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Abstract

This paper explores the challenges of test-time
scaling of large language models (LLMs), re-
garding both the data and inference efficiency.
We highlight the diversity of multi-lingual rea-
soning based on our pilot studies, and then in-
troduce a novel approach, L? multi-lingual uni-
fication learning with a decoding intervention
strategy for further investigation. The basic
idea of L? is that the reasoning process varies
across different languages, which may be mu-
tually beneficial to enhance both model per-
formance and efficiency. In specific, there are
two types of multi-lingual data: the entire long
chain-of-thought annotations in different lan-
guages and the step-wise mixture of languages.
By further tuning based on them, we show that
even small amounts of data can significantly
improve reasoning capabilities. Our findings
suggest that multilingual learning reduces both
the required data and the number of inference
tokens while maintaining a comparable perfor-
mance. Furthermore, L? is orthogonal to other
data efficient methods. Thus, we also empha-
size the importance of diverse data selection.
The L? method offers a promising solution to
the challenges of data collection and test-time
compute efficiency in LLMs.

1 Introduction

Scaling up training-time and test-time compute are
two complementary strategies for enhancing the
performance of large language models (LLMs).
Training-time scaling allows the model to learn
various knowledge through a massive corpus, but
it often leads to unsatisfactory reasoning during in-
ference, sometimes causing absurd mistakes. One
explanation for this is that conventional inference
primarily relies on pattern recognition from mem-
ory. In contrast, test-time scaling (e.g., OpenAl
ol(Team, 2025a)) significantly improves reason-
ing generalization by mirroring human cognitive
processes, where problem-solving is not always
a direct input-to-output mapping as in supervised
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Figure 1: Pilot experimental results of Deepseek-R1-
32b on MATHS500 dataset using different languages.

fine-tuning, but instead involves iterative reflection
and error correction, with a longer thinking pro-
cess (measured by the number of predicted tokens)
guiding the model toward the correct answer.

Much research has explored this idea, reveal-
ing two key challenges. The first is the heavy
burden of data collection. Some attempts to
replicate ol require up to 747k training sam-
ples (Guan et al., 2025), while deepseek R1-32b
necessitates 80k samples to achieve ol-level per-
formance (DeepSeek-Al et al., 2025). To reduce
the costly long chain-of-thought (CoT) annotations,
Sky-T1 (Team, 2025a) distilled 17k samples from
QwQ-32b (Team, 2025b) using well-designed data
selection strategies. S1 (Muennighoff et al., 2025)
further reduced the tuning dataset size to 1,000 by
carefully selecting only high-quality, difficult, and
diverse samples. Competition continues, with the
latest work, LIMO (Ye et al., 2025), demonstrating
that as few as 817 samples can enable the model
to acquire long reasoning capabilities and tackle
highly challenging math problems. As the demand
for annotations decreases, an interesting question
arises: What is the limit of “less" data?

Another key challenge is the efficiency of test-
time compute. As the reasoning chain expands,
solving a problem often requires tens of thousands



of tokens, significantly increasing the burden on
inference efficiency. For ordinary problems, ol-
type models use 1953% more tokens than tradi-
tional models to arrive at the same answer (Chen
et al., 2025).Higher performance on math compe-
tition problems often requires tens of thousands
of tokens; thus, reducing inference tokens without
sacrificing performance is crucial.

In this paper, we simplify the learning of test-
time compute with Less data and Less inference
tokens, namely L2, through multilingual unifica-
tion learning. Our core idea is that logical thinking
varies across different languages, leading to vari-
ous solutions and inference token lengths given the
same query. As shown in figure 1, our pilot study
translates English math questions into other lan-
guages, which are prompted to Deepseek-R1-32b
to seek solutions in their own languages. We can
see the performance and efficiency vary a lot on
the AIME24 dataset, ranging from 73.3% accuracy
(French) to 40.0% (Hebrew), and from around 7k
to 9k inference tokens (Section 2).

Therefore, we assume that augmenting a small
amount of CoT data using multiple languages not
only enhance data diversity, but also leverage the
more concise thinking patterns in certain languages
to help inference efficiency.

To test our assumption, we propose a three-step
L? multilingual unification learning: (1) collecting
high-quality English samples (e.g., 6 from OpenAl
ol, 1k from s1), (2) generating multilingual CoT
annotations using Deepseek API, and (3) creating
multilingual data by translating selected reflection
steps and tagging them with language tokens; ad-
ditionally, we introduce a decoding intervention
strategy to guide language-specific inference.

We have conducted extensive experiments. Here
are our main findings: 1) Through data augmenta-
tion in different languages, only six high-quality
samples can improve long reasoning performance
by 20%. 2) Multilingual enhancement is orthogo-
nal to other learning strategies. By introducing
more high-quality samples, the performance of
our L2-32B can be continuously improved, reach-
ing comparable 53% with 651 samples. 3) While
limited data can evoke extended reasoning, per-
formance eventually plateaus; simply increasing
samples or languages yields minimal gains, high-
lighting the need for more diverse data selection
or construction. 4) Multilingual learning enhances
performance and notably reduces inference token

usage compared to single-language learning. 5)
Once trained with multi-lingual data, it is unneces-
sary to infer with different languages. Our major
contributions can be summarized as follows:

1. We highlight the differences in reasoning
across languages, which not only helps en-
hance data diversity but also has the potential
to improve reasoning efficiency.

2. We propose the namely L? paradigm, which
is orthogonal to other efficient data methods.

3. We constructed several datasets with differ-
ent languages and scale. Based on them, we
trained models to gain valuable insights for
future research.

2 Preliminary Observation on
Multi-lingual long Reasoning

We begin by evaluating multi-lingual long CoT rea-
soning as pilot studies mentioned in the introduc-
tion. Specifically, we translate the AIME, GPQA,
and MATHS500 datasets into nine languages [?! and
investigate how language choice affects accuracy,
normal stopping rates, and token usage in each lan-
guage. We also compare models of varying scales
to examine the influence of multilingual factors on
extended reasoning chains.

2.1 Setup

To assess multilingual long-form CoT reasoning,
we adopt a selection of open-source models varying
in size and pretraining architecture, chosen for their
demonstrated reasoning strength and suitability for
local evaluation setups:

* Qwen2.5-based Models with parameter sizes of
1.5B, 7B, 14B, and 32B, including the Deepseek
R1 Distilled Model, which is primarily trained on
Chinese and English.

* LLaMA-based Models with parameter sizes of
8B and 70B, representing models pretrained on
diverse multilingual corpora.

During inference, we record whether the model
ends at an appropriate end-of-sequence marker (re-
porting the proportion of such “normal stops”),
and we quantify tokens generated in each language
to assess whether reasoning genuinely unfolds in
the target language. Due to the space limitation,
we only report the results of Deepseek-R1-32B



as representative models due to its strong perfor-
mance. Other results can be found in Appendix.
Note that the scores are based on our careful re-
implementation, which may be different from the
report due to varied prompts or other config.

2.2 Observation

As shown in Figure 2, we can see that:
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Figure 2: Results of Deepseek-R1-32b on AIME and
GPQA datasets using different languages.

Accuracy. Our analysis indicates that English
and Chinese achieve superior performance on the
GPQA and MATH500 , consistent with their domi-
nance in the pre-training corpora. Conversely, the
AIME dataset shows notable exceptions: French,
Hebrew, and Korean demonstrate unexpectedly
competitive accuracies. We attribute these devi-
ations primarily to AIME’s limited size of only 30
problems, which may increase statistical variance
and impact the stability of accuracy estimates.

Normal Stopping and Token Usage. Most out-
puts terminate correctly (though sometimes exces-
sively or repetitively), but token usage varies no-
tably across languages.

Multilingual Reasoning and Code-Switching.
For Chinese, English, Korean prompts, the model
predominantly reasons in that language; however,

for other languages, sometimes the LLMs reverts
to Chinese or English mid-way, sometimes mixing
languages in a single CoT.

In conclusion, results indicate significant varia-
tions in accuracy and inference length across lan-
guages, suggesting distinct advantages. However,
LLMs’ occasional confusion between languages
presents challenges for controlled multilingual rea-
soning, which will be discussed later.

3 Data and Method

To combine the merits of reasoning in different
languages, our proposed L? multi-lingual unifica-
tion learning is first to augment long CoT data at
both the entire solution level and at the step level,
then finetune LLMs using the augmented data. The
overall framework consists of three key steps: high-
quality sample collection, multi-lingual thoughts
annotation, and multi-lingual unification learning.
Next we will introduce them in turn, followed by
multi-lingual decoding interventions to explore the
impacts of languages on inference.

3.1 High-quality sample collection

We collect three sets of data with different scales
from existing resources. Note that we didn’t com-
bine them together into a single set. Instead, we
investigate our method using them separately to
verify the effectiveness.

e L2 - M 01%. This set contains six official exam-
ples adapted from OpenAl’s website, manually
curated and formatted in I&TEX. The topics in-
clude Cipher, Coding, Math, Crossword, English,
and Science, with one question per topic. The
superscript [ denote the number of languages in
experiments using the following two-step aug-
mentation. For instance, £2-Mo12 involves four
language (ZH, EN, KO, RU), results in 2,700
multi-lingual samples in total.

« L? = MS1.,, .- We introduce 100, 651, and
1000 samples from the “S1k” dataset (Muen-
nighoff et al., 2025), focusing primarily on math-
ematical problems, to evaluate how the number
of samples affects model training effectiveness.
Initially, we included only partial data due to in-
stability issues with the Deepseek API used for
generating Chain-of-Thought (CoT) reasoning
paths, resulting in only 651 valid instances. Sub-
sequently, after the API’s stability was restored,
CoT paths were generated for the full set of 1k



samples. In experiments, such as L2-MS1%;,, we
introduce four languages: English, Chinese, Rus-
sian, and Korean. We did not select all nine lan-
guages mainly due to considerations regarding
computational cost and efficiency. Additionally,
we aimed to balance the sizes of these two train-
ing sets for comparative purposes.

s L2-M BSéoo- We randomly select 500 ques-
tions from Bespoke-Stratos-17k (Labs, 2025) as
the data set. all other configurations remain con-
sistent with L2-p751!

samples*

3.2 Multi-lingual thoughts annotation

We curate multilingual CoT at the solution level by
translating questions with GPT-40, generating step-
by-step explanations via Deepseek API in target
languages, and collecting diverse reasoning paths
without rigorously evaluating translation quality.

3.3 Multi-lingual unification learning

We curate multilingual unification data by segment-
ing English CoT texts into reflection fragments, ran-
domly translating selected steps (identified by cues
like “Wait,” “Hmm”) via GPT-40, and marking
language boundaries with special tokens, thereby
creating a code-switched corpus to foster flexible
cross-lingual reasoning (illustrated in Figure 3).

[ )]
M Find the least common multiple of 12, 18, 20 and 27. ‘

<en> <en>
1.First, list the numbers 12, 18, 20, 27 and
compute LCM(12, 18) = 36.

2.Next, find LCM(36, 20):
36 = 2232, 20 = 225 — highest powers 22:32-5=180.|

Standard methods are a bit complex, let me try
alternative logic for a simpler approach.

<zh> BATAILAERREMS EEE:

. 2 12 = 22.3 18 = 2.32

So Highest powers — 22-32.5 = 180. 20 = 225 27 =32

3. Then, compute LCM(180, 27); — N a
27 = 33 — 22335 = 540, but mis-copied LIS B = RS D,

exponent as 2 to get 360.

<en> Therefore LCM = 540.
Multiplying these gives 22-33:5 = 540
but mis-copied 3-power as 2, wrote 22-32:5 = 360.

token usage: [N ENENENENENERN token usage: [N

Figure 3: Comparison of reasoning strategies: mixed
Chinese-English reasoning (right) achieves correct re-
sults with clearer logic and fewer tokens than English-
only (left).

Training After the above two steps, we will ob-
tain the entire CoT in English and Chinese, respec-
tively, as well as the step-wise mixture of thoughts
in two languages. Here, we introduce the training
details. We utilize the 11amafactory framework,
integrating flash attention and a light kernel accel-
eration package to expedite training. Our approach
follows standard Supervised Fine-Tuning (SFT)
with ZeRO Stage 3 optimization, and we set the
maximum sequence length to 16k tokens. Training
is conducted on 8 H20 GPUs.

For datasets with fewer than 300 training sam-
ples (small datasets), we set batch size and gradient
accumulation step to 1, over-sample data to ensure
sufficient coverage, and train until loss approaches
zero. For larger datasets, we keep batch size at 1
but increase gradient accumulation step to 12 and
train for 3 epochs.

3.4 Decoding Intervention

Algorithm 1 Decoding Intervention Pseudocode

Require: logits, o, 3, k, zh_token
Ensure: adjusted_logits
top_tokens < TopK(logits, k)
. if zh_token € top_tokens then
u < Uniform(0, 1)
if u < o then
logits[zh_token] < logits[zh_token] + 3
end if
end if
return logits

AR Ay

Figure 4: Comparison of reasoning strategies: mixed
Chinese-English reasoning (right) achieves correct re-
sults with clearer logic and fewer tokens than English-

only (left). o
We propose a decoding intervention during in-

ference that adjusts language switching probabil-
ities using special language tokens and hyperpa-
rameters. Specifically, given « € [0, 1] controlling
boost or suppression likelihood, magnitude 5 for
logit adjustment, and a top-k cutoff, we sample
u ~ Uniform(0, 1) whenever a language token is
within the top-k candidates. If u < «, we boost the
token’s logit by +; otherwise, we penalize it by
— [, thus shaping language usage.

4 Experiments

This section details the experimental setup, base-
line methods (§4.1), and key results, with a particu-
lar focus on the performance under varying number
of languages and data sizes.

4.1 Baselines

To assess the effectiveness of our low-data multilin-
gual long-chain-of-thought approach, we compare
against several representative baselines:

* OpenAl-ol (OpenAl, 2024): A closed-
source commercial large language model, the
first to provide long-chain reasoning services.

* Open-source model : The base model
Qwen2.5-32B (Qwen et al., 2025), the QWQ
model with the same 32B size, and the pow-
erful O1l-level open-source model, Deepseek
R1 (DeepSeek-Al et al., 2025).



* Data-efficiet models: Sky-T1, s1, and LIMO,
which were fine-tuned with as little as 17Kk,
1k, or even fewer data (Muennighoff et al.,
2025; Team, 2025a; Ye et al., 2025), achieving
performance comparable to ol-level models.

4.2 Setup

We largely follow the experimental setup of
sl (Muennighoff et al., 2025) for fair compari-
son. We choose Qwen2.5-32B as our base model
and finetuned using L2-Mo1}° and L>-MS1%;, (intro-
duced in Section 3.1, respectively, resulting in three
well-trained models, L2-32B-Mo1}°, L>-32B-M S1¢,,
and r2-32B-MS1%,. For assessment, we use the
standard framework v11m for inference with a tem-
perature of 0.7, recording only the model’s first
response. Our evaluation covers four datasets
— AIME24 (30), GPQA DIAMOND (198), and
MATHS00 (500).

We evaluate AIME and GPQA via string parsing,
manually check decimals for MATHS500, and use
annotators for Graduate Entrance Exam tasks.

4.3 Main Results

Table 1 shows the overall results. We can see that:
1) with only 6 samples (although augmented to
2,700 samples), our model £2-32B-Mo1}° greatly
improves the performance over the base model by
16.6%, 18.2%, and 12%, respectively. 2) By intro-
ducing more high-quality data (i.e., 612 samples
augmented to 4,500), we achieve comparable per-
formance with models using much more data. This
demonstrates the effectiveness of our multi-lingual
unification learning. 3) The strongest models are
still those using much more data, like r1 or ol.
Combined with the above conclusion, this suggests
the importance of both curation of diverse data and
how to select the high-quality ones.

