. Note that this temperature has not necessarily the
same value as the detection hyperparameter temperature. This calibration method is simple and
effective, achieving performance close to state-of-the-art [14]. To measure how calibrated the model
is before and after temperature scaling, we measured the expected calibration error (ECE) [7] before,
with T = 1, and after calibration. We obtained the optimal temperature after a cross-validation
procedure on the tuning set and measured the detection performance of the detection methods over
the calibrated model on the test set. For the detection methods, we use the optimal temperature
obtained from calibration, and no input pre-processing is conducted (ϵ = 0), to observe precisely
what is the effect of calibration. We set λ = 0.5.

Table 4 shows the detection performance over the calibrated models. We cannot conclude much from
the CIFAR benchmark as the models are already well calibrated out of the training, with ECE of
around 0.03. In general, calibrating the models slightly improved performance on this benchmark.
However, for the ImageNet benchmark, we observe that Doctor gained a lot from the calibration,
while REL-U remained more or less invariant to calibration on ImageNet. This implies that the
performance of REL-U are robust under model’s calibration.

Table 4: Impact of model probability calibration on misclassification detection methods. The
uncalibrated and the calibrated performances are in terms of average FPR at 95% TPR (lower is
better) and one standard deviation in parenthesis.

Architecture Dataset ECE1 ECET Uncal. Doctor Cal. Doctor Uncal. REL-U Cal. REL-U

DenseNet-121 CIFAR-10 0.03 0.01 31.1 (2.4) 28.2 (3.8) 32.7 (1.7) 27.7 (2.1)
CIFAR-100 0.03 0.01 44.4 (1.1) 45.9 (0.9) 45.7 (0.9) 46.6 (0.6)

ResNet-34 CIFAR-10 0.03 0.01 24.3 (0.0) 23.0 (1.4) 26.2 (0.0) 24.2 (0.1)
CIFAR-100 0.06 0.04 40.0 (0.3) 38.7 (1.0) 40.6 (0.7) 38.9 (0.9)

ResNet-50 ImageNet 0.41 0.03 76.0 (0.0) 55.4 (0.7) 51.7 (0.0) 53.0 (0.3)

A.5 Mismatched Data

So far, we have evaluated methods for misclassification detection under the assumption that the data
available to learn the uncertainty measure and that during testing are drawn from the same distribution.
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In this section, we consider cases in which this assumption does not hold true, leading to a mismatch
between the generative distributions of the data. Specifically, we investigate two sources of mismatch:
i) Datasets with different label domains, where the symbol sets and symbols cardinality are different
in each dataset; ii) Perturbation of the feature space domain generated using popular distortion filters.
Understanding how machine learning models and misclassification detectors perform under such
conditions can help us gauge and evaluate their robustness.

Mismatch from different label domains. We considered pre-trained classifiers on the CIFAR-10
dataset and evaluated their performance on detecting samples in CIFAR-10 and distinguishing them
from samples in CIFAR-100, which has a different label domain. Similar experiments have been
conducted in [17, 4, 23]. To explore the impact of dataset splits on machine learning models, Samples
used for training were not reused for validation or evaluation. The test splits were divided into a
validation set and an evaluation set, with the validation set consisting of 10%, 20%, 33%, or 50%
of the total test split and samples used for training were not reused. In order to reduce the overlap
between the label domain of CIFAR-10 and CIFAR-100, in this experimental setup we have ignored
the samples corresponding to the following classes in CIFAR-100: bus, camel, cattle, fox, leopard,
lion, pickup truck, streetcar, tank, tiger, tractor, train, and wolf.

For each split, we combine the number of validation samples from CIFAR-10 with an equal number of
samples from CIFAR-100. In order to assess the validity of our results, each split has been randomly
selected 10 times, and the results are reported in terms of mean and standard deviation in Figure 7.
We observe how our proposed data-driven method performs when samples are provided to accurately
describe the two groups. In order to reduce the overlap between the two datasets, and in line with
previous work [4], we removed the classes in CIFAR-100 that most closely resemble the classes in
CIFAR-10.

Mismatch from feature space corruption. We trained a model on the CIFAR-10 dataset and

Table 5: We report the gap in accuracy between the original and the corrupted test set for the
considered model. The gap is reported and average and standard deviation over the 19 different types
of corruptions for corruption intensity equal to 5. The maximum and minimum gap are also reported,
with the relative corruption type.

Architecture Average gap Max gap Min gap

DenseNet121 0.36± 0.18 0.66 (Gaussian Blur) 0.04 (Brightness)
ResNet34 0.35± 0.20 0.72 (Impulse Noise) 0.03 (Brightness)

evaluated its ability to detect misclassification on the popular CIFAR-10C corrupted dataset, which
contains a version of the classic CIFAR-10 test set perturbed according to 19 different types of
corruptions and 5 levels of intensities. With this experiment we aim at investigating if our proposed
detector is able to spot misclassifications that arise from input perturbation, based on the sole
knowledge of the mislcassified patterns within the CIFAR-10 test split.

Consistent with previous experiments, we ensure that no samples from the training split are reused
during validation and evaluation. To explore the effect of varying split sizes, we divide the test splits
into validation and evaluation sets, with validation sets consisting of 10%, 20%, 33%, or 50% of
the total test split. Each split has been produced 10 times with 10 different seeds and the average
of the results has been reported in the radar plots in Figures 5 and 8. In the case of datasets with
perturbed feature spaces, we solely utilize information from the validation samples in CIFAR-10 to
detect misclassifications in the perturbed instances of the evaluation datasets, without using corrupted
data during validation. We present visual plots that demonstrate the superior performance achieved
by our proposed method compared to other methods. Additionally, for the case of perturbed feature
spaces, we introduce radar plots, in which each vertex corresponds to a specific perturbation type,
and report results for intensity 5. This particular choice of intensity is motivated by the fact that it
creates the most relevant divergence between the accuracy of the model on the original test split and
the accuracy of the model on the perturbed test split. Indeed the average gap in accuracy between the
original test split and the perturbed test split is reported in Table 5.

We observe that our proposed method outperforms Doctor in terms of AUC and FPR, as demonstrated
by the radar plots. As we can see, in the case of CIFAR-10 vs CIFAR-10C, the radar plots (Figures 5
and 8) show how the area covered by the AUC values achieves similar or larger values for the proposed
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Figure 5: CIFAR-10 vs CIFAR-10C, DenseNet-121, using 10% of the test split for validation.

method, indeed confirming that it is able to better detect misclassifications in the mismatched data.
Moreover, the FPR values are lower for the proposed method. For completeness, we report the
error bar tables in Tables 6 and 7. Additionally, as a particular case of mismatch from feature space
corruption, we have considered the task of detecting mismatch between MNIST and SVHN, the
results are reported in Figure 6.

Table 6: DenseNet-121, error bar table, mismatch from different feature space corruption

Doctor REL-U

Corruption Split (%) AUC FPR AUC FPR

Brightness

10 0.90 ± 0.00 0.31 ± 0.00 0.90 ± 0.01 0.35 ± 0.03
20 0.90 ± 0.00 0.31 ± 0.00 0.90 ± 0.00 0.32 ± 0.01
33 0.90 ± 0.00 0.31 ± 0.00 0.90 ± 0.00 0.32 ± 0.01
50 0.90 ± 0.00 0.31 ± 0.00 0.90 ± 0.00 0.32 ± 0.00

Contrast

10 0.66 ± 0.02 0.77 ± 0.03 0.73 ± 0.02 0.70 ± 0.02
20 0.66 ± 0.02 0.77 ± 0.02 0.73 ± 0.01 0.69 ± 0.02
33 0.67 ± 0.01 0.76 ± 0.01 0.74 ± 0.01 0.68 ± 0.01
50 0.66 ± 0.01 0.77 ± 0.01 0.74 ± 0.01 0.67 ± 0.01

Defocus blur

10 0.70 ± 0.01 0.75 ± 0.00 0.72 ± 0.03 0.71 ± 0.05
20 0.70 ± 0.01 0.75 ± 0.00 0.73 ± 0.01 0.69 ± 0.01
33 0.70 ± 0.00 0.75 ± 0.00 0.73 ± 0.01 0.70 ± 0.01
50 0.70 ± 0.00 0.75 ± 0.00 0.73 ± 0.01 0.71 ± 0.01

