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Abstract
This paper explores the challenges of test-time001
scaling of large language models (LLMs), re-002
garding both the data and inference efficiency.003
We highlight the diversity of multi-lingual rea-004
soning based on our pilot studies, and then in-005
troduce a novel approach, L2 multi-lingual uni-006
fication learning with a decoding intervention007
strategy for further investigation. The basic008
idea of L2 is that the reasoning process varies009
across different languages, which may be mu-010
tually beneficial to enhance both model per-011
formance and efficiency. In specific, there are012
two types of multi-lingual data: the entire long013
chain-of-thought annotations in different lan-014
guages and the step-wise mixture of languages.015
By further tuning based on them, we show that016
even small amounts of data can significantly017
improve reasoning capabilities. Our findings018
suggest that multilingual learning reduces both019
the required data and the number of inference020
tokens while maintaining a comparable perfor-021
mance. Furthermore, L2 is orthogonal to other022
data efficient methods. Thus, we also empha-023
size the importance of diverse data selection.024
The L2 method offers a promising solution to025
the challenges of data collection and test-time026
compute efficiency in LLMs.027

1 Introduction028

Scaling up training-time and test-time compute are029

two complementary strategies for enhancing the030

performance of large language models (LLMs).031

Training-time scaling allows the model to learn032

various knowledge through a massive corpus, but033

it often leads to unsatisfactory reasoning during in-034

ference, sometimes causing absurd mistakes. One035

explanation for this is that conventional inference036

primarily relies on pattern recognition from mem-037

ory. In contrast, test-time scaling (e.g., OpenAI038

o1(Team, 2025a)) significantly improves reason-039

ing generalization by mirroring human cognitive040

processes, where problem-solving is not always041

a direct input-to-output mapping as in supervised042

Figure 1: Pilot experimental results of Deepseek-R1-
32b on MATH500 dataset using different languages.

fine-tuning, but instead involves iterative reflection 043

and error correction, with a longer thinking pro- 044

cess (measured by the number of predicted tokens) 045

guiding the model toward the correct answer. 046

Much research has explored this idea, reveal- 047

ing two key challenges. The first is the heavy 048

burden of data collection. Some attempts to 049

replicate o1 require up to 747k training sam- 050

ples (Guan et al., 2025), while deepseek R1-32b 051

necessitates 80k samples to achieve o1-level per- 052

formance (DeepSeek-AI et al., 2025). To reduce 053

the costly long chain-of-thought (CoT) annotations, 054

Sky-T1 (Team, 2025a) distilled 17k samples from 055

QwQ-32b (Team, 2025b) using well-designed data 056

selection strategies. S1 (Muennighoff et al., 2025) 057

further reduced the tuning dataset size to 1,000 by 058

carefully selecting only high-quality, difficult, and 059

diverse samples. Competition continues, with the 060

latest work, LIMO (Ye et al., 2025), demonstrating 061

that as few as 817 samples can enable the model 062

to acquire long reasoning capabilities and tackle 063

highly challenging math problems. As the demand 064

for annotations decreases, an interesting question 065

arises: What is the limit of “less" data? 066

Another key challenge is the efficiency of test- 067

time compute. As the reasoning chain expands, 068

solving a problem often requires tens of thousands 069
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of tokens, significantly increasing the burden on070

inference efficiency. For ordinary problems, o1-071

type models use 1953% more tokens than tradi-072

tional models to arrive at the same answer (Chen073

et al., 2025).Higher performance on math compe-074

tition problems often requires tens of thousands075

of tokens; thus, reducing inference tokens without076

sacrificing performance is crucial.077

In this paper, we simplify the learning of test-078

time compute with Less data and Less inference079

tokens, namely L2, through multilingual unifica-080

tion learning. Our core idea is that logical thinking081

varies across different languages, leading to vari-082

ous solutions and inference token lengths given the083

same query. As shown in figure 1, our pilot study084

translates English math questions into other lan-085

guages, which are prompted to Deepseek-R1-32b086

to seek solutions in their own languages. We can087

see the performance and efficiency vary a lot on088

the AIME24 dataset, ranging from 73.3% accuracy089

(French) to 40.0% (Hebrew), and from around 7k090

to 9k inference tokens (Section 2).091

Therefore, we assume that augmenting a small092

amount of CoT data using multiple languages not093

only enhance data diversity, but also leverage the094

more concise thinking patterns in certain languages095

to help inference efficiency.096

To test our assumption, we propose a three-step097

L2 multilingual unification learning: (1) collecting098

high-quality English samples (e.g., 6 from OpenAI099

o1, 1k from s1), (2) generating multilingual CoT100

annotations using Deepseek API, and (3) creating101

multilingual data by translating selected reflection102

steps and tagging them with language tokens; ad-103

ditionally, we introduce a decoding intervention104

strategy to guide language-specific inference.105

We have conducted extensive experiments. Here106

are our main findings: 1) Through data augmenta-107

tion in different languages, only six high-quality108

samples can improve long reasoning performance109

by 20%. 2) Multilingual enhancement is orthogo-110

nal to other learning strategies. By introducing111

more high-quality samples, the performance of112

our L2-32B can be continuously improved, reach-113

ing comparable 53% with 651 samples. 3) While114

limited data can evoke extended reasoning, per-115

formance eventually plateaus; simply increasing116

samples or languages yields minimal gains, high-117

lighting the need for more diverse data selection118

or construction. 4) Multilingual learning enhances119

performance and notably reduces inference token120

usage compared to single-language learning. 5) 121

Once trained with multi-lingual data, it is unneces- 122

sary to infer with different languages. Our major 123

contributions can be summarized as follows: 124

1. We highlight the differences in reasoning 125

across languages, which not only helps en- 126

hance data diversity but also has the potential 127

to improve reasoning efficiency. 128

2. We propose the namely L2 paradigm, which 129

is orthogonal to other efficient data methods. 130

3. We constructed several datasets with differ- 131

ent languages and scale. Based on them, we 132

trained models to gain valuable insights for 133

future research. 134

2 Preliminary Observation on 135

Multi-lingual long Reasoning 136

We begin by evaluating multi-lingual long CoT rea- 137

soning as pilot studies mentioned in the introduc- 138

tion. Specifically, we translate the AIME, GPQA, 139

and MATH500 datasets into nine languages [2] and 140

investigate how language choice affects accuracy, 141

normal stopping rates, and token usage in each lan- 142

guage. We also compare models of varying scales 143

to examine the influence of multilingual factors on 144

extended reasoning chains. 145

2.1 Setup 146

To assess multilingual long-form CoT reasoning, 147

we adopt a selection of open-source models varying 148

in size and pretraining architecture, chosen for their 149

demonstrated reasoning strength and suitability for 150

local evaluation setups: 151

• Qwen2.5-based Models with parameter sizes of 152

1.5B, 7B, 14B, and 32B, including the Deepseek 153

R1 Distilled Model, which is primarily trained on 154

Chinese and English. 155

• LLaMA-based Models with parameter sizes of 156

8B and 70B, representing models pretrained on 157

diverse multilingual corpora. 158

During inference, we record whether the model 159

ends at an appropriate end-of-sequence marker (re- 160

porting the proportion of such “normal stops”), 161

and we quantify tokens generated in each language 162

to assess whether reasoning genuinely unfolds in 163

the target language. Due to the space limitation, 164

we only report the results of Deepseek-R1-32B 165
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as representative models due to its strong perfor-166

mance. Other results can be found in Appendix.167

Note that the scores are based on our careful re-168

implementation, which may be different from the169

report due to varied prompts or other config.170

2.2 Observation171

As shown in Figure 2, we can see that:172

(a) AIME

(b) GPQA

Figure 2: Results of Deepseek-R1-32b on AIME and
GPQA datasets using different languages.

Accuracy. Our analysis indicates that English173

and Chinese achieve superior performance on the174

GPQA and MATH500 , consistent with their domi-175

nance in the pre-training corpora. Conversely, the176

AIME dataset shows notable exceptions: French,177

Hebrew, and Korean demonstrate unexpectedly178

competitive accuracies. We attribute these devi-179

ations primarily to AIME’s limited size of only 30180

problems, which may increase statistical variance181

and impact the stability of accuracy estimates.182

Normal Stopping and Token Usage. Most out-183

puts terminate correctly (though sometimes exces-184

sively or repetitively), but token usage varies no-185

tably across languages.186

Multilingual Reasoning and Code-Switching.187

For Chinese, English, Korean prompts, the model188

predominantly reasons in that language; however,189

for other languages, sometimes the LLMs reverts 190

to Chinese or English mid-way, sometimes mixing 191

languages in a single CoT. 192

In conclusion, results indicate significant varia- 193

tions in accuracy and inference length across lan- 194

guages, suggesting distinct advantages. However, 195

LLMs’ occasional confusion between languages 196

presents challenges for controlled multilingual rea- 197

soning, which will be discussed later. 198

3 Data and Method 199

To combine the merits of reasoning in different 200

languages, our proposed L2 multi-lingual unifica- 201

tion learning is first to augment long CoT data at 202

both the entire solution level and at the step level, 203

then finetune LLMs using the augmented data. The 204

overall framework consists of three key steps: high- 205

quality sample collection, multi-lingual thoughts 206

annotation, and multi-lingual unification learning. 207

Next we will introduce them in turn, followed by 208

multi-lingual decoding interventions to explore the 209

impacts of languages on inference. 210

3.1 High-quality sample collection 211

We collect three sets of data with different scales 212

from existing resources. Note that we didn’t com- 213

bine them together into a single set. Instead, we 214

investigate our method using them separately to 215

verify the effectiveness. 216

• L2 −Mo1l6. This set contains six official exam- 217

ples adapted from OpenAI’s website, manually 218

curated and formatted in LATEX. The topics in- 219

clude Cipher, Coding, Math, Crossword, English, 220

and Science, with one question per topic. The 221

superscript l denote the number of languages in 222

experiments using the following two-step aug- 223

mentation. For instance, L2−Mo146 involves four 224

language (ZH, EN, KO, RU), results in 2,700 225

multi-lingual samples in total. 226

• L2 −MS1lsamples. We introduce 100, 651, and 227

1000 samples from the “S1k” dataset (Muen- 228

nighoff et al., 2025), focusing primarily on math- 229

ematical problems, to evaluate how the number 230

of samples affects model training effectiveness. 231

Initially, we included only partial data due to in- 232

stability issues with the Deepseek API used for 233

generating Chain-of-Thought (CoT) reasoning 234

paths, resulting in only 651 valid instances. Sub- 235

sequently, after the API’s stability was restored, 236

CoT paths were generated for the full set of 1k 237
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samples. In experiments, such as L2−MS14651, we238

introduce four languages: English, Chinese, Rus-239

sian, and Korean. We did not select all nine lan-240

guages mainly due to considerations regarding241

computational cost and efficiency. Additionally,242

we aimed to balance the sizes of these two train-243

ing sets for comparative purposes.244

• L2 − MBSl
500. We randomly select 500 ques-245

tions from Bespoke-Stratos-17k (Labs, 2025) as246

the data set. all other configurations remain con-247

sistent with L2−MS1lsamples.248

3.2 Multi-lingual thoughts annotation249

We curate multilingual CoT at the solution level by250

translating questions with GPT-4o, generating step-251

by-step explanations via Deepseek API in target252

languages, and collecting diverse reasoning paths253

without rigorously evaluating translation quality.254

3.3 Multi-lingual unification learning255

We curate multilingual unification data by segment-256

ing English CoT texts into reflection fragments, ran-257

domly translating selected steps (identified by cues258

like “Wait,” “Hmm”) via GPT-4o, and marking259

language boundaries with special tokens, thereby260

creating a code-switched corpus to foster flexible261

cross-lingual reasoning (illustrated in Figure 3).262

Figure 3: Comparison of reasoning strategies: mixed
Chinese-English reasoning (right) achieves correct re-
sults with clearer logic and fewer tokens than English-
only (left).

Training After the above two steps, we will ob-263

tain the entire CoT in English and Chinese, respec-264

tively, as well as the step-wise mixture of thoughts265

in two languages. Here, we introduce the training266

details. We utilize the llamafactory framework,267

integrating flash attention and a light kernel accel-268

eration package to expedite training. Our approach269

follows standard Supervised Fine-Tuning (SFT)270

with ZeRO Stage 3 optimization, and we set the271

maximum sequence length to 16k tokens. Training272

is conducted on 8 H20 GPUs.273

For datasets with fewer than 300 training sam- 274

ples (small datasets), we set batch size and gradient 275

accumulation step to 1, over-sample data to ensure 276

sufficient coverage, and train until loss approaches 277

zero. For larger datasets, we keep batch size at 1 278

but increase gradient accumulation step to 12 and 279

train for 3 epochs. 280

3.4 Decoding Intervention 281

Figure 4: Comparison of reasoning strategies: mixed
Chinese-English reasoning (right) achieves correct re-
sults with clearer logic and fewer tokens than English-
only (left).

We propose a decoding intervention during in- 282

ference that adjusts language switching probabil- 283

ities using special language tokens and hyperpa- 284

rameters. Specifically, given α ∈ [0, 1] controlling 285

boost or suppression likelihood, magnitude β for 286

logit adjustment, and a top-k cutoff, we sample 287

u ∼ Uniform(0, 1) whenever a language token is 288

within the top-k candidates. If u < α, we boost the 289

token’s logit by +β; otherwise, we penalize it by 290

−β, thus shaping language usage. 291

4 Experiments 292

This section details the experimental setup, base- 293

line methods (§4.1), and key results, with a particu- 294

lar focus on the performance under varying number 295

of languages and data sizes. 296

4.1 Baselines 297

To assess the effectiveness of our low-data multilin- 298

gual long-chain-of-thought approach, we compare 299

against several representative baselines: 300

• OpenAI-o1 (OpenAI, 2024): A closed- 301

source commercial large language model, the 302

first to provide long-chain reasoning services. 303

• Open-source model : The base model 304

Qwen2.5-32B (Qwen et al., 2025), the QWQ 305

model with the same 32B size, and the pow- 306

erful O1-level open-source model, Deepseek 307

R1 (DeepSeek-AI et al., 2025). 308
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• Data-efficiet models: Sky-T1, s1, and LIMO,309

which were fine-tuned with as little as 17k,310

1k, or even fewer data (Muennighoff et al.,311

2025; Team, 2025a; Ye et al., 2025), achieving312

performance comparable to o1-level models.313

4.2 Setup314

We largely follow the experimental setup of315

s1 (Muennighoff et al., 2025) for fair compari-316

son. We choose Qwen2.5-32B as our base model317

and finetuned using L2−Mo1106 and L2−MS14651 (intro-318

duced in Section 3.1, respectively, resulting in three319

well-trained models, L2−32B−Mo1106 , L2−32B−MS14651320

and L2−32B−MS141k. For assessment, we use the321

standard framework vllm for inference with a tem-322

perature of 0.7, recording only the model’s first323

response. Our evaluation covers four datasets324

— AIME24 (30), GPQA DIAMOND (198), and325

MATH500 (500).326

We evaluate AIME and GPQA via string parsing,327

manually check decimals for MATH500, and use328

annotators for Graduate Entrance Exam tasks.329

4.3 Main Results330

Table 1 shows the overall results. We can see that:331

1) with only 6 samples (although augmented to332

2,700 samples), our model L2−32B−Mo1106 greatly333

improves the performance over the base model by334

16.6%, 18.2%, and 12%, respectively. 2) By intro-335

ducing more high-quality data (i.e., 612 samples336

augmented to 4,500), we achieve comparable per-337

formance with models using much more data. This338

demonstrates the effectiveness of our multi-lingual339

unification learning. 3) The strongest models are340

still those using much more data, like r1 or o1.341

Combined with the above conclusion, this suggests342

the importance of both curation of diverse data and343

how to select the high-quality ones.344

4.4 RQ1: How does extremely small training345

data affect test-time scaling?346

In this experiment, we focus on the L2−Mo1106347

dataset. Qwen2.5−32b is our base model. To ensure348

fair comparison, we finetune it using the six sam-349

ples with upsampling, resulting in Qwen2.5−32b−o16.350

3Based on manual inspection, some Math500 standard
answers were incorrectly formatted, corresponded to multi-
part fill-in answers, or involved decimals with inconsistent
precision requirements. As a result, the format-based valida-
tor mistakenly flagged originally correct answers as wrong—
affecting a non-negligible number of problems (8–12 out of
500; see the appendix for specific cases). The reported results
have been corrected accordingly.