4.4 RQ1: How does extremely small training
data affect test-time scaling?

In this experiment, we focus on the L2-Mo1}°
dataset. Qwen2.5-32b is our base model. To ensure
fair comparison, we finetune it using the six sam-
ples with upsampling, resulting in Qwen2.5-32b-016.

*Based on manual inspection, some Math500 standard
answers were incorrectly formatted, corresponded to multi-
part fill-in answers, or involved decimals with inconsistent
precision requirements. As a result, the format-based valida-
tor mistakenly flagged originally correct answers as wrong—
affecting a non-negligible number of problems (8—12 out of
500; see the appendix for specific cases). The reported results
have been corrected accordingly.

Model #ex. AIME2024 MATH500 GPQA
API only

ol-preview N.A. 44.6 85.5 73.3
ol-mini N.A. 70.0 90.0 77.0
ol N.A. 74.4 94.8 71.3
Open Weights

Qwen2.5-32b* N.A. 26.7 84.0 49.0
Qwen2.5-32b# N.A. 16.7 76.2 455
Qwen2.5-32b N.A. 10.0 69.0 41.0
QwQ-32B N.A. 50.0 90.6 65.2
rl N.A. 79.0 97.3 71.5
rl-distill ~800K 72.0 94.3 62.1
Open Weights and Open Data

Sky-T1 17K 43.0 824 56.8
Bespoke-32B 17K 63.0 93.0 58.1
sl w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.0 93.0 59.6
LIMO 1K 57.1 94.8 66.7
L? - 32B — Mol}® 6 233 87.4 49.5
L? - 32B — MS1%;, 651 63.3 93.0 60.0
L% - 32B — MS1%;, 1k 63.3 95.0'793.0  61.0

Table 1: Overall performance of our models and base-
lines on the AIME 2024, MATH 500, and GPQA Dia-
mond datasets. Note that the three scores of Qwen2.5-
32b are due to different implementation. Ours is without
any superscript, * denotes the scores in S1 original pa-
per, and # denotes the scores from Sky-T1.

Furthermore, £2-320-Mo1} represents adding only
English CoT data obtained from DeepSeek R1,
while L2-320-Mo1% incorporates multi-lingual CoT
data. As shown in Table 2, we can conclude that:

1) By tuning using six high-quality samples,
even with some upsampling techniques, the model
Quen2.5-32b-01 only achieves slight improvements.
Compared with our approach augmented with
multi-lingual data, L2-326-Mo1% achieves significant
performance gains across all datasets. This demon-
strates the effectiveness of the multi-lingual as-
sumption in improving performance through in-
creased data diversity.

2) Compared with 1.2-326-Mo12, the performance
improvement of L2-32b-Mo1} is much smaller. This
indicates that even for the same questions, obtain-
ing diverse reasoning data in multiple languages is
crucial to enhance model performance.

Setting AIME GPQA MATH500
Quwen2.5-32b 0.10 041 0.69
Quwen2.5-32b-0lg 0.17 043 0.74
L2-32b-Mo1} 033 034 0.67
L2-32b-Molg 033 049 0.85
L2-32b-Mo13 023 049 0.87

Table 2: accuracy results when scaling to a total of
6 questions based on the L?Mo1s dataset, and using
multilingual augmented data.



4.5 RQ2: Where is the upper boundary of
multi-lingual extension?

4.5.1 Analyzing the Impact of Data Scale

To investigate the impact of data scale on model
performance, we randomly selected 100 questions
from the S1 dataset as the initial query pool and
constructed 10 incremental training datasets. For
instance, the dataset labeled as 21519, comprises
10 queries annotated with CoT reasoning in 9 dif-
ferent languages, as described in Section 3.1, us-
ing the MCOT method. Similarly, £2-M513, was
created by adding another 10 randomly selected
queries from L2-MS1},,, ensuring no overlap with
the previous 10 queries of £2-a1519,. This process
was iteratively continued, expanding the dataset
to include up to 100 queries and resulting in 10
datasets of increasing size. Each dataset was sub-
sequently finetuned and evaluated under consistent
experimental settings to ensure fair comparison.

The results demonstrate that around the scale
of 30 queries, the model exhibits a distinct in-
flection point, where both its capabilities and to-
ken consumption increase significantly. This phe-
nomenon was consistently observed across various
evaluation datasets, including MATHS500 (+45.8%),
GPQA (+67.8%), AIME24 (+75.0%), and AIME25
(+175.0%) (Figure 5, Appendix). These findings
suggest that a modest expansion of high-quality
annotated data, particularly beyond the 30-query
threshold, substantially enhances model perfor-
mance by alleviating early-stage data scarcity and
enabling the model to better generalize and lever-
age its reasoning capabilities.

4.5.2 Evaluating Cross-Language Family
Effects

We further investigated whether multilingual train-
ing across diverse language families improves
model performance compared to training within
a single language family.

We conducted the following experiment: The
nine languages were grouped into three language
families. As demonstrated in Section 4.5.1, train-
ing with 100 queries enables the model to develop
long reasoning chains and improves performance
across various datasets. For this experiment, we
used the L2-m 514, dataset, which includes all nine
languages.

Nine languages: Chinese (zh), English (en), French (fr),
German (de), Arabic (ar), Hebrew (he), Japanese (ja), Korean
(ko), Russian (ru).
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Figure 5: The x-axis indicates the number of questions
included in the model training, and the y-axis denotes
the achieved accuracy. Point size, shading intensity, and
numeric annotations represent the quantity of generated
tokens.

» East-Asian: Simplified Chinese (zh), Japanese
(ja), Korean (ko)

* Indo-European: English (en), French (fr), Ger-
man (de), Russian (ru)

* Afro-Asiatic: Arabic (ar), Hebrew (he)

In Figure 6, we generated training datasets by
randomly combining different languages across
these families and trained a model on each dataset.
In the resulting visualization, each shape repre-
sents models trained with languages from specific
language families. The more language families
trained, the higher the accuracy and the fewer to-
kens used, yielding better results. Models posi-
tioned closer to the top-left corner indicate supe-
rior performance.Detailed numerical results can be
found in the appendix.

4.6 RQ3: Does our strategy orthogonal to
other data curation methods?

Existing methods employ different strategies to se-
lect high-quality mathematical data. To further
validate our approach, we increase the number
of initial samples by randomly selecting samples
from two typical sources: slk and Bespoke-Stratos-
17k (Labs, 2025; Team, 2025a). We have intro-
duced the augmented s1k dataset L2-MS1%, in Sec-
tion 3.1. For another source, we randomly se-
lect 500 samples from the Bespoke-Stratos-17k,
marked as BSsqo, primarily featuring mathematics
and programming problems. After multi-lingual
augmentation, there are totally 500 samples in
L>-MBS%,,. By removing the step of multi-lingual
unification, the model’s performance drops signifi-
cantly. This suggests that the step-wise mixture of



*= AIME24 MATH500
0.6 “@" A ] : . Unigue Language Sets
! N i Afro-Asiatic,East-Asian,Indo-European (3)
A MAf N Higher Accuracy A pean
] i East-Asian (1
= 0.5 A %‘A iFeWer Tokens East-Asian,sn;o-European 2
o ‘ ] M_‘_ A‘) . < Indo-European (1)
';0_4 = . F-UAANAN ‘Better results @ Afro-Asiatic,Indo-European (2)
O ® & A+® o B Afro-Asiatic East-Asian (2)
g A I A A
303 o
< ° o]
0.2
[
01 0.75 °
10000 11000 12000 13000 14000 15000 16000 17000 3500 4000 4500 5000 5500 6000 6500 7000
avg-completion tokens avg-completion tokens
GPQA-Diamond AIME25
+ 0.5 +
0607 +4 A
% A AA
= A 0 M e ~04 AN A A
> “ \m.{‘ ~ > T AA®< A +
055 =A TAA €, + = i+>
¢ AALAS, * 203 A X m+
e P é é * R e ®eA o+ “0
S o050 A A 0.2
< > < o
0.45 _ 0.1 S
7000 8000 9000 10600 11000 12000 13000 10000 11000 12000 13000 14000 15600 16000

avg-completion tokens

avg-completion tokens
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languages contributes to enhancing generalization
and reasoning capabilities.

We can see that regardless of the data source,
our methods can effectively boost performance.
However, it is also noticeable that as the amount
of original data increases, the marginal benefit of
multilingual learning diminishes. This could be
attributed to the model approaching its inherent

capacity limits as the training data scale becomes
larger.

Setting AIME GPQA  MATH500
BS500 Data Set
Qwen2.5-32b-BSs00 043 0.52 0.90
L2-MBS2,,-uni 0.46 0.55 0.91
L2-MBS3y, 0.60 0.51 0.91
S1 Data Set
Qwen2.5-32b-S1100 043 0.54 0.85
L2-32b-MS1%5, 0.53 0.53 0.90
Qwen?2.5-32b-S1g51 0.63 0.56 0.93
L2-32b-MS155, 0.63 0.60 0.93
Qwen2.5-32b-S1yy, 0.60 0.60 0.91
L2-32b-MS173,, 0.63 0.61 0.93

Table 3: Accuracy results when scaling to a total
of 500+6 multi-lingual unification samples from the
Bespoke-Stratos-17k resource. Accuracy is evaluated
on our dataset.

4.7 RQ4: Can our strategy also benefit
inference efficiency?

We hypothesize that long COT annotations from
diverse language families offer complementary rea-
soning patterns, enhancing accuracy and inference
efficiency through reduced token usage, unlike aug-
mentations from linguistically similar sources, as
shown in Figure 6 (details see appendix).

4.8 RQS5: What if we intervene the decoding
by controlling the reasoning languages?
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Figure 7: Decoding control over Chinese and English
reasoning paths, with evaluation results on the AIME24
dataset.

In Figure 7, We investigate how to guide a
model’s reflective reasoning to be expressed in a



specific language during decoding. In this setting,
the maximum number of generated tokens signifi-
cantly increases from 15k in previous experiments
to 131k. We introduce an intervention ratio « that
adjusts the frequency at which tokens prompting
the target language appear. During training, we
ensure this language is used to encode reflective
reasoning. Notably, this approach does not dimin-
ish the model’s ability to reason reflectively; it can
still generate fluent English. We vary the parameter
k € {2,4,6} to examine its impact on the model’s
behavior. Our findings show that a higher interven-
tion ratio makes it more likely for the model to shift
its reasoning into another language (zh). When
k = 2 or k = 4, the model can effectively switch
between multiple languages, reaching an accuracy
of 73.3% on the AIME24 dataset (see appendix
for case studies on difficult problems with success-
ful solutions). However, at £ = 6, the reflection
tokens (originally assigned a low probability) are
activated more frequently, producing extensive re-
flective segments that interfere with the model’s
normal reasoning process.

5 Case study

In Figure 8, The examples show a mathematical
problem, where the model answers through multi-
language reasoning. The model effectively handles
this by utilizing its multi-language reasoning ca-
pabilities (detailed case studies provided in the ap-
pendix). This approach allows the model to seam-
lessly process and analyze the mathematical prob-
lem across different languages, ensuring accurate
and efficient solutions regardless of the language in-
put. By leveraging the strengths of multi-language
understanding, the model delivers robust and reli-
able responses in various linguistic contexts.

A regular hexagon can be divided into six equilateral triangles. If the
perimeter of one of the triangles is 21 inches, what is the perimeter, in
inches, of the regular hexagon?

<en>0kay, let's see. The problem says a regular hexagon can be
divided into six equilateral triangles......Therefore, the perimeter of the
hexagon is 42 inches. <zh>itEBZXE—T - IR=ZAMNERE 21 =7 >
BLBRDOME 7 #T - AT EAVENSRLSZXT=ARMDES > Bt
DRBRDNKER 7 BT - 188 > AFORM 7 HTEF 42 HT - REER
RE$E - FRAERE 42 H - <en> so perimeter is 6*7=42. Yep, that's
correct. Alternatively, maybe there's a different interpretation. <zh>FE}
BIZARBRFD=ARK  FUAA=FUMKERMIZES - Eit . XEH
ZRIDRLZERESE - RN » 7L RAEENKERS - Fi > BKE
Z&iEM > Bl 3s =21« @b > s =7 - HULTIE > FNUHHEKRE 6s =42
FRUA » BRIMIAR 42 - Yes, that's the same result. So regardless of how
I think about it, the answer is 42 inches. **Final Answer** The
perimeter of the regular hexagon is \boxed{42} inches.

Figure 8: Mathematical problem example

6 Related Work

6.1 Test-time scaling

Test-Time Scaling (TTS) enhances LLM perfor-
mance by allocating extra computational resources
during inference(Liu et al., 2025; Zhang et al.,
2025; Wu et al., 2025; Ji et al., 2025). Unlike
traditional scaling methods, TTS enables fixed-
parameter models to achieve superior outcomes
through extended inference-time processing, akin
to "thinking longer." (Faria and Smith, 2025; Kim
et al., 2024). Diverse TTS strategies include com-
putational budget control, sampling and search
methods(Muennighoff et al., 2025; Aggarwal and
Welleck, 2025; Son et al., 2025), verification-
guided approaches(Wang et al., 2025; Lifshitz et al.,
2025), and latent reasoning paradigms. Empiri-
cal results show significant reasoning gains, with
smaller compute-optimal TTS models surpassing
larger models.

6.2 Multilinguality and Logical Reasoning

Recent advancements in large language models
show that multilingual strategies significantly en-
hance logical reasoning(Ghosh et al., 2025; Tran
et al., 2025). While these models excel in high-
resource languages like English, performance gaps
persist for lower-resource languages(Ravisankar
et al., 2025). Techniques like cross-lingual thought
prompting (XLT)(Huang et al., 2023) and English-
pivoted CoT training exploit strong English rea-
soning to boost multilingual outcomes. Methods
such as LayAlign(Ruan et al., 2025) and Ada-
CoT(Huang et al., 2025) further align abstract rea-
soning patterns across languages, promoting cultur-
ally responsive and globally applicable models.

7 Conclusion and Future Work

In this paper, we present the L? approach, which
leverages multilingual unification learning to en-
hance the test-time scaling of LLMs. Our method
is demonstrated in incorporating a minimal amount
of data and reducing the number of inference to-
kens, while maintaining long CoT reasoning ca-
pabilities. Our experimental results demonstrate
that multilingual data can significantly improve
long-reasoning tasks, with only a small number
of high-quality samples yielding notable gains in
performance. Furthermore, the L? approach offers
a scalable and efficient path forward for training
models that are capable of handling complex tasks
while minimizing computational costs.



Limitations

The L? approach offers promising efficiency for
LLM test-time scaling but faces limitations, includ-
ing varying language proficiency in base models
and differences in tokenization due to linguistic
variations, potentially affecting efficiency and re-
sults. Despite these, extensive experiments support
our hypothesis. Integrating models trained on di-
verse languages also poses safety and quality risks,
especially for low-resource languages, potentially
causing biases and errors.
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A Appendix

A.1 Accuracy and Token Consumption across
Different Models and Languages

Figures 9, 10, and 11 present detailed results il-
lustrating the accuracy and token consumption of
five language models—R1-Llama (8B, 70B) and
R1-Qwen (1.5B, 7B, 14B)—evaluated across three
benchmarks: AIME, GPQA, and MATHS500.
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Figure 9: Results of R1-qwen-1.5b on AIME, GPQA,
and MATHS00 datasets using different languages.
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Figure 10: Results ofR1-qwen-7b andR1-qwen-14b on AIME, GPQA, and MATHS500 datasets using different

languages.

A.2 Accuracy and Token Consumption across
Different Models and Languages

Figure 12 comprehensively illustrates the rela-
tionship between the number of training samples,
model accuracy, and generated tokens across the
AIME24, AIME25, GPQD, and MATH500 bench-
marks. Notably, there is a clear inflection point
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Appendix: AIME CASE

Source: 2024_AIME_II_Problems/Problem_14

Let \(b\ge 2\) be an integer. Call a positive integer \(n\) \(b\text-\textit{eautiful})) if it has exactly two digits when
expressed in base \(b\) and these two digits sum to \(\sqrt n\). For example, \(81)) is \(13\text-\textit{eautiful}\)
because \(81 =\underline{6} \ \underline{3}_{13}\) and \(6 + 3 = \sqrt{81}\). Find the least integer \(b\ge 2\) for

which there are more than ten \(b\text-\textit{eautiful}\) integers.

<|begin_of_thought|>

Okay, so | need to find the smallest base b (where b is at least 2) such that there are more than ten b-beautiful
numbers. A number n is b-beautiful if it has exactly two digits in base b, and the sum of these two digits equals the
square root of n. The example given is n = 81 being 13-beautiful because in base 13, it's written as 63, and 6 + 3

equals the square root of 81, which is 9.

18, SR NEE, B n EEE b FTRE— 1M, BBAELTHE \(b) MNHNEAE, B2 \(br2 -
1), 5%, BEEE\D) B, —PFHAEEIARTR \(x \cdot b + y\), Ef\(x\) 1 \(y\) 27 \0\) 2 \(b - 1)) SEER
B, M \X\) EER \(0V)., FELt, n BEVESBEEZM \(b\cdot 1 +0=Db\) Zl \((b - 1) \cdot b + (b - 1) = b2 - 1)), &~

HEFRE, BT\ F\y) #BAREERE \(b - 1), Fikn WEAERIZ b2 - 1),

But n has to be a perfect square because sqrt(n) must be an integer (since the digits sum to sqrt(n), and digits are
integers). So n must be a perfect square, and in base b, it's a two-digit number. Therefore, the two-digit perfect
squares in base b correspond to squares between b and bA2 - 1. Wait, but sqrt(n) would be between ceil(sgrt(b))
and floor(sqrt(bA2 - 1)) + 1? Wait, sqrt(b”2 - 1) is roughly b - 1/b, so the integer sqrt would be up to b - 1. So the
squares we are considering are kA2 where k is from ceil(sqrt(b)) up to b - 1. Wait, but maybe it's easier to think that
n is a two-digit number in base b, so n is between b and bA2 - 1, and n must be a perfect square. So k"2 is
between b and bA2 - 1, so k is between ceil(sqrt(b)) and floor(sqrt(b~2 - 1)) which is b - 1. Therefore, the number of

two-digit squares in base b is (b - 1) - ceil(sqrt(b)) + 1.

But not all of these squares are necessarily beautiful. To be beautiful, the sum of the two digits in base b must equal
sqrt(n). So for each k from ceil(sqrt(b)) to b - 1, we need to check if k equals the sum of the digits of kA2 when

written in base b.

So the problem reduces to finding the smallest b such that the number of k satisfying this condition is more than
ten. So we need to find b where there are more than ten k's such that when you write kA2 in base b, the sum of its

digits is k.

Let me formalize this. Let’s denote the two digits of kA2 in base b as d1 and d2, so that kA2 = d1 * b + d2, where 0

<dl <band0<=d2 < b. Then, the condition is d1 + d2 = k.
14
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Therefore, substituting d1 and d2 into the equation:

dl +d2 =k

But since k"2 = d1 * b + d2, we can substitute d2 = k - d1 into this equation:

kA2 =d1 *b + (k - d1)

So:

kA2=d1 " b+ k-di

Rearranging:

k"2 -k=d1*b-d1

Factor out d1 on the right:

kA2 -k = d1*(b - 1)

Therefore:

d1 = (kA2 - K/(b - 1)

So d1 must be an integer between 1 and b - 1 (since it's the first digit in base b). Therefore, (kA2 - k) must be

divisible by (b - 1), and the result d1 must satisfy 1 <=d1 <=b - 1.

Moreover, since d2 = k - d1, and d2 must satisfy 0 <= d2 < b. So:

O<=k-dl<b

But since d1 = (k"2 - K)/(b - 1), substitute:

0<=k-(k"2-K/b-1)<b

Multiply through by (b - 1) (which is positive, so inequalities stay the same):

0<=(k*(b-1)-(Kkr2-K) <b*(b-1)

Simplify the left inequality:

k*b - 1) - (kA2 - K) >= 0

k‘b-1)-k"2 +k>=0

Factor k:

Kb-1+1)-kr2>=0

Wait, k*(b - 1) + k - kA2 >= 0

That is:

kb -kr2>=0

k*b - k) >=0
15
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Since k is positive (as it's the square root of n, which is a two-digit number, so k >= ceil(sqrt(b))), and b - k must be
non-negative. Wait, but since k can goup to b - 1, then b - k is at least 1. So actually, k*(b - k) >= 0 is always true

because k and (b - k) are both positive. Therefore, the left inequality 0 <= ... is automatically satisfied.
Now, the right inequality:
(k*(b - 1) - (k"2 - k)) < b*(b - 1)
Simplify the left side:
kb-1)-k*2 +k=kb - k-k"2 +k=kb - k"2
%5 \(k\cdot (b - 1) - (k?2 - k) = k \cdot b - k - kA2 + k = k \cdot b - kA2)),
So the right inequality is:
kb - k"2 < b(b - 1)
Rearranged:
® kA2 +b*k<bA2-Db
Multiply both sides by -1 (inequality flips):
kA2 - b*k >bA2 - b
But this seems complicated. SIFEIFHI A ERFEEMARXT \K) WZRTER:
kA2 - b*k - (b”2 - b) < O
¥, thiFrIAEHRBE—T:
kA2 - b*k + (b2 -b) >0
FE, BALHE, ILEBRE—T,
Starting from:
kA2 - b*k > - (bA2 - b)
Which is:
kA2 - b*k + (b2 -b) >0
But this seems like a quadratic in k. Let's consider:
kA2 - b*k + (b2 -b) >0
The discriminant of this quadratic is:
D = bA2 - 4%(b/A2 - b) = bA2 - 4b/A2 + 4b = -3bA2 + 4b

But since b >= 2, -3bA2 + 4b is negative for b >= 2 because -3b/2 + 4b < 0 when 3b”2 > 4b, which is true for b >
4/3. Since b >= 2 > 4/3, discriminant is negative. Therefore, the quadratic kA2 - bk + (b2 - b) is always positive for

all k (since the coefficient of k"2 is positive and discriminalné is negative). Therefore, the inequality k"2 - bk + (b2 -
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b) > 0 is always true for all real k, which would imply that the original inequality kb - kA2 < b(b - 1) is always true.

Wait, but that can't be. Wait, perhaps my algebra is wrong.
FZE, BR—FSERERE—T.
RERNFRARZE:

k-b—k*<b-(b—1)

BHEREER:

—K+b- k- +b<0

BETBRTRSEIEM, AIIURTA:

K +b-k—b+b<0

FILEISRIN -1 (ERAFSHRTESRE)

E—b-k+b—b>0

BR—TXRT k WRTAER. HOBRITEHZIR:

D= (-b?—4-1-(b>—b)=0b>—4b> +4b= —3b> + 4b

¥F b>2, AH:

—30 +4b< —124+8=-4<0

Eitt, HIBRXRRE, XEHE REE K —b-k+b° — b WFRE k H2EN (ERRARENIE) .
I, Tie k BEME, ZAER k2 —b-k+b° — b > 0 18I
HULEIA], SMNARER k-b—k* <b-(b—1) NFEAE k HAL. EXMEIUERLSE, EHANR k B
WA, Lt k=b, W4 k-b—k =0, XEHNF b-(b—1) . %, BUE k WEREEEZM [VD]
B b—1, Ba k<b—1, Hit, k-b— k> WRKELIE k= g i (BRRDNRAREL T

b2

—k2+b-k, ZR—EFOETHRRYE) . HBRAER Zofﬁb~®—l)%$lﬁ—boé b>2nt, B

b2
#wE 7 < b2 — b, XALEEIA T ARIIE:
\l 17
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\frac{bA2}{4} < bA2 - b \implies 0 < \frac{3b 2}{4} - b \implies 0 < 3bA2 - 4b,

\

WF b>2, F 3b°—4b>12-8=4>0, Eit, FERRKT. HLEH, NFARE k, B8 k EXE
[Vb,b— 1] REFiEE, ZFRER k-b— k> <b-(b—1) taRRIT, Et, AMNFERESRIIH,

k* —k

HIRIMEH, d2 =k —di 22HE 0<dy <b . Blt, BMNRFEER d1 = ]

=—TRHERE

1<di<b—11# k EIA,
Therefore, the problem reduces to finding the number of integers k such that:
1. ceil(sqrt(o)) <=k <=b - 1
2. (k2 -K)is divisible by (b - 1)
3. (kA2 - K)/(b - 1) is between 1 and b - 1 inclusive.
So the key is that (kA2 - k) must be divisible by (b - 1), and the result d1 must be a valid digit in base b.

Therefore, for each k in the range ceil(sgrt(b)) to b - 1, check if (k"2 - k) is divisible by (b - 1), and if the resulting d1 is

between 1 and b - 1.

But since d1 = (k"2 - k)/(b - 1), and d1 must be at least 1, so (k"2 - K)/(b-1)>=1=>kN2 -k>=b-1=>k"2-k-b

+1>=0.

Similarly, d1 <=b-1=> (k"2 -k)/(b-1)<=b-1=>k"2-k<=(b-1)"2.
Therefore, for each k, we have:

k"2 -k-b+1>=0

and

kA2 -k <= (b - 1)A2

But perhaps these conditions are automatically satisfied given the range of k?

EFE, BITROM—TE—TEMH: kM2-k>=b-1, ER k ZDZ ceilisqrt(b)), FNREZ k = ceil(sqrt(b)) A,
kA2 - kK BIERZ D, R k >=sqrt(b), B4 kA2 >=b, FELt kA2 -k>=b-k, HF k<=b-1 (A k &=KE b -
1) , FilAb-k>=1, Elk, kr2-k>=b-k>=1, BE(IFENE kM2-k>=b-1, I8, & k= ceil(sqrt(b)) AT,

kA2 -k>=b-11015?

HABRE—THIF, € b=4, A ceilsartd) =2, tRF k=2, Mkr2-k=4-2=2, Mib-1=3, fAbA2>=3 F
AL, AL, WFb=4, k=20, k'2-k=2<3=b-1, HIt, dl =@2)/(4-1)=2/3, XFEEH, FAAk=
2A/ERM., A, B—1MFHK2-k>=b-1 HAEEHE, EHBENBERRX—FMEMIL,

Similarly, the second condition kA2 - k <= (b - 1)A2. Let's check when k=b - 1. Thenk"2 -k=(b-1)"2-(b-1)=(b
- 1)(b - 2). Which is equal to (b - 1)A2 - (b - 1). Wait, but (b - 1)A2 is (bA2 - 2b + 1). So kA2 -k = (b - 1)A2 - (b - 1) + (b
-1) = (b - 1)A2. Wait, no:

18
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T, k2-k=(b-1)/2-(b-1)? %%, (b-1)"2=br2-2b+1, Mi(b-1)"2-(b-1)=br2-20+1-b+1=

br2 -3b + 2, BERXHRE kA2 -k, FF, BHFHRFER—IPBE.

Wait, when k =b - 1, kA2 - k = (b - 1)(b - 1 -1) = (b - 1)(b - 2) = bA2 - 3b + 2. On the other hand, (b - 1)A2 = b2 - 2b

+ 1. So k"2 - k = bA2 - 3b + 2. Is this less than or equal to (b - 1)A2 = bA2 - 2b + 1? Let's compare:
br2-3b+2<=b"2-2b+1
Subtract b2 from both sides:
® 3b+2<=-2b+1
Add 2b to both sides:
® b+2<=1
Subtract 2:
® b<=-1
Multiply by -1:
b>=1

Which is always true since b >= 2. Therefore, kA2 - k <= (b - 1)A2 for all k <= b - 1 and b >= 2. Therefore, the second
condition is always satisfied. Therefore, the only condition we need to check is that (kA2 - k) is divisible by (b - 1)
and that d1 = (kA2 - k)/(b - 1) is at least 1. Wait, but earlier with b=4, k=2, d1=2/3 which is not an integer, so even if

d1 is supposed to be at least 1, if it's not integer, it's invalid. Therefore, the main conditions are:

1. (k72 - k) is divisible by (b - 1)

2. kr2-K/(b-1)>=1
Which translates to k"2 -k >=b - 1.
Therefore, combining these, for each k from ceil(sqrt(b)) to b - 1, we need:
(kA2 - k) is divisible by (b - 1)
and
kA2 -k>=b - 1.
But since k >= ceil(sqrt(b)), let's check if k"2 - k >=b - 1.

If k >= sqrt(b), then kA2 >= b, so k"2 - k >= b - k. But since k >= 2 (because b >= 2, ceil(sqrt(b)) >= 27?), so if k >= 2,
then b - k <= b - 2. Wait, but we need k"2 - k >= b - 1. For example, take b=4, ceil(sqrt(4))=2. Then k=2, k"2 -k=2,
which is 2 >= 3? No. So in this case, k"2 -k=2 < b -1=3. So this condition is not satisfied. Therefore, even though k
>= ceil(sqrt(b)), k"2 -k might still be less than b -1. Therefore, we need to ensure that kA2 -k >=b -1. Let's see when
this happens.

Rearranged:

19
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kA2 -k -b +1 >=0

This is a quadratic in k. Let's solve for k:

kA2 -k - (b -1) >=0

The roots of the equation kA2 -k - (b -1) =0 are:

k=[1+sqrt(1 + 4%b -1))l/2 = [1 + sqrt(4b -3)]/2

So the positive root is [1 + sqrt(4b -3)]/2. Therefore, k must be greater than or equal to this value for kA2 -k - (b -1)
>=(0),

Therefore, the minimal k required is ceil([1 + sqrt(4b -3)]/2)

Therefore, the range of k is from max(ceil(sqrt(b)), ceil((1 + sqrt(4b -3)]/2 )) to b -1.

But this seems a bit complicated. Alternatively, perhaps it's easier to note that for each k, we can compute d1 =

(kA2 -K)/(b -1). If d1 is an integer and 1 <= d1 <=b -1, and 0 <= d2 =k -d1 <b, then n=kA2 is b-beautiful.

But since d2 =k -d1, and d1=(k"2 -k)/(b -1), then d2 =k - (k"2 -k)/(b -1) = [k*(b -1) -k*2 +K]/(b -1) = [kb -k 2]/(b -1).
But we already saw that this is equal to (kb -k"2)/(b -1). Wait, but since n=k”2 is two digits in base b, then d1b + d2
=kN2. Therefore, d2 must be equal to k"2 -d1b. But d2 is also equal to k -d1. Therefore, from n=kA2 =d1b +d2, and

d2=k -d1, so substituting gives k"2 =d1b + (k -d1) = d1*(b -1) +k. Therefore, d1=(k”2 -k)/(b -1). So as before.

Therefore, the key is that (kA2 -k) must be divisible by (b -1), and d1=(k~2 -k)/(b -1) must be between 1 and b -1
inclusive, and d2=k -d1 must be between 0 and b -1 inclusive. But since d1=(k*2 -k)/(b -1), and d2=k -d1, then d2=
(k*(b -1) -k"2 +k)/(b -1) = (kb -k~2)/(b -1). But since n=k”\2 is two digits, d2 must be less than b. However, since d2=
(kb -k"2)/(b -1), we need to ensure that this is non-negative and less than b. But as we saw earlier, the right
inequality is always satisfied because the quadratic is always negative. Wait, perhaps | need to check that d2 is non-

negative.

So d2 = (kb -k"2)/(b -1) >=0 => kb -k~2 >=0 => k*(b -k) >=0. Since k >0 and b -k >=0 (because k <=b -1), this is
always true. Therefore, d2 is non-negative. And since d2 =k -d1, and d1 >=1, then d2 <=k -1 <b -1 (since k <=b -1).
EE, MR k=b-1, BAd2=(b-1)-d1, M dl=(K-K/b-1)=[b-12-(b-1))/(b-1)=[b2-2b+1-b+1)/(b
-1)=[?-3b+2)/(b-1)=(b-1)b-2/(b-1)=b-2, Bk, d2=(b-1)-(b-2)=1, XMENF b, A, d2 2H
39,

Therefore, the only conditions are:

1. (k72 -K) is divisible by (b -1)

o d1=(k”2 -k)/(b -1) is between 1 and b -1 inclusive.

Therefore, for each k from ceil(sqgrt(b)) to b -1, check these two conditions. The number of such k's is the number of

b-beautiful numbers.

Therefore, the problem reduces to finding the smallest b >=2 such that the number of k satisfying these conditions

is more than 10. 20
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Therefore, we need to find the minimal b where there are more than ten divisors (kA2 -k) of (b -1), with d1 in the valid

range.

Alternatively, since (b -1) divides (k"2 -k), we can write (b -1) divides k(k -1). Since k and k -1 are consecutive
integers, they are coprime, so (b -1) must divide either k or (k -1). Therefore, either k =0 mod (b -1) or k =1 mod (b
-1). Therefore, for each k in the range ceil(sqrt(b)) to b -1, if k =0 or 1 mod (b -1), then (b -1) divides k(k -1), hence (b
-1) divides (kA2 -k). Therefore, the possible k's are those congruent to 0 or 1 modulo (b -1). However, since k must

be in the range ceil(sqrt(b)) to b -1, and d1=(k"2 -k)/(b -1) must be between 1 and b -1 inclusive.

Therefore, the number of such k's is equal to the number of integers k in [ceil(sqrt(b)), b -1] such that k =0 or 1 mod

(b -1) and d1=(k*2 -K)/(b -1) <=b -1.

Wait, but (b -1) divides k(k -1). If k =0 mod (b -1), then k = m*(b -1). Similarly, if k =1 mod (b -1), then k =1 + m*(b
-1). Therefore, since k is in [ceil(sqrt(b)), b -1], the possible values of m are such that m*(b -1) >= ceil(sqrt(b)) and 1 +

m*(b -1) >= ceil(sqrt(b)), and both k's are less than b.

But since k must be less than b, for k = m*(b -1) <b, so m <b/(b -1). Since m is a positive integer, m=1. Similarly, for

k=1 + m*(b -1) <b, then m*(b -1) <b -1, so m <(b -1)/(b -1)=1. Hence m=0. Therefore, only possible k's are:

If kK =0 mod (b -1), then k=0 or b -1. But k cannot be 0 because k is at least ceil(sqrt(b)). So only possible kis b -1.
But k=0 mod (b -1) would require k=0 or k=b -1. But k=0 is invalid, so k=b -1. For k =b -1, check if d1=( (b -1)2 - (b
-1))/(b -1) = (b2 -2b +1 -b +1)/(b -1) = (b~2 -3b +2)/(b -1) = (b -1)(b -2)/(b -1) =b -2. Which is between 1 and b -1.
Sodi1=b-2,d2 =k-d1=b-1-(b-2)=1. So n=(b -1)2. Let's check if this is a two-digit number in base b. (b -1)A2 in
base b is a two-digit number: the first digit is d1 =b -2, the second digit is 1. So yes, it's a two-digit number. So k=b

-1 is always a solution.

Similarly, for k =1 mod (b -1), then k=1 + m*(b -1). Since k >= ceil(sqrt(b)), and k <b. So m=0 gives k=1, but 1 is only
valid if ceil(sqrt(b)) <=1, which is only when b=2 (since sqrt(2)=1.41, ceil is 2, but b >=2. & \(b=2\) i, \(\Iceil
\sqrt{2} \rceil = 2\), FEE \(k=1\) R"ERIZ. = \(b\geq3\) BF, \(lceil \sqrt{b} \rceil \geq 3\), FALA\(k=1\) HLRAL
. B, RENmM=0Y) B, \(k=1\) 2FJEEAY, {BRTE \(\lceil \sqrt{b} \rceil \leq 1) AUIER T BIL, XREH \(
b=2\) BIZF BRIEE, AT, H \(b=2\) B, \(ceil \sqrt{2} \rceil=2\), FIMA \(k=1\) HAFEEKM. FEIt, IF \(k
\equiv 1\mod (b-1)\), ME—PIBERY \(k=1\) HWHEFRTESS, FRIE\(b=2\), BEMEMLL, \(k=1\) LARFEFRME. FHiLt,
\(k \equiv 1\mod (b-1)\) HXEECEANE. FF, WFHREET.

%, M8 \(k\equiv1\mod (b-1)Y), B4 \(k=1+m\cdot(b-1)Y), Ed\(m\geq0V). {8 \(k\) HIHE \(
\text{ceil}(\sqrt{b}) \) Zl \(b- 1\) Z[El, LR \(m=0)), B4 k=1, REH \(\text{ceil}(\sqrt{b}) \leq 1) B, \(
k=1\) 7B, EXRBE\b=2\)RNABTEEMIL, A, = \(b=2)\) 1, \(\text{ceil}l(\sqrt{2})=2)), ELL\(k=
1\) HFAFEEME.
MERNm=1\), BANk=1+(b-1)=b\), &AM \k)DINF\(bY), FAR\(k=b\) Bt TEE.
Et, $3F \(k\equiv1\mod (b - 1)), ZHEMEE \(k) ZFEERN. AMUARE \(k=b-1\) ERHFSFHFIE— \(k
V), X5 ZBIREICHEFE.

21
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T, BABRE—MIF: g \(b=5\), BANb-1=4Y), T2, \(k\) DFHE \(\text{ceil}(\sqrt{5}) \approx
3\), FTA\(3\legk\leq4)), IZEME \(k=3)F1\(k=4)),

For k=3: (372 -3)/4 =6/4=1.5, not integer. So invalid.

For k=4: (16 -4)/4=12/4=3. So d1=3, d2=4 -3=1. So n=16=4/2. In base 5, 16 is 31, which sums to 4. So yes, that's
valid. So here, only k=4 is valid. So in base 5, there's only one beautiful number. &%, {BiRERIEIAVIZEE, k=b-1=4
=— TR, A, k=4=0mod 4? X, 4=0mod 4, FiA 4=0 mod 4, HItt, k=4 F— &, (BE, EXMBELT,

k=4=0mod 4, FIMNER—#. AT, 7 baseb5 P, k=4 EW—HIE. FLL, 3T base5, RE—TEMWAI,

%% XE5ZEMNEEFE: ZEHIAN \(k\equiv 0\mod (b - 1) \) 5 \( k \equiv 1 \mod (b - 1)\), #Afi, L \(b=5
\) B, \(b-1=4)\), Eitt\(k\equiv0\mod 4\) 3 \(k \equiv 1\mod 4\), 7ESEE \(3, 4]\) &, \(k =4 \equivO0
\mod 4 ), M \(k=3\equiv3\mod4)\), FiARE \(k=4\) HEEMHE, BLH\(k=4) K, \(k'2-Kk)/4=(16-4)/4
=12/4=3)), 2B, Alt, (k=4) BZ—TERNE. ELt, FEH\(b=5\) R, REEWE,

£%, BHFRT (k=b-1\) 24, BEEMBIEEN \(k)) B, FHI1KE (b=6\) BIER. B4 \(b-1=5)),
e, \(k\) I#E R \(\Iceil \sqrt{6} \rceil = 3\), FTLA\(3\legk\leg5)), EZTRINE \(k=3,4,5)).

k=3: (9 -3)/5=6/5=1.2, not integer.
k=4: (16 -4)/5=12/5=2.4, not integer.

k=5: (25 -5)/5=20/5=4. So d1=4, d2=5 -4=1. So n=25. In base 6, 25 is 41, which sums to 5. So yes, sqrt(25)=5. So

this is valid. So in base 6, only k=5 is valid. So again, only one beautiful number.

FE, XXRPA, RA\(k=b-1\) ZAVMNE, B4, ATL2BEFREFEBI T TR EMEIR? XGRS, A6
BROHERFEEIR.

Z% BIIBRE—DFENEF. BiE\(b=8\), BBANDb-1=7Y. F2, \(k\) BEELE \(\lceil \sqrt{8} \rceil = 3
VEIN(7Y), EFHRNE\(k=3,4,5,6,7\),

k=3: (9 -8)/7=6/7 =~0.857, not integer.

k=4: (16 -4)/7=12/7=1.714, not integer.
k=5: (25 -5)/7=20/7~2.857, not integer.
k=6: (36 -6)/7=30/7=~4.285, not integer.

k=7: (49 -7)/7=42/7=6. So d1=6, d2=7 -6=1. So n=49=7/2. In base 8, 49 is 61, which sums to 7. Correct. So only
k=7 is valid. So again, only one.
%, ZRIPAXTFEDT b, RE k=0—1 2ERN? NRIBXHE, LABDT b REE— b -beautiful £, 18

XE5EBEEKRFE, BEPRIFEFERI T b -beautiful £, Fltt, FHAOME—EFEHIR.
%%, FEREHEMN kL HREME (K — k) IM# (b— 1) B, ZHRERE k=0 (mod (b—1)) &
k=1 (mod (b—1)), EXMERNEHETF (b—1) BRBMER, MR (b— 1) TREE, BATES

B2 kmREE (k2 — k) B (b— 1) 2R3,
2
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Wait, for example, suppose b -1 is composite. Let's take b=7, so b -1=6. Then, since 6 divides k(k -1). Since k and k
-1 are coprime, 6 must divide either k or k -1. Therefore, either k =0 mod 6 or k =1 mod 6. So in base 7, the

possible k's are those congruent to 0 or 1 mod 6. The range for k is ceil(sqrt(7))=3 to 6. So k=3,4,5,6.
Check k=3: 3 mod6=3+0 or1. So invalid.

k=4:4 mod6=4+0 or1. Invalid.

k=5:5 mod6=5=0 or1. Invalid.

k=6:6=0 mod6. So valid. So k=6. Then d1=(36 -6)/6=30/6=5. So d1=5, d2=6 -5=1. So n=36=6"2. In base7, 36 is

5*7 +1=35+1=36. So 51_base7, which sums to 6. Correct. So only k=6 is valid here. So again, only one.

FF, BME\(b-1\) 288, WEFHM (k) NUFMAZE -, XKHE, ITFETEE\(bY, RE\(k=b-1)
SHERMN., BEX5HEHARFE, ERAN@EHRRE \(81)) 2 \(13\)-beautiful, BEFFEEAM \(b \)-beautiful #J%
F, FE, HIFRBEERIZRE \(k\equiv0)) 5 \(1 \pmod{b-1}\) 7 8EH B &M . iLHBIFHE—E,

If (b -1) divides k(k -1), since k and k -1 are coprime, (b -1) must divide either k or k -1. Therefore, either (b -1)
divides k or (b -1) divides k -1. Therefore, k =0 mod (b -1) or k =1 mod (b -1). However, since k is in [ceil(sqrt(b)), b
-1], the number of such k's is equal to the number of multiples of (b -1) in that interval (which is 1: k=b -1) plus the
number of numbers congruent to1 mod (b -1) in that interval. Similarly, if (b -1) divides k -1, then k =1 mod (b -1). So

numbers congruent to1 mod (b -1) in the interval.
But in the interval [ceil(sqrt(b)), b -1], how many numbers are congruent to0 or1 mod (b -1)?
For example, take b=10. Then b -1=9. The interval is ceil(sqrt(10))=4 to 9. So numbers 4,5,6,7,8,9.

Numbers congruent to0 mod9: 9. Numbers congruent to1 mod9: 1,10. But 1 is less than ceil(sqrt(10))=4, and 10 is
equal to b=10, which is excluded. So only k=9=0 mod9. So here, only k=9. Then d1=(81 -9)/9=72/9=8. So d1=8,

d2=9 -8=1. So n=81=9/2. In base10, 81 is 81, which sums to 9. Correct. So only one beautiful number here.

FF, IRPAESTERTHRIAE—TEMNHF. EFEEPTIRE, FEXI— b, EFEEWOBFBEI . X
R

EARSHNESHEFE. BLt, HOEEF—EFEEMNER.

Wait, let's take the example given: 81 is 13-beautiful. So in base13, 81 is written as 63. Let's check if 6 +3=9=
sqrt(81). Correct. So k=9. So in base13, k=9. Let's check if (922 -9) is divisible by12. 81 -9=72. 72 divided by12 is6,
which is integer. So d1=72/12=6, d2=9 -6=3. So yes, in base13, 81 is 613 +3=78 +3=81. So 63_base13. So digits 6
and3 sum to9. Therefore, this works. So here, k=9. For base13, b -1=12. So 9 is neither 0 nor1 mod12. So 9=9
mod12. But (12) divides (972 -9)=72. Indeed, 12 divides72. So even though 9 is not congruent to0 or1 modi12, 12
divides72. Therefore, my earlier assumption that k must be =0 or1 mod(b -1) is wrong. Because (b -1) divides k(k -1)
does not require k=0 or1 mod(b -1). It only requires that (b -1) divides the product k(k -1). So (b -1) can divide k(k -1)
even if it doesn't divide either k or k -1, as long as the product is divisible. For example, if (b -1) is composite, its

factors could divide k and k -1 respectively.

Therefore, my previous reasoning that k must be =0 or1 mod(b -1) is incorrect. Therefore, the number of k's such

that (b -1) divides k(k -1) is not limited to those congruentg0 or1 mod(b -1). Therefore, the number of such k's can
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be higher. Therefore, perhaps for some bases b, there are multiple k's where (b -1) divides k(k -1). Therefore, the
number of b-beautiful numbers can be more than one. Therefore, the problem is to find the minimal b where there

are more than ten such k's.
Therefore, the approach should be:

For a given b, find all integers k in [ceil(sqrt(b)), b -1] such that (b -1) divides (k~2 -k). Then count these k's. We need

to find the minimal b where this count exceeds ten.
But how to compute this efficiently? Since b can be large, maybe we need a formula or a pattern.

Alternatively, note that (b -1) divides (k"2 -k) can be written as k"2 =k mod(b -1). So k"2 =k mod(b -1). Therefore,

k(k -1) =0 mod(b -1). So the number of k's in [ceil(sqrt(b)), b -1] satisfying this congruence.

This is equivalent to solving k(k -1) =0 mod(b -1) for k in the given range. The number of solutions to this
congruence is equal to the number of integers k in [ceil(sgrt(b)), b -1] such that k =0 or1 mod(d) for some divisors d

of (b -1). But this might be complicated.

Alternatively, note that for each k in [ceil(sqrt(b)), b -1], k(k -1) must be divisible by (b -1). This is equivalent to (b -1)
divides k(k -1). So for each k, check if k(k -1) is divisible by (b -1). The number of such k's is the number of b-

beautiful numbers.

Therefore, the problem reduces to, for each b, compute the number of k in [ceil(sgrt(b)), b -1] such that (b -1) divides

k(k -1). We need the minimal b where this count exceeds ten.

To find such b, we can start from b=2 and increment b until the count exceeds ten. However, this might be time-

consuming. Is there a pattern or a way to estimate how many k's satisfy this for a given b?