Elastic transform

10 0.80 ± 0.01 0.56 ± 0.00 0.81 ± 0.01 0.55 ± 0.02
20 0.80 ± 0.01 0.56 ± 0.00 0.82 ± 0.00 0.53 ± 0.02
33 0.80 ± 0.00 0.56 ± 0.00 0.82 ± 0.00 0.53 ± 0.01
50 0.80 ± 0.00 0.56 ± 0.00 0.82 ± 0.00 0.53 ± 0.01

Fog

10 0.76 ± 0.01 0.63 ± 0.01 0.79 ± 0.01 0.56 ± 0.03
20 0.76 ± 0.01 0.63 ± 0.01 0.79 ± 0.01 0.55 ± 0.02
33 0.77 ± 0.00 0.63 ± 0.01 0.80 ± 0.00 0.56 ± 0.02
50 0.77 ± 0.00 0.63 ± 0.00 0.80 ± 0.00 0.55 ± 0.01

Frost

10 0.78 ± 0.00 0.62 ± 0.00 0.79 ± 0.01 0.61 ± 0.02
20 0.78 ± 0.00 0.62 ± 0.00 0.79 ± 0.01 0.59 ± 0.02
33 0.78 ± 0.00 0.62 ± 0.00 0.80 ± 0.00 0.59 ± 0.01
50 0.78 ± 0.00 0.62 ± 0.00 0.80 ± 0.00 0.59 ± 0.01

Gaussian blur

10 0.60 ± 0.00 0.84 ± 0.00 0.61 ± 0.05 0.82 ± 0.05
20 0.60 ± 0.00 0.84 ± 0.00 0.63 ± 0.03 0.82 ± 0.02
33 0.60 ± 0.00 0.84 ± 0.00 0.62 ± 0.02 0.82 ± 0.01

12



50 0.60 ± 0.00 0.84 ± 0.00 0.61 ± 0.02 0.83 ± 0.01

Gaussian noise

10 0.70 ± 0.00 0.72 ± 0.00 0.69 ± 0.02 0.73 ± 0.02
20 0.70 ± 0.00 0.72 ± 0.00 0.71 ± 0.01 0.72 ± 0.01
33 0.70 ± 0.00 0.72 ± 0.00 0.70 ± 0.01 0.73 ± 0.01
50 0.70 ± 0.00 0.72 ± 0.00 0.70 ± 0.01 0.73 ± 0.01

Glass blur

10 0.72 ± 0.00 0.73 ± 0.00 0.71 ± 0.01 0.73 ± 0.01
20 0.72 ± 0.00 0.73 ± 0.00 0.72 ± 0.01 0.72 ± 0.01
33 0.72 ± 0.00 0.73 ± 0.00 0.72 ± 0.01 0.73 ± 0.00
50 0.72 ± 0.00 0.73 ± 0.00 0.72 ± 0.00 0.73 ± 0.00

Impulse noise

10 0.62 ± 0.00 0.85 ± 0.00 0.61 ± 0.03 0.84 ± 0.01
20 0.62 ± 0.00 0.85 ± 0.00 0.63 ± 0.02 0.83 ± 0.01
33 0.62 ± 0.00 0.85 ± 0.00 0.62 ± 0.01 0.84 ± 0.01
50 0.62 ± 0.00 0.85 ± 0.00 0.62 ± 0.01 0.84 ± 0.01

Jpeg compression

10 0.81 ± 0.00 0.58 ± 0.00 0.80 ± 0.01 0.56 ± 0.02
20 0.81 ± 0.00 0.58 ± 0.00 0.80 ± 0.00 0.55 ± 0.01
33 0.81 ± 0.00 0.58 ± 0.00 0.81 ± 0.00 0.55 ± 0.01
50 0.81 ± 0.00 0.58 ± 0.00 0.81 ± 0.00 0.55 ± 0.01

Motion blur

10 0.78 ± 0.01 0.63 ± 0.00 0.81 ± 0.01 0.56 ± 0.02
20 0.78 ± 0.01 0.63 ± 0.00 0.82 ± 0.01 0.53 ± 0.02
33 0.78 ± 0.00 0.63 ± 0.00 0.82 ± 0.00 0.54 ± 0.02
50 0.78 ± 0.00 0.63 ± 0.00 0.82 ± 0.00 0.54 ± 0.01