Model # ex. AIME2024 MATH500 GPQA

API only
o1-preview N.A. 44.6 85.5 73.3
o1-mini N.A. 70.0 90.0 77.0
o1 N.A. 74.4 94.8 77.3

Open Weights
Qwen2.5-32b∗ N.A. 26.7 84.0 49.0
Qwen2.5-32b# N.A. 16.7 76.2 45.5
Qwen2.5-32b N.A. 10.0 69.0 41.0
QwQ-32B N.A. 50.0 90.6 65.2
r1 N.A. 79.0 97.3 71.5
r1-distill ∼800K 72.0 94.3 62.1

Open Weights and Open Data
Sky-T1 17K 43.0 82.4 56.8
Bespoke-32B 17K 63.0 93.0 58.1
s1 w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.0 93.0 59.6
LIMO 1K 57.1 94.8 66.7

L2 − 32B −Mo1106 6 23.3 87.4 49.5
L2 − 32B −MS14651 651 63.3 93.0 60.0
L2 − 32B −MS141k 1k 63.3 95.01/93.0 61.0

Table 1: Overall performance of our models and base-
lines on the AIME 2024, MATH 500, and GPQA Dia-
mond datasets. Note that the three scores of Qwen2.5-
32b are due to different implementation. Ours is without
any superscript, ∗ denotes the scores in S1 original pa-
per, and # denotes the scores from Sky-T1.

Furthermore, L2−32b−Mo116 represents adding only 351

English CoT data obtained from DeepSeek R1, 352

while L2−32b−Mo146 incorporates multi-lingual CoT 353

data. As shown in Table 2, we can conclude that: 354

1) By tuning using six high-quality samples, 355

even with some upsampling techniques, the model 356

Qwen2.5−32b−o16 only achieves slight improvements. 357

Compared with our approach augmented with 358

multi-lingual data, L2−32b−Mo146 achieves significant 359

performance gains across all datasets. This demon- 360

strates the effectiveness of the multi-lingual as- 361

sumption in improving performance through in- 362

creased data diversity. 363

2) Compared with L2−32b−Mo146, the performance 364

improvement of L2−32b−Mo116 is much smaller. This 365

indicates that even for the same questions, obtain- 366

ing diverse reasoning data in multiple languages is 367

crucial to enhance model performance. 368

Setting AIME GPQA MATH500

Qwen2.5-32b 0.10 0.41 0.69
Qwen2.5-32b-o16 0.17 0.43 0.74
L2 -32b-Mo116 0.33 0.34 0.67
L2 -32b-Mo146 0.33 0.49 0.85
L2 -32b-Mo196 0.23 0.49 0.87

Table 2: accuracy results when scaling to a total of
6 questions based on the L2Mo16 dataset, and using
multilingual augmented data.
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4.5 RQ2: Where is the upper boundary of369

multi-lingual extension?370

4.5.1 Analyzing the Impact of Data Scale371

To investigate the impact of data scale on model372

performance, we randomly selected 100 questions373

from the S1 dataset as the initial query pool and374

constructed 10 incremental training datasets. For375

instance, the dataset labeled as L2−MS1910 comprises376

10 queries annotated with CoT reasoning in 9 dif-377

ferent languages, as described in Section 3.1, us-378

ing the MCOT method. Similarly, L2−MS1920 was379

created by adding another 10 randomly selected380

queries from L2−MS1l100, ensuring no overlap with381

the previous 10 queries of L2−MS1910. This process382

was iteratively continued, expanding the dataset383

to include up to 100 queries and resulting in 10384

datasets of increasing size. Each dataset was sub-385

sequently finetuned and evaluated under consistent386

experimental settings to ensure fair comparison.387

The results demonstrate that around the scale388

of 30 queries, the model exhibits a distinct in-389

flection point, where both its capabilities and to-390

ken consumption increase significantly. This phe-391

nomenon was consistently observed across various392

evaluation datasets, including MATH500 (+45.8%),393

GPQA (+67.8%), AIME24 (+75.0%), and AIME25394

(+175.0%) (Figure 5, Appendix). These findings395

suggest that a modest expansion of high-quality396

annotated data, particularly beyond the 30-query397

threshold, substantially enhances model perfor-398

mance by alleviating early-stage data scarcity and399

enabling the model to better generalize and lever-400

age its reasoning capabilities.401

4.5.2 Evaluating Cross-Language Family402

Effects403

We further investigated whether multilingual train-404

ing across diverse language families improves405

model performance compared to training within406

a single language family.407

We conducted the following experiment: The408

nine languages were grouped into three language409

families. As demonstrated in Section 4.5.1, train-410

ing with 100 queries enables the model to develop411

long reasoning chains and improves performance412

across various datasets. For this experiment, we413

used the L2−MS1l100 dataset, which includes all nine414

languages.415

2Nine languages: Chinese (zh), English (en), French (fr),
German (de), Arabic (ar), Hebrew (he), Japanese (ja), Korean
(ko), Russian (ru).

Figure 5: The x-axis indicates the number of questions
included in the model training, and the y-axis denotes
the achieved accuracy. Point size, shading intensity, and
numeric annotations represent the quantity of generated
tokens.

• East-Asian: Simplified Chinese (zh), Japanese 416

(ja), Korean (ko) 417

• Indo-European: English (en), French (fr), Ger- 418

man (de), Russian (ru) 419

• Afro-Asiatic: Arabic (ar), Hebrew (he) 420

In Figure 6, we generated training datasets by 421

randomly combining different languages across 422

these families and trained a model on each dataset. 423

In the resulting visualization, each shape repre- 424

sents models trained with languages from specific 425

language families. The more language families 426

trained, the higher the accuracy and the fewer to- 427

kens used, yielding better results. Models posi- 428

tioned closer to the top-left corner indicate supe- 429

rior performance.Detailed numerical results can be 430

found in the appendix. 431

4.6 RQ3: Does our strategy orthogonal to 432

other data curation methods? 433

Existing methods employ different strategies to se- 434

lect high-quality mathematical data. To further 435

validate our approach, we increase the number 436

of initial samples by randomly selecting samples 437

from two typical sources: s1k and Bespoke-Stratos- 438

17k (Labs, 2025; Team, 2025a). We have intro- 439

duced the augmented s1k dataset L2−MS14651 in Sec- 440

tion 3.1. For another source, we randomly se- 441

lect 500 samples from the Bespoke-Stratos-17k, 442

marked as BS500, primarily featuring mathematics 443

and programming problems. After multi-lingual 444

augmentation, there are totally 500 samples in 445

L2−MBS4
500. By removing the step of multi-lingual 446

unification, the model’s performance drops signifi- 447

cantly. This suggests that the step-wise mixture of 448
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Figure 6: "East-Asian, Indo-European(2)" indicates a dataset including languages from both the East Asian and
Indo-European families. Multiple shapes of the same kind indicate the same number of language families but with
different combinations of specific languages.

languages contributes to enhancing generalization449

and reasoning capabilities.450

We can see that regardless of the data source,451

our methods can effectively boost performance.452

However, it is also noticeable that as the amount453

of original data increases, the marginal benefit of454

multilingual learning diminishes. This could be455

attributed to the model approaching its inherent456

capacity limits as the training data scale becomes457

larger.458

Setting AIME GPQA MATH500

BS500 Data Set

Qwen2.5-32b-BS500 0.43 0.52 0.90
L2-MBS4

500-uni 0.46 0.55 0.91
L2-MBS4

500 0.60 0.51 0.91

S1 Data Set

Qwen2.5-32b-S1100 0.43 0.54 0.85
L2-32b-MS14100 0.53 0.53 0.90
Qwen2.5-32b-S1651 0.63 0.56 0.93
L2-32b-MS14651 0.63 0.60 0.93
Qwen2.5-32b-S11k 0.60 0.60 0.91
L2-32b-MS141k 0.63 0.61 0.93

Table 3: Accuracy results when scaling to a total
of 500+6 multi-lingual unification samples from the
Bespoke-Stratos-17k resource. Accuracy is evaluated
on our dataset.

4.7 RQ4: Can our strategy also benefit 459

inference efficiency? 460

We hypothesize that long COT annotations from 461

diverse language families offer complementary rea- 462

soning patterns, enhancing accuracy and inference 463

efficiency through reduced token usage, unlike aug- 464

mentations from linguistically similar sources, as 465

shown in Figure 6 (details see appendix). 466

4.8 RQ5: What if we intervene the decoding 467

by controlling the reasoning languages? 468

Figure 7: Decoding control over Chinese and English
reasoning paths, with evaluation results on the AIME24
dataset.

In Figure 7, We investigate how to guide a 469

model’s reflective reasoning to be expressed in a 470
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specific language during decoding. In this setting,471

the maximum number of generated tokens signifi-472

cantly increases from 15k in previous experiments473

to 131k. We introduce an intervention ratio α that474

adjusts the frequency at which tokens prompting475

the target language appear. During training, we476

ensure this language is used to encode reflective477

reasoning. Notably, this approach does not dimin-478

ish the model’s ability to reason reflectively; it can479

still generate fluent English. We vary the parameter480

k ∈ {2, 4, 6} to examine its impact on the model’s481

behavior. Our findings show that a higher interven-482

tion ratio makes it more likely for the model to shift483

its reasoning into another language (zh). When484

k = 2 or k = 4, the model can effectively switch485

between multiple languages, reaching an accuracy486

of 73.3% on the AIME24 dataset (see appendix487

for case studies on difficult problems with success-488

ful solutions). However, at k = 6, the reflection489

tokens (originally assigned a low probability) are490

activated more frequently, producing extensive re-491

flective segments that interfere with the model’s492

normal reasoning process.493

5 Case study494

In Figure 8, The examples show a mathematical495

problem, where the model answers through multi-496

language reasoning. The model effectively handles497

this by utilizing its multi-language reasoning ca-498

pabilities (detailed case studies provided in the ap-499

pendix). This approach allows the model to seam-500

lessly process and analyze the mathematical prob-501

lem across different languages, ensuring accurate502

and efficient solutions regardless of the language in-503

put. By leveraging the strengths of multi-language504

understanding, the model delivers robust and reli-505

able responses in various linguistic contexts.506

Figure 8: Mathematical problem example

6 Related Work 507

6.1 Test-time scaling 508

Test-Time Scaling (TTS) enhances LLM perfor- 509

mance by allocating extra computational resources 510

during inference(Liu et al., 2025; Zhang et al., 511

2025; Wu et al., 2025; Ji et al., 2025). Unlike 512

traditional scaling methods, TTS enables fixed- 513

parameter models to achieve superior outcomes 514

through extended inference-time processing, akin 515

to "thinking longer." (Faria and Smith, 2025; Kim 516

et al., 2024). Diverse TTS strategies include com- 517

putational budget control, sampling and search 518

methods(Muennighoff et al., 2025; Aggarwal and 519

Welleck, 2025; Son et al., 2025), verification- 520

guided approaches(Wang et al., 2025; Lifshitz et al., 521

2025), and latent reasoning paradigms. Empiri- 522

cal results show significant reasoning gains, with 523

smaller compute-optimal TTS models surpassing 524

larger models. 525

6.2 Multilinguality and Logical Reasoning 526

Recent advancements in large language models 527

show that multilingual strategies significantly en- 528

hance logical reasoning(Ghosh et al., 2025; Tran 529

et al., 2025). While these models excel in high- 530

resource languages like English, performance gaps 531

persist for lower-resource languages(Ravisankar 532

et al., 2025). Techniques like cross-lingual thought 533

prompting (XLT)(Huang et al., 2023) and English- 534

pivoted CoT training exploit strong English rea- 535

soning to boost multilingual outcomes. Methods 536

such as LayAlign(Ruan et al., 2025) and Ada- 537

CoT(Huang et al., 2025) further align abstract rea- 538

soning patterns across languages, promoting cultur- 539

ally responsive and globally applicable models. 540

7 Conclusion and Future Work 541

In this paper, we present the L2 approach, which 542

leverages multilingual unification learning to en- 543

hance the test-time scaling of LLMs. Our method 544

is demonstrated in incorporating a minimal amount 545

of data and reducing the number of inference to- 546

kens, while maintaining long CoT reasoning ca- 547

pabilities. Our experimental results demonstrate 548

that multilingual data can significantly improve 549

long-reasoning tasks, with only a small number 550

of high-quality samples yielding notable gains in 551

performance. Furthermore, the L2 approach offers 552

a scalable and efficient path forward for training 553

models that are capable of handling complex tasks 554

while minimizing computational costs. 555

8



Limitations556

The L2 approach offers promising efficiency for557

LLM test-time scaling but faces limitations, includ-558

ing varying language proficiency in base models559

and differences in tokenization due to linguistic560

variations, potentially affecting efficiency and re-561

sults. Despite these, extensive experiments support562

our hypothesis. Integrating models trained on di-563

verse languages also poses safety and quality risks,564

especially for low-resource languages, potentially565

causing biases and errors.566
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A Appendix 722

A.1 Accuracy and Token Consumption across 723

Different Models and Languages 724

Figures 9, 10, and 11 present detailed results il- 725

lustrating the accuracy and token consumption of 726

five language models—R1-Llama (8B, 70B) and 727

R1-Qwen (1.5B, 7B, 14B)—evaluated across three 728

benchmarks: AIME, GPQA, and MATH500. 729

(a) R1-qwen-1.5b-AIME

(b) R1-qwen-1.5b-GPQA

(c) R1-qwen-1.5b-MATH500

Figure 9: Results of R1-qwen-1.5b on AIME, GPQA,
and MATH500 datasets using different languages.
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(a) R1-qwen-7b-AIME (b) R1-qwen-7b-AIME

(c) R1-qwen-7b-GPQA (d) R1-qwen-14b-GPQA

(e) R1-qwen-7b-MATH500 (f) R1-qwen-14b-MATH500

Figure 10: Results ofR1-qwen-7b andR1-qwen-14b on AIME, GPQA, and MATH500 datasets using different
languages.

A.2 Accuracy and Token Consumption across730

Different Models and Languages731

Figure 12 comprehensively illustrates the rela-732

tionship between the number of training samples,733

model accuracy, and generated tokens across the734

AIME24, AIME25, GPQD, and MATH500 bench-735

marks. Notably, there is a clear inflection point736

around 30 samples. 737
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(a) R1-llama-8b-AIME (b) R1-llama-70b-AIME

(c) R1-llama-8b-GPQA (d) R1-llama-70b-AIME

(e) R1-llama-8b-MATH500 (f) R1-llama-70b-AIME

Figure 11: Results of R1-llama-8b and R1-llama-70b on AIME, GPQA, and MATH500 datasets using different
languages.
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Figure 12: The x-axis indicates the number of questions included in the model training, and the y-axis denotes the
achieved accuracy. Point size, shading intensity, and numeric annotations represent the quantity of generated tokens.
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Appendix: AIME CASE

Source: 2024_AIME_II_Problems/Problem_14

Let \(b\ge 2\) be an integer. Call a positive integer \(n\) \(b\text-\textit{eautiful}\) if it has exactly two digits when 

expressed in base \(b\)  and these two digits sum to \(\sqrt n\). For example, \(81\) is \(13\text-\textit{eautiful}\) 

because \(81  = \underline{6} \ \underline{3}_{13} \) and \(6 + 3 =  \sqrt{81}\). Find the least integer \(b\ge 2\) for 

which there are more than ten \(b\text-\textit{eautiful}\) integers.

<|begin_of_thought|>

Okay, so I need to find the smallest base b (where b is at least 2) such that there are more than ten b-beautiful 

numbers. A number n is b-beautiful if it has exactly two digits in base b, and the sum of these two digits equals the 

square root of n. The example given is n = 81 being 13-beautiful because in base 13, it's written as 63, and 6 + 3 

equals the square root of 81, which is 9.

嗯，我们先来分析这个问题。既然 n 在基底 b 下是⼀个两位数，那么它必须满⾜ \(b\) 以内的最⼤值，也就是 \(b^2 - 

1\)。等等，但在基底 \(b\) 中，⼀个两位数可以表示为 \(x \cdot b + y\)，其中 \(x\) 和 \(y\) 是在 \(0\) 到 \(b - 1\) 范围内

的数字，⽽ \(x\) 不能为 \(0\)。因此，n 的取值范围是从 \(b \cdot 1 + 0 = b\) 到 \((b - 1) \cdot b + (b - 1) = b^2 - 1\)。不

过实际上，由于 \(x\) 和 \(y\) 都不能超过 \(b - 1\)，因此 n 的最⼤值确实是 \(b^2 - 1\)。

But n has to be a perfect square because sqrt(n) must be an integer (since the digits sum to sqrt(n), and digits are 

integers). So n must be a perfect square, and in base b, it's a two-digit number. Therefore, the two-digit perfect 

squares in base b correspond to squares between b and b^2 - 1. Wait, but sqrt(n) would be between ceil(sqrt(b)) 

and floor(sqrt(b^2 - 1)) + 1? Wait, sqrt(b^2 - 1) is roughly b - 1/b, so the integer sqrt would be up to b - 1. So the 

squares we are considering are k^2 where k is from ceil(sqrt(b)) up to b - 1. Wait, but maybe it's easier to think that 

n is a two-digit number in base b, so n is between b and b^2 - 1, and n must be a perfect square. So k^2 is 

between b and b^2 - 1, so k is between ceil(sqrt(b)) and floor(sqrt(b^2 - 1)) which is b - 1. Therefore, the number of 

two-digit squares in base b is (b - 1) - ceil(sqrt(b)) + 1.