Note that (b -1) divides k(k -1) implies that for each prime power p/r dividing (b -1), p/r divides k(k -1). Since k and k
-1 are coprime, for each prime p dividing (b -1), either p/r divides k or p/r divides (k -1). Therefore, the number of
solutions k mod (b -1) is 22w, where w is the number of distinct prime factors of (b -1). However, this is only if (b -1)

is square-free. If (b -1) has square factors, the number of solutions can be less.

But in general, the number of solutions to k(k -1) =0 mod m is multiplicative over the prime powers in the
factorization of m. So if m=[]p_i{r_i}, then the number of solutions is [|(d(p_i*{r_i})), where d(p/r)=2 if p=2, and 2

otherwise. Wait, no. For each prime power p/r dividing m, the number of solutions to k(k -1) =0 mod pr is:
® |f p=2, there are 1 or 3 solutions mod 8, but in general for higher powers, it's 2 solutions.

£, NFFEH\(p)), 52 (kK- 1)\equiv 0 \pmod{pr}\) HIEZE \( k \equiv 0 \pmod{p~r} \) ¢ \( k \equiv 1
\pmod{p~r}\), ELt, SFFEPNFTREE \(prr), FEE\(2)) THE.

For p=2, if r >=3, then there are 4 solutions mod 8, but for r=1, 2 solutions, for r=2, 4 solutions. Wait, let's check:
For p=2:
If r=1: mod 2. The solutions are k=0 or1 mod2. So 2 solutions.

If r=2: mod4. The solutions are k=0 or1 mod4. So 2 solutips.
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If r=3: mod8. The equations k(k -1)=0 mod8. The solutions are k=0,1 mod8. Because if k is even, k-1 is odd, so 8
divides k. If k is odd, k-1 is even, so 8 divides k-1. Wait, but 8 divides k or k-1. So solutions are k=0 or1 mod8. So 2
solutions. Wait, but 8 divides k(k-1). If k is even, then k must be divisible by 8, because k-1 is odd and can't
contribute any factors of 2. Similarly, if k is odd, k-1 is even and must be divisible by 8. Therefore, solutions are k=0
or1 mod8. So 2 solutions. Similarly, for higher r, the number of solutions is 2. So for p=2, regardless of r, the number

of solutions is 2.

Therefore, for a general modulus m, the number of solutions to k(k -1) =0 mod m is 2w, where w is the number of
distinct prime factors of m. However, this is only if m is square-free. If m has square factors, the number of solutions
can be less. Wait, but in our case, m =b -1. So if (b -1) is square-free, the number of solutions mod (b -1) is 2 w.
Therefore, the number of solutions k in [0, b -1) is 2”w. Therefore, the total number of solutions in [1, b -1] is 2 w.
However, we are interested in k in [ceil(sqrt(b)), b -1]. Therefore, the number of solutions is the number of residues

mod (b -1) that are in [ceil(sqrt(b)), b -1] and satisfy k =0 or1 mod p”r for each prime power in (b -1).

But this is getting complicated. However, if (b -1) is a product of distinct primes (square-free), then the number of
solutions mod (b -1) is 22w, where w is the number of distinct prime factors. Therefore, the number of solutions in
the entire range [0, b -1) is 22w. Therefore, if we can find b such that (b -1) has many distinct prime factors, then
27w will be large, leading to more solutions. Therefore, perhaps choosing b such that (b -1) is a product of the first

few primes will lead to a large number of solutions.

For example, let's take (b -1)=235*7=210. Then b=211. Then the number of solutions mod210 is 224=16. Therefore,
in the interval [0,210), there are16 solutions. Therefore, in [ceil(sqrt(211)),210], the number of solutions would be 16
minus those solutions less than ceil(sqrt(211))=15. So 16 - number of solutions less than15. If none of the solutions
are less than15, then we have16 solutions. But since the solutions are congruent to0O or1 mod2,3,5,7, which would
spread out the residues. However, some of these solutions might be less than15, but perhaps most are above.

Therefore, such a b=211 might have many beautiful numbers. But we need to find the minimal b.

But since the problem asks for the least b where there are more than ten beautiful numbers, we need to find the

smallest b such that the number of solutions to k(k -1)=0 mod(b -1) in [ceil(sqrt(b)), b -1] exceeds ten.

Therefore, to find such b, we can start from small b and check the count. However, given that the example given is
81 being13-beautiful, and in base13, k=9. Let's check for b=13. Then (b -1)=12=2/2*3. So the number of solutions
modi12 would be 2/22=4? Wait, but 12 is not square-free. For modulus with repeated prime factors, the number of

solutions can be different.
Wait, for modulus m=12=2/2*3. Let's compute the number of solutions to k(k -1)=0 mod12.
This requires that 4 divides k(k -1) and 3 divides k(k -1). Since k and k -1 are coprime:

For 4 divides k(k -1): Since k and k -1 are consecutive, one of them is even. But to have 4 divides k(k -1), either k is
divisible by4 or k -1 is divisible by4. Because if k is even, then k -1 is odd, so 4 divides k. If k is odd, then k -1 is

even, and we need 4 divides (k -1). Therefore, solutions mod4 are k=0 or1 mod4.

Similarly, for 3 divides k(k -1): Either k=0 mod3 or k=1 mod3.
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Therefore, combining these using the Chinese Remainder Theorem, the solutions mod12 are the combinations of

the solutions mod4 and mod3.

For mod4: solutions k=0,1 mod4.

For mod3: solutions k=0,1 mod3.

Therefore, combining these, we have four combinations:

1. k=0 mod4 and k=0 mod3: solution is k=0 mod12.

2. k=0 mod4 and k=1 mod3: solution is k=8 mod12 (since 8=0 mod4 and 8=2 mod3? Wait, 8 mod3=2, so
8=2=-1 mod3. Wait, we need k=0 mod4 and k=1 mod3. Let's solve:

k =0 mod4
k =1 mod3
Let k=4m. Then 4m =1 mod3 => m =1 mod3. So m=3n +1. Therefore, k=4*(3n +1)=12n +4. Therefore, k=4 mod12.
£%, 4mod3=1, FflX 4 =1mod 3. HILFR, k=4HERM. Eit, B8R k=4mod 12,
Similarly,

3. k=1 mod4 and k=0 mod3: k=1 mod4, k=0 mod3.

k=4m +1. Then 4m +1 =0 mod3 =>4m =-1 mod3 => m =2 mod3 (since 4=1 mod3, so 1m =-1 mod3 =>m =2

mod3). Therefore, m=3n +2. Therefore, k=4(3n +2) +1=12n +9. Therefore, k=9 mod12.

4. k=1 mod4 and k=1 mod3: k=1 mod4, k=1 mod3. Then k=1 mod12 (since if k=1 mod4 and mod3, then k=1

mod Icm(4,3)=12).
Therefore, the four solutions modi12 are k=0,1,4,9 mod1i2.
Therefore, in the interval [ceil(sqrt(13)),12], which is [4,12], the valid k's are:
k=4,5,6,7,8,9,10,11,12.
Check which of these are =0,1,4,9 mod12.
k=4:4=4 mod12. Valid.
k=5:5=5 mod12. Not valid.
%%, k=4 =4 mod12, FHEFKH.
k=5 =5 modi2,

k=6 = 6 mod12, RF&E&EM.

k=7 =7 mod12, FHEEaEMt.
k=8 = 8 mod12, FFE%M,
k=9 = 9 mod12, HF&&MH.

26
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k=10 = 10 mod12, FEEM,

k=11 = 11 mod12, FRHEELM.,

k=12 = 0 mod12, RF&EHM.

Therefore, the valid k's are4,8,9,12. Now check if these k's lead to valid d1=(k"2 -k)/12.

k=4:

(16 -4)/12=12/12=1. d1=1, d2=4 -1=3. So n=4/2=16. In base13,16 is1*13 +3=16. Digits1 and3 sum to4. Correct.
k=8:

(64 -8)/12=56/12~4.666. Not integer. So invalid.

=5 56 HAREW 12 Big., %5, 64-8=56, 56 = 12 ~ 4.666..., X2, F k=8 2T, (BIRIEZ BT
FITHE, k=8 FHEIE 12 KM, SAMEfrt, (k2- k) HTREW 12 BlR, FEitb, RE k=8 HEBRFKM, {856 HAR

BEMR 12 EFF, EIt k=8 BXMM, X2 —TIE=L,

£2% BITRKE—TYH (k=8 ) A1E%: \(k\equiv8\mod 12\), BBA \(k(k-1) =8 \cdot 7 =56 \), \(56 \mod 12
=56 -4 \cdot 12 =56 - 48 =8\), AL, \(56 \equiv8\mod 12\), FRLA, \(56\) HA# \(12\) k., 7AMm, RiEZ

BIEIDHT, \(k\equiv8\mod 12\) NiZZ2—"#. ERXMUFSELFE.

2%, UIFBRNAEFERIR. ST, RIEZRNST, BMNZENOIE 4 70& 3 WEMHF. T \(k=8\):

\[

k \equiv 0 \mod 4 \text{ (E¥ \(8\div 4 =2\), FEH \0V) },

k-1 =7\equiv1\mod 3 \text{ (EJ \(7 \div3=2\), REHF\(1) }.

\l

Hitt, \(k=8\) i%/E \(k \equiv 0\mod 4 \) B \(k \equiv 1\mod 3\) %, X5HAZEITENE 2 MIERER. (8

ZXfrt, \(8\times7=56Y), \(56\) ZANHER \(12\) BIf. X2HTA?

5 O\(4)\) FTAZERR \(8)), T \(3\) ATLAZERR \(7\) B2 \(7\) FEEHE \(3\) 2k, 18 \(7 \equiv1\mod 3\, &
2. \(3)\) ATBAZERR \( k(k-1)\) HEIXH \( k \equiv 0 \mod 3 \) 5 \( k \equiv 1 \mod 3\), BT \( k=8 \equiv 2 \mod 3
\), \(k-1=7\equiv 1\mod 3\), FELt, \(3\) ATLAZEES \( k-1\), FFLAN\(3\) FASCEIIAEERR \(7 ), {BXAAIEE, BRIE\(

7V HER \(3)) BER. B, (7)) REER \(3)) BiF. FF, HMEMELET?

5 \(kkk - 1) \equiv 0 \mod 3 \) H B \( k \equiv 0 \mod 3 \) 8 \( k \equiv 1 \mod 3\), XEFEH 3 E—1=&
B, FRLA, #08R \(k\equiv2\mod 3\), A4 \(k-1\equiv1\mod3)\), Eik\(k-1\equivi\mod3)\), XELKE \(
3\) ATLAZERS \(k- 1)), %%, X, W% \(k\equiv2\mod 3\), B4 \(k- 1\equiv1\mod 3Y), BTLA\(3\) HTAE
BRR\(k-1)). F%, R \(k\equivi\mod 3\), H24A \(k-1\equiv0\mod3\), FL\(3\) AJAEERR \(k-1)), &

i, R \(k\equiv 0\mod 3Y), HBA\(3\) ATLAEERR \(k V),

A, 208 \(k \equiv2\mod 3\), M \(k(k - 1) \equiv 2 \cdot 1 =2\mod 3\), XAH 0, FrlA, \(k(k - 1) \equiv 0

\mod 3\) HHXZH \(k\equiv0)) 3Z \(1\mod 3\), T2, \(k=8\equiv2\mod 3\), ALk, \(8\cdot 7 \equiv 2

\cdot 1 =2\mod 3\), iXi%tBE 3 FHABEEERR \(8 \cdot 7\), {BIRIEZRIMISME, 1B \(k\equiv0\mod 4\) B \(k
27
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\equiv 1 \mod 3\), %A1, \(k=8\) #E \(0\mod 4 ), 1B \(8\equiv2\mod 3\), Eitt, \(k=8\) FFi#E \( 1 \mod

3\) KM, 5%, X518 CRT & \(k \equiv 8 \mod 12\) F/ET,

Z% BAIRE—T. @I 29, HMEXR \(k\equiv0\mod 4\) B \(k\equiv 1\mod 3\), FHNHKEIAIEE \(k

\equiv 4 \mod 12\), &%, ILEHNEMEIX IR,

FHANRE \(k\equiv 0\mod 4 \) H \(k\equiv 1\mod 3\), B4 \(k=4m)\), Ed\(m\) IEDMEEH, EE, \(4m
\equiv 1 \mod 3\), B} \(4 \equiv 1\mod 3\), FrLAZ=ATAEIE 0 \( 1 \edot m \equiv 1 \mod 3\), HLk, \(m

\equiv 1 \mod 3\), BRI \(m=3n+1)), KNFEE:

\[
k=4\cdot Bn+1)=12n + 4,

\l
EE, \(k\equiv 4 \mod 12),

ErIA, \(k=4,16,28,\dots \), Eltt, \(k=4\) B/FEFMLHR, 1B \(k=8\) HTZ. FF, \(k=8\equiv8\mod 12),
FRLA\(8 \) HAFFE \(4 \mod 12\) B9,

%, RUAEBLEMRT ., EZaiNoimT, JWFE 12 18R, HA1BEIT \(k\equiv 0,1,4,9\mod 12\), B4 \(k=4,
8,9, 12\) EX g \([4,12]\) 1, AT, \(k=8 \equiv8\mod 12\), HT/EXLLMBAEENAN., %%, LRL, \(k=8

\equiv 8 \mod 12), HAHE \(0,1,4,9\mod 12\) B9% M, Fltt, ZBIMNEICIER, f#H \(k=4,9,12\),

%%, \(k=12\equiv 0\mod 12), {8 \(k=12\) FF \(b-1=12), ETFEHRE \(k=12):

\[

(144 - 12)/12 = 132/12 = 11,

\J

A, \(d_1=11\), \(d_2=12 - 11=1\), AFIA \(n=144=12/2\), EEE 13 &, \(144\) R~ \(11 \cdot 13 +
1=143 + 1=144\), FF\(11 ) F\(1\) B9FR (12, T \(\sqrt{144}=12\), Et, XEEEZLILAT. FTA \(k=12
\) BB,

&L, 3T \(b=13)), BRI \(kY) ER\(4,9,12\), MEBNIBIOLE (k=9 ):

\[

81-9)/12=72/12=86,

\l

Fib, \(d_1=6Y), \(d_2=9 - 6=3\), FTLA\(n=81=972)), &K 13 A1, \(81=6\cdot 13 + 3=78 + 3=81)), #F \(
6\) F\(3\) BFIR \(9Y), T \(\sqrt{81}=9\), FLL, XthZIEMH,

Similarly, k=4 as before.

Therefore, in base13, there are three beautiful numbers: 16,81,144, and also k=12. %, k=12 XY n=144, BB
4, k=12 Rix n=144, EEEK13H, 14455111, 55, 1448I3ET 1R, EE11x13 + 1=143 +1=144, Ff
ME11H01, BM11, (B 141=2, XFLEF12, FE, T, BESE, di=11, d2=1, A 11 +1=12, XHIEF

sqrt(144)=12, BBAT . FRiLAZEFARY,
28
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Therefore, in base13, the beautiful numbers are n=16,81,144. &%, &F k=9, 4, #] 12, ELt, —HEBUPEIRHIER
F. FF, k=4 XN n=16, k=9 I n=81, k=12 NI n=144, FIAEBHE=", F5F, BEKXE [4,12] 4,
k=4,9,12, AL, —HB=14%. FiA base13 FE=EMIIEF. Am, FMEPLHHNIHFE 81 2 13-=mHY,

BXEBHNKET=1, FF, BEPFR: “GlaN, 81 F 13-EmM......", Bk, FIEE base13 H=PXEFENHF.

But the problem asks for the least b where there are more than ten such numbers. Therefore, we need to find a

larger b. Therefore, perhaps we need to find a b where (b -1) has more prime factors, leading to more solutions.