Pixelate

10 0.68 ± 0.00 0.82 ± 0.00 0.68 ± 0.03 0.80 ± 0.01
20 0.68 ± 0.00 0.82 ± 0.00 0.67 ± 0.03 0.81 ± 0.01
33 0.68 ± 0.00 0.82 ± 0.00 0.66 ± 0.02 0.81 ± 0.01
50 0.68 ± 0.00 0.82 ± 0.00 0.67 ± 0.02 0.81 ± 0.01

Saturate

10 0.89 ± 0.00 0.37 ± 0.01 0.88 ± 0.01 0.39 ± 0.03
20 0.89 ± 0.00 0.37 ± 0.01 0.88 ± 0.00 0.36 ± 0.01
33 0.89 ± 0.00 0.37 ± 0.00 0.88 ± 0.00 0.37 ± 0.01
50 0.89 ± 0.00 0.37 ± 0.00 0.88 ± 0.00 0.36 ± 0.01

Shot noise

10 0.71 ± 0.00 0.72 ± 0.00 0.72 ± 0.02 0.72 ± 0.02
20 0.71 ± 0.00 0.72 ± 0.00 0.73 ± 0.01 0.70 ± 0.02
33 0.71 ± 0.00 0.72 ± 0.00 0.73 ± 0.01 0.70 ± 0.01
50 0.71 ± 0.00 0.72 ± 0.00 0.73 ± 0.01 0.71 ± 0.01

Snow

10 0.81 ± 0.00 0.60 ± 0.00 0.81 ± 0.01 0.57 ± 0.01
20 0.81 ± 0.00 0.60 ± 0.00 0.81 ± 0.01 0.57 ± 0.02
33 0.81 ± 0.00 0.60 ± 0.00 0.81 ± 0.00 0.57 ± 0.01
50 0.81 ± 0.00 0.60 ± 0.00 0.81 ± 0.00 0.57 ± 0.00

Spatter

10 0.78 ± 0.00 0.80 ± 0.00 0.77 ± 0.02 0.80 ± 0.04
20 0.78 ± 0.00 0.80 ± 0.00 0.77 ± 0.01 0.79 ± 0.03
33 0.78 ± 0.00 0.80 ± 0.00 0.77 ± 0.01 0.80 ± 0.02
50 0.78 ± 0.00 0.80 ± 0.00 0.77 ± 0.00 0.80 ± 0.02

Speckle noise

10 0.73 ± 0.00 0.68 ± 0.00 0.74 ± 0.02 0.67 ± 0.03
20 0.73 ± 0.00 0.68 ± 0.00 0.75 ± 0.01 0.65 ± 0.02
33 0.73 ± 0.00 0.68 ± 0.00 0.75 ± 0.01 0.65 ± 0.01
50 0.73 ± 0.00 0.68 ± 0.00 0.75 ± 0.01 0.66 ± 0.01

Zoom blur

10 0.73 ± 0.01 0.72 ± 0.01 0.76 ± 0.01 0.67 ± 0.04
20 0.73 ± 0.01 0.71 ± 0.00 0.76 ± 0.01 0.65 ± 0.02
33 0.73 ± 0.00 0.72 ± 0.00 0.77 ± 0.01 0.66 ± 0.02
50 0.73 ± 0.00 0.72 ± 0.00 0.77 ± 0.01 0.67 ± 0.01

Table 7: ResNet-34, error bar table, mismatch from different feature space corruption
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Doctor REL-U

Corruption Split (%) AUC FPR AUC FPR

Brightness

10 0.91 ± 0.00 0.30 ± 0.02 0.91 ± 0.01 0.33 ± 0.06
20 0.91 ± 0.00 0.30 ± 0.01 0.92 ± 0.00 0.30 ± 0.02
33 0.91 ± 0.00 0.30 ± 0.01 0.92 ± 0.00 0.30 ± 0.01
50 0.92 ± 0.00 0.30 ± 0.01 0.92 ± 0.00 0.31 ± 0.01

Contrast

10 0.66 ± 0.03 0.76 ± 0.03 0.70 ± 0.02 0.68 ± 0.03
20 0.66 ± 0.02 0.76 ± 0.03 0.71 ± 0.01 0.67 ± 0.02
33 0.66 ± 0.02 0.75 ± 0.02 0.72 ± 0.01 0.66 ± 0.02
50 0.66 ± 0.01 0.75 ± 0.01 0.72 ± 0.01 0.66 ± 0.01