But not all of these squares are necessarily beautiful. To be beautiful, the sum of the two digits in base b must equal 

sqrt(n). So for each k from ceil(sqrt(b)) to b - 1, we need to check if k equals the sum of the digits of k^2 when 

written in base b.

So the problem reduces to finding the smallest b such that the number of k satisfying this condition is more than 

ten. So we need to find b where there are more than ten k's such that when you write k^2 in base b, the sum of its 

digits is k.

Let me formalize this. Let’s denote the two digits of k^2 in base b as d1 and d2, so that k^2 = d1 * b + d2, where 0 

< d1 < b and 0 <= d2 < b. Then, the condition is d1 + d2 = k.

1 / 35
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Therefore, substituting d1 and d2 into the equation:

d1 + d2 = k

But since k^2 = d1 * b + d2, we can substitute d2 = k - d1 into this equation:

k^2 = d1 * b + (k - d1)

So:

k^2 = d1 * b + k - d1

Rearranging:

k^2 - k = d1 * b - d1

Factor out d1 on the right:

k^2 - k = d1*(b - 1)

Therefore:

d1 = (k^2 - k)/(b - 1)

So d1 must be an integer between 1 and b - 1 (since it's the first digit in base b). Therefore, (k^2 - k) must be 

divisible by (b - 1), and the result d1 must satisfy 1 <= d1 <= b - 1.

Moreover, since d2 = k - d1, and d2 must satisfy 0 <= d2 < b. So:

0 <= k - d1 < b

But since d1 = (k^2 - k)/(b - 1), substitute:

0 <= k - (k^2 - k)/(b - 1) < b

Multiply through by (b - 1) (which is positive, so inequalities stay the same):

0 <= (k*(b - 1)) - (k^2 - k) < b*(b - 1)

Simplify the left inequality:

k*(b - 1) - (k^2 - k) >= 0

k*(b - 1) - k^2 + k >= 0

Factor k:

k*(b - 1 + 1) - k^2 >= 0

Wait, k*(b - 1) + k - k^2 >= 0

That is:

k*b - k^2 >= 0

k*(b - k) >= 0

2 / 35
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Since k is positive (as it's the square root of n, which is a two-digit number, so k >= ceil(sqrt(b))), and b - k must be 

non-negative. Wait, but since k can go up to b - 1, then b - k is at least 1. So actually, k*(b - k) >= 0 is always true 

because k and (b - k) are both positive. Therefore, the left inequality 0 <= ... is automatically satisfied.

Now, the right inequality:

(k*(b - 1) - (k^2 - k)) < b*(b - 1)

Simplify the left side:

k*(b - 1) - k^2 + k = kb
-
k
-
k^2
+
k
=
kb - k^2

等等，\(k \cdot (b - 1) - (k^2 - k) = k \cdot b - k - k^2 + k = k \cdot b - k^2\)。

So the right inequality is:

kb
-
k^2
<
b(b - 1)

Rearranged:

k^2 + b*k < b^2 - b●

Multiply both sides by -1 (inequality flips):

k^2 - b*k > b^2 - b

But this seems complicated. 或许更好的⽅法是将其视为关于 \(k\) 的⼆次不等式：

k^2 - b*k - (b^2 - b) < 0

嗯，也许可以重新整理⼀下：

k^2 - b*k + (b^2 - b) > 0

等等，我不太确定。让我再检查⼀下。

Starting from:

k^2 - b*k > - (b^2 - b)

Which is:

k^2 - b*k + (b^2 - b) > 0

But this seems like a quadratic in k. Let's consider:

k^2 - b*k + (b^2 - b) > 0

The discriminant of this quadratic is:

D = b^2 - 4*(b^2 - b) = b^2 - 4b^2 + 4b = -3b^2 + 4b

But since b >= 2, -3b^2 + 4b is negative for b >= 2 because -3b^2 + 4b < 0 when 3b^2 > 4b, which is true for b > 

4/3. Since b >= 2 > 4/3, discriminant is negative. Therefore, the quadratic k^2 - bk
+
(b^2
-
b)
is
always
positive
for


all
k
(since
the
coefficient
of
k^2
is
positive
and
discriminant
is
negative).
Therefore,
the
inequality
k^2
-
bk + (b^2 - 

3 / 35
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b) > 0 is always true for all real k, which would imply that the original inequality kb
-
k^2
<
b(b - 1) is always true. 

Wait, but that can't be. Wait, perhaps my algebra is wrong.

等等，我们来⼀步步重新追踪⼀下。

原来的表达式是： 

  

将其重新整理为： 

  

将所有项移到左侧，可以表示为： 

  

两边同时乘以 -1（注意不等号⽅向需要改变）： 

  

这是⼀个关于 的⼆次不等式。我们来计算判别式： 

  

对于 ，有： 

  

因此，判别式为负数，这意味着⼆次函数 对于所有 都是正的（因为⼆次项系数为正）。因

此，⽆论 取何值，该不等式 恒成⽴。

由此可知，最初的不等式 对于所有 都成⽴。但这种情况似乎不太合理，因为如果 ⾜

够⼤，⽐如 ，那么 ，这显然⼩于 。等等，但如果 的取值范围是从 

到 ，那么 。因此， 的最⼤值出现在 时（因为这个表达式相当于 

，这是⼀条开⼝向下的抛物线）。其最⼤值为 。⽽ 等于 。当 时，显

然有 ，这可以通过以下⽅式验证： 

\[

k ⋅ b − k <2 b ⋅ (b − 1)

−k +2 b ⋅ k − b +2 b < 0

−k +2 b ⋅ k − b +2 b < 0

k −2 b ⋅ k + b −2 b > 0

k

D = (−b) −2 4 ⋅ 1 ⋅ (b −2 b) = b −2 4b +2 4b = −3b +2 4b

b ≥ 2

−3b +2 4b ≤ −12 + 8 = −4 < 0

k −2 b ⋅ k + b −2 b k

k k −2 b ⋅ k + b −2 b > 0

k ⋅ b − k <2 b ⋅ (b − 1) k k

k = b k ⋅ b − k =2 0 b ⋅ (b − 1) k ⌈  ⌉b

b − 1 k ≤ b − 1 k ⋅ b − k2 k =  

2
b

−k +2 b ⋅ k  

4
b2

b ⋅ (b − 1) b −2 b b ≥ 2

 <
4
b2

b −2 b
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\frac{b^2}{4} < b^2 - b \implies 0 < \frac{3b^2}{4} - b \implies 0 < 3b^2 - 4b。

\] 

对于 ，有 。因此，不等式成⽴。由此可知，对于所有 ，包括 在区间 

内的所有值，该不等式 始终成⽴。因此，右侧的不等式总是成⽴的。

由此可以得出， 总是满⾜ 。因此，我们只需要考虑 是⼀个整数且满⾜ 

的 即可。

Therefore, the problem reduces to finding the number of integers k such that:

1. ceil(sqrt(b)) <= k <= b - 1

2. (k^2 - k) is divisible by (b - 1)

3. (k^2 - k)/(b - 1) is between 1 and b - 1 inclusive.

So the key is that (k^2 - k) must be divisible by (b - 1), and the result d1 must be a valid digit in base b.

Therefore, for each k in the range ceil(sqrt(b)) to b - 1, check if (k^2 - k) is divisible by (b - 1), and if the resulting d1 is 

between 1 and b - 1.

But since d1 = (k^2 - k)/(b - 1), and d1 must be at least 1, so (k^2 - k)/(b - 1) >= 1 => k^2 - k >= b - 1 => k^2 - k - b 

+ 1 >= 0.

Similarly, d1 <= b - 1 => (k^2 - k)/(b - 1) <= b - 1 => k^2 - k <= (b - 1)^2.

Therefore, for each k, we have:

k^2 - k - b + 1 >= 0

and

k^2 - k <= (b - 1)^2

But perhaps these conditions are automatically satisfied given the range of k?

等等，我们来分析⼀下第⼀个条件：k^2 - k >= b - 1。因为 k ⾄少是 ceil(sqrt(b))，我们来看当 k = ceil(sqrt(b)) 时，

k^2 - k 的值是多少。如果 k >= sqrt(b)，那么 k^2 >= b，因此 k^2 - k >= b - k。由于 k <= b - 1（因为 k 最⼤到 b - 

1），所以 b - k >= 1。因此，k^2 - k >= b - k >= 1。但我们需要的是 k^2 - k >= b - 1。嗯，当 k = ceil(sqrt(b)) 时，

k^2 - k >= b - 1 吗？

我们来看⼀个例⼦，令 b = 4。那么 ceil(sqrt(4)) = 2。此时 k = 2，则 k^2 - k = 4 - 2 = 2。⽽ b - 1 = 3。所以 2 >= 3 并

不成⽴。因此，对于 b = 4，当 k = 2 时，k^2 - k = 2 < 3 = b - 1。因此，d1 = (2)/(4 - 1) = 2/3，这不是整数。所以 k = 

2 不符合条件。因此，第⼀个条件 k^2 - k >= b - 1 并不总是满⾜，因此我们需要确保这⼀条件成⽴。

Similarly, the second condition k^2 - k <= (b - 1)^2. Let's check when k = b - 1. Then k^2 - k = (b - 1)^2 - (b - 1) = (b 

- 1)(b - 2). Which is equal to (b - 1)^2 - (b - 1). Wait, but (b - 1)^2 is (b^2 - 2b + 1). So k^2 - k = (b - 1)^2 - (b - 1) + (b 

- 1) = (b - 1)^2. Wait, no:

b ≥ 2 3b −2 4b ≥ 12 − 8 = 4 > 0 k k

[  , b −b 1] k ⋅ b − k <2 b ⋅ (b − 1)

d  =2 k − d  1 0 ≤ d  <2 b d  =1  

b − 1
k − k2

1 ≤ d  ≤1 b − 1 k
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等⼀下，k^2 - k = (b - 1)^2 - (b - 1) ？等等，(b - 1)^2 = b^2 - 2b + 1。⽽ (b - 1)^2 - (b - 1) = b^2 - 2b + 1 - b + 1 = 

b^2 - 3b + 2。但这并不是 k^2 - k。等等，或许我需要换⼀种思路。

Wait, when k = b - 1, k^2 - k = (b - 1)(b - 1 -1) = (b - 1)(b - 2) = b^2 - 3b + 2. On the other hand, (b - 1)^2 = b^2 - 2b 

+ 1. So k^2 - k = b^2 - 3b + 2. Is this less than or equal to (b - 1)^2 = b^2 - 2b + 1? Let's compare:

b^2 - 3b + 2 <= b^2 - 2b + 1

Subtract b^2 from both sides:

3b + 2 <= -2b + 1●

Add 2b to both sides:

b + 2 <= 1●

Subtract 2:

b <= -1●

Multiply by -1:

b >= 1

Which is always true since b >= 2. Therefore, k^2 - k <= (b - 1)^2 for all k <= b - 1 and b >= 2. Therefore, the second 

condition is always satisfied. Therefore, the only condition we need to check is that (k^2 - k) is divisible by (b - 1) 

and that d1 = (k^2 - k)/(b - 1) is at least 1. Wait, but earlier with b=4, k=2, d1=2/3 which is not an integer, so even if 

d1 is supposed to be at least 1, if it's not integer, it's invalid. Therefore, the main conditions are:

1. (k^2 - k) is divisible by (b - 1)

2. (k^2 - k)/(b - 1) >= 1

Which translates to k^2 - k >= b - 1.

Therefore, combining these, for each k from ceil(sqrt(b)) to b - 1, we need:

(k^2 - k) is divisible by (b - 1)

and

k^2 - k >= b - 1.

But since k >= ceil(sqrt(b)), let's check if k^2 - k >= b - 1.

If k >= sqrt(b), then k^2 >= b, so k^2 - k >= b - k. But since k >= 2 (because b >= 2, ceil(sqrt(b)) >= 2?), so if k >= 2, 

then b - k <= b - 2. Wait, but we need k^2 - k >= b - 1. For example, take b=4, ceil(sqrt(4))=2. Then k=2, k^2 -k=2, 

which is 2 >= 3? No. So in this case, k^2 -k=2 < b -1=3. So this condition is not satisfied. Therefore, even though k 

>= ceil(sqrt(b)), k^2 -k might still be less than b -1. Therefore, we need to ensure that k^2 -k >= b -1. Let's see when 

this happens.

Rearranged:
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k^2 -k -b +1 >=0

This is a quadratic in k. Let's solve for k:

k^2 -k - (b -1) >=0

The roots of the equation k^2 -k - (b -1) =0 are:

k = [1 ± sqrt(1 + 4*(b -1))]/2 = [1 ± sqrt(4b -3)]/2

So the positive root is [1 + sqrt(4b -3)]/2. Therefore, k must be greater than or equal to this value for k^2 -k - (b -1) 

>=0.

Therefore, the minimal k required is ceil([1 + sqrt(4b -3)]/2 )

Therefore, the range of k is from max(ceil(sqrt(b)), ceil([1 + sqrt(4b -3)]/2 )) to b -1.

But this seems a bit complicated. Alternatively, perhaps it's easier to note that for each k, we can compute d1 = 

(k^2 -k)/(b -1). If d1 is an integer and 1 <= d1 <= b -1, and 0 <= d2 =k -d1 <b, then n=k^2 is b-beautiful.

But since d2 =k -d1, and d1=(k^2 -k)/(b -1), then d2 =k - (k^2 -k)/(b -1) = [k*(b -1) -k^2 +k]/(b -1) = [kb
-k^2]/(b
-1).


But
we
already
saw
that
this
is
equal
to
(kb -k^2)/(b -1). Wait, but since n=k^2 is two digits in base b, then d1b
+
d2


=k^2.
Therefore,
d2
must
be
equal
to
k^2
-d1b. But d2 is also equal to k -d1. Therefore, from n=k^2 =d1b
+d2,
and


d2=k
-d1,
so
substituting
gives
k^2
=d1b + (k -d1) = d1*(b -1) +k. Therefore, d1=(k^2 -k)/(b -1). So as before.

Therefore, the key is that (k^2 -k) must be divisible by (b -1), and d1=(k^2 -k)/(b -1) must be between 1 and b -1 

inclusive, and d2=k -d1 must be between 0 and b -1 inclusive. But since d1=(k^2 -k)/(b -1), and d2=k -d1, then d2=

(k*(b -1) -k^2 +k)/(b -1) = (kb
-k^2)/(b
-1).
But
since
n=k^2
is
two
digits,
d2
must
be
less
than
b.
However,
since
d2=

(kb -k^2)/(b -1), we need to ensure that this is non-negative and less than b. But as we saw earlier, the right 

inequality is always satisfied because the quadratic is always negative. Wait, perhaps I need to check that d2 is non-

negative.

So d2 = (kb
-k^2)/(b
-1)
>=0
=>
kb -k^2 >=0 => k*(b -k) >=0. Since k >0 and b -k >=0 (because k <=b -1), this is 

always true. Therefore, d2 is non-negative. And since d2 =k -d1, and d1 >=1, then d2 <=k -1 <b -1 (since k <=b -1). 

等等，如果 k = b - 1，那么 d2 = (b - 1) - d1。⽽ d1 = (k² - k)/(b - 1) = [(b - 1)² - (b - 1)]/(b - 1) = [b² - 2b + 1 - b + 1]/(b 

- 1) = [b² - 3b + 2]/(b - 1) = (b - 1)(b - 2)/(b - 1) = b - 2。因此，d2 = (b - 1) - (b - 2) = 1，这个值⼩于 b。所以，d2 是有

效的。

Therefore, the only conditions are:

1. (k^2 -k) is divisible by (b -1)

2. d1=(k^2 -k)/(b -1) is between 1 and b -1 inclusive.

Therefore, for each k from ceil(sqrt(b)) to b -1, check these two conditions. The number of such k's is the number of 

b-beautiful numbers.

Therefore, the problem reduces to finding the smallest b >=2 such that the number of k satisfying these conditions 

is more than 10.
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Therefore, we need to find the minimal b where there are more than ten divisors (k^2 -k) of (b -1), with d1 in the valid 

range.

Alternatively, since (b -1) divides (k^2 -k), we can write (b -1) divides k(k -1). Since k and k -1 are consecutive 

integers, they are coprime, so (b -1) must divide either k or (k -1). Therefore, either k ≡0 mod (b -1) or k ≡1 mod (b 

-1). Therefore, for each k in the range ceil(sqrt(b)) to b -1, if k ≡0 or 1 mod (b -1), then (b -1) divides k(k -1), hence (b 

-1) divides (k^2 -k). Therefore, the possible k's are those congruent to 0 or 1 modulo (b -1). However, since k must 

be in the range ceil(sqrt(b)) to b -1, and d1=(k^2 -k)/(b -1) must be between 1 and b -1 inclusive.

Therefore, the number of such k's is equal to the number of integers k in [ceil(sqrt(b)), b -1] such that k ≡0 or 1 mod 

(b -1) and d1=(k^2 -k)/(b -1) <=b -1.

Wait, but (b -1) divides k(k -1). If k ≡0 mod (b -1), then k = m*(b -1). Similarly, if k ≡1 mod (b -1), then k =1 + m*(b 

-1). Therefore, since k is in [ceil(sqrt(b)), b -1], the possible values of m are such that m*(b -1) >= ceil(sqrt(b)) and 1 + 

m*(b -1) >= ceil(sqrt(b)), and both k's are less than b.

But since k must be less than b, for k = m*(b -1) <b, so m <b/(b -1). Since m is a positive integer, m=1. Similarly, for 

k=1 + m*(b -1) <b, then m*(b -1) <b -1, so m <(b -1)/(b -1)=1. Hence m=0. Therefore, only possible k's are:

If k ≡0 mod (b -1), then k=0 or b -1. But k cannot be 0 because k is at least ceil(sqrt(b)). So only possible k is b -1. 

But k=0 mod (b -1) would require k=0 or k=b -1. But k=0 is invalid, so k=b -1. For k =b -1, check if d1=( (b -1)^2 - (b 

-1) )/(b -1) = (b^2 -2b +1 -b +1)/(b -1) = (b^2 -3b +2)/(b -1) = (b -1)(b -2)/(b -1) =b -2. Which is between 1 and b -1. 

So d1 =b -2, d2 =k -d1 =b -1 - (b -2)=1. So n=(b -1)^2. Let's check if this is a two-digit number in base b. (b -1)^2 in 

base b is a two-digit number: the first digit is d1 =b -2, the second digit is 1. So yes, it's a two-digit number. So k=b 

-1 is always a solution.

Similarly, for k ≡1 mod (b -1), then k=1 + m*(b -1). Since k >= ceil(sqrt(b)), and k <b. So m=0 gives k=1, but 1 is only 

valid if ceil(sqrt(b)) <=1, which is only when b=2 (since sqrt(2)≈1.41, ceil is 2, but b >=2. 当 \( b=2 \) 时，\(\lceil 

\sqrt{2} \rceil = 2\)，因此 \( k=1 \) 不成⽴。当 \( b \geq 3 \) 时，\(\lceil \sqrt{b} \rceil \geq 3\)，所以 \( k=1 \) 也不成

⽴。因此，只有 \( m=0 \) 时，\( k=1 \) 是可能的，但仅在 \( \lceil \sqrt{b} \rceil \leq 1 \) 的情况下才成⽴，这只有当 \( 

b=2 \) 时才有可能。然⽽，当 \( b=2 \) 时，\(\lceil \sqrt{2} \rceil=2\)，所以 \( k=1 \) 并不符合条件。因此，对于 \( k 

\equiv 1 \mod (b-1) \)，唯⼀可能的 \( k=1 \) 被排除在外，除⾮ \( b=2 \)。但即便如此，\( k=1 \) 也不符合条件。因此，

\( k \equiv 1 \mod (b-1) \) 并没有在范围内的解。等等，或许我算错了。

等⼀下，如果 \( k \equiv 1 \mod (b - 1) \)，那么 \( k = 1 + m \cdot (b - 1) \)，其中 \( m \geq 0 \)。但 \( k \) 必须满⾜ \( 

\text{ceil}(\sqrt{b}) \) 到 \( b - 1 \) 之间。如果 \( m = 0 \)，那么 \( k = 1 \)。只有当 \( \text{ceil}(\sqrt{b}) \leq 1 \) 时，\( 

k = 1 \) 才有效，但这只有在 \( b = 2 \) 时才可能成⽴。然⽽，当 \( b = 2 \) 时，\( \text{ceil}(\sqrt{2}) = 2 \)，因此 \( k = 

1 \) 并不符合条件。

如果 \( m = 1 \)，那么 \( k = 1 + (b - 1) = b \)。然⽽ \( k \) 必须⼩于 \( b \)，所以 \( k = b \) 超出了范围。

因此，对于 \( k \equiv 1 \mod (b - 1) \)，没有任何 \( k \) 位于范围内。所以只有 \( k = b - 1 \) 是符合条件的唯⼀ \( k 

\)。但这与之前的结论相⽭盾。
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等⼀下，我们来看⼀个例⼦：假设 \( b = 5 \)。那么 \( b - 1 = 4 \)。于是，\( k \) 必须满⾜ \( \text{ceil}(\sqrt{5}) \approx 

3 \)，所以 \( 3 \leq k \leq 4 \)。接着检查 \( k = 3 \) 和 \( k = 4 \)。

For k=3: (3^2 -3)/4 =6/4=1.5, not integer. So invalid.

For k=4: (16 -4)/4=12/4=3. So d1=3, d2=4 -3=1. So n=16=4^2. In base 5, 16 is 31, which sums to 4. So yes, that's 

valid. So here, only k=4 is valid. So in base 5, there's only one beautiful number. 等等，但根据前⾯的逻辑，k=b-1=4 

是⼀个解。然⽽，k=4≡0 mod 4？不，4≡0 mod 4。所以 4≡0 mod 4。因此，k=4 是⼀个解。但是，在这种情况下，

k=4≡0 mod 4，所以它是⼀个解。然⽽，在 base 5 中，k=4 是唯⼀的解。因此，对于 base 5，只有⼀个美丽的数。

等等，这与之前的结论⽭盾：之前我认为 \( k \equiv 0 \mod (b - 1) \) 或 \( k \equiv 1 \mod (b - 1) \)。然⽽，当 \( b = 5 

\) 时，\( b - 1 = 4 \)，因此 \( k \equiv 0 \mod 4 \) 或 \( k \equiv 1 \mod 4 \)。在范围 \([3, 4]\) 中，\( k = 4 \equiv 0 

\mod 4 \)，⽽ \( k = 3 \equiv 3 \mod 4 \)。所以只有 \( k = 4 \) 满⾜条件。但当 \( k = 4 \) 时，\((k^2 - k) / 4 = (16 - 4)/4 

= 12/4 = 3\)，这是整数。因此，\( k = 4 \) 是⼀个有效的解。因此，在基数 \( b = 5 \) 中，只有⼀个美丽的数。

等等，但也许除了 \( k = b - 1 \) 之外，还有其他可能的 \( k \) 值。我们来看 \( b = 6 \) 的情况。那么 \( b - 1 = 5 \)。因

此，\( k \) 必须满⾜ \( \lceil \sqrt{6} \rceil = 3 \)，所以 \( 3 \leq k \leq 5 \)。接下来检查 \( k = 3, 4, 5 \)。

k=3: (9 -3)/5=6/5=1.2, not integer.

k=4: (16 -4)/5=12/5=2.4, not integer.

k=5: (25 -5)/5=20/5=4. So d1=4, d2=5 -4=1. So n=25. In base 6, 25 is 41, which sums to 5. So yes, sqrt(25)=5. So 

this is valid. So in base 6, only k=5 is valid. So again, only one beautiful number.

等等，这表明，只有 \( k = b - 1 \) 是有效的解。那么，为什么题⽬中会存在超过⼗个的“美丽”数呢？这好像不对。可能

我的推理中存在错误。

等等，我们来看⼀个不同的例⼦。假设 \( b = 8 \)。那么 \( b - 1 = 7 \)。于是，\( k \) 的范围是 \( \lceil \sqrt{8} \rceil = 3 

\) 到 \( 7 \)。接下来检查 \( k = 3, 4, 5, 6, 7 \)。

k=3: (9 -3)/7=6/7 ≈0.857, not integer.

k=4: (16 -4)/7=12/7≈1.714, not integer.

k=5: (25 -5)/7=20/7≈2.857, not integer.

k=6: (36 -6)/7=30/7≈4.285, not integer.

k=7: (49 -7)/7=42/7=6. So d1=6, d2=7 -6=1. So n=49=7^2. In base 8, 49 is 61, which sums to 7. Correct. So only 

k=7 is valid. So again, only one.

等等，这表明对于每个 ，只有 是有效的？如果是这样，那么每个 只会有⼀个 -beautiful 数，但

这与题⽬要求⽭盾，题⽬中提到需要有超过⼗个 -beautiful 数。因此，我的推理⼀定存在错误。

等等，或许还有其他的 满⾜条件 可以被 整除。之前我假设有 或 

，但这种情况仅适⽤于 是质数的时候。如果 不是质数，那么可能会有

更多的 满⾜条件 能被 整除。

b k = b − 1 b b

b

k (k −2 k) (b − 1) k ≡ 0 (mod (b − 1))

k ≡ 1 (mod (b − 1)) (b − 1) (b − 1)

k (k −2 k) (b − 1)
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Wait, for example, suppose b -1 is composite. Let's take b=7, so b -1=6. Then, since 6 divides k(k -1). Since k and k 

-1 are coprime, 6 must divide either k or k -1. Therefore, either k ≡0 mod 6 or k ≡1 mod 6. So in base 7, the 

possible k's are those congruent to 0 or 1 mod 6. The range for k is ceil(sqrt(7))=3 to 6. So k=3,4,5,6.

Check k=3: 3 mod6=3≠0 or1. So invalid.

k=4:4 mod6=4≠0 or1. Invalid.

k=5:5 mod6=5≠0 or1. Invalid.

k=6:6≡0 mod6. So valid. So k=6. Then d1=(36 -6)/6=30/6=5. So d1=5, d2=6 -5=1. So n=36=6^2. In base7, 36 is 

5*7 +1=35+1=36. So 51_base7, which sums to 6. Correct. So only k=6 is valid here. So again, only one.

等等，即使 \( b-1 \) 是合数，满⾜条件的 \( k \) 似乎仍然是唯⼀的。这表明，对于每个基底 \( b \)，只有 \( k = b - 1 \) 

是满⾜条件的。但这与题⽬描述⽭盾，因为题⽬中提到 \( 81 \) 是 \( 13 \)-beautiful，且存在其他 \( b \)-beautiful 的数

字。等等，也许我错在假设只有 \( k \equiv 0 \) 或 \( 1 \pmod{b-1} \) 才能满⾜条件。让我再仔细想⼀想。

If (b -1) divides k(k -1), since k and k -1 are coprime, (b -1) must divide either k or k -1. Therefore, either (b -1) 

divides k or (b -1) divides k -1. Therefore, k ≡0 mod (b -1) or k ≡1 mod (b -1). However, since k is in [ceil(sqrt(b)), b 

-1], the number of such k's is equal to the number of multiples of (b -1) in that interval (which is 1: k=b -1) plus the 

number of numbers congruent to1 mod (b -1) in that interval. Similarly, if (b -1) divides k -1, then k ≡1 mod (b -1). So 

numbers congruent to1 mod (b -1) in the interval.

But in the interval [ceil(sqrt(b)), b -1], how many numbers are congruent to0 or1 mod (b -1)?

For example, take b=10. Then b -1=9. The interval is ceil(sqrt(10))=4 to 9. So numbers 4,5,6,7,8,9.

Numbers congruent to0 mod9: 9. Numbers congruent to1 mod9: 1,10. But 1 is less than ceil(sqrt(10))=4, and 10 is 

equal to b=10, which is excluded. So only k=9≡0 mod9. So here, only k=9. Then d1=(81 -9)/9=72/9=8. So d1=8, 

d2=9 -8=1. So n=81=9^2. In base10, 81 is 81, which sums to 9. Correct. So only one beautiful number here.

等等，这表明在每个基数中都只有⼀个美丽的数字。但题⽬中提到，需要找到⼀个 ，使得美丽的数字超过⼗个。这

显然与我的推导相⽭盾。因此，我的推理中⼀定存在某种错误。

Wait, let's take the example given: 81 is 13-beautiful. So in base13, 81 is written as 63. Let's check if 6 +3=9= 

sqrt(81). Correct. So k=9. So in base13, k=9. Let's check if (9^2 -9) is divisible by12. 81 -9=72. 72 divided by12 is6, 

which is integer. So d1=72/12=6, d2=9 -6=3. So yes, in base13, 81 is 6*13 +3=78 +3=81. So 63_base13. So digits 6 

and3 sum to9. Therefore, this works. So here, k=9. For base13, b -1=12. So 9 is neither 0 nor1 mod12. So 9≡9 

mod12. But (12) divides (9^2 -9)=72. Indeed, 12 divides72. So even though 9 is not congruent to0 or1 mod12, 12 

divides72. Therefore, my earlier assumption that k must be ≡0 or1 mod(b -1) is wrong. Because (b -1) divides k(k -1) 

does not require k≡0 or1 mod(b -1). It only requires that (b -1) divides the product k(k -1). So (b -1) can divide k(k -1) 

even if it doesn't divide either k or k -1, as long as the product is divisible. For example, if (b -1) is composite, its 

factors could divide k and k -1 respectively.

Therefore, my previous reasoning that k must be ≡0 or1 mod(b -1) is incorrect. Therefore, the number of k's such 

that (b -1) divides k(k -1) is not limited to those congruent to0 or1 mod(b -1). Therefore, the number of such k's can 

b
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be higher. Therefore, perhaps for some bases b, there are multiple k's where (b -1) divides k(k -1). Therefore, the 

number of b-beautiful numbers can be more than one. Therefore, the problem is to find the minimal b where there 

are more than ten such k's.

Therefore, the approach should be:

For a given b, find all integers k in [ceil(sqrt(b)), b -1] such that (b -1) divides (k^2 -k). Then count these k's. We need 

to find the minimal b where this count exceeds ten.

But how to compute this efficiently? Since b can be large, maybe we need a formula or a pattern.

Alternatively, note that (b -1) divides (k^2 -k) can be written as k^2 ≡k mod(b -1). So k^2 ≡k mod(b -1). Therefore, 

k(k -1) ≡0 mod(b -1). So the number of k's in [ceil(sqrt(b)), b -1] satisfying this congruence.

This is equivalent to solving k(k -1) ≡0 mod(b -1) for k in the given range. The number of solutions to this 

congruence is equal to the number of integers k in [ceil(sqrt(b)), b -1] such that k ≡0 or1 mod(d) for some divisors d 

of (b -1). But this might be complicated.

Alternatively, note that for each k in [ceil(sqrt(b)), b -1], k(k -1) must be divisible by (b -1). This is equivalent to (b -1) 

divides k(k -1). So for each k, check if k(k -1) is divisible by (b -1). The number of such k's is the number of b-

beautiful numbers.

Therefore, the problem reduces to, for each b, compute the number of k in [ceil(sqrt(b)), b -1] such that (b -1) divides 

k(k -1). We need the minimal b where this count exceeds ten.

To find such b, we can start from b=2 and increment b until the count exceeds ten. However, this might be time-

consuming. Is there a pattern or a way to estimate how many k's satisfy this for a given b?

Note that (b -1) divides k(k -1) implies that for each prime power p^r dividing (b -1), p^r divides k(k -1). Since k and k 

-1 are coprime, for each prime p dividing (b -1), either p^r divides k or p^r divides (k -1). Therefore, the number of 

solutions k mod (b -1) is 2^ω, where ω is the number of distinct prime factors of (b -1). However, this is only if (b -1) 

is square-free. If (b -1) has square factors, the number of solutions can be less.

But in general, the number of solutions to k(k -1) ≡0 mod m is multiplicative over the prime powers in the 

factorization of m. So if m=∏p_i^{r_i}, then the number of solutions is ∏(d(p_i^{r_i})), where d(p^r)=2 if p=2, and 2 

otherwise. Wait, no. For each prime power p^r dividing m, the number of solutions to k(k -1) ≡0 mod p^r is:

If p=2, there are 1 or 3 solutions mod 8, but in general for higher powers, it's 2 solutions.●

等等，对于奇素数 \( p \)，⽅程 \( k(k - 1) \equiv 0 \pmod{p^r} \) 的解是 \( k \equiv 0 \pmod{p^r} \) 或 \( k \equiv 1 

\pmod{p^r} \)。因此，对于每个奇素数幂 \( p^r \)，⽅程有 \( 2 \) 个解。

For p=2, if r >=3, then there are 4 solutions mod 8, but for r=1, 2 solutions, for r=2, 4 solutions. Wait, let's check:

For p=2:

If r=1: mod 2. The solutions are k≡0 or1 mod2. So 2 solutions.

If r=2: mod4. The solutions are k≡0 or1 mod4. So 2 solutions.
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If r=3: mod8. The equations k(k -1)≡0 mod8. The solutions are k≡0,1 mod8. Because if k is even, k-1 is odd, so 8 

divides k. If k is odd, k-1 is even, so 8 divides k-1. Wait, but 8 divides k or k-1. So solutions are k≡0 or1 mod8. So 2 

solutions. Wait, but 8 divides k(k-1). If k is even, then k must be divisible by 8, because k-1 is odd and can't 

contribute any factors of 2. Similarly, if k is odd, k-1 is even and must be divisible by 8. Therefore, solutions are k≡0 

or1 mod8. So 2 solutions. Similarly, for higher r, the number of solutions is 2. So for p=2, regardless of r, the number 

of solutions is 2.

Therefore, for a general modulus m, the number of solutions to k(k -1) ≡0 mod m is 2^ω, where ω is the number of 

distinct prime factors of m. However, this is only if m is square-free. If m has square factors, the number of solutions 

can be less. Wait, but in our case, m =b -1. So if (b -1) is square-free, the number of solutions mod (b -1) is 2^ω. 

Therefore, the number of solutions k in [0, b -1) is 2^ω. Therefore, the total number of solutions in [1, b -1] is 2^ω. 

However, we are interested in k in [ceil(sqrt(b)), b -1]. Therefore, the number of solutions is the number of residues 

mod (b -1) that are in [ceil(sqrt(b)), b -1] and satisfy k ≡0 or1 mod p^r for each prime power in (b -1).

But this is getting complicated. However, if (b -1) is a product of distinct primes (square-free), then the number of 

solutions mod (b -1) is 2^ω, where ω is the number of distinct prime factors. Therefore, the number of solutions in 

the entire range [0, b -1) is 2^ω. Therefore, if we can find b such that (b -1) has many distinct prime factors, then 

2^ω will be large, leading to more solutions. Therefore, perhaps choosing b such that (b -1) is a product of the first 

few primes will lead to a large number of solutions.

For example, let's take (b -1)=235*7=210. Then b=211. Then the number of solutions mod210 is 2^4=16. Therefore, 

in the interval [0,210), there are16 solutions. Therefore, in [ceil(sqrt(211)),210], the number of solutions would be 16 

minus those solutions less than ceil(sqrt(211))≈15. So 16 - number of solutions less than15. If none of the solutions 

are less than15, then we have16 solutions. But since the solutions are congruent to0 or1 mod2,3,5,7, which would 

spread out the residues. However, some of these solutions might be less than15, but perhaps most are above. 

Therefore, such a b=211 might have many beautiful numbers. But we need to find the minimal b.

But since the problem asks for the least b where there are more than ten beautiful numbers, we need to find the 

smallest b such that the number of solutions to k(k -1)≡0 mod(b -1) in [ceil(sqrt(b)), b -1] exceeds ten.

Therefore, to find such b, we can start from small b and check the count. However, given that the example given is 

81 being13-beautiful, and in base13, k=9. Let's check for b=13. Then (b -1)=12=2^2*3. So the number of solutions 

mod12 would be 2^2=4? Wait, but 12 is not square-free. For modulus with repeated prime factors, the number of 

solutions can be different.

Wait, for modulus m=12=2^2*3. Let's compute the number of solutions to k(k -1)≡0 mod12.

This requires that 4 divides k(k -1) and 3 divides k(k -1). Since k and k -1 are coprime:

For 4 divides k(k -1): Since k and k -1 are consecutive, one of them is even. But to have 4 divides k(k -1), either k is 

divisible by4 or k -1 is divisible by4. Because if k is even, then k -1 is odd, so 4 divides k. If k is odd, then k -1 is 

even, and we need 4 divides (k -1). Therefore, solutions mod4 are k≡0 or1 mod4.

Similarly, for 3 divides k(k -1): Either k≡0 mod3 or k≡1 mod3.
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Therefore, combining these using the Chinese Remainder Theorem, the solutions mod12 are the combinations of 

the solutions mod4 and mod3.

For mod4: solutions k≡0,1 mod4.

For mod3: solutions k≡0,1 mod3.

Therefore, combining these, we have four combinations:

1. k≡0 mod4 and k≡0 mod3: solution is k≡0 mod12.

2. k≡0 mod4 and k≡1 mod3: solution is k≡8 mod12 (since 8≡0 mod4 and 8≡2 mod3? Wait, 8 mod3=2, so 

8≡2≡-1 mod3. Wait, we need k≡0 mod4 and k≡1 mod3. Let's solve:

k ≡0 mod4

k ≡1 mod3

Let k=4m. Then 4m ≡1 mod3 => m ≡1 mod3. So m=3n +1. Therefore, k=4*(3n +1)=12n +4. Therefore, k≡4 mod12.

等等，4 mod 3 = 1，所以 4 ≡ 1 mod 3。由此可得，k = 4 满⾜条件。因此，解为 k ≡ 4 mod 12。

Similarly,

3. k≡1 mod4 and k≡0 mod3: k≡1 mod4, k≡0 mod3.

k=4m +1. Then 4m +1 ≡0 mod3 =>4m ≡-1 mod3 => m ≡2 mod3 (since 4≡1 mod3, so 1m
≡-1
mod3
=>m
≡2


mod3).
Therefore,
m=3n
+2.
Therefore,
k=4(3n +2) +1=12n +9. Therefore, k≡9 mod12.

4. k≡1 mod4 and k≡1 mod3: k≡1 mod4, k≡1 mod3. Then k≡1 mod12 (since if k≡1 mod4 and mod3, then k≡1 

mod lcm(4,3)=12).

Therefore, the four solutions mod12 are k≡0,1,4,9 mod12.

Therefore, in the interval [ceil(sqrt(13)),12], which is [4,12], the valid k's are:

k=4,5,6,7,8,9,10,11,12.

Check which of these are ≡0,1,4,9 mod12.

k=4:4≡4 mod12. Valid.

k=5:5≡5 mod12. Not valid.

等等，k=4 ≡ 4 mod12，符合条件。

k=5 ≡ 5 mod12，不符合条件。

k=6 ≡ 6 mod12，不符合条件。

k=7 ≡ 7 mod12，不符合条件。

k=8 ≡ 8 mod12，符合条件。

k=9 ≡ 9 mod12，符合条件。
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k=10 ≡ 10 mod12，不符合条件。

k=11 ≡ 11 mod12，不符合条件。

k=12 ≡ 0 mod12，符合条件。

Therefore, the valid k's are4,8,9,12. Now check if these k's lead to valid d1=(k^2 -k)/12.

k=4:

(16 -4)/12=12/12=1. d1=1, d2=4 -1=3. So n=4^2=16. In base13,16 is1*13 +3=16. Digits1 and3 sum to4. Correct.

k=8:

(64 -8)/12=56/12≈4.666. Not integer. So invalid.

等等，56 并不能被 12 整除。等等，64 - 8 = 56。56 ÷ 12 ≈ 4.666…。这不是整数。所以 k=8 是⽆效的。但根据之前

的计算，k=8 满⾜模 12 的条件。然⽽实际上，(k² - k) 必须能被 12 整除。因此，尽管 k=8 满⾜同余条件，但 56 并不

能被 12 整除，因此 k=8 是⽆效的。这是⼀个问题。

等等，我们来检查⼀下当 \( k=8 \) 的情况：\( k \equiv 8 \mod 12 \)。那么 \( k(k-1) = 8 \cdot 7 = 56 \)。\( 56 \mod 12 

= 56 - 4 \cdot 12 = 56 - 48 = 8 \)。因此，\( 56 \equiv 8 \mod 12 \)。所以，\( 56 \) 并不被 \( 12 \) 整除。然⽽，根据之

前的分析，\( k \equiv 8 \mod 12 \) 应该是⼀个解。但这似乎与事实⽭盾。

等等，也许我的⽅法存在错误。等⼀下，根据之前的分析，我们考虑的是模 4 和模 3 的条件。对于 \( k=8 \)： 

\[

k \equiv 0 \mod 4 \text{（因为 \(8 \div 4 = 2\)，余数为 \(0\)）}， 

k - 1 = 7 \equiv 1 \mod 3 \text{（因为 \(7 \div 3 = 2\)，余数为 \(1\)）}。

\] 

因此，\( k=8 \) 满⾜ \( k \equiv 0 \mod 4 \) 且 \( k \equiv 1 \mod 3 \) 的条件，这与我们之前计算的第 2 种情况相符。但

是实际上，\( 8 \times 7 = 56 \)，⽽ \( 56 \) 显然不能被 \( 12 \) 整除。这是为什么？

等等，\( 4 \) 可以整除 \( 8 \)，⽽ \( 3 \) 可以整除 \( 7 \) 吗？\( 7 \) 不能被 \( 3 \) 整除，但 \( 7 \equiv 1 \mod 3 \)。等

等，\( 3 \) 可以整除 \( k(k-1) \) 当且仅当 \( k \equiv 0 \mod 3 \) 或 \( k \equiv 1 \mod 3 \)。由于 \( k=8 \equiv 2 \mod 3 

\)，\( k-1=7 \equiv 1 \mod 3 \)。因此，\( 3 \) 可以整除 \( k-1 \)。所以 \( 3 \) 确实可以整除 \( 7 \)，但这不可能，除⾮ \( 

7 \) 能被 \( 3 \) 整除。显然，\( 7 \) 不能被 \( 3 \) 整除。等等，我的推理哪⾥出错了？

等等，\( k(k - 1) \equiv 0 \mod 3 \) 当且仅当 \( k \equiv 0 \mod 3 \) 或 \( k \equiv 1 \mod 3 \)。这是因为 3 是⼀个素

数。所以，如果 \( k \equiv 2 \mod 3 \)，那么 \( k - 1 \equiv 1 \mod 3 \)，因此 \( k - 1 \equiv 1 \mod 3 \)，这意味着 \( 

3 \) 可以整除 \( k - 1 \)。等等，不对。如果 \( k \equiv 2 \mod 3 \)，那么 \( k - 1 \equiv 1 \mod 3 \)，所以 \( 3 \) 并不能

整除 \( k - 1 \)。等等，如果 \( k \equiv 1 \mod 3 \)，那么 \( k - 1 \equiv 0 \mod 3 \)，因此 \( 3 \) 可以整除 \( k - 1 \)。同

样地，如果 \( k \equiv 0 \mod 3 \)，那么 \( 3 \) 可以整除 \( k \)。

因此，如果 \( k \equiv 2 \mod 3 \)，则 \( k(k - 1) \equiv 2 \cdot 1 = 2 \mod 3 \)，这不为 0。所以，\( k(k - 1) \equiv 0 

\mod 3 \) 当且仅当 \( k \equiv 0 \) 或 \( 1 \mod 3 \)。于是，\( k=8 \equiv 2 \mod 3 \)。因此，\( 8 \cdot 7 \equiv 2 

\cdot 1 = 2 \mod 3 \)，这说明 3 并不能整除 \( 8 \cdot 7 \)。但根据之前的条件，我们有 \( k \equiv 0 \mod 4 \) 且 \( k 
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\equiv 1 \mod 3 \)。然⽽，\( k=8 \) 满⾜ \( 0 \mod 4 \)，但 \( 8 \equiv 2 \mod 3 \)。因此，\( k=8 \) 并不满⾜ \( 1 \mod 

3 \) 的条件。等等，这与我们的 CRT 解 \( k \equiv 8 \mod 12 \) ⽭盾了。

等等，我们来看⼀下。在情况 2 中，我们要求 \( k \equiv 0 \mod 4 \) 且 \( k \equiv 1 \mod 3 \)。我们找到的解是 \( k 

\equiv 4 \mod 12 \)。等等，让我们重新解这个问题。

我们设定 \( k \equiv 0 \mod 4 \) 且 \( k \equiv 1 \mod 3 \)。那么 \( k = 4m \)，其中 \( m \) 为某个整数。接着，\( 4m 

\equiv 1 \mod 3 \)。因为 \( 4 \equiv 1 \mod 3 \)，所以该式可以简化为 \( 1 \cdot m \equiv 1 \mod 3 \)。因此，\( m 

\equiv 1 \mod 3 \)。由此得到 \( m = 3n + 1 \)。代⼊后得到：

\[

k = 4 \cdot (3n + 1) = 12n + 4。

\]

因此，\( k \equiv 4 \mod 12 \)。

所以，\( k = 4, 16, 28, \dots \)。因此，\( k=4 \) 是满⾜条件的，但 \( k=8 \) 并不是。等等，\( k=8 \equiv 8 \mod 12 \)。

所以 \( 8 \) 并不符合 \( 4 \mod 12 \) 的条件。

等等，我现在有些糊涂了。在之前的分析中，对于模 12 的解，我们得到了 \( k \equiv 0,1,4,9 \mod 12 \)。那么 \( k=4, 

8, 9, 12 \) 在区间 \([4,12]\) 中。然⽽，\( k=8 \equiv 8 \mod 12 \)，并不在这些解的范围内。等等，实际上，\( k=8 

\equiv 8 \mod 12 \)，并不满⾜ \( 0,1,4,9 \mod 12 \) 的条件。因此，之前的结论是正确的，解为 \( k=4,9,12 \)。

等等，\( k=12 \equiv 0 \mod 12 \)。但 \( k=12 \) 等于 \( b-1=12 \)。接下来检查 \( k=12 \)： 

\[

(144 - 12)/12 = 132/12 = 11。

\] 

因此，\( d_1=11 \)，\( d_2=12 - 11=1 \)。所以 \( n=144=12^2 \)。在基底 13 中，\( 144 \) 表示为 \( 11 \cdot 13 + 

1=143 + 1=144 \)。数字 \( 11 \) 和 \( 1 \) 的和为 \( 12 \)，⽽ \( \sqrt{144}=12 \)。因此，这确实是成⽴的。所以 \( k=12 

\) 是有效的。

综上，对于 \( b=13 \)，有效的 \( k \) 值为 \( 4, 9, 12 \)。现在我们再检查 \( k=9 \)： 

\[

(81 - 9)/12 = 72/12 = 6。

\] 

因此，\( d_1=6 \)，\( d_2=9 - 6=3 \)。所以 \( n=81=9^2 \)。在基底 13 中，\( 81=6 \cdot 13 + 3=78 + 3=81 \)。数字 \( 

6 \) 和 \( 3 \) 的和为 \( 9 \)，⽽ \( \sqrt{81}=9 \)。因此，这也是正确的。

Similarly, k=4 as before.

Therefore, in base13, there are three beautiful numbers: 16,81,144, and also k=12. 等等，k=12 对应的 n=144。那

么，k=12 表示 n=144。在基底13中，144写成111。等等，144除以13等于11余1，因此是11×13 + 1=143 +1=144。所

以是11和1，即111。但 1+1=2，这并不等于12。等等，不对。再等等，d1=11，d2=1，所以 11 + 1=12。这确实等于 

sqrt(144)=12。明⽩了。所以是正确的。
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Therefore, in base13, the beautiful numbers are n=16,81,144. 等等，还有 k=9, 4, 和 12。因此，⼀共有四个美丽的数

字。等等，k=4 对应的 n=16，k=9 对应的 n=81，k=12 对应的 n=144。所以总共有三个。等等，但在区间 [4,12] 中，

k=4, 9, 12。因此，⼀共有三个数。所以 base13 中有三个美丽的数字。然⽽，题⽬中给出的例⼦是 81 是 13-美丽的，

但这⾥我们找到了三个。等等，题⽬中说：“例如，81 是 13-美丽的……”。因此，可能 base13 有三个这样的数字。

But the problem asks for the least b where there are more than ten such numbers. Therefore, we need to find a 

larger b. Therefore, perhaps we need to find a b where (b -1) has more prime factors, leading to more solutions.

Alternatively, note that if (b -1) is a product of the first n primes, then the number of solutions is 2^n. For example, if 

(b -1)=235711=2310, then b=2311, and the number of solutions would be 2^5=32. Therefore, in the interval 

[ceil(sqrt(2311)),2310], the number of solutions would be 32 minus those less than ceil(sqrt(2311))≈48. So 32 - 

number of solutions less than48. If there are, say, 4 solutions less than48, then we have28 solutions. But this is 

speculative. However, this suggests that choosing b such that (b -1) is a product of many primes will lead to a 

higher number of solutions.

But to find the minimal b, we need to check values of b starting from b=2 upwards until we find more than ten 

solutions. However, this is time-consuming. Let's try to compute for some b.

Let's try b=30. Then (b -1)=29, which is prime. Therefore, the number of solutions mod29 is2. Therefore, in the 

interval [ceil(sqrt(30))=6,29], the solutions are k≡0 or1 mod29. But in this interval, k=29≡0 mod29, and k=1≡1 

mod29. But k=1 is less than ceil(sqrt(30))=6, so only k=29. Therefore, only one solution. So n=29^2=841. In base30, 

841 is 2930
+1=870
+1=871,
which
is
not
correct.
Wait,
no.
Wait,
29^2=841.
In
base30,
841
divided
by30


is2830=840, so 841=28*30 +1. Therefore, the digits are28 and1, which sum to29. sqrt(841)=29. Correct. So only one 

beautiful number here.

Similarly, let's try b=10. Then (b -1)=9=3^2. The number of solutions to k(k -1)≡0 mod9. Since 9=3^2, we need 9 

divides k(k -1). Since k and k -1 are coprime, either 9 divides k or 9 divides k -1. Therefore, k≡0 or1 mod9. In the 

interval [ceil(sqrt(10))=4,9], the numbers are4,5,6,7,8,9. Among these, k=9≡0 mod9. So only k=9. Check k=9: (81 

-9)/9=72/9=8. d1=8, d2=9 -8=1. So n=81=9^2. In base10, 81=8*10 +1. Digits8 and1 sum to9. Correct. So only one.

Next, try b=15. Then (b -1)=14=2*7. So solutions are k≡0,1 mod2 and k≡0,1 mod7. Combining, using Chinese 

Remainder Theorem:

Solutions mod14:

1. k≡0 mod2 and k≡0 mod7: k≡0 mod14

2. k≡0 mod2 and k≡1 mod7: k≡8 mod14 (since 8≡0 mod2, 8≡1 mod7)

3. k≡1 mod2 and k≡0 mod7: k≡7 mod14

等等，7 mod 2 = 1，对吗？因为 7 是奇数。所以 7 ≡ 1 mod 2。因此，k ≡ 7 mod 14。

4. k≡1 mod2 and k≡1 mod7: k≡1 mod14.

Therefore, solutions are k≡0,1,7,8 mod14. In the interval [ceil(sqrt(15))≈4,14], the numbers 

are4,5,6,7,8,9,10,11,12,13,14. Check which are≡0,1,7,8 mod14:
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k=7≡7 mod14

k=8≡8 mod14

k=14≡0 mod14

k=1≡1 mod14 (but 1<4, so excluded)

k=7,8,14 are valid.

Check k=7:

(49 -7)/14=42/14=3. d1=3, d2=7 -3=4. n=49. In base15,49=3*15 +4=45 +4=49. Digits3 and4 sum to7. sqrt(49)=7. 

Correct.

k=8:

(64 -8)/14=56/14=4. d1=4, d2=8 -4=4. n=64. In base15,64=4*15 +4=60 +4=64. Digits4 and4 sum to8. sqrt(64)=8. 

Correct.

k=14:

(196 -14)/14=182/14=13. d1=13, d2=14 -13=1. n=196. In base15,196=13*15 +1=195 +1=196. Digits13 and1 sum 

to14. sqrt(196)=14. Correct.

Thus, in base15, there are three beautiful numbers:49,64,196. So three solutions. Still not enough.

Next, try b=22. Then (b -1)=21=3*7. Solutions mod21:

Solutions are combinations of solutions mod3 and mod7.

mod3: k≡0 or1 mod3

mod7: k≡0 or1 mod7

Thus, four combinations:

1. k≡0 mod3 and k≡0 mod7: k≡0 mod21

等等，0 mod 3 是 0，0 mod 7 也是 0。因此，k ≡ 0 mod 21。

2. k≡0 mod3 and k≡1 mod7: Solve k=3m=7n +1. k≡1 mod7 and k≡0 mod3. Let k=7n +1. Then 7n +1≡0 mod3 

=>7n≡-1 mod3 => n≡-1 mod3 (since7≡1 mod3). So n≡2 mod3. Thus, n=3p +2. Then k=7*(3p +2)+1=21p 

+15. Therefore, k≡15 mod21.

3. k≡1 mod3 and k≡0 mod7: k=3m +1=7n. So 3m +1=7n. Then 3m≡-1 mod7 =>3m≡6 mod7 =>m≡2 mod7. So 

m=7p +2. Then k=3*(7p +2)+1=21p +7. Thus, k≡7 mod21.

等等，3*(7p + 2) + 1 = 21p + 6 + 1 = 21p + 7。因此，k ≡ 7 mod 21。

4. k≡1 mod3 and k≡1 mod7: k≡1 mod21.

Therefore, solutions are k≡0,1,7,15 mod21.
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In the interval [ceil(sqrt(22))≈5,21], the numbers are5,...,21. Check k≡0,1,7,15,21 mod21.

k=7,15,21≡0,7,15 mod21.

Check k=7:

(49 -7)/21=42/21=2. d1=2, d2=7 -2=5. n=49. In base22,49=2*22 +5=44 +5=49. Digits2 and5 sum to7. Correct.

k=15:

(225 -15)/21=210/21=10. d1=10, d2=15 -10=5. n=225. In base22,225=10*22 +5=220 +5=225. Digits10 and5 sum 

to15. Correct.

k=21:

(441 -21)/21=420/21=20. d1=20, d2=21 -20=1. n=441. In base22,441=20*22 +1=440 +1=441. Digits20 and1 sum 

to21. Correct.

Thus, three beautiful numbers:49,225,441. Still only three.

Next, try b=10. Already did that. Let's try b=22. Hmm, same as above.

等等，也许我们可以尝试⼀个 \( b-1 \) 是两个质数乘积的情况。我们来试⼀下 \( b=10 \)，但是 \( 9=3^2 \)。或者，\( 

b=14 \)：\( b-1=13 \)（质数）。那么在这种情况下，仅有两个解。

Alternatively, let's try b=21. Then (b -1)=20=2^2*5.

Solutions to k(k -1)≡0 mod20.

This requires that 4 divides k(k -1) and 5 divides k(k -1).

For 4 divides k(k -1): k≡0 or1 mod4.

For5 divides k(k -1):k≡0 or1 mod5.

Using Chinese Remainder Theorem:

Combine solutions mod4 and mod5.

Possible combinations:

1. k≡0 mod4 and k≡0 mod5: k≡0 mod20.

等等，0 mod 4 和 0 mod 5 的解是 k ≡ 0 mod 20。

2. k≡0 mod4 and k≡1 mod5.

Solve k=4m=5n +1. Then 4m≡1 mod5 =>4m≡1 mod5 =>m≡4^{-1} mod5. Since44=16≡1
mod5,
so
inverse
of4
is4.


Thus,
m≡41=4 mod5. Thus, m=5p +4. Then k=4*(5p +4)=20p +16. Therefore, k≡16 mod20.

3. k≡1 mod4 and k≡0 mod5.

k=4m +1=5n. So 4m +1=5n. Then4m≡-1 mod5 =>4m≡4 mod5 =>m≡1 mod5. So m=5p +1. Then k=4*(5p 

+1)+1=20p +5. Therefore, k≡5 mod20.
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4. k≡1 mod4 and k≡1 mod5.

k≡1 mod4 and k≡1 mod5 =>k≡1 mod20.

Thus, solutions are k≡0,1,5,16 mod20.

In the interval [ceil(sqrt(21))≈5,20], the numbers are5,...,20.

Check k≡0,1,5,16 mod20:

k=5≡5 mod20

k=16≡16 mod20

k=20≡0 mod20

k=1≡1 mod20 (but 1<5, excluded)

Thus, valid k=5,16,20.

Check k=5:

(25 -5)/20=20/20=1. d1=1, d2=5 -1=4. n=25. In base21,25=1*21 +4=25. Digits1 and4 sum to5. Correct.

k=16:

(256 -16)/20=240/20=12. d1=12, d2=16 -12=4. n=256. In base21,256=12*21 +4=252 +4=256. Digits12 and4 sum 

to16. Correct.

k=20:

(400 -20)/20=380/20=19. d1=19, d2=20 -19=1. n=400. In base21,400=19*21 +1=399 +1=400. Digits19 and1 sum 

to20. Correct.

Thus, three beautiful numbers:25,256,400. Still three.

嗯，也许可以尝试 \( b = 32 \)。那么 \( b - 1 = 31 \)，这是⼀个质数。因此，在模 \( 31 \) 下，解的数量为 2。于是，在

区间 \([ceil(\sqrt{32}) \approx 6, 31]\) 中，解为 \( k = 31 \)。此时 \( n = 31^2 = 961 \)。在以 32 为基数下，\( 961 = 30 

\cdot 32 + 1 = 960 + 1 = 961 \)。其数字为 30 和 1，它们相加为 31。这是正确的。因此，仅有⼀个解。

Next, try b=16. Then (b -1)=15=3*5.

Solutions to k(k -1)≡0 mod15. So combinations of solutions mod3 and mod5.

mod3: k≡0 or1 mod3

mod5: k≡0 or1 mod5

Thus, four combinations:

1. k≡0 mod3 and k≡0 mod5: k≡0 mod15.

2. k≡0 mod3 and k≡1 mod5: Solve k=3m=5n +1. 3m≡1 mod5. 32=6≡1
mod5,
so
m≡2
mod5.
m=5p
+2.
Then


k=3(5p +2)=15p +6. Thus, k≡6 mod15.
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等等，6 mod 3 = 0，6 mod 5 = 1。正确。

3. k≡1 mod3 and k≡0 mod5: Solve k=3m +1=5n. 3m +1≡0 mod5 =>3m≡-1≡4 mod5. Multiply both sides by2 

(inverse of3 mod5 is2, since32=6≡1
mod5).
So
m≡8≡3
mod5.
m=5p
+3.
Then
k=3(5p +3)+1=15p +10. Thus, 

k≡10 mod15.

等等，10 mod 3 = 1，10 mod 5 = 0。正确。

4. k≡1 mod3 and k≡1 mod5: k≡1 mod15.

Thus, solutions are k≡0,1,6,10 mod15.

In the interval [ceil(sqrt(16))=4,15], numbers are4,...,15.

Check k≡0,1,6,10 mod15:

k=6,10,15≡6,10,0 mod15.

k=6:

(36 -6)/15=30/15=2. d1=2, d2=6 -2=4. n=36. In base16,36=2*16 +4=32 +4=36. Digits2 and4 sum to6. Correct.

等等，6² = 36。但是 6 等于 sqrt(36)。没错。

k=10:

(100 -10)/15=90/15=6. d1=6, d2=10 -6=4. n=100. In base16,100=6*16 +4=96 +4=100. Digits6 and4 sum to10. 

Correct.

等等，100=10²。所以 sqrt(100)=10。对的。

k=15:

(225 -15)/15=210/15=14. d1=14, d2=15 -14=1. n=225. In base16,225=14*16 +1=224 +1=225. Digits14 and1 sum 

to15. Correct.

Thus, three beautiful numbers:36,100,225. So three solutions.

嗯，看起来即使我们尝试更⼤的 \( b \)，每种情况下只找到了 3 个解。也许可以尝试 \( b = 30 \)，但我们已经发现只有

⼀个解了。等等，也许 \( b = 7 \)：\( b - 1 = 6 = 2 \cdot 3 \)。

Solutions to k(k -1)≡0 mod6. So combinations of solutions mod2 and mod3.

mod2: k≡0 or1 mod2

mod3: k≡0 or1 mod3

Thus, four combinations:

1. k≡0 mod2 and k≡0 mod3: k≡0 mod6.

2. k≡0 mod2 and k≡1 mod3: k≡4 mod6 (since 4≡0 mod2, 4≡1 mod3).

3. k≡1 mod2 and k≡0 mod3: k≡3 mod6.

4. k≡1 mod2 and k≡1 mod3: k≡1 mod6.
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Thus, solutions are k≡0,1,3,4 mod6.

In the interval [ceil(sqrt(7))≈3,6], numbers are3,4,5,6.

Check k≡0,1,3,4 mod6:

k=3≡3 mod6

k=4≡4 mod6

k=6≡0 mod6

Check k=3:

(9 -3)/6=6/6=1. d1=1, d2=3 -1=2. n=9. In base7,9=1*7 +2=7 +2=9. Digits1 and2 sum to3. Correct.

k=4:

(16 -4)/6=12/6=2. d1=2, d2=4 -2=2. n=16. In base7,16=2*7 +2=14 +2=16. Digits2 and2 sum to4. Correct.

等等，sqrt(16)=4。对的。

k=6:

(36 -6)/6=30/6=5. d1=5, d2=6 -5=1. n=36. In base7,36=5*7 +1=35 +1=36. Digits5 and1 sum to6. Correct.

Thus, three beautiful numbers:9,16,36. So three solutions.

等等，这表明当 

  

是两个质数的乘积时，解的数量是 4，但在区间 

  

中，可能会出现⼀些解被排除，因此最终只剩下 3 个解。

Therefore, perhaps to get more solutions, we need (b -1) to have more prime factors. Let's try a b where (b -1) is the 

product of the first four primes:2,3,5,7. Then (b -1)=235*7=210, so b=211.

Then the number of solutions mod210 is2^4=16. Therefore, in the interval [ceil(sqrt(211))≈15,210], the number of 

solutions would be16 minus those less than15. If none are less than15, then16 solutions. But let's check.

First, compute ceil(sqrt(211)): sqrt(211)≈14.52, so ceil is15. Therefore, the interval is15 to210. The solutions mod210 

are k≡0,1 mod2,3,5,7. Wait, no. Wait, the solutions are combinations of k≡0 or1 mod each prime factor. 

Since210=235*7, the number of solutions is2^4=16. Each solution corresponds to choosing for each prime p, k≡0 

or1 modp. Then combine them using Chinese Remainder Theorem.

Each combination gives a unique solution mod210. Therefore, there are16 solutions mod210. Therefore, in the 

interval [0,210), there are16 solutions. Therefore, in the interval [15,210], the number of solutions is16 minus the 

(b − 1)

[ceil(  ), b −b 1]
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number of solutions less than15.

Check which of the16 solutions are less than15.

The16 solutions mod210 are:

For each prime factor2,3,5,7, choose k≡0 or1 modp. Then combine.

For example:

1. k≡0 mod2,3,5,7: k≡0 mod210. So k=0 mod210. In [0,210), this is0. But0 is excluded since 

k>=ceil(sqrt(211))=15. So excluded.

2. k≡0 mod2,3,5 and≡1 mod7: Solve k≡0 mod(235)=30 and k≡1 mod7. So k=30m≡1 mod7. 30≡2 mod7, so 

2m≡1 mod7. Multiply both sides by inverse of2 mod7, which is4 (since24=8≡1
mod7).
So
m≡4
mod7.
Thus,


m=7n
+4.
Then
k=30(7n +4)=210n +120. Therefore, k≡120 mod210.

Similarly, compute all16 combinations. However, this would take time. But in any case, the solutions mod210 are16 

numbers. Let's see how many of these are less than15.

The16 solutions mod210 are:

1. 0 (excluded as before)

2. 1 (since k≡1 mod2,3,5,7: k≡1 mod210)

3. Numbers like 120 (as above), etc.

等等，也许我们可以枚举所有可能的组合：

For each prime factor, choose k≡0 or1 modp. So for primes2,3,5,7:

Each prime can be either0 or1, so16 combinations.

Compute each combination:

1. All zeros: k≡0 mod2,3,5,7 =>k≡0 mod210. k=0 (excluded).

2. All ones: k≡1 mod2,3,5,7 =>k≡1 mod210. k=1 (excluded, <15).

3. 0 mod2, 0 mod3, 0 mod5, 1 mod7: k≡120 mod210 as above.

Similarly, compute others. For example:

0 mod2,0 mod3,1 mod5,1 mod7: Compute k≡0 mod6, k≡1 mod5, k≡1 mod7.●

Compute k≡0 mod6 and k≡1 mod5 and k≡1 mod7.

First, k≡0 mod6 and k≡1 mod5. Let k=6m=5n +1. Then6m≡1 mod5 =>m≡1 mod5. So m=5p +1. Then k=6*(5p 

+1)=30p +6. Now, k≡1 mod7:30p +6≡1 mod7 =>30p≡-5 mod7 =>30≡2 mod7, so2p≡2 mod7 =>p≡1 mod7. Thus, 

p=7q +1. Then k=30*(7q +1)+6=210q +36. Therefore, k≡36 mod210.

Similarly, compute all combinations. But this is tedious. However, the key point is that the16 solutions mod210 will 

be numbers from0 to209. Since we need k>=15, the number of solutions in [15,210] is16 minus the number of 
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solutions less than15.

So how many of the16 solutions are less than15?

The solutions include:

1. k≡0 mod210:0

2. k≡1 mod210:1

3. k≡1 mod2,3,5,7:1

等等，不对。等等，k ≡ 1 mod 2,3,5,7：k ≡ 1 mod 210，因此 k = 1。

Other solutions:

For example, k≡0 mod2,3,5 and≡1 mod7: as above, k≡120 mod210. 等等，120。

Similarly, other combinations will result in numbers like36, etc.

So likely, the solutions less than15 are only0 and1, which are excluded. Therefore, all16 solutions are>=15? But16 

solutions in [0,210) are0,1, and14 others between1 and209. But if0 and1 are excluded, then14 solutions in [1,210). 

But ceil(sqrt(211))=15, so we need k>=15. Therefore, the number of solutions is14 (since0 and1 are excluded, but 

some solutions might be between2 and14). Wait, but if all solutions are>=15, then we have14 solutions. However, 

let's check.

For example, k≡1 mod210:1 (excluded). k≡120 mod210:120. k≡36 mod210:36. Similarly, other combinations will 

result in numbers >=36, 120, etc. So likely, all solutions except0 and1 are>=36, which is>=15. Therefore, the number 

of solutions in [15,210] is16 -2=14. Therefore,14 beautiful numbers. But wait, 14 is more than ten. Therefore, b=211 

would have14 beautiful numbers. Therefore, the minimal b is211. But the problem asks for the least integer b>=2 for 

which there are more than ten b-beautiful integers. Therefore,211. But let's confirm.

But before confirming, let's check if there are smaller b with more solutions. For example, if (b -1) is a product of 

three primes, say235=30, so b=31. Then the number of solutions mod30 is2^3=8. Therefore, in the interval 

[ceil(sqrt(31))≈6,30], the number of solutions would be8 minus those less than6. Let's compute.

Solutions to k(k -1)≡0 mod30. Which requires k≡0 or1 mod2,3,5.

Using Chinese Remainder Theorem, the solutions are combinations of:

k≡0 or1 mod2●

k≡0 or1 mod3●

等等，3 个素数：2、3、5。

So the combinations are:

1. k≡0 mod2,3,5: k≡0 mod30

2. k≡0 mod2,3 and≡1 mod5: k≡0 mod6 and≡1 mod5. Solve k=6m≡1 mod5 =>6m≡1 mod5 =>m≡1 mod5. So 

m=5n +1. Then k=6*(5n +1)=30n +6≡6 mod30.
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3. k≡0 mod2,5 and≡1 mod3: k≡0 mod10 and≡1 mod3. Solve k=10m≡1 mod3 =>10m≡1 mod3 =>m≡1 mod3. 

So m=3n +1. Then k=10*(3n +1)=30n +10≡10 mod30.

等等，10 mod 3 = 1。因此，10 ≡ 1 mod 3。所以，这是正确的。

4. k≡0 mod2 and≡1 mod3,5: k≡0 mod2 and≡1 mod3,5. Solve k≡1 mod3,5 and≡0 mod2. Find k≡1 mod15 

and≡0 mod2. Solve k=15m +1≡0 mod2 =>15m +1≡m +1 mod2≡0 =>m≡1 mod2. So m=2n +1. Then k=15*

(2n +1)+1=30n +16≡16 mod30.

Similarly, other combinations:

5. k≡0 mod3,5 and≡1 mod2: k≡0 mod15 and≡1 mod2: k=15m≡1 mod2 =>15m≡1m≡1
mod2
=>m≡1
mod2.


So
m=2n
+1.
Then
k=15(2n +1)=30n +15≡15 mod30.

6. k≡0 mod3 and≡1 mod2,5: k≡0 mod3 and≡1 mod2,5. Solve k≡1 mod2,5 and≡0 mod3. k≡1 mod10 and≡0 

mod3. Solve k=10m +1≡0 mod3 =>10m +1≡m +1≡0 mod3 =>m≡2 mod3. So m=3n +2. Then k=10*(3n 

+2)+1=30n +21≡21 mod30.

7. k≡0 mod5 and≡1 mod2,3: k≡0 mod5 and≡1 mod2,3. Solve k≡0 mod5 and≡1 mod6. k=5m≡1 mod6. 5m ≡ 

1 mod 6。由于 5 ≡ -1 mod 6，因此⽅程变为 -m ≡ 1 mod 6，即 m ≡ 5 mod 6。所以，m = 6n + 5。接着，k = 

5*(6n + 5) = 30n + 25 ≡ 25 mod 30。

8. k≡1 mod2,3,5: k≡1 mod30.

Thus, the8 solutions mod30 are0,6,10,15,16,21,25,30. 等等，0 和 30 是相同的。所以这些解为：0, 6, 10, 15, 16, 21, 

25, 1（因为当 k=1 时，模 30 下的结果是 1）。等等，不对。等等，第 8 个解是 \(k \equiv 1 \mod 30\)。所以这些解

是 \(k \equiv 0, 1, 6, 10, 15, 16, 21, 25 \mod 30\)。

But in the interval [6,30], the solutions are6,10,15,16,21,25,30≡0 mod30 (excluded), and1≡1 mod30 (excluded). So 

valid k=6,10,15,16,21,25.

Check each:

k=6:

(36 -6)/30=30/30=1. d1=1, d2=6 -1=5. n=36. In base31,36=1*31 +5=36. Digits1 and5 sum to6. Correct.

k=10:

(100 -10)/30=90/30=3. d1=3, d2=10 -3=7. n=100. In base31,100=3*31 +7=93 +7=100. Digits3 and7 sum to10. 

Correct.

k=15:

(225 -15)/30=210/30=7. d1=7, d2=15 -7=8. n=225. In base31,225=7*31 +8=217 +8=225. Digits7 and8 sum to15. 

Correct.

k=16:

(256 -16)/30=240/30=8. d1=8, d2=16 -8=8. n=256. In base31,256=8*31 +8=248 +8=256. Digits8 and8 sum to16. 

Correct.
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k=21:

(441 -21)/30=420/30=14. d1=14, d2=21 -14=7. n=441. In base31,441=14*31 +7=434 +7=441. Digits14 and7 sum 

to21. Correct.

等等，21² = 441。是的。

k=25:

(625 -25)/30=600/30=20. d1=20, d2=25 -20=5. n=625. In base31,625=20*31 +5=620 +5=625. Digits20 and5 sum 

to25. Correct.

Thus, six beautiful numbers:36,100,225,256,441,625. So six solutions. Which is more than the previous examples, 

but still less than ten. Therefore, b=31 has six beautiful numbers.

Therefore, moving to b=211 would give14, which is more than ten. But before that, check if there is a smaller b. For 

example, take (b -1)=235=30, leading to b=31 with six solutions. If we take (b -1)=235*7=210, leading to b=211 

with14 solutions. Alternatively, maybe a smaller (b -1) with three prime factors, but with overlapping solutions.

Alternatively, take (b -1)=237=42, so b=43. Then number of solutions mod42 is2^3=8. Therefore, in the interval 

[ceil(sqrt(43))≈7,42], the number of solutions would be8 minus those less than7.

Compute solutions mod42:

Solutions are combinations of k≡0 or1 mod2,3,7.

Therefore,8 solutions:

1. k≡0 mod2,3,7: k≡0 mod42.

等待：

1. 0 mod2,3,7:0 mod42.

等等，这样会得到以下 8 种组合：

For each prime, choose 0 or1:

0,0,0:0 mod42.●

等等，这会引发⼀些疑惑。我们来枚举所有组合吧：

1. 0 mod2,0 mod3,0 mod7:0 mod42.

等等，这⾥可能需要同时满⾜以下条件：k mod 2 = 0，k mod 3 = 0，k mod 7 = 0。因此，k ≡ 0 mod 42。

2. 0 mod2,0 mod3,1 mod7:0 mod6,1 mod7. Solve k=6m≡1 mod7. 6m≡1 mod7. 6≡-1 mod7, so -m≡1 mod7 

=>m≡-1≡6 mod7. So m=7n +6. Then k=6*(7n +6)=42n +36≡36 mod42.

3. 0 mod2,1 mod3,0 mod7:0 mod2,0 mod7. So k≡0 mod14. Also,1 mod3. Solve k=14m≡1 mod3. 14≡2 mod3, 

so2m≡1 mod3 =>m≡2 mod3. So m=3n +2. Then k=14*(3n +2)=42n +28≡28 mod42.

等等，28 mod 3 = 1，因为 28 ÷ 3 = 9 ... 1。所以，28 ≡ 1 mod 3。这是正确的。
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4. 0 mod2,1 mod3,1 mod7:0 mod2,1 mod3,1 mod7. Solve k≡1 mod3,1 mod7, and0 mod2. k≡1 mod21 and0 

mod2. Since21 is odd, k≡1 mod21 and0 mod2. But1≡1 mod21 and0 mod2, which is impossible. Therefore, 

no solution here.

等等，这有点让⼈困惑。我们来仔细看看。

k≡1 mod3 and1 mod7: k≡1 mod21.

k≡0 mod2.

So k≡1 mod21 and0 mod2. So k must be even and≡1 mod21. But1 mod21 is odd. Therefore, no solution. 

Therefore, this combination is invalid.

So combination4 is invalid.

5. 1 mod2,0 mod3,0 mod7:1 mod2,0 mod21. Similarly, impossible. Because0 mod21 is even, but1 mod2 is odd. 

Therefore, no solution.

6. 1 mod2,0 mod3,1 mod7:1 mod2,0 mod3,1 mod7. Solve k≡1 mod2,0 mod3,1 mod7.

k≡1 mod2 and0 mod3. Let k=3m≡1 mod2. 3m≡1 mod2 =>m≡1 mod2. So m=2n +1. Then k=3*(2n +1)=6n +3≡3 

mod6.

Also, k≡1 mod7. So6n +3≡1 mod7 =>6n≡-2≡5 mod7. Multiply both sides by inverse of6 mod7, which is6 

(since66=36≡1
mod7).
So
n≡56=30≡30 -47=2
mod7.
So
n=7p
+2.
Then
k=6(7p +2)+3=42p +15. Therefore, k≡15 

mod42.

等等，15 mod 2 = 1，这是正确的，因为 15 是奇数。

k=15≡0 mod3,3*5.

k=15≡1 mod7, since15=2*7 +1.

Thus, valid.

7. 1 mod2,1 mod3,0 mod7:1 mod2,1 mod3,0 mod7. Solve k≡1 mod2,1 mod3,0 mod7.

k≡1 mod2 and1 mod3. Then k≡4 mod6.

Also, k≡0 mod7. Solve k=7m≡4 mod6. 7m≡m≡4 mod6. So m≡4 mod6. m=6n +4. Then k=7*(6n +4)=42n +28≡28 

mod42.

Check k=28:

28 mod2=0≡1 mod2? No. Wait, 28 is even, but we need k≡1 mod2. So invalid. Therefore, no solution here.

等等，这⾥有问题。我们重新解决⼀下：

k≡1 mod2,1 mod3,0 mod7.

So k=7m, and k≡1 mod2 and1 mod3.

7m≡1 mod2 => m≡1 mod2.
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7m≡1 mod3 => 7m≡m≡1 mod3.

Therefore, m≡1 mod2 and m≡1 mod3. So m≡1 mod lcm(2,3)=6. Thus, m=6n +1. Then k=7*(6n +1)=42n +7≡7 

mod42.

Therefore, k≡7 mod42. Check:

7 mod2=1, 7 mod3=1, 7 mod7=0. Correct. So k=7. But7 is less than ceil(sqrt(43))≈6.93, so ceil is7. So k=7 is 

included. Therefore, valid.

8. 1 mod2,1 mod3,1 mod7:1 mod2,1 mod3,1 mod7. Solve k≡1 mod2,1 mod3,1 mod7. Which is k≡1 mod 

lcm(2,3,7)=42. So k≡1 mod42.

Thus, solutions are k≡0,7,15,21,28,35,42≡0 mod42, but k=7,15,21,28,35,1.

But in the interval [7,42], the solutions are7,15,21,28,35,42. However,42 is equivalent to0 mod42, which is excluded. 

So valid k=7,15,21,28,35.

Check each:

k=7:

(49 -7)/42=42/42=1. d1=1, d2=7 -1=6. n=49. In base43,49=1*43 +6=49. Digits1 and6 sum to7. Correct.

k=15:

(225 -15)/42=210/42=5. d1=5, d2=15 -5=10. n=225. In base43,225=5*43 +10=215 +10=225. Digits5 and10 sum 

to15. Correct.

等等，5 + 10 = 15。没错。

k=21:

(441 -21)/42=420/42=10. d1=10, d2=21 -10=11. n=441. In base43,441=10*43 +11=430 +11=441. Digits10 and11 

sum to21. Correct.

k=28:

(784 -28)/42=756/42=18. d1=18, d2=28 -18=10. n=784. In base43,784=18*43 +10=774 +10=784. Digits18 and10 

sum to28. Correct.

k=35:

(1225 -35)/42=1190/42=28.5. Not integer. 等等，1190 除以 42 是 28.333...。等等，这不可能。

等等， 。 除以 ： ， 。所以 

。因此， 。这不是整数。因此， 不是有

效解。等等，但在模 下， 是⼀个解。然⽽， 并不是整数。这是因为虽然 可以整除 

，但 时， ， 。 和 在模 下分别

是 和 ，但它们的乘积是 。 模 等于 ，因为 余 。

1225 − 35 = 1190 1190 42 42 × 28 = 1176 1190 − 1176 = 14

1190 = 42 × 28 + 14 1190/42 = 28 + 14/42 = 28 + 1/3 k = 35

42 k = 35 (k −2 k)/42 42

k(k − 1) k = 35 k ≡ 35 (mod 42) k − 1 = 34 (mod 42) 35 34 42

35 34 35 × 34 = 1190 1190 42 14 1190 ÷ 42 = 28 14
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因此， 。也就是说， 可以整除 除以 的结果，但 并不是整数。

这表明虽然满⾜模 的条件，但 并不⼀定是整数。等等，但 必须能被 整除。然

⽽， ，⽽ 并不能被 整除。等等， 是 。接下来检查：

1190 divided by2:1190/2=595. Divided by3:595/3≈198.333, not integer. Divided by7:1190/7=170. So 1190=25717.


Therefore,
42=237
divides1190?
42=237,
but1190=25717. The 3 is missing. Therefore,42 does not divide1190. 

Therefore, k=35 is not a valid solution. Wait, but according to the previous analysis, k=35 is a solution mod42. But 

actually, k=35≡-7 mod42, but k(k-1)=3534=1190.
1190
mod42=1190
-4228=1190 -1176=14. Therefore,14≡0 

mod14, but42 does not divide1190. Therefore, there is a contradiction here. Therefore, our earlier assumption that 

combining the modular solutions would lead to k(k -1)≡0 mod42 is incorrect. Because even though k≡0 or1 mod 

each prime, the product k(k -1) might not be divisible by the product of the primes if the factors are distributed 

across the primes.

等等，这到底是怎么回事？让我们来仔细思考⼀下。假设我们需要满⾜ 。由于 

，因此 都必须整除 。因为 和 是互质的，所以每个素数必须整除 

或 。也就是说，对于每个素数 （这⾥为 ），必须满⾜ 整除 或 整除 。因此，对

于每个素数，我们有 或 。因此，该同余⽅程的解是所有可能的组合，即每个素数

取 或 的情况。对于三个素数，共有 种组合。

然⽽，当我们取 时，它在模 、 、 下分别满⾜ 、 、

。等等，不对。等等， ， ， 。再等等，

根据 来说， ，这并不是 或 。因此， 并不满⾜ 或 

的条件。等等，但在之前的分析中，我们考虑的是 或 、 或 、

或 的组合。对于 ，我们有 、 、 。但这

并不是⼀个合法的组合。等等，这说明哪⾥出错了？

等等，不对。当考虑模 的解时，解的集合是所有满⾜以下条件的 ：对每个素因⼦ ，都有 

或 。对于 ， ；对于 ，

；对于 ， 。然⽽， 既不是 也不是 

，所以 并不满⾜条件。因此，之前的分析中存在错误。

在我们之前的分析中，我们寻找了满⾜以下条件的解： 

对于每个素因⼦ ，都有 或 。 

因此， 对于 满⾜ ，但对 满⾜ ，这不符合条件。所以，

并不算是⼀个解。

然⽽，在我们列举的 8 个解中， 被错误地包含进去了。让我们重新审视⼀下之前的解法。

We had combinations:

1190 ≡ 14 (mod 42) 42 1190 42 1190/42

42 (k −2 k)/42 k(k − 1) 42

35 ⋅ 34 = 1190 1190 42 42 2 ⋅ 3 ⋅ 7

k(k − 1) ≡ 0 mod 42

42 = 2 ⋅ 3 ⋅ 7 2 ⋅ 3 ⋅ 7 k(k − 1) k k − 1 k

k − 1 p 2, 3, 7 p k p k − 1

k ≡ 0 mod p k ≡ 1 mod p

0 1 2 =3 8

k = 35 2 3 7 k ≡ 1 mod 2 k ≡ 2 mod 3

k ≡ 0 mod 7 35 mod 2 = 1 35 mod 3 = 2 35 mod 7 = 0

3 35 ≡ 2 mod 3 0 1 mod 3 k = 35 k ≡ 0

1 mod 3 k ≡ 0 1 mod 2 0 1 mod 3 0

1 mod 7 k = 35 k ≡ 1 mod 2 k ≡ 2 mod 3 k ≡ 0 mod 7

42 k p

k ≡ 0 (mod p) k ≡ 1 (mod p) p = 2 k ≡ 1 (mod 2) p = 3

k ≡ 2 (mod 3) p = 7 k ≡ 0 (mod 7) 2 (mod 3) 0 1 (mod 3)

k = 35

p k ≡ 0 (mod p) 1 (mod p)

k = 35 p = 7 0 (mod 7) p = 3 2 (mod 3)

k = 35

k = 35
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1. 0,0,0:0 mod42.

2. 0,0,1:36 mod42.

3. 0,1,0:28 mod42.

4. Invalid.

等等，第四种组合是⽆效的。

5. Invalid.

6.15 mod42.

7.7 mod42.

等等，第七种是 。

8.1 mod42.

But in the interval [7,42], the valid solutions are7,15,21,28,35. But35 is invalid as above. Similarly,21:

k=21:

Check k=21. For p=2:21≡1 mod2. For p=3:21≡0 mod3. For p=7:21≡0 mod7. Therefore, for p=3 and p=7,21≡0 

mod3 and0 mod7, which is allowed (since0 is allowed). So k=21 is a valid solution. Because for each prime, k≡0 

mod p or1 mod p. For p=2,21≡1; for p=3,21≡0; for p=7,21≡0. Therefore, valid.

But k=21:

(441 -21)/42=420/42=10. Which is integer. So valid. Therefore, n=441=21². In base43,441=10*43 +11=430 +11=441. 

Digits10 and11 sum to21. Correct.

Similarly, k=28:

k=28:

For p=2:28≡0 mod2.

p=3:28≡1 mod3.

p=7:28≡0 mod7.

Therefore, for p=2,28≡0; p=3,28≡1; p=7,28≡0. Therefore, valid.

Thus, k=28 is valid. But earlier, we thought k=28 would lead to non-integer, but actually:

(784 -28)/42=756/42=18. Which is integer. Therefore, d1=18, d2=28 -18=10. n=784=28². In base43,784=18*43 

+10=774 +10=784. Digits18 and10 sum to28. Correct.

Therefore, the valid k's in [7,42] are7,15,21,28. k=35 is invalid. So four solutions. Therefore, in base43, there are four 

beautiful numbers. Which is more than previous examples but still less than ten.

Therefore, moving to b=211 with14 solutions is the first instance where the number exceeds ten. Therefore, the 

minimal b is211.

k ≡ 7 (mod 42)
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But let's check another example. Let's take (b -1)=235*7=210, b=211. Then the number of solutions is16. As before, 

in the interval [15,210], assuming all solutions are>=15, we have16 solutions. Each solution corresponds to a 

combination of k≡0 or1 mod2,3,5,7. For example:

k≡0 mod2,3,5,7: k=0 mod210. Excluded.

k≡1 mod2,3,5,7: k=1 mod210. Excluded.

Then, other combinations like:

k≡0 mod2,3,5 and1 mod7: k=120 mod210 as before.

Similarly, each combination gives a unique k in [0,210). The solutions are:

0,1,30,36,70,84,90,120,126,150,156,180,186,210≡0. So the solutions 

are0,1,30,36,70,84,90,120,126,150,156,180,186. But0 and1 are excluded. Now check which of these are>=15.

Starting from30 upwards:

30,36,70,84,90,120,126,150,156,180,186. So eleven solutions. But wait,120,126,150,156,180,186. Let's count:

From30 to186, how many solutions? Let's list them:

30,36,70,84,90,120,126,150,156,180,186. That's eleven numbers. Wait, but earlier I thought there were16 solutions. 

But perhaps some solutions are less than15. For example, k=6 mod70? Wait, no. Let me recount.

The solutions mod210 are:

For each prime, choose0 or1. So16 combinations. The solutions are:

1. 0 mod210.

2.1 mod210.

3.0 mod2,3,5 and1 mod7:30*1=30 mod210.

等等，不对：

Wait, for k≡0 mod2,3,5 and1 mod7. As before, k=30m≡1 mod7. 30 除以 7 的余数为 2，因此 \( 30m \equiv 2m 

\equiv 1 \pmod{7} \)。求解 \( m \)： 

\( 2m \equiv 1 \pmod{7} \)，其解为 \( m \equiv 4 \pmod{7} \)，因为 \( 2 \times 4 = 8 \equiv 1 \pmod{7} \)。 

于是，\( m = 7n + 4 \)，代⼊可得： 

\( k = 30 \times (7n + 4) = 210n + 120 \)。 

因此，\( k \equiv 120 \pmod{210} \)。

Similarly, other combinations:

k≡0 mod2,3,7 and1 mod5: Solve k≡0 mod42 and1 mod5. k=42m≡1 mod5. 42 ≡ 2 mod 5，因此 2m ≡ 1 mod 5。解

得 m ≡ 3 mod 5。所以 m = 5n + 3，代⼊得： 

k = 42 × (5n + 3) = 210n + 126 ≡ 126 mod 210。
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Similarly, others:

k≡0 mod2,5,7 and1 mod3: Solve k≡0 mod70 and1 mod3. 70m≡1 mod3 =>70≡1 mod3, so1m≡1
mod3=>m≡1


mod3.
m=3n
+1.
Then
k=70(3n +1)=210n +70≡70 mod210.

Thus, solutions like70,126,120, etc.

Listing all16 solutions mod210:

0,1,30,36,70,84,90,120,126,150,156,180,186,210 (which is0), etc. Wait, actually, the solutions are all numbers where 

for each prime, they are≡0 or1. Therefore, the numbers are:

For each prime factor2,3,5,7:

If we choose0 for all, we get0.●

If we choose1 for all, we get1.●

Other combinations:●

For example:

0 mod2,3,5,1 mod7:120●

0 mod2,3,7,1 mod5:126●

等等，我需要重新⽣成这16个解。

But to save time, let's note that in the interval [15,210], the solutions are from30 up to186, which are eleven 

numbers. Wait, but earlier we thought there were16 solutions. Therefore, perhaps my previous assumption that all 

solutions are>=15 is incorrect. Let's check some solutions:

For example, k≡0 mod2,3,5,1 mod7:120

k≡0 mod2,3,7,1 mod5:126

k≡0 mod2,5,7,1 mod3:70

k≡0 mod3,5,7,1 mod2:105 (Wait, 105 mod2=1, but105 is odd. Let's check:

If we choose k≡1 mod2,0 mod3,5,7. Then k=0 mod105 and1 mod2. Solve k=105m≡1 mod2. 105≡1 mod2, so m≡1 

mod2. m=2n +1. Then k=105*(2n +1)=210n +105≡105 mod210. So k=105. Check105:

105 in base211 is a two-digit number. Let's check if it's b-beautiful.

n=105^2=11025. In base211,11025 divided by211:

21152=10972,
11025-10972=53.
So11025=52211 +53. Digits52 and53. Their sum is52+53=105. sqrt(11025)=105. 

Correct.

Therefore, k=105 is a valid solution. Similarly, k=105 is in the interval [15,210].

Similarly, k=165:
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Another combination. For example, k≡1 mod2,0 mod3,5,7. Then k=0 mod105 and1 mod2. As above, k=105m 

+105. Wait, no.

等等，105 mod 2 = 1，所以 k=105 ≡ 1 mod 2。但如果选择条件是 k ≡ 0 mod 3,5,7 和 k ≡ 1 mod 2，那么 k=105 是

符合条件的。

Similarly, k=105 is a solution. So in total, the solutions in [15,210] are:

30,36,70,84,90,105,120,126,150,156,180,186. Let's count these:

From30 to186, how many numbers?

30,36 (difference6),70 (difference34),84 (difference14),90 (difference6),105 (difference15),120 (difference15),126 

(difference6),150 (difference24),156 (difference6),180 (difference24),186 (difference6). Total of11 numbers. Wait, but 

this is only11. But we need16 solutions. Where are the other5?

等等，可能还有其他的解。例如，k ≡ 0 mod 2,3,1 mod 5,7。

Let's compute:

k≡0 mod6 and1 mod5,1 mod7.

Solve k≡0 mod6 and k≡1 mod5,1 mod7.

First, solve k≡0 mod6 and k≡1 mod5.

k=6m≡1 mod5 =>6m≡1 mod5 =>m≡1 mod5. m=5n +1. Then k=6*(5n +1)=30n +6≡6 mod30.

Then solve k≡6 mod30 and k≡1 mod7.

k=30n +6≡1 mod7 =>30n +6≡1 mod7 =>30≡2 mod7, so2n +6≡1 mod7 =>2n≡-5≡2 mod7 =>n≡1 mod7. n=7p +1. 

Then k=30*(7p +1)+6=210p +36. Therefore, k≡36 mod210.

Therefore, k=36. Check k=36:

(36² -36)/210=(1260)/210=6. d1=6, d2=36 -6=30. n=1296. In base211,1296=6*211 +30=1266 +30=1296. Digits6 

and30 sum to36. Correct.

Thus, k=36 is a solution. So this was missing earlier. Therefore, the solutions include numbers like36,70,105, etc. 

Therefore, the total number of solutions in [15,210] is16 minus the solutions less than15. The solutions less than15 

are0 and1. Therefore,16 -2=14 solutions. Therefore,14 solutions. Each of these k's from30 to210 (but actually, some 

are less than15? Wait, no. k=36 is in the interval [15,210]. Similarly, k=30,36,70,84,90,105,120,126,150,156,180,186. 

That's twelve numbers. Wait, but16 -2=14. So where are the other two?

Wait, perhaps k=165 and k=168.

等等，让我检查⼀下解法。

Another combination is k≡0 mod2,5,1 mod3,7.

Solve k≡0 mod10 and1 mod3,1 mod7.
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k≡0 mod10 and1 mod3: k=10m≡1 mod3 =>10m≡1 mod3 =>m≡1 mod3. m=3n +1. k=10*(3n +1)=30n +10≡10 

mod30.

Then solve k≡10 mod30 and1 mod7.

k=30n +10≡1 mod7 =>30n +10≡1 mod7 =>30≡2 mod7, so2n +10≡1 mod7 =>2n≡-9≡-2≡5 mod7 =>n≡(5)(inverse


of2
mod7)=54=20≡6 mod7. n=7p +6. Then k=30*(7p +6)+10=210p +190. Thus, k≡190 mod210.

Check k=190:

(190² -190)/210=(36100 -190)/210=35910/210=171. d1=171, d2=190 -171=19. n=36100. In 

base211,36100=171*211 +19=36081 +19=36100. Digits171 and19 sum to190. Correct.

Thus, k=190 is a solution. Similarly, k=190 is in the interval.

Similarly, another combination:

k≡0 mod2,7,1 mod3,5.

Solve k≡0 mod14 and1 mod3,1 mod5.

k≡0 mod14 and1 mod3:14m≡1 mod3 =>14≡2 mod3, so2m≡1 mod3 =>m≡2 mod3. m=3n +2. k=14*(3n +2)=42n 

+28≡28 mod42.

Then solve k≡28 mod42 and1 mod5.

k=42n +28≡1 mod5 =>42n +28≡1 mod5 =>42≡2 mod5, 28≡3 mod5. So 2n +3≡1 mod5 =>2n≡-2≡3 mod5 

=>n≡(3)(inverse
of2)=33=9≡4 mod5. n=5p +4. Then k=42*(5p +4)+28=210p +176 +28=210p +204. Wait, 42*4=168, 

168 +28=196. Wait, maybe miscalculation.

等等，k = 42n + 28 ≡ 1 mod 5。

Compute 42n +28 mod5:

42≡2 mod5, 28≡3 mod5. So equation:2n +3≡1 mod5 =>2n≡-2≡3 mod5 =>n≡(3)(inverse
of2)=33=9≡4 mod5. 

Therefore, n=5p +4. Then k=42*(5p +4)+28=210p +168 +28=210p +196≡196 mod210.

Check k=196:

(196² -196)/210=(38416 -196)/210=38220/210=182. d1=182, d2=196 -182=14. n=38416. In 

base211,38416=182*211 +14=38302 +14=38416. Digits182 and14 sum to196. Correct.

Thus, k=196 is a solution.

Therefore, the solutions in [15,210] are:

30,36,70,84,90,105,120,126,150,156,180,186,190,196. That's14 solutions. Therefore,14 solutions. Each 

corresponding to a combination of choosing0 or1 mod each prime. Therefore, each solution is unique, and they are 

all>=15. Therefore, in base211, there are14 beautiful numbers, which is more than ten. Therefore, the minimal b 

is211.

33 / 35

770

46



But let's check if there is a smaller b with more solutions. For example, take (b -1)=235*11=330, so b=331. Then the 

number of solutions would be2^4=16. However, ceil(sqrt(331))≈18.3, so interval[19,330]. The solutions mod330 

would be16 numbers. If all are>=19, then16 solutions. But likely, some solutions are less than19, so the count would 

be16 minus those less than19. But this might result in more than14 solutions. However, this would require checking.

Alternatively, take (b -1)=2357=210,
b=211,
which
gives14
solutions.
The
next
candidate
would
be
(b


-1)=2357*11=2310, b=2311, giving32 solutions. But this is much larger.

Alternatively, check b=105. Then (b -1)=104=813.
The
number
of
solutions
would
be
related
to
the
factors
of8


and13.
Since8=2^3
and13
is
prime.
The
number
of
solutions
mod8
isφ(8)=4?
Wait,
no.
For
modulus8,
the
number
of


solutions
to
k(k
-1)≡0
mod8
is2
(as
k≡0
or1
mod8).
Similarly,
for
modulus13,
the
number
of
solutions
is2.
Therefore,


total
solutions
mod104=813 is2*2=4. Therefore, in the interval [ceil(sqrt(105))≈11,104], the number of solutions is4. 

Thus, four solutions. Which is less than ten.

Therefore, the minimal b is211.

Final
Answer

\boxed{211}

<|end_of_thought|>

<|begin_of_solution|>

To determine the least integer \( b \geq 2 \) for which there are more than ten \( b \)-beautiful integers, we need to 

find a base \( b \) where there are more than ten two-digit numbers \( n \) in base \( b \) such that the sum of their 

digits equals \( \sqrt{n} \).

A number \( n \) is \( b \)-beautiful if:

1. \( n \) is a two-digit number in base \( b \), i.e., \( b \leq n \leq b^2 - 1 \).

2. The sum of the digits of \( n \) in base \( b \) equals \( \sqrt{n} \).

Key steps:

1. For \( n \) to be a two-digit number in base \( b \), \( n \) must be a perfect square \( k^2 \) where \( k \) is an 

integer such that \( \lceil \sqrt{b} \rceil \leq k \leq b - 1 \).

2. The digits of \( k^2 \) in base \( b \) must sum to \( k \). This translates to the condition that \( (k^2 - k) \) is 

divisible by \( (b - 1) \).

To find the smallest \( b \) such that there are more than ten such \( k \), we need \( (b - 1) \) to have many divisors. 

The number of solutions is related to the number of integers \( k \) such that \( (b - 1) \) divides \( k(k - 1) \).

By analyzing the problem, we find that choosing \( b - 1 \) as the product of the first few primes (square-free) 

maximizes the number of solutions. The smallest such \( b \) is found when \( b - 1 = 2 \times 3 \times 5 \times 7 = 

210 \), leading to \( b = 211 \).
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In this case, the number of solutions (beautiful numbers) is determined by the combinations of residues modulo the 

prime factors of 210. This results in 16 solutions modulo 210, all of which are valid in the range \( \lceil \sqrt{211} 

\rceil = 15 \) to 210, giving us 14 valid solutions (more than ten).

Thus, the least integer \( b \geq 2 \) for which there are more than ten \( b \)-beautiful integers is \(\boxed{211}\).

<|end_of_solution|>

GT: 211

Predict: 211 ✅
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