Alternatively, note that if (b -1) is a product of the first n primes, then the number of solutions is 22n. For example, if
(b -1)=235711=2310, then b=2311, and the number of solutions would be 2A5=32. Therefore, in the interval
[ceil(sqrt(2311)),2310], the number of solutions would be 32 minus those less than ceil(sqrt(2311))=~48. So 32 -
number of solutions less than48. If there are, say, 4 solutions less than48, then we have28 solutions. But this is
speculative. However, this suggests that choosing b such that (b -1) is a product of many primes will lead to a

higher number of solutions.

But to find the minimal b, we need to check values of b starting from b=2 upwards until we find more than ten

solutions. However, this is time-consuming. Let's try to compute for some b.

Let's try b=30. Then (b -1)=29, which is prime. Therefore, the number of solutions mod29 is2. Therefore, in the
interval [ceil(sqrt(30))=6,29], the solutions are k=0 or1 mod29. But in this interval, k=29=0 mod29, and k=1=1
mod?29. But k=1 is less than ceil(sqrt(30))=6, so only k=29. Therefore, only one solution. So n=29/2=841. In base30,
841 is 2930 +1=870 +1=871, which is not correct. Wait, no. Wait, 29°2=841. In base30, 841 divided by30
is2830=840, so 841=28"30 +1. Therefore, the digits are28 and1, which sum t029. sqrt(841)=29. Correct. So only one

beautiful number here.

Similarly, let's try b=10. Then (b -1)=9=3/2. The number of solutions to k(k -1)=0 mod9. Since 9=3/2, we need 9
divides k(k -1). Since k and k -1 are coprime, either 9 divides k or 9 divides k -1. Therefore, k=0 or1 mod9. In the
interval [ceil(sqrt(10))=4,9], the numbers are4,5,6,7,8,9. Among these, k=9=0 mod9. So only k=9. Check k=9: (81

-9)/9=72/9=8. d1=8, d2=9 -8=1. So n=81=9/2. In base10, 81=8*10 +1. Digits8 and1 sum t09. Correct. So only one.

Next, try b=15. Then (b -1)=14=2"7. So solutions are k=0,1 mod2 and k=0,1 mod7. Combining, using Chinese

Remainder Theorem:
Solutions mod14:

1. k=0 mod2 and k=0 mod7: k=0 mod14
2. k=0 mod2 and k=1 mod7: k=8 mod14 (since 8=0 mod2, 8=1 mod?7)

3. k=1mod2 and k=0 mod7: k=7 mod14
F%E, Tmod2=1, X5? RAH 7 25FE, FALA7=1mod 2, FEItE, k=7 mod 14,
4. k=1 mod2 and k=1 mod7: k=1 mod14.
Therefore, solutions are k=0,1,7,8 mod14. In the interval [ceil(sqrt(15))=4,14], the numbers

are4,5,6,7,8,9,10,11,12,13,14. Check which are=0,1,7,8 rEgd14:
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k=7=7 mod14

k=8=8 mod14

k=14=0 mod14

k=1=1 mod14 (but 1<4, so excluded)
k=7,8,14 are valid.

Check k=7:

(49 -7)/14=42/14=8. d1=8, d2=7 -3=4. n=49. In base15,49=3"15 +4=45 +4=49. Digits3 and4 sum to7. sqrt(49)=7.

Correct.
k=8:

(64 -8)/14=56/14=4. d1=4, d2=8 -4=4. n=64. In base15,64=4"15 +4=60 +4=64. Digits4 and4 sum to8. sqrt(64)=8.

Correct.
k=14:

(196 -14)/14=182/14=13. d1=13, d2=14 -13=1. n=196. In base15,196=13*15 +1=195 +1=196. Digits13 and1 sum

to14. sqrt(196)=14. Correct.
Thus, in base15, there are three beautiful numbers:49,64,196. So three solutions. Still not enough.
Next, try b=22. Then (b -1)=21=3*7. Solutions mod21:
Solutions are combinations of solutions mod3 and mod7.
mod3: k=0 or1 mod3
mod7: k=0 or1 mod7
Thus, four combinations:
1. k=0 mod3 and k=0 mod7: k=0 mod21
%% O0mod3 =20, Omod7 thE 0, AL, k=0mod 21,

k=0 mod3 and k=1 mod7: Solve k=3m=7n +1. k=1 mod7 and k=0 mod3. Let k=7n +1. Then 7n +1=0 mod3
=>7n=-1 mod3 => n=-1 mod3 (since7=1 mod3). So n=2 mod3. Thus, n=3p +2. Then k=7*(3p +2)+1=21p
+15. Therefore, k=15 mod21.

3. k=1mod3 and k=0 mod7: k=3m +1=7n. So 3m +1=7n. Then 3m=-1 mod7 =>3m=6 mod7 =>m=2 mod7. So

m=7p +2. Then k=3*(7p +2)+1=21p +7. Thus, k=7 mod21.
£%E, 3Tp+2)+1=21p+6+1=21p+7, AL, k=7 mod 21,
4. k=1 mod3 and k=1 mod7: k=1 mod21.

Therefore, solutions are k=0,1,7,15 mod21.

30
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In the interval [ceil(sqrt(22))~5,21], the numbers are5,...,21. Check k=0,1,7,15,21 mod21.

k=7,15,21=0,7,15 mod21.

Check k=7:

(49 -7)/21=42/21=2. d1=2, d2=7 -2=5. n=49. In base22,49=2"22 +5=44 +5=49. Digits2 and5 sum to7. Correct.
k=15:

(225 -15)/21=210/21=10. d1=10, d2=15 -10=5. n=225. In base22,225=10"22 +5=220 +5=225. Digits10 and5 sum

to15. Correct.
k=21:

(441 -21)/21=420/21=20. d1=20, d2=21 -20=1. n=441. In base22,441=20"22 +1=440 +1=441. Digits20 and1 sum

to21. Correct.
Thus, three beautiful numbers:49,225,441. Still only three.
Next, try b=10. Already did that. Let's try b=22. Hmm, same as above.

FZE, IFHMNATUEE—\(b-1) 2R T REGRRNER, BARL—T (b=10)), EE \(9=3/2)), FHE, \(
b=14\): \(b-1=13\) (F&) . BAEZMIBERT, NERTE.

Alternatively, let's try b=21. Then (b -1)=20=2/2"5.
Solutions to k(k -1)=0 mod20.
This requires that 4 divides k(k -1) and 5 divides k(k -1).
For 4 divides k(k -1): k=0 or1 mod4.
For5 divides k(k -1):k=0 or1 mod5.
Using Chinese Remainder Theorem:
Combine solutions mod4 and mod5.
Possible combinations:
1. k=0 mod4 and k=0 mod5: k=0 mod?20.
5% 0mod 4 1 0 mod 5 BIFRE k = 0 mod 20,
2. k=0 mod4 and k=1 mod5.

Solve k=4m=5n +1. Then 4m=1 mod5 =>4m=1 mod5 =>m=4/{-1} mod5. Since44=16=1 mod5, so inverse of4 is4.

Thus, m=41=4 mod5. Thus, m=5p +4. Then k=4*(5p +4)=20p +16. Therefore, k=16 mod20.
3. k=1 mod4 and k=0 mod5.

k=4m +1=5n. So 4m +1=5n. Thendm=-1 mod5 =>4m=4 mod5 =>m=1 mod5. So m=5p +1. Then k=4*(5p

+1)+1=20p +5. Therefore, k=5 mod20.
31
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4. k=1mod4 and k=1 mod>.
k=1 mod4 and k=1 mod5 =>k=1 mod20.
Thus, solutions are k=0,1,5,16 mod20.
In the interval [ceil(sqrt(21))~5,20], the numbers are5,...,20.
Check k=0,1,5,16 mod20:
k=5=5 mod20
k=16=16 mod20
k=20=0 mod20
k=1=1 mod20 (but 1<5, excluded)
Thus, valid k=5,16,20.
Check k=5:
(25 -5)/20=20/20=1. d1=1, d2=5 -1=4. n=25. In base21,25=1*21 +4=25. Digits1 and4 sum to5. Correct.
k=16:

(256 -16)/20=240/20=12. d1=12, d2=16 -12=4. n=256. In base21,256=12"21 +4=252 +4=256. Digits12 and4 sum

to16. Correct.
k=20:

(400 -20)/20=380/20=19. d1=19, d2=20 -19=1. n=400. In base21,400=19"21 +1=399 +1=400. Digits19 and1 sum

t020. Correct.
Thus, three beautiful numbers:25,256,400. Still three.

12, WiFUEIE (b=32Y), BANb-1=31)), XB—7TFEH. ALk, FRE\(31\) T, BHER 2, T2, &
X 8] \([ceil(\sqrt{32}) \approx 6, 31]\) &, fE} \(k=31)), LEAT \(n=3142=961\), 7EM 32 REET, \(961 =30

\cdot 32 + 1 =960 + 1=961\), HEFX 30 # 1, EINEMA 31, XZEMRN., AL, XE—1E.
Next, try b=16. Then (b -1)=15=3*5.

Solutions to k(k -1)=0 mod15. So combinations of solutions mod3 and mod>5.

mod3: k=0 or1 mod3

mod>5: k=0 or1 mod5

Thus, four combinations:

1. k=0 mod3 and k=0 mod5: k=0 mod15.
2. k=0 mod3 and k=1 mod5: Solve k=3m=5n +1. 3m=1 mod5. 32=6=1 mod5, so m=2 mods5. m=5p +2. Then

k=3(5p +2)=15p +6. Thus, k=6 mod15.
32
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%% 6mod3=0, 6mod5=1, IEff,

3. k=1 mod3 and k=0 mod5: Solve k=3m +1=5n. 3m +1=0 mod5 =>3m=-1=4 mod5. Multiply both sides by2
(inverse of3 mod5 is2, since32=6=1 mod>5). So m=8=3 mod5. m=5p +3. Then k=3(5p +3)+1=15p +10. Thus,

k=10 mod15.

% 10mod3=1, 10 mod 5=0, IEff.

4. k=1mod3 and k=1 mod5: k=1 mod15.
Thus, solutions are k=0,1,6,10 mod15.
In the interval [ceil(sqrt(16))=4,15], numbers are4,...,15.
Check k=0,1,6,10 mod15:
k=6,10,15=6,10,0 mod15.
k=6:
(36 -6)/15=30/15=2. d1=2, d2=6 -2=4. n=36. In base16,36=2"16 +4=32 +4=36. Digits2 and4 sum to6. Correct.
%%, 62=36, 182 6 FT sart(36). %%,
k=10:

(100 -10)/15=90/15=6. d1=6, d2=10 -6=4. n=100. In base16,100=6*16 +4=96 +4=100. Digits6 and4 sum to10.

Correct.
%% 100=102, FRLA sqrt(100)=10, XJHY,
k=15:

(225 -15)/156=210/15=14. d1=14, d2=15 -14=1. n=225. In base16,225=14"16 +1=224 +1=225. Digits14 and1 sum

to15. Correct.
Thus, three beautiful numbers:36,100,225. So three solutions.

=]

B, BEREMERNIEXEAN \(bY), BMERTRIXET 3 M2, thiFgMUEiE \(b=30)), BEIIELLIRE
—MRT ., 5%, hiF\(b=7)): \(b-1=6=2\cdot3\),

Solutions to k(k -1)=0 mod6. So combinations of solutions mod2 and mod3.
mod2: k=0 or1 mod2

mod3: k=0 or1 mod3

Thus, four combinations:

1. k=0 mod2 and k=0 mod3: k=0 mods6.

2. k=0 mod2 and k=1 mod3: k=4 mod6 (since 4=0 mod2, 4=1 mod3).
3. k=1 mod2 and k=0 mod3: k=3 mod6.
4

k=1 mod2 and k=1 mod3: k=1 mod6. 33
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Thus, solutions are k=0,1,3,4 mod6.
In the interval [ceil(sqrt(7))=3,6], numbers are3,4,5,6.
Check k=0,1,3,4 mod6:
k=3=3 mod6
k=4=4 mod6
k=6=0 mod6
Check k=3:
(9 -3)/6=6/6=1. d1=1, d2=3 -1=2. n=9. In base7,9=1*7 +2=7 +2=9. Digits1 and2 sum to3. Correct.
k=4:
(16 -4)/6=12/6=2. d1=2, d2=4 -2=2. n=16. In base7,16=2"7 +2=14 +2=16. Digits2 and2 sum to4. Correct.
%%, sort(16)=4. 349,
k=6:
(36 -6)/6=30/6=5. d1=5, d2=6 -5=1. n=36. In base7,36=5"7 +1=35 +1=36. Digits5 and1 sum to6. Correct.
Thus, three beautiful numbers:9,16,36. So three solutions.
£E, XRPY
(b-1)

BRI ERERERN, BOMER 4, BEKXE

[ceil(vD), b — 1]

B, AIRERLII LA, BLWRERRMT 3 1R,

Therefore, perhaps to get more solutions, we need (b -1) to have more prime factors. Let's try a b where (b -1) is the

product of the first four primes:2,3,5,7. Then (b -1)=235*7=210, so b=211.

Then the number of solutions mod210 is2°4=16. Therefore, in the interval [ceil(sqrt(211))=15,210], the number of

solutions would be16 minus those less than15. If none are less than15, then16 solutions. But let's check.

First, compute ceil(sqrt(211)): sqrt(211)=14.52, so ceil is15. Therefore, the interval is15 t0210. The solutions mod210
are k=0,1 mod2,3,5,7. Wait, no. Wait, the solutions are combinations of k=0 or1 mod each prime factor.
Since210=235*7, the number of solutions is224=16. Each solution corresponds to choosing for each prime p, k=0

or1 modp. Then combine them using Chinese Remainder Theorem.

Each combination gives a unique solution mod210. Therefore, there are16 solutions mod210. Therefore, in the

interval [0,210), there are16 solutions. Therefore, in the interval [15,210], the number of solutions is16 minus the

34
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number of solutions less than15.

Check which of the16 solutions are less than15.

The16 solutions mod210 are:

For each prime factor2,3,5,7, choose k=0 or1 modp. Then combine.
For example:

1. k=0 mod2,3,5,7: k=0 mod210. So k=0 mod210. In [0,210), this isO. But0 is excluded since

k>=ceil(sgrt(211))=15. So excluded.

2. k=0 mod2,3,5 and=1 mod7: Solve k=0 mod(235)=30 and k=1 mod7. So k=30m=1 mod7. 30=2 mod7, so
2m=1 mod7. Multiply both sides by inverse of2 mod7, which is4 (since24=8=1 mod7). So m=4 mod7. Thus,

m=7n +4. Then k=30(7n +4)=210n +120. Therefore, k=120 mod210.

Similarly, compute all16 combinations. However, this would take time. But in any case, the solutions mod210 are16

numbers. Let's see how many of these are less than15.
The16 solutions mod210 are:

1. 0 (excluded as before)
2.1 (since k=1 mod2,3,5,7: k=1 mod210)

3. Numbers like 120 (as above), etc.
FF, RN AREMAE R RERNES:
For each prime factor, choose k=0 or1 modp. So for primes2,3,5,7:
Each prime can be either0 or1, so16 combinations.
Compute each combination:

1. All zeros: k=0 mod2,3,5,7 =>k=0 mod210. k=0 (excluded).
2. All ones: k=1 mod2,3,5,7 =>k=1 mod210. k=1 (excluded, <15).

3.0 mod2, 0 mod3, 0 mod5, 1 mod7: k=120 mod210 as above.
Similarly, compute others. For example:

® (0 mod2,0 mod3,1 mod5,1 mod7: Compute k=0 mod6, k=1 mod5, k=1 mod?7.
Compute k=0 mod6 and k=1 mod5 and k=1 mod7.

First, k=0 mod6 and k=1 mod>5. Let k=6m=5n +1. Then6m=1 mod5 =>m=1 mod>5. So m=5p +1. Then k=6*(5p
+1)=30p +6. Now, k=1 mod7:30p +6=1 mod7 =>30p=-5 mod7 =>30=2 mod7, so2p=2 mod7 =>p=1 mod7. Thus,

p=7q +1. Then k=30*(7q +1)+6=210q +36. Therefore, k=36 mod210.

Similarly, compute all combinations. But this is tedious. However, the key point is that the16 solutions mod210 will
be numbers from0 t0209. Since we need k>=15, the number of solutions in [15,210] is16 minus the number of
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solutions less than15.
So how many of the16 solutions are less than15?
The solutions include:
1. k=0 mod210:0
2. k=1mod210:1
3. k=1mod2,3,5,7:1
%%, T, F%, k=1mod23,5,7: k=1mod210, Bt k=1,
Other solutions:
For example, k=0 mod2,3,5 and=1 mod7: as above, k=120 mod210. %%, 120,
Similarly, other combinations will result in numbers like36, etc.

So likely, the solutions less than15 are only0 and1, which are excluded. Therefore, all16 solutions are>=15? But16
solutions in [0,210) are0,1, and14 others between1 and209. But if0 and1 are excluded, then14 solutions in [1,210).
But ceil(sqrt(211))=15, so we need k>=15. Therefore, the number of solutions is14 (since0 and1 are excluded, but
some solutions might be between2 and14). Wait, but if all solutions are>=15, then we have14 solutions. However,

let's check.

For example, k=1 mod210:1 (excluded). k=120 mod210:120. k=36 mod210:36. Similarly, other combinations will
result in numbers >=36, 120, etc. So likely, all solutions except0 and1 are>=36, which is>=15. Therefore, the number
of solutions in [15,210] is16 -2=14. Therefore,14 beautiful numbers. But wait, 14 is more than ten. Therefore, b=211
would have14 beautiful numbers. Therefore, the minimal b is211. But the problem asks for the least integer b>=2 for

which there are more than ten b-beautiful integers. Therefore,211. But let's confirm.

But before confirming, let's check if there are smaller b with more solutions. For example, if (b -1) is a product of
three primes, say235=30, so b=31. Then the number of solutions mod30 is2/3=8. Therefore, in the interval

[ceil(sqrt(31))=6,30], the number of solutions would be8 minus those less than6. Let's compute.
Solutions to k(k -1)=0 mod30. Which requires k=0 or1 mod2,3,5.
Using Chinese Remainder Theorem, the solutions are combinations of:
® k=0 or1 mod2
® k=0 or1 mod3
E%E, TR 2. 3. 5,
So the combinations are:
1. k=0mod2,3,5: k=0 mod30

2. k=0 mod2,3 and=1 mod5: k=0 mod6 and=1 mod>5. Solve k=6m=1 mod5 =>6m=1 mod5 =>m=1 mod5. So

m=5n +1. Then k=6*(5n +1)=30n +6=6 mod30.
36
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3. k=0 mod2,5 and=1 mod3: k=0 mod10 and=1 mod3. Solve k=10m=1 mod3 =>10m=1 mod3 =>m=1 mod3.

So m=3n +1. Then k=10*38n +1)=30n +10=10 mod30.
%%, 10mod 3 =1, Etk, 10 =1 mod 3, AT, XZIEHE,

4. k=0 mod2 and=1 mod3,5: k=0 mod2 and=1 mod3,5. Solve k=1 mod3,5 and=0 mod2. Find k=1 mod15
and=0 mod2. Solve k=15m +1=0 mod2 =>15m +1=m +1 mod2=0 =>m=1 mod2. So m=2n +1. Then k=15*

(2n +1)+1=30n +16=16 mod30.
Similarly, other combinations:

5. k=0 mod3,5 and=1 mod2: k=0 mod15 and=1 mod2: k=15m=1 mod2 =>15m=1m=71 mod2 =>m=1 mod?2.
So m=2n +1. Then k=15(2n +1)=30n +15=15 mod30.

6. k=0 mod3 and=1 mod2,5: k=0 mod3 and=1 mod2,5. Solve k=1 mod2,5 and=0 mod3. k=1 mod10 and=0
mod3. Solve k=10m +1=0 mod3 =>10m +1=m +1=0 mod3 =>m=2 mod3. So m=3n +2. Then k=10*(3n

+2)+1=30n +21=21 mod30.

7. k=0 mod5 and=1 mod2,3: k=0 mod5 and=1 mod2,3. Solve k=0 mod5 and=1 mod6. k=5m=1 mod6. 5m =
1mod 6, HF 5=-1mod 6, EIFFELEN-m=1mod6, Blm=5mod6, FTA, m=6n+5, &#E, k=

5%(6n + 5) = 30n + 25 = 25 mod 30,

8. k=1mod2,3,5: k=1 mod30.

Thus, the8 solutions mod30 are0,6,10,15,16,21,25,30. &%, 0 1 30 28R/, FRLAXLERERN: 0, 6, 10, 15, 16, 21,
25,1 (ARE k=1 0Y, &30 THERZ 1) . FEF, T, FFE, 5 8 THER \(k\equiv 1\mod 30\), FTLAUXLERR

2 \(k \equiv 0, 1, 6, 10, 15, 16, 21, 25 \mod 30\,

But in the interval [6,30], the solutions are6,10,15,16,21,25,30=0 mod30 (excluded), and1=1 mod30 (excluded). So

valid k=6,10,15,16,21,25.

Check each:

k=6:

(36 -6)/30=30/30=1. d1=1, d2=6 -1=5. n=36. In base31,36=1*31 +5=36. Digits1 and5 sum to6. Correct.
k=10:

(100 -10)/30=90/30=8. d1=8, d2=10 -3=7. n=100. In base31,100=3"31 +7=93 +7=100. Digits3 and7 sum to10.

Correct.
k=15:

(225 -15)/30=210/30=7. d1=7, d2=15 -7=8. n=225. In base31,225=7*31 +8=217 +8=225. Digits7 and8 sum to15.

Correct.
k=16:

(256 -16)/30=240/30=8. d1=8, d2=16 -8=8. n=256. In base31,256=8"31 +8=248 +8=256. Digits8 and8 sum to16.

Correct. 37
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k=21:

(441 -21)/30=420/30=14. d1=14, d2=21 -14=7. n=441. In base31,441=14"31 +7=434 +7=441. Digits14 and7 sum

to21. Correct.
%% 212=441, 28,
k=25:

(625 -25)/30=600/30=20. d1=20, d2=25 -20=5. n=625. In base31,625=20"31 +5=620 +5=625. Digits20 and5 sum

t025. Correct.

Thus, six beautiful numbers:36,100,225,256,441,625. So six solutions. Which is more than the previous examples,

but still less than ten. Therefore, b=31 has six beautiful numbers.

Therefore, moving to b=211 would give14, which is more than ten. But before that, check if there is a smaller b. For
example, take (b -1)=235=30, leading to b=31 with six solutions. If we take (b -1)=235*7=210, leading to b=211

with14 solutions. Alternatively, maybe a smaller (b -1) with three prime factors, but with overlapping solutions.

Alternatively, take (b -1)=237=42, so b=43. Then number of solutions mod42 is2/3=8. Therefore, in the interval

[ceil(sqrt(43))=7,42], the number of solutions would be8 minus those less than7.
Compute solutions mod42:

Solutions are combinations of k=0 or1 mod2,3,7.

Therefore,8 solutions:

1. k=0 mod2,3,7: k=0 mod42.

B
b

1. 0mod2,3,7:0 mod42.
EFE, XERBRIUT 8 MAS:
For each prime, choose 0 or1:

® (,0,0:0 mod42.

x

5, XR5|IR—LERRK, BIRKEMEASIE:

4

1. 0 mod2,0 mod3,0 mod7:0 mod42.
%=, XESEEERNHEMUTEMEF: kmod2=0, kmod3=0, kmod7 =0, ELk, k=0 mod 42,

2. 0 mod2,0 mod3,1 mod7:0 mod6,1 mod7. Solve k=6m=1 mod7. 6m=1 mod7. 6=-1 mod7, so -m=1 mod7
=>m=-1=6 mod7. So m=7n +6. Then k=6*(7n +6)=42n +36=36 mod42.
3. 0mod2,1 mod3,0 mod7:0 mod2,0 mod7. So k=0 mod14. Also,1 mod3. Solve k=14m=1 mod3. 14=2 mod3,

s02m=1 mod3 =>m=2 mod3. So m=3n +2. Then k=14*3n +2)=42n +28=28 mod42.

=% 28mod3=1, AR28+3=9..1, Filk, 28 =1 mod 3, X IFHE.
38
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4. o mod2,1 mod3,1 mod7:0 mod2,1 mod3,1 mod7. Solve k=1 mod3,1 mod7, and0 mod2. k=1 mod21 and0
mod2. Since21 is odd, k=1 mod21 and0 mod2. But1=1 mod21 and0 mod2, which is impossible. Therefore,

no solution here.
£F, XERILARR., HIRFAEE.
k=1 mod3 and1 mod7: k=1 mod21.
k=0 mod2.

So k=1 mod21 and0 mod2. So k must be even and=1 mod21. But1 mod21 is odd. Therefore, no solution.

Therefore, this combination is invalid.
So combination4 is invalid.

5. 1 mod2,0 mod3,0 mod7:1 mod2,0 mod21. Similarly, impossible. Because0 mod21 is even, but1 mod?2 is odd.

Therefore, no solution.

6. 1mod2,0 mod3,1 mod7:1 mod2,0 mod3,1 mod7. Solve k=1 mod2,0 mod3,1 mod7.

k=1 mod2 and0 mod3. Let k=83m=1 mod2. 3m=1 mod2 =>m=1 mod2. So m=2n +1. Then k=3*(2n +1)=6n +3=3

mod6.

Also, k=1 mod7. So6n +3=1 mod7 =>6n=-2=5 mod7. Multiply both sides by inverse of6 mod7, which is6
(since66=36 =1 mod7). So n=56=30=30 -47=2 mod7. So n=7p +2. Then k=6(7p +2)+3=42p +15. Therefore, k=15

mod42.
%%, 15mod 2 =1, X2EH, EH 15 FFH.
k=15=0 mod3,3*5.
k=15=1 mod7, since15=2"7 +1.
Thus, valid.
7. 1 mod2,1 mod3,0 mod7:1 mod2,1 mod3,0 mod7. Solve k=1 mod2,1 mod3,0 mod7.
k=1 mod2 and1 mod3. Then k=4 mod6.

Also, k=0 mod7. Solve k=7m=4 mod6. 7Tm=m=4 mod6. So m=4 mod6. m=6n +4. Then k=7*(6n +4)=42n +28=28

mod42.

Check k=28:

28 mod2=0=1 mod2? No. Wait, 28 is even, but we need k=1 mod2. So invalid. Therefore, no solution here.
5%, ZERRE, HNEHRBR—T:

k=1 mod2,1 mod3,0 mod7.

So k=7m, and k=1 mod2 and1 mod3.

7m=1 mod2 => m=1 mod2.

39
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7m=1 mod3 => 7Tm=m=1 mod3.

Therefore, m=1 mod2 and m=1 mod3. So m=1 mod lcm(2,3)=6. Thus, m=6n +1. Then k=7*(6n +1)=42n +7=7

mod42.
Therefore, k=7 mod42. Check:

7 mod2=1, 7 mod3=1, 7 mod7=0. Correct. So k=7. But7 is less than ceil(sqrt(43))~6.93, so ceil is7. So k=7 is

included. Therefore, valid.

8. 1 mod2,1 mod3,1 mod7:1 mod2,1 mod3,1 mod7. Solve k=1 mod2,1 mod3,1 mod7. Which is k=1 mod

lcm(2,3,7)=42. So k=1 mod42.
Thus, solutions are k=0,7,15,21,28,35,42=0 mod42, but k=7,15,21,28,35,1.

But in the interval [7,42], the solutions are7,15,21,28,35,42. However,42 is equivalent to0 mod42, which is excluded.

So valid k=7,15,21,28,35.

Check each:

k=7:

(49 -7)/42=42/42=1. d1=1, d2=7 -1=6. n=49. In base43,49=1*43 +6=49. Digits1 and6 sum to7. Correct.
k=15:

(225 -15)/42=210/42=5. d1=5, d2=15 -5=10. n=225. In base43,225=5"43 +10=215 +10=225. Digits5 and10 sum

to15. Correct.
%%, 5+10=15, &5,
k=21:

(441 -21)/42=420/42=10. d1=10, d2=21 -10=11. n=441. In base43,441=10"43 +11=430 +11=441. Digits10 and11

sum to21. Correct.
k=28:

(784 -28)/42=756/42=18. d1=18, d2=28 -18=10. n=784. In base43,784=18"43 +10=774 +10=784. Digits18 and10

sum to28. Correct.

k=35:

(1225 -35)/42=1190/42=28.5. Not integer. &%, 1190 [FIA 42 2 28.333.... FFE, XA HBE,

%2 1225 —-35=1190 , 1190 palA 42 : 42 x 28 =1176, 1190 — 1176 = 14 , FilA

1190 = 42 x 28 + 14 , Fuitt, 1190/42 =28 +14/42 =28 +1/3 ., IT 28, Et, k=35 R 2H
MR, %, BEE 42 T, k=35 2— M. &M, (k% — k)/42 ATREHR., X2ENRR 42 TUER
k(k—1), 18 k=358, k=35 (mod42), k—1=34 (mod42). 35 % 34 & 42 TH3|

Z 357 34, BEMMNFERAZ 35x34=1190. 1190 & 42 FF 14, B» 1190 +-42=28 & 14 .
40
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Eit, 1190 =14 (mod 42) . tBRLEH:, 42 FIMERS 1190 BN 42 MR, {8 1190/42 HREEH,
XREBRBEME 42 ReE, B (K — k)/42 HE—F2BH8. 5%, B8 k(k— 1) pasem 42 25, &
i, 35-34=1190, i 1190 HFEetk 42 Bif, FF, 428 2-3-7, HTREE:
1190 divided by2:1190/2=595. Divided by3:595/3~198.333, not integer. Divided by7:1190/7=170. So 1190=25717.
Therefore, 42=237 divides1190? 42=237, but1190=25717. The 3 is missing. Therefore,42 does not divide1190.
Therefore, k=35 is not a valid solution. Wait, but according to the previous analysis, k=35 is a solution mod42. But
actually, k=35=-7 mod42, but k(k-1)=3534=1790. 1190 mod42=1190 -4228=1190 -1176=14. Therefore,14=0
mod14, but42 does not divide1190. Therefore, there is a contradiction here. Therefore, our earlier assumption that
combining the modular solutions would lead to k(k -1)=0 mod42 is incorrect. Because even though k=0 or1 mod
each prime, the product k(k -1) might not be divisible by the product of the primes if the factors are distributed
across the primes.
%, XERREAESE? iILBMKFHBBZE—T. RRBEMNBEHE k(k—1)=0 mod 42 . BF
42=2-3-7, Bt 2-3.-7 WLFEF k(k—1) . AR kFM k—1ZERN, FNSTRELTER k
g k-1, BMENR WFEIRK p (XBR 2,3,7) , RTHE p B kot p BiR E— 1, L, 3
FEITEH, BB k=0 modpsl k=1 modp . Alt, ZERHGENHEIMETENAS, BIBTHEN
B 0% 1MER. SF=154, #5 2° = 8 #4AA.

R, HEME k=358, EEE 2. 3. 7TT2O5#HERE k=1 mod2. k=2 mod 3.

k=0 mod7. %%, 7. %%, 35 mod2=1, 35 mod3=2, 35 mod7=0, B%%,
BiE 3K, 35=2 mod3, XHAZE 0 1 mod3 . HELt, k=35 HFHE k=03

1 mod 3 %M, %, BEZANDHH, HMNEEHZ k=0 1 mod2, 05 1 mod3 . 0
F 1 mod7HWESE. WF k=35, BI1E k=1 mod2. k=2 mod3. k=0 mod 7. BX
HAR—TRENEAS. 5%, XRBAMELET?

EZ, T, HEBE 42 BN, BNSSEMBERENTEHN k@ X8TMREF p, #F

L (ool g) 57 s e 1 (el @) o SEEF gk, r=l el By REE e

k=2 (mod3); ¥F p=7, k=0 (mod 7). #M, 2 (mod3)BEARE 0tA2 1 (mod3)
, FIX k= 35 HARHESFM. Eit, ZBINDTHREEREIR.

EBRNZANDR, BNIKTHEATRENE:

HNFENEEF p, #F k=0 (modp) & 1 (modp) .

A, k=35xF p=7%H2 0 (mod7), B8 p=3 %L 2 (mod3), XAFEEKM. FilA,

k =35 AT ER—1 .

AT, TEFAIGIEAD 8 NMET, k = 35 HENRMEEHET ., ILERNEFFN—T ZHIRRE,
We had combinations:
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1. 0,0,0:0 mod42.
2. 0,0,1:36 mod42.
3. 0,1,0:28 mod42.
4

Invalid.

%%, FNMAESETR.

5. Invalid.
6.15 mod42.
7.7 mod42.
Z= FHME k=7 (mod 42) .
8.1 mod42.
But in the interval [7,42], the valid solutions are7,15,21,28,35. But35 is invalid as above. Similarly,21:
k=21:

Check k=21. For p=2:21=1 mod2. For p=3:21=0 mod3. For p=7:21=0 mod7. Therefore, for p=3 and p=7,21=0
mod3 and0 mod7, which is allowed (since0 is allowed). So k=21 is a valid solution. Because for each prime, k=0

mod p or1 mod p. For p=2,21=1; for p=8,21=0; for p=7,21=0. Therefore, valid.
But k=21:

(441 -21)/42=420/42=10. Which is integer. So valid. Therefore, n=441=212. In base43,441=10"43 +11=430 +11=441.

Digits10 and11 sum to21. Correct.

Similarly, k=28:

k=28:

For p=2:28=0 mod2.

p=3:28=1 mod3.

p=7:28=0 mod7.

Therefore, for p=2,28=0; p=3,28=1; p=7,28=0. Therefore, valid.

Thus, k=28 is valid. But earlier, we thought k=28 would lead to non-integer, but actually:

(784 -28)/42=756/42=18. Which is integer. Therefore, d1=18, d2=28 -18=10. n=784=282. In base43,784=18"43

+10=774 +10=784. Digits18 and10 sum to28. Correct.

Therefore, the valid k's in [7,42] are7,15,21,28. k=35 is invalid. So four solutions. Therefore, in base43, there are four

beautiful numbers. Which is more than previous examples but still less than ten.

Therefore, moving to b=211 with14 solutions is the first instance where the number exceeds ten. Therefore, the

minimal b is211. 42
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But let's check another example. Let's take (b -1)=235"7=210, b=211. Then the number of solutions is16. As before,
in the interval [15,210], assuming all solutions are>=15, we have16 solutions. Each solution corresponds to a

combination of k=0 or1 mod2,3,5,7. For example:

k=0 mod2,3,5,7: k=0 mod210. Excluded.

k=1 mod2,3,5,7: k=1 mod210. Excluded.

Then, other combinations like:

k=0 mod2,3,5 and1 mod7: k=120 mod210 as before.

Similarly, each combination gives a unique k in [0,210). The solutions are:

0,1,30,36,70,84,90,120,126,150,156,180,186,210=0. So the solutions

are0,1,30,36,70,84,90,120,126,150,156,180,186. But0 and1 are excluded. Now check which of these are>=15.
Starting from30 upwards:

30,36,70,84,90,120,126,150,156,180,186. So eleven solutions. But wait,120,126,150,156,180,186. Let's count:
From30 to186, how many solutions? Let's list them:

30,36,70,84,90,120,126,150,156,180,186. That's eleven numbers. Wait, but earlier | thought there were16 solutions.

But perhaps some solutions are less than15. For example, k=6 mod70? Wait, no. Let me recount.
The solutions mod210 are:
For each prime, choose0 or1. So16 combinations. The solutions are:
1. 0mod210.
2.1 mod210.
3.0 mod2,3,5 and1 mod7:30*1=30 mod210.
Z= R
Wait, for k=0 mod2,3,5 and1 mod7. As before, k=30m=1 mod7. 30 &I 7 RIRECN 2, Eitk \(30m \equiv 2m
\equiv 1 \pmod{7}\), Kf#\(m\):
\(2m \equiv 1 \pmod{7}\), Ef&F \(m \equiv 4 \pmod{7}\), B} \(2 \times 4 = 8 \equiv 1 \pmod{7} ),
F&, (m=7n+4)\), KAFHE:

\(k =30 \times (7n + 4) =210n + 120 ),

ALtt, \(k\equiv 120 \pmod{210} ),
Similarly, other combinations:

k=0 mod2,3,7 and1 mod5: Solve k=0 mod42 and1 mod>5. k=42m=1 mod5. 42 =2 mod 5, &t 2m =1 mod 5, f#
B m=3mod5, FilAm=>5n+3, KAE:

k=42 x (5n + 3) =210n + 126 = 126 mod 210,

43

30/ 35



Similarly, others:

k=0 mod2,5,7 and1 mod3: Solve k=0 mod70 and1 mod3. 70m=1 mod3 =>70=1 mod3, so1m=1 mod3=>m=1

mod3. m=3n +1. Then k=70(3n +1)=210n +70=70 mod210.
Thus, solutions like70,126,120, etc.
Listing all16 solutions mod210:

0,1,30,36,70,84,90,120,126,150,156,180,186,210 (which is0), etc. Wait, actually, the solutions are all numbers where

for each prime, they are=0 or1. Therefore, the numbers are:
For each prime factor2,3,5,7:

® |f we chooseO for all, we get0.
® |f we choose1 for all, we getl.

® Other combinations:
For example:

® (0 mod2,3,5,1 mod7:120

® (0 mod2,3,7,1 mod5:126

FF, AFEZEMENR167H2,

But to save time, let's note that in the interval [15,210], the solutions are from30 up to186, which are eleven
numbers. Wait, but earlier we thought there were16 solutions. Therefore, perhaps my previous assumption that all

solutions are>=15 is incorrect. Let's check some solutions:

For example, k=0 mod2,3,5,1 mod7:120

k=0 mod2,3,7,1 mod5:126

k=0 mod2,5,7,1 mod3:70

k=0 mod3,5,7,1 mod2:105 (Wait, 105 mod2=1, but105 is odd. Let's check:

If we choose k=1 mod2,0 mod3,5,7. Then k=0 mod105 and1 mod2. Solve k=105m=1 mod2. 105=1 mod2, so m=1

mod2. m=2n +1. Then k=105*(2n +1)=210n +105=105 mod210. So k=105. Check105:
105 in base211 is a two-digit number. Let's check if it's b-beautiful.
n=105"2=11025. In base211,11025 divided by211:

211562=10972, 11025-10972=53. So11025=52211 +53. Digits52 and53. Their sum is52+53=105. sqrt(11025)=105.

Correct.
Therefore, k=105 is a valid solution. Similarly, k=105 is in the interval [15,210].

Similarly, k=165:
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Another combination. For example, k=1 mod2,0 mod3,5,7. Then k=0 mod105 and1 mod2. As above, k=105m

+105. Wait, no.

E%, 106 mod2 =1, FfA k=105=1 mod 2, {BAIRIEEFZMRE k=0mod 3,5,7 Fl k =1 mod 2, FA4A k=105 2

HEFHEN,

Similarly, k=105 is a solution. So in total, the solutions in [15,210] are:
30,36,70,84,90,105,120,126,150,156,180,186. Let's count these:
From30 to186, how many numbers?

30,36 (difference6),70 (difference34),84 (difference14),90 (difference6),105 (difference15),120 (difference15),126
(difference®),150 (difference24),156 (difference6),180 (difference24),186 (difference6). Total of11 numbers. Wait, but

this is only11. But we need16 solutions. Where are the other5?

F%5, AREEEEME. FI20, k=0mod2,3,1 mod 5,7,

Let's compute:

k=0 mod6 and1 mod5,1 mod7.

Solve k=0 mod6 and k=1 mod5,1 mod?7.

First, solve k=0 mod6 and k=1 mod5.

k=6m=1 mod5 =>6m=1 mod5 =>m=1 mod5. m=5n +1. Then k=6*(5n +1)=30n +6=6 mod30.
Then solve k=6 mod30 and k=1 mod7.

k=30n +6=1 mod7 =>30n +6=1 mod7 =>30=2 mod7, so2n +6=1 mod7 =>2n=-5=2 mod7 =>n=1 mod7. n=7p +1.

Then k=30*(7p +1)+6=210p +36. Therefore, k=36 mod210.

Therefore, k=36. Check k=36:

(362 -36)/210=(1260)/210=6. d1=6, d2=36 -6=30. n=1296. In base211,1296=6"211 +30=1266 +30=1296. Digits6

and30 sum to36. Correct.

Thus, k=36 is a solution. So this was missing earlier. Therefore, the solutions include numbers like36,70,105, etc.
Therefore, the total number of solutions in [15,210] is16 minus the solutions less than15. The solutions less than15
are0 and1. Therefore,16 -2=14 solutions. Therefore, 14 solutions. Each of these k's from30 t0210 (but actually, some
are less than15? Wait, no. k=36 is in the interval [15,210]. Similarly, k=30,36,70,84,90,105,120,126,150,156,180,186.

That's twelve numbers. Wait, but16 -2=14. So where are the other two?
Wait, perhaps k=165 and k=168.

%, IIBNE—THE,

Another combination is k=0 mod2,5,1 mod3,7.

Solve k=0 mod10 and1 mod3,1 mod7.
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k=0 mod10 and1 mod3: k=10m=1 mod3 =>10m=1 mod3 =>m=1 mod3. m=3n +1. k=10%(3n +1)=30n +10=10

mod30.
Then solve k=10 mod30 and1 mod7.

k=30n +10=1 mod7 =>30n +10=1 mod7 =>30=2 mod7, so2n +10=1 mod7 =>2n=-9=-2=5 mod7 =>n=(5)(inverse

0f2 mod7)=54=20=6 mod7. n=7p +6. Then k=30*(7p +6)+10=210p +190. Thus, k=190 mod210.
Check k=190:

(1902 -190)/210=(36100 -190)/210=35910/210=171. d1=171, d2=190 -171=19. n=36100. In

base211,36100=171*211 +19=36081 +19=36100. Digits171 and19 sum to190. Correct.
Thus, k=190 is a solution. Similarly, k=190 is in the interval.

Similarly, another combination:

k=0 mod2,7,1 mod3,5.

Solve k=0 mod14 and1 mod3,1 mod>5.

k=0 mod14 and1 mod3:14m=1 mod3 =>14=2 mod3, so2m=1 mod3 =>m=2 mod3. m=3n +2. k=14*(3n +2)=42n

+28=28 mod42.

Then solve k=28 mod42 and1 mod>5.

k=42n +28=1 mod5 =>42n +28=1 mod5 =>42=2 mod>5, 28=3 mod>5. So 2n +3=1 mod5 =>2n=-2=3 mod5
=>n=(3)(inverse 0f2)=33=9=4 mod5. n=5p +4. Then k=42*(5p +4)+28=210p +176 +28=210p +204. Wait, 42*4=168,

168 +28=196. Wait, maybe miscalculation.
F%, k=42n+28=1mod 5,
Compute 42n +28 mod5:

42=2 mod5, 28=3 mod>5. So equation:2n +3=1 mod5 =>2n=-2=3 mod5 =>n=(3)(inverse 0f2)=33=9=4 mod>.

Therefore, n=5p +4. Then k=42*(5p +4)+28=210p +168 +28=210p +196=196 mod210.
Check k=196:

(1962 -196)/210=(38416 -196)/210=38220/210=182. d1=182, d2=196 -182=14. n=38416. In

base211,38416=182*211 +14=38302 +14=38416. Digits182 and14 sum to196. Correct.
Thus, k=196 is a solution.
Therefore, the solutions in [15,210] are:

30,36,70,84,90,105,120,126,150,156,180,186,190,196. That's14 solutions. Therefore,14 solutions. Each
corresponding to a combination of choosing0 or1 mod each prime. Therefore, each solution is unique, and they are
all>=15. Therefore, in base211, there are14 beautiful numbers, which is more than ten. Therefore, the minimal b

is211.
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But let's check if there is a smaller b with more solutions. For example, take (b -1)=235*11=330, so b=331. Then the
number of solutions would be2/4=16. However, ceil(sqrt(331))=18.3, so interval[19,330]. The solutions mod330
would be16 numbers. If all are>=19, then16 solutions. But likely, some solutions are less than19, so the count would

be16 minus those less than19. But this might result in more than14 solutions. However, this would require checking.

Alternatively, take (b -1)=2357=210, b=211, which gives14 solutions. The next candidate would be (b

-1)=2357*11=2310, b=2311, giving32 solutions. But this is much larger.

Alternatively, check b=105. Then (b -1)=104=8173. The number of solutions would be related to the factors of8
and13. Since8=2/3 and13 is prime. The number of solutions mod8 is¢(8)=4? Wait, no. For modulus8, the number of
solutions to k(k -1)=0 mod8 is2 (as k=0 or1 mod8). Similarly, for modulus13, the number of solutions is2. Therefore,
total solutions mod104=813 is2*2=4. Therefore, in the interval [ceil(sqrt(105))=~11,104], the number of solutions is4.

Thus, four solutions. Which is less than ten.
Therefore, the minimal b is211.

Final Answer

\boxed{211}
<|end_of_thought|>
<|begin_of_solution|>

To determine the least integer \( b \geq 2 \) for which there are more than ten \( b \)-beautiful integers, we need to
find a base \( b \) where there are more than ten two-digit numbers \( n ) in base \( b \) such that the sum of their

digits equals \(\sqgrt{n} ).

A number \(n) is \( b \)-beautiful if:
1. \(n\)is a two-digit number in base \(b \), i.e., \( b \leq n \leq bA2 - 1 ).
2. The sum of the digits of \( n\) in base \( b \) equals \(\sqrt{n} \).

Key steps:

1. For \(n\) to be a two-digit number in base \( b ), \( n\) must be a perfect square \( kA2 \) where \( k) is an
integer such that \(\Iceil \sqgrt{b} \rceil \leq k \leq b - 1 ).
2. The digits of \( kA2 ) in base \( b \) must sum to \( k). This translates to the condition that \( (k"2 - k) \) is
divisible by \( (b - 1) \).
To find the smallest \( b \) such that there are more than ten such \( k), we need \( (b - 1) \) to have many divisors.

The number of solutions is related to the number of integers \( k \) such that \( (b - 1) \) divides \( k(k - 1) \).
By analyzing the problem, we find that choosing \( b - 1) as the product of the first few primes (square-free)
maximizes the number of solutions. The smallest such \( b ) is found when \(b - 1 = 2 \times 3 \times 5 \times 7 =
210)), leading to \(b =211 \).
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In this case, the number of solutions (beautiful numbers) is determined by the combinations of residues modulo the
prime factors of 210. This results in 16 solutions modulo 210, all of which are valid in the range \(\Iceil \sqrt{211}

\rceil = 15 ) to 210, giving us 14 valid solutions (more than ten).
Thus, the least integer \( b \geq 2 \) for which there are more than ten \( b \)-beautiful integers is \(\boxed{211}\).

<|end_of_solution|>

GT: 211

Predict: 211
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