Defocus blur

10 0.75 ± 0.02 0.60 ± 0.01 0.82 ± 0.01 0.49 ± 0.01
20 0.75 ± 0.01 0.60 ± 0.01 0.82 ± 0.01 0.49 ± 0.01
33 0.76 ± 0.01 0.60 ± 0.00 0.82 ± 0.00 0.50 ± 0.01
50 0.76 ± 0.01 0.60 ± 0.00 0.82 ± 0.00 0.50 ± 0.01

Elastic transform

10 0.81 ± 0.02 0.53 ± 0.01 0.84 ± 0.01 0.45 ± 0.01
20 0.81 ± 0.01 0.52 ± 0.01 0.85 ± 0.00 0.44 ± 0.01
33 0.81 ± 0.01 0.52 ± 0.00 0.85 ± 0.00 0.44 ± 0.01
50 0.81 ± 0.01 0.52 ± 0.00 0.85 ± 0.00 0.44 ± 0.00

Fog

10 0.73 ± 0.02 0.78 ± 0.05 0.81 ± 0.01 0.56 ± 0.02
20 0.73 ± 0.01 0.77 ± 0.03 0.81 ± 0.01 0.57 ± 0.03
33 0.74 ± 0.01 0.77 ± 0.03 0.81 ± 0.01 0.59 ± 0.02
50 0.74 ± 0.01 0.77 ± 0.02 0.82 ± 0.00 0.59 ± 0.03

Frost

10 0.80 ± 0.00 0.65 ± 0.02 0.81 ± 0.01 0.60 ± 0.05
20 0.80 ± 0.00 0.65 ± 0.01 0.82 ± 0.00 0.59 ± 0.02
33 0.80 ± 0.00 0.65 ± 0.01 0.82 ± 0.00 0.59 ± 0.01
50 0.80 ± 0.00 0.65 ± 0.01 0.82 ± 0.00 0.58 ± 0.01

Gaussian blur

10 0.71 ± 0.01 0.72 ± 0.00 0.75 ± 0.01 0.65 ± 0.01
20 0.71 ± 0.00 0.72 ± 0.00 0.75 ± 0.01 0.66 ± 0.01
33 0.71 ± 0.00 0.72 ± 0.00 0.75 ± 0.00 0.66 ± 0.01
50 0.71 ± 0.00 0.72 ± 0.00 0.75 ± 0.00 0.67 ± 0.01

Gaussian noise

10 0.60 ± 0.00 0.85 ± 0.01 0.60 ± 0.03 0.87 ± 0.02
20 0.60 ± 0.00 0.85 ± 0.01 0.61 ± 0.01 0.87 ± 0.01
33 0.60 ± 0.00 0.85 ± 0.00 0.61 ± 0.01 0.87 ± 0.01
50 0.60 ± 0.00 0.85 ± 0.00 0.61 ± 0.01 0.87 ± 0.00

Glass blur

10 0.72 ± 0.00 0.72 ± 0.00 0.73 ± 0.01 0.70 ± 0.03
20 0.72 ± 0.00 0.72 ± 0.00 0.74 ± 0.01 0.69 ± 0.01
33 0.72 ± 0.00 0.72 ± 0.00 0.74 ± 0.00 0.70 ± 0.01
50 0.72 ± 0.00 0.71 ± 0.00 0.74 ± 0.00 0.69 ± 0.00

Impulse noise

10 0.63 ± 0.00 0.82 ± 0.00 0.66 ± 0.02 0.80 ± 0.03
20 0.63 ± 0.00 0.82 ± 0.00 0.66 ± 0.01 0.80 ± 0.01
33 0.63 ± 0.00 0.82 ± 0.00 0.66 ± 0.01 0.80 ± 0.01
50 0.63 ± 0.00 0.82 ± 0.00 0.67 ± 0.01 0.80 ± 0.00

Jpeg compression

10 0.81 ± 0.01 0.57 ± 0.02 0.82 ± 0.01 0.51 ± 0.03
20 0.81 ± 0.01 0.56 ± 0.01 0.83 ± 0.00 0.50 ± 0.01
33 0.81 ± 0.00 0.57 ± 0.01 0.83 ± 0.00 0.51 ± 0.01
50 0.81 ± 0.00 0.57 ± 0.00 0.83 ± 0.00 0.51 ± 0.01

Motion blur

10 0.78 ± 0.01 0.59 ± 0.02 0.83 ± 0.01 0.47 ± 0.01
20 0.78 ± 0.01 0.58 ± 0.01 0.84 ± 0.01 0.47 ± 0.01
33 0.78 ± 0.01 0.58 ± 0.01 0.84 ± 0.00 0.48 ± 0.01
50 0.78 ± 0.00 0.57 ± 0.00 0.84 ± 0.00 0.48 ± 0.01

Pixelate

10 0.73 ± 0.00 0.70 ± 0.01 0.73 ± 0.02 0.69 ± 0.04
20 0.73 ± 0.00 0.70 ± 0.01 0.74 ± 0.02 0.69 ± 0.03
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33 0.73 ± 0.00 0.70 ± 0.01 0.74 ± 0.01 0.69 ± 0.02
50 0.73 ± 0.00 0.70 ± 0.00 0.74 ± 0.01 0.68 ± 0.01

Saturate

10 0.90 ± 0.00 0.31 ± 0.01 0.90 ± 0.01 0.32 ± 0.08
20 0.90 ± 0.00 0.31 ± 0.00 0.91 ± 0.00 0.30 ± 0.01
33 0.90 ± 0.00 0.31 ± 0.00 0.91 ± 0.00 0.30 ± 0.01
50 0.90 ± 0.00 0.31 ± 0.00 0.91 ± 0.00 0.29 ± 0.01

Shot noise

10 0.63 ± 0.00 0.86 ± 0.01 0.65 ± 0.03 0.86 ± 0.04
20 0.63 ± 0.00 0.85 ± 0.01 0.65 ± 0.01 0.86 ± 0.01
33 0.63 ± 0.00 0.86 ± 0.00 0.65 ± 0.01 0.86 ± 0.02
50 0.63 ± 0.00 0.86 ± 0.00 0.65 ± 0.01 0.86 ± 0.00

Snow

10 0.84 ± 0.00 0.55 ± 0.03 0.85 ± 0.01 0.49 ± 0.03
20 0.84 ± 0.00 0.55 ± 0.02 0.85 ± 0.00 0.48 ± 0.02
33 0.84 ± 0.00 0.55 ± 0.01 0.85 ± 0.00 0.48 ± 0.02
50 0.84 ± 0.00 0.56 ± 0.01 0.85 ± 0.00 0.48 ± 0.01

Spatter

10 0.83 ± 0.00 0.59 ± 0.02 0.82 ± 0.01 0.60 ± 0.06
20 0.83 ± 0.00 0.58 ± 0.01 0.83 ± 0.01 0.58 ± 0.04
33 0.83 ± 0.00 0.59 ± 0.01 0.83 ± 0.01 0.58 ± 0.02
50 0.83 ± 0.00 0.59 ± 0.00 0.83 ± 0.00 0.58 ± 0.01

Speckle noise

10 0.68 ± 0.00 0.81 ± 0.01 0.70 ± 0.03 0.79 ± 0.06
20 0.68 ± 0.00 0.81 ± 0.01 0.70 ± 0.01 0.78 ± 0.03
33 0.68 ± 0.00 0.81 ± 0.00 0.70 ± 0.01 0.79 ± 0.02
50 0.68 ± 0.00 0.81 ± 0.00 0.70 ± 0.01 0.79 ± 0.01

Zoom blur

10 0.79 ± 0.01 0.58 ± 0.01 0.84 ± 0.01 0.47 ± 0.02
20 0.79 ± 0.01 0.58 ± 0.00 0.84 ± 0.00 0.48 ± 0.01
33 0.79 ± 0.01 0.58 ± 0.00 0.84 ± 0.00 0.49 ± 0.01
50 0.79 ± 0.00 0.58 ± 0.00 0.84 ± 0.00 0.49 ± 0.01
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(a) DenseNet-121.
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Figure 6: SVHN versus MNIST mismatch analysis.
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Figure 7: Impact of different validation set sizes (in percentage of test split) for mismatch detection.

Tables 6 and 7 report results for multiple splits, other than those reported in Figures 5 and 8.
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Figure 8: CIFAR-10 vs CIFAR-10C, ResNet-34, using 10% of the test split for validation.
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