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Abstract
Large Vision-Language Models (LVLMs) have
demonstrated remarkable performance across var-
ious multimodal tasks by integrating visual per-
ception with language understanding. However,
conventional decoding strategies of LVLMs of-
ten fail to successfully utilize visual information,
leading to visually ungrounded responses. While
various approaches have been proposed to address
this limitation, they typically require additional
training, multi-step inference procedures, or ex-
ternal model dependencies. This paper introduces
ReVisiT, a simple yet effective decoding method
that references vision tokens to guide the text gen-
eration process in LVLMs. Our approach lever-
ages the semantic information embedded within
vision tokens by projecting them into the text to-
ken distribution space, and dynamically selecting
the most relevant vision token at each decoding
step through constrained divergence minimiza-
tion. This selected vision token is then used to
refine the output distribution to better incorporate
visual semantics. Experiments on three LVLM
hallucination benchmarks with two recent LVLMs
demonstrate that ReVisiT consistently enhances
visual grounding with minimal computational
overhead. Moreover, our method achieves com-
petitive or superior results relative to state-of-the-
art baselines while reducing computational costs
for up to 2×. The code is available at https:
//github.com/bscho333/ReVisiT.

1. Introduction
With the recent success of Large Language Models (LLMs;
(Touvron et al., 2023a;b; Achiam et al., 2023; Team et al.,
2023)), Large Vision-Language Models (LVLMs; (Dai et al.,
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2023; Liu et al., 2023; Ye et al., 2023; Zhu et al., 2024; Chen
et al., 2023; Bai et al., 2023; Chen et al., 2024a; Liu et al.,
2024a; Bai et al., 2025)) have emerged as powerful mul-
timodal architecture that integrate visual perception with
language understanding and text generation. LVLMs typ-
ically incorporate visual information by encoding images
into embeddings using a vision encoder, then mapping them
to vision tokens via a cross-modality projector aligned with
LLM decoder’s linguistic embedding space. Then, LVLMs
utilize these vision tokens alongside text tokens during the
text generation in autoregressive manner. These models
have demonstrated impressive performance on foundational
vision-language tasks such as Visual Question Answering
(VQA; (Antol et al., 2015; Li et al., 2023a; Selvaraju et al.,
2017)) and image captioning (Vinyals et al., 2015; Xu et al.,
2015; You et al., 2016), while also showing promising re-
sults in more complex reasoning tasks, e.g., multimodal
conversational agents (Sundar & Heck, 2022). Despite these
advances, the decoding process of LVLMs largely follows
conventional LLM decoding strategies without specific con-
sideration for vision tokens. This insufficient extraction
and utilization of visual information often result in visually
ungrounded responses (Zhou et al., 2023; Yin et al., 2024;
Leng et al., 2024; Favero et al., 2024; Huo et al., 2025; Kang
et al., 2025; Rohrbach et al., 2018; Li et al., 2023c; Wang
et al., 2023).

Prior efforts to address this limitation can be broadly catego-
rized based on when and how additional visual information
is incorporated relative to the decoding process. Specifi-
cally, we distinguish between (1) pre-alignment, (2) post-
alignment, and (3) intra-alignment. Pre-alignment meth-
ods aim to enhance visual information before the decod-
ing phase, typically by re-designing model architectures
(Dai et al., 2024) or developing specialized visual tokeniza-
tion techniques (You et al., 2024; Lu et al., 2024), but they
generally require additional training and model modifica-
tion. Post-alignment strategies revise the generated outputs
through external models, such as object detectors or pro-
prietary models (Zhou et al., 2023; Yin et al., 2024), in-
evitably introducing complexity and external dependencies.
Due to these inherent overheads of pre- and post-alignment
methods, researchers have increasingly focused on intra-
alignment approaches, which modify attention mechanisms
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Figure 1. An overview of ReVisiT. Given an input image and text prompt, the LVLM first encodes the image into vision tokens through
a vision encoder and a cross-modal projector. ReVisiT re-purposes these vision tokens as reference informers to guide the text generation
process. At each decoding step, ReVisiT (1) constrains the vocabulary V to Vt

cons, (2) projects vision token embeddings into Vt
cons and

selects most relevant token, and (3) refines the final output distribution. Specifically, ReVisiT adoptively leverages vision tokens to serve
as reference signals for decoding, enhancing visual grounding without additional forward passes or external supervision.

or output distributions during inference (Leng et al., 2024;
Favero et al., 2024; Huo et al., 2025) to improve visual
grounding without altering model parameters. However,
these methods still incur notable computational overhead
due to multi-step procedures such as additional inference
under input perturbation or recalibration of attention scores.
Consequently, these limitations highlight the need for a
streamlined approach that can better utilize visual infor-
mation during LVLM decoding without additional train-
ing, external models, or complex multi-step inference while
maintaining computational efficiency.

Contribution. In this work, we propose a simple yet effec-
tive decoding method by Referencing Vision tokens to guide
the Text generation process of LVLMs (ReVisiT). Vision
tokens inherently contain semantic information aligned with
textual representations, as they are mapped to the linguis-
tic embedding space through the cross-modality projector.
Despite this, they are typically only utilized as the addi-
tional input context as same as text tokens, which might
be insufficient to use their rich semantic information. Mo-
tivated by this, our key insight is to explicitly extract this
semantics embedded in vision tokens and leverage them as
internal reference signals during decoding. However, di-
rectly leveraging these embeddings could be difficult due to
their inherent noise and complexity.

To address this challenge, ReVisiT identifies the vision to-
ken that best aligns with the current output distribution by
minimizing a constrained divergence at each decoding step.
Then, ReVisiT uses it as a reference logit to refine the output
distribution to better incorporate visual semantics (see Fig-
ure 1 for the overview). Specifically, ReVisiT first projects
the embeddings of all vision tokens into the text token distri-

bution space. Since vision tokens remain fixed throughout
the decoding process, this projection only needs to be com-
puted once before the decoding. The projected probability
distributions are constrained to top-K text tokens in the
current output distribution, to focus on semantically mean-
ingful ones. ReVisiT then selects the vision token which
minimize the Jensen-Shannon Divergence (JSD) between
its constrained distribution and the original output distribu-
tion, as the most relevant visual guide for each decoding
step. Finally, ReVisiT refines the output token distribution
by re-weighting it using the constrained distribution of the
selected vision token.

We validate the effectiveness of ReVisiT on multiple hallu-
cination benchmarks, including CHAIR (Rohrbach et al.,
2018), POPE (Li et al., 2023c), and AMBER (Wang
et al., 2023), using LLaVA-1.5-7B (Liu et al., 2024a) and
Qwen2.5-VL-7B (Bai et al., 2025) as the base LVLMs.
Across all benchmarks, ReVisiT consistently improves per-
formance over the vanilla greedy decoding baseline, demon-
strating enhanced visual grounding capabilities with only a
1-3% increase in inference time. Furthermore, our method
shows competitive or superior results relative to state-of-
the-art intra-alignment methods (Leng et al., 2024; Favero
et al., 2024; Huo et al., 2025; Chuang et al., 2024) with
substantially reduced computational costs as these baselines
typically incur up to 100% additional computation overhead.
These results highlight that appropriate selection of vision
tokens enables them to serve as effective informers, en-
hancing the visual grounding capabilities of LVLMs while
offering a practical free lunch.
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2. Preliminary and Motivation
We first describe our problem setup formalizing the conven-
tional decoding process of LVLMs in Section 2.1. Then, in
Section 2.2, we motivate our approach by identifying the
limitations of existing intra-alignment and early exit meth-
ods, and propose leveraging vision token representations
as internal reference signals for visual grounding. Finally,
Section 2.3 provides qualitative analyses demonstrating that
vision token hidden states indeed encode meaningful vi-
sual semantics, supporting their use during decoding. De-
tailed discussions of related prior works are provided in
Appendix A.1.

2.1. Problem setup

Let’s denote the given input text tokens (e.g., query) and
vision tokens as x and v, respectively. Specifically, the
vision tokens v are generated from the given input image,
by forwarding it into vision encoder and cross-modality
projector sequentially (Liu et al., 2024a; Bai et al., 2025).
Then, our goal is to generate output text tokens y using
LVLMM; following the auto-regressive nature of LLM,
output tokens y (e.g., response) are sequentially generated,
i.e., yt ∼ M(·|v,x,y<t−1). Let assume that LVLM M
has L decoding layers and text token vocabulary V , and
denote its hidden state of l-th layer as hl. Then, at time step
t, the output probability over V is calculated as below:

p(hL
T+t−1,V) = softmaxV

(
ϕ(hL

T+t−1)
)
,∑

w∈V
p(w|hL

T+t−1,V) = 1, (1)

where T = |v| + |x|, ϕ is the language modeling head
which maps final hidden state of LVLM into logits over
vocabulary V , and softmaxV indicates a softmax operation
over V . Then, the output token yt is sampled from the
obtained distribution:

yt ∼ p(hL
T+t−1,V). (2)

2.2. Motivation from prior works

To better align LVLM’s responses with visual semantics in
given image, prior works (Leng et al., 2024; Favero et al.,
2024; Huo et al., 2025) have explored intra-alignment meth-
ods. They adjust the model’s output logits (Eq. 2) using the
reference logits during decoding. Formally, the decoding
process of these methods can be described as:

yt ∼ f
(
p(hL

T+t−1,V), p(h̃L
T+t−1,V)

)
, (3)

where h̃ denotes the hidden state to obtain the reference
logit, and f denotes the logit adjustment operation, such
as logit addition, subtraction, or interpolation. For exam-
ple, VCD (Leng et al., 2024) adds random noise into input

image and forward it to obtain a distorted output logits.
M3ID (Favero et al., 2024) generates vision-agnostic out-
put logits to identify language priors derived from LLM
decoder, and SID (Huo et al., 2025) constructs the reference
output logits from low-attention token subsets. While these
approaches are effective at aligning visual semantics, they
commonly require extra computational cost as reference
information is obtained through additional inference passes
or recalibration. These observations lead us to the following
research question: (RQ) How can we find reference infor-
mation that is relevant to the visual input to guide decoding
and improve visual grounding efficiently?

Interestingly, recent studies in the NLP domain offer a
compelling alternative. Rather than relying on externally
induced reference signals, the prior works about early
exit (Teerapittayanon et al., 2016; Elbayad et al., 2020;
Schuster et al., 2022) revealed that intermediate hidden
states already encode semantically meaningful information.
Specifically, early exit projects intermediate hidden states
hj into logits over vocabulary V using the model’s lan-
guage modeling head ϕ, which can be formally expressed as
p(hj

T+t−1 | V); here, j denotes the index of an intermediate
layer. Motivated by this, DoLa (Chuang et al., 2024) have
demonstrated that adjusting logits based on this early exit
can effectively resolve output uncertainty during decoding.
Roughly, the decoding with early exit can be generalized in
the following formula:

yt ∼ f
(
p(hL

T+t−1,V), p(h
j
T+t−1,V)

)
, (4)

where the intermediate layer j is selected by maximizing the
Jensen-Shannon Divergence (JSD) between the intermediate
and final layer logits (Chuang et al., 2024), to identify the
layer with the greatest predictive uncertainty. Despite its
original design for language-only tasks, DoLa (Chuang et al.,
2024) also proves effective for improving visual grounding
in LVLMs without any model retraining or architectural
changes. These observations indicate that visually relevant
auxiliary signals may reside within the model itself, without
requiring external augmentation like aforementioned intra-
alignment methods.

Prior early exit works have primarily focused on adjust-
ing output distributions based on intermediate representa-
tions corresponding to the language modality. Namely, they
largely overlook the vision tokens attended by the decoder.
However, as LVLMs encode visual information through
vision tokens alongside text tokens in the same decoding
sequence, intermediate representations of vision tokens may
also contain rich visual semantics that are highly relevant for
grounding. Moreover, leveraging vision token embeddings
offers a distinct advantage: they directly originate from the
image input, providing an immediate and explicit pathway
to extract visually grounded signals. Therefore, we shift
our focus towards vision tokens, investigating whether their
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intermediate hidden representations can serve as effective
internal reference signals for visual grounding by projecting
them into logits.

2.3. Deriving vision tokens as reference signals

While early exit (Teerapittayanon et al., 2016; Elbayad et al.,
2020; Schuster et al., 2022) has initially explored to acceler-
ate inference, logit-lens (nostalgebraist, 2020) employed it
to analyze the semantic information encoded in text token
hidden states. In this work, we refer logit-lens as the projec-
tion of vision tokens’ intermediate representation into the
text token distribution space for convenience, although our
use case differs from its original intent. Specifically, given
a vision token hidden state hj

i from layer j and vision token
index i, we project it into the text token distribution over
vocabulary V , which yields p(hj

i ,V).

Under this definition, we first conducted analysis by apply-
ing logit-lens to the vision tokens v at the final decoder layer
L. As shown in Figure 2 (left), directly applying logit lens
to vision tokens over full vocabulary V results in diffuse
and uninformative token distributions. However, manually
constraining the vocabulary V to the subset Venv in Figure 2
effectively reveals the relevant visual semantics, as shown
by the top-ranked text tokens in the distribution p(hj

i ,Venv).
This observation suggests that visual semantics are encoded
in visual tokens and can provide reference signals based on
that to guide decoding, if one can restrict logit-lens to the
proper subset in vocabulary.

While manually defined semantic subsets is considerable
as demonstrated in Figure 2 (left), it is not scalable nor
adaptive across diverse images and tasks. To resolve this
limitation, we draw inspiration by analyzing the inherent
decoding dynamics of LVLM with hallucination cases. As
illustrated in Figure 2 (right), we observe that hallucinations
typically occur when the greedy top-1 prediction diverges
from the visual content. However, the top-5 candidate to-
kens at hallucinatory starting point often contain visually
grounded alternatives such as ”mountain”, ”landscape” or
”painting”. This result indicates that the LVLM inherently
contains grounded candidates and has a chance to avoid the
hallucination, even if the top-1 prediction is incorrect. Thus,
at each decoding time step, we construct the constrained vo-
cabulary by selecting the high probable candidates from the
vanilla output distribution p(hL

T+t−1,V). Then, by project-
ing the vision token representation onto these dynamically
selected subsets, we can extract visually grounded reference
signals without external inference or heavy computational
overhead.

3. ReVisiT: Referencing Vision Tokens to
Guide Text Generation

Based on insights in Section 2.3, we propose ReVisiT, a de-
coding method that adaptively leverages intermediate vision
token representations as internal reference signals to guide
text generation, enhancing visual grounding with minimal
computational overhead. At each decoding step, ReVisiT
focuses the decoding process onto a context-relevant vocab-
ulary subset and refines the output by referencing the most
relevant vision token. To be specific, ReVisiT consists of
the following three main steps: (1) adaptively constraining
the vocabulary based on the vanilla output distribution, (2)
projecting and selecting vision token hidden states within
the subset, and (3) refining the output distribution through
element-wise combination and normalization to generate
the next token.

3.1. Adaptive context-relevant vocabulary subset
construction

At each decoding timestep t, LVLMM generate output dis-
tributions p(hL

T+t−1,V) over the entire vocabulary space V .
However, as observed in Figure 2, the original distribution is
often diffusely spread across many irrelevant tokens. There-
fore, we dynamically constrain a vocabulary V into subset
Vt
cons more suitable to capture the plausible semantic space

of the output distribution. By restricting the output space to
a smaller, contextually focused subset, this constraint reduce
semantic distraction and facilitate more precise integration
of visual information. To be specific, following (Li et al.,
2023b), we adaptively define the vocabulary subset Vt

cons

as below:

Vt
cons =

{
w ∈ V : p(w|hL

T+t−1,V) ≥ α ·maxw′ p(w′|hL
T+t−1,V)

}
,

where α ∈ (0, 1) controls the sparsity of the selected candi-
dates. This vocabulary subset Vt

cons serves as a dynamically
adapted output space, which all subsequent vision token
projections and refinements are performed to enhance visual
grounding without introducing additional computation.

3.2. Vision token projection and selection

Given the dynamically constrained vocabulary subset Vt
cons

at each decoding timestep t, we next describe how vision
token hidden states hj

i are projected and selected within
this constrained space. Let J as the set of candidate de-
coder layers where vision token hidden states are selected.
Specifically, for each hj

i , where i denotes the index of the
vision tokens and j denotes the candidate layer, we obtain
the projected distribution over the constrained vocabulary
Vt
cons:

p(hj
i ,V

t
cons), for i ∈ {0, . . . , |v| − 1}, j ∈ J . (5)
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Figure 2. Motivation of ReVisiT. We qualitatively analyzed various vision tokens. Dotted arrows represent vision token projection over
specified vocabulary set. For each box, representing text token distribution, we annotated top-5 probable text tokens. Left part illustrate
the effectiveness of vocabulary constraint, whereas right part shows the distribution shift during ReVisiT. See Appendix C.1 for a detailed
discussion of the underlying values and analysis.

Intuitively, this distribution represents the likelihood of each
candidate token within Vt

cons conditioned on the vision to-
ken embedding hj

i . Next, to identify the vision token most
relevant to the current decoding context, we compare each
vision token distribution p(hj

i ,Vt
cons) against the vanilla out-

put distribution p(hL
T+t−1,Vt

cons) by computing the Jensen-
Shannon Divergence (JSD):

(i∗, j∗) = argmin
i,j

JSD
(
p(hL

T+t−1,Vt
cons) ∥ p(h

j
i ,Vt

cons)
)
.

Here, i∗ and j∗ denote the indices of the selected vision
token and decoder layer, respectively. We adopt JSD as
the divergence metric due to its symmetric properties and
bounded output range.

Remark. For the efficient implementation, the vision to-
ken projections over the full vocabulary V , p(hj

i ,V) , are
precomputed once before decoding begins. Then, at each
timestep t, we apply slicing and masking to adapt the cached
projections to the dynamically constrained subset Vt

cons,
enabling efficient selection without additional forward com-
putation.

3.3. Output logit refinement using distribution from
selected vision token

After identifying the most contextually relevant vision token
at each decoding step, we then refine the vanilla output distri-
bution guided by the reference visual grounding signal from
the selected vision token. Specifically, given the vanilla out-
put distribution p(hL

T+t−1,Vt
cons) and the selected vision

token distribution p(hj∗

i∗ ,Vt
cons), we combine them through

element-wise multiplication:

pfin(yt) ∝

{
pyt(h

L
T+t−1,Vt

cons)× pyt(h
j∗

i∗ ,Vt
cons), if yt ∈ Vt

cons,

0, otherwise.

The combined distribution pfin is subsequently normalized
over Vt

cons to form a valid probability distribution, and the
next output token yt is sampled from the normalized pfin.
This refinement mechanism allows the decoding process
to dynamically integrate visual grounding signals extracted
from vision tokens, without introducing additional inference
passes or architectural modifications. The overall algorithm
of ReVisiT is presented in Algorithm 1.

4. Experiments
4.1. Setups

Datasets and evaluation metrics. To comprehensively
assess the visual grounding capability of our method, we
consider both generative and discriminative aspects of hal-
lucination mitigation. Specifically, we evaluate our ap-
proach on three different benchmarks used to measure ro-
bustness and generalizability across vision-language tasks.
1) CHAIR (Rohrbach et al., 2018) measures hallucination
rates in image captioning by comparing generated captions
to ground-truth object annotations from MS COCO (Lin
et al., 2014) dataset. We report sentence-level (CHAIRS)
and instance-level (CHAIRI ) hallucination scores on 500
sampled images. In addition, we also report Recall, com-
puted as the proportion of ground-truth objects correctly
mentioned in the generated captions. 2) POPE (Li et al.,
2023c) assesses visual grounding by posing binary ob-
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Table 1. Results on CHAIR benchmark. Lower scores (↓) on CHAIRS , CHAIRI and higher (↑) recall indicate better performance. The
best results in each setting are bolded, and the second-best are underlined.

METHOD
LLAVA-1.5 QWEN2.5-VL

CHAIRS ↓ CHAIRI ↓ RECALL ↑ CHAIRS ↓ CHAIRI ↓ RECALL ↑
GREEDY 53.8 14.66 80.81 32.2 8.51 71.79
DOLA 53.6 14.45 80.23 35.2 8.14 69.80
VCD 52.8 15.61 80.17 37.8 9.33 71.79
M3ID 57.0 16.57 81.96 32.8 9.40 68.78
SID 50.6 13.58 81.00 36.3 9.99 72.48
OURS 50.6 13.43 81.45 31.6 7.56 70.83

Table 2. Average results on POPE benchmark. Average for 3 datasets and 3 types. Higher scores (↑) on Accuracy, Precision, and F1
indicate better performance. The best results are bolded, and the second-best are underlined. Full results are presented in Table 5.

METHOD
LLAVA-1.5 QWEN2.5-VL

ACCURACY ↑ PRECISION ↑ F1 ↑ ACCURACY ↑ PRECISION ↑ F1 ↑
GREEDY 79.47 74.48 82.36 84.49 93.34 82.82
DOLA 79.58 74.67 82.41 81.40 93.71 78.45
VCD 77.74 72.51 80.97 84.69 92.85 83.17
M3ID 79.48 74.48 82.37 83.93 92.32 82.31
SID 80.24 75.61 82.84 84.76 92.73 83.30
OURS 81.80 78.03 83.45 84.77 93.41 83.18

ject presence questions. We evaluate on MS COCO, A-
OKVQA (Schwenk et al., 2022), and GQA (Hudson & Man-
ning, 2019) datasets constructing 3,000 samples per dataset
and query type (random, popular, adversarial), with an equal
split between positive and negative instances. We report ac-
curacy, precision, and F1 score. 3) AMBER (Wang et al.,
2023) provides fine-grained object-level datasets for both
generative and discriminative evaluations of hallucination
mitigation. We focus on the generative setting, reporting
CHAIR, Cover, Hal, and Cog metrics over 1,004 samples
to further analyze fine-grained . 4) LLaVA-Bench-In-the-
Wild (Liu et al., 2023) consists of 24 diverse real-world
images paired with 60 open-ended questions. We use this
dataset with LLaVA-1.5-7B to qualitatively assess the Re-
VisiT’s robustness in complex, uncontrolled visual environ-
ments. Further dataset details and evaluation setups are
provided in Appendix A.2.

Models and baselines. To validate the generality of
our method across different architectures and capabilities,
we conduct experiments using two representative LVLMs:
LLaVA-1.5-7B (Liu et al., 2024a) as a widely adopted con-
ventional baseline, and Qwen2.5-VL-7B (Bai et al., 2025) as
a representative of state-of-the-art. As baselines, we adopt
various intra-alignment decoding strategies to compare the
effectiveness of our method in enhancing visual grounding.
(a) Greedy decoding is a standard decoding baseline, and
(b) DoLa (Chuang et al., 2024) improves factuality by con-
trasting output logits from earlier and later decoder layers
at each timestep, and has been widely adopted for hallucina-

tion mitigation in LVLMs despite being originally proposed
for LLMs. For intra-alignment baselines, (c) VCD (Leng
et al., 2024) mitigates hallucination by perturbing visual in-
puts with Gaussian noise and enforcing consistency between
the original and perturbed outputs; (d) M3ID (Favero et al.,
2024) contrasts outputs with and without visual input to
alleviate language prior bias and enhance visual grounding;
(e) SID (Huo et al., 2025) applies contrastive decoding on
low-attention vision patches to mitigate hallucination and
refine visual grounding.

Implementation details. In all experiments, we apply
greedy decoding (i.e., temperature is 0) with a maximum
output length of 512 tokens for all decoding methods. Re-
garding baselines, we follow the default hyperparameters
provided by their original implementations. For ReVisiT,
we set the hyperparameters as follows: for LLaVA-1.5-7B,
we select vision tokens mostly from the last decoder layer
(”last”). For Qwen2.5-VL-7B, we select vision tokens from
all even-numbered decoder layers (”all”). The APC thresh-
old α is set for each task. More details are presented in
Appendix A.3.

4.2. Main results

We first present the experimental results on CHAIR bench-
mark in Table 1. Notably, all baseline methods, including
strong intra-alignment baselines (SID, M3ID, VCD) that
explicitly attempt to ground visual semantics during de-
coding, underperform relative to vanilla greedy decoding
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Table 3. Results on AMBER benchmark. Lower scores (↓) on CHAIR, Hal, Cog, and higher scores (↑) on Cover indicate better
performance. The best result for each metric is bolded, and the second-best is underlined.

METHOD
LLAVA-1.5 QWEN2.5-VL

CHAIR ↓ COVER ↑ HAL ↓ COG ↓ CHAIR ↓ COVER ↑ HAL ↓ COG ↓
GREEDY 7.2 50.6 32.7 3.8 4.8 64.0 27.8 1.6
DOLA 7.2 50.9 32.9 3.9 5.2 65.4 31.3 1.9
VCD 8.7 51.7 40.5 4.3 5.8 64.3 31.3 1.5
M3ID 7.2 57.0 40.7 3.0 4.9 53.4 21.8 0.9
SID 6.3 51.9 32.8 3.3 4.9 62.6 28.3 1.1
OURS 6.2 55.2 33.0 2.7 4.4 64.0 25.2 1.4

on Qwen2.5-VL, highlighting the challenge of hallucina-
tion mitigation on stronger LVLMs. In contrast, ReVisiT
consistently reduces the hallucination rates and achieves
the best performance across both sentence-level (CHAIRS)
and instance-level (CHAIRI ) metrics for LLaVA-1.5 (Liu
et al., 2024a) and Qwen2.5-VL (Bai et al., 2025). To be spe-
cific, compared to vanilla greedy decoding, ReVisiT reduces
CHAIRS by 5.95% and CHAIRI by 8.39% on LLaVA-1.5,
and achieves 1.86% and 11.16% reductions respectively on
Qwen2.5-VL. Moreover, ReVisiT also attains competitive
Recall scores, achieving the second-highest object coverage
among all methods while effectively suppressing hallucina-
tions.

Next, we present the results on POPE benchmark. Since
POPE evaluates hallucination in a discriminative manner
covering three datasets and three object types (random, pop-
ular, and adversarial), it poses a significant challenge for
models to achieve robust and consistent performance across
diverse settings. Table 2 summarizes the average accuracy
across all 18 evaluation settings. Here, ReVisiT consistently
achieves superior results, further confirming its effective-
ness in mitigating hallucination across diverse object types
and datasets. Particularly on GQA dataset under the popular
and adversarial object settings, ReVisiT demonstrates its ef-
fectiveness even under more visually and semantically chal-
lenging scenarios, achieving absolute accuracy gains of over
5 percentage points compared to the second-best methods
when using LLaVA-1.5. In addition, as shown in Table 5,
ReVisiT outperforms vanilla greedy decoding across all 18
evaluation settings, demonstrating its strong robustness. In
contrast, all existing baselines occasionally underperform
vanilla greedy sampling which indicates achieving consis-
tent improvements under POPE’s discriminative evaluation
setting is non-trivial.

Furthermore, we evaluate ReVisiT and baseline approaches
using the AMBER benchmark that provides a more recent
and diverse evaluation of hallucination phenomena. Table 3
summarizes the evaluation results. Here, ReVisiT achieves
an 8.33% reduction in the CHAIR score compared to vanilla
greedy decoding on Qwen2.5-VL, while all other baselines

exhibit higher CHAIR scores than the vanilla greedy. Given
that CHAIR directly measures hallucination frequency and
serves as the main evaluation criterion in the generative
setting, we believe that it is the most important measure-
ment for visual grounding quality. Across other metrics,
ReVisiT demonstrates competitive or superior performance
in general, which highlight the robustness and stability of
our approach across diverse evaluation conditions. Overall,
these results demonstrate that adaptively leveraging the most
informative vision token at each decoding step, as proposed
in ReVisiT, enables more faithful and visually grounded
generation while maintaining simplicity.

4.3. Additional analyses

In this section, we conduct additional analyses to further
investigate the properties of ReVisiT.
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Figure 3. Inference speed. Comparison of per-token inference
latency across different decoding strategies for LLaVA-1.5-7B
(left y-axis) and Qwen2.5-VL-7B (right y-axis), with standard
deviations visualized as error bars.

Inference speed improvement. To evaluate the inference
efficiency of ReVisiT compared to baseline decoding strate-
gies, we measure the per-token computational time. All
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Q. Describe this photo in detail.

The image features a comic strip with a man standing in front of a whiteboard, pointing at a graph. The man 
appears to be explaining something to the audience, possibly related to the graph. The graph is showing a 
downward trend, indicating a decrease in value. 
There are several people in the scene, with 

. The man is wearing a funny hat, adding a humorous touch to the scene. The overall 
atmosphere suggests a learning environment where the man is teaching others about the graph and its 
implications.

one person standing close to the man and the others scattered 
around the room

The image is a comic strip that is a visual representation of a person learning about . In the 
comic, the person is pointing to a graph on a whiteboard, explaining the concept of layers in a neural network. 
The comic is a cartoonish representation of a person with a head and a large smile, pointing to the 
whiteboard. The whiteboard is the main focus of the comic, and it is a  of a neural 
network. The person is explaining the layers of the network, with the layers being drawn on the whiteboard. 
The comic is a fun and engaging way to learn about neural networks and the layers of a network.

neural networks

visual representation

Greedy

ReVisiT

M3ID The image consists of two comic strips, each featuring a person  on a whiteboard while 
talking about stack layers.
In both strips, the person is pointing towards a graph and making a statement. 

, while the smiling figure is holding a 

drawing a graph
 In the first strip, the person is smiling, while in the second strip, they are angry.  

In the second strip, the angry 
figure is drawing the graph VC dimension of kernel expert and minimizing 
the structural risk in new one off margin considered using next kernel stable make the next kernel table off 
margins considered using next kernel stable make the next kernel stable table off margin.

Figure 4. Qualitative example. The input image is a cartoon-style illustration contrasting classical statistical learning and neural network
reasoning via a visual metaphor, emphasizing the shift from theoretical rigor to the heuristic of “stacking more layers.” We compare
the generated responses of vanilla greedy decoding, M3ID, and ReVisiT, highlighting how ReVisiT better captures the intended visual
analogy compared to the baseline methods.

measurements are conducted on an NVIDIA RTX A6000
GPU with 48GB memory and an AMD EPYC 9354 32-Core
Processor running at 3.25 GHz. To eliminate initial over-
head, we perform 6 warmup iterations before measurement.
During evaluation, each of the 300 samples is decoded three
times, and the results are averaged to reduce variance. We
report the average decoding time per generated token, mea-
sured in milliseconds (ms/token). Other evaluation config-
urations, including preprocessing pipelines and evaluation
scripts, follow the official CHAIR benchmark settings. Ex-
act numerical values are provided in the Appendix B.2.

As shown in Figure 3, ReVisiT achieves inference efficiency
comparable to vanilla greedy decoding, exhibiting only
2.3% and 3.5% increases in computational time on LLaVA-
1.5 and Qwen2.5-VL, respectively. Unlike ReVisiT, the
intra-alignment baselines generally incur nearly 2× higher
computational cost. In addition, DoLa, which requires an
additional forward pass at every decoding step to project
intermediate layers, also introduces 29.34% and 14.64%
additional computation on LLaVA-1.5 and Qwen2.5-VL,
respectively. These results highlight the key advantage of
ReVisiT: it enhances visual grounding with negligible com-
putational overhead, unlike prior methods that significantly
compromise inference efficiency.

Ablation study. To investigate the impact of each design
choice, we conduct an ablation study on Qwen2.5-VL, eval-
uated under the CHAIR benchmark. Table 4 summarizes
the results, varying three factors: (1) w/ or w/o vocabu-
lary subset constraint, (2) layer selection strategy (all layers

Table 4. Ablation study. We evaluate the impact of vocabulary
subset constraint, layer selection, and threshold α variation on
hallucination mitigation under the CHAIR benchmark. Main table
settings are in gray.

SUBSET LAYER α CHAIRS ↓ CHAIRI ↓ RECALL ↑
W/O ALL 1e−5 0.2 7.14 0.83

W/

ALL
1e−4 31.8 7.93 72.17
1e−5 31.6 7.56 70.83
1e−6 32.4 9.38 70.44

LAST
1e−4 34.6 7.89 71.27
1e−5 33.8 7.92 70.31
1e−6 33.2 9.07 70.83

vs. last layer), and (3) threshold α for vocabulary selec-
tion. First, it is observed that selecting vision tokens from
all layers achieves better performance than relying solely
on the last layer on Qwen2.5-VL, suggesting that aggre-
gating multi-layer information can be beneficial for visual
grounding. We also observe that increasing α results in a
smaller and sparser vocabulary subset, which improves the
Recall score by promoting the generation of more plausible
ground-truth objects, as observed with α = 1e−4. However,
as enlarging subset can include noisy tokens and result in
the reduced precision, which indicates the importance of
proper selection. As shown in Table 4, when vision token
projection is performed over the full vocabulary without
constraining the subset (w/o subset), the CHAIRS score is
abnormally low (0.2) and the CHAIRI score also appears
improved compared to the best setting. However, the Recall
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score drops sharply to 0.83, indicating that the model fails to
generate not only hallucinated objects but also a significant
portion of ground-truth objects. This highlights the neces-
sity of constraining the candidate set to context-relevant
tokens. Examples of the generation failures are provided in
Appendix C.2.

Qualitative analysis. To illustrate the qualitative improve-
ments, we present examples from the LLaVA-Bench-In-The-
Wild dataset, which consists of diverse real-world images
requiring complex reasoning beyond conventional bench-
marks. As shown in Figure 4, the input image is a cartoon
illustration requiring contextual and conceptual understand-
ing. While baseline methods such as vanilla greedy de-
coding fail to capture the main theme and generate overly
generic or literal descriptions, or even getting stuck in repet-
itive phrasing. In contrast, ReVisiT successfully identifies
the underlying concept: about neural network layers. More
qualitative samples are provided in Appendix C.3

5. Conclusion
In this paper, we proposed ReVisiT, a simple yet effective
LVLM decoding method that references vision tokens to
guide the text generation process. Unlike prior approaches
that introduce extra computational cost to obtain the refer-
ence logit at every decoding step, ReVisiT leverages the
intrinsic vision token representations with negligible over-
head. By dynamically constraining the output vocabulary
based on output context, ReVisiT enhances visual grounding
and mitigates object hallucinations across both generative
and discriminative tasks.
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A. Detailed Discussions
A.1. Prior works

In this section, we provide a detailed discussion of prior works that aim to align visual inputs with language generation. We
organize these approaches into three categories—pre-alignment, intra-alignment, and post-alignment—based on the stage
where the alignment is applied with respect to the inference process. While this taxonomy follows the temporal flow of
inference, the categories are largely orthogonal in methodology and can be composed to enhance multimodal grounding.

A.1.1. PRE-ALIGNMENT

Recent advances in LVLMs have explored a range of pre-alignment strategies, in which visual and textual modalities are
aligned during training to enhance multimodal understanding. Most existing approaches adopt a combination of instruction
tuning and architectural refinements to achieve improved visual grounding. For instance, Qwen-VL (Bai et al., 2023) and
InternVL (Chen et al., 2024a) retain decoder-only LLM backbones while incorporating high-resolution vision encoders
and cross-modal projection modules. These models leverage large-scale curated image-text data and modality-specific
tuning objectives, leading to strong general-purpose performance across a variety of vision-language tasks. Building upon
these designs, Qwen2.5-VL (Bai et al., 2025) introduces a Dynamic High-Resolution (DHR) processing pipeline and
rotary position encodings tailored for vision-language alignment, further enhancing the model’s ability to process diverse
image resolutions efficiently. NVLM (Dai et al., 2024) explores a broader architectural design space by implementing
decoder-only, cross-attention, and hybrid variants, along with a DHR input pipeline and tile tagging mechanisms. On the
other hand, there are another line of works designed to mitigate the architectural challenges within the pre-alignment space.
Ferret (You et al., 2024) focuses on fine-grained spatial referring and grounding by introducing hybrid region representations
and a spatial-aware visual sampler, enabling the model to handle points, boxes, and free-form regions. In a different
direction, Ovis (Lu et al., 2024) addresses the structural mismatch between continuous visual embeddings and discrete
textual embeddings. Specifically, Ovis introduces a learnable visual embedding table and a probabilistic vision tokenization
scheme that mimics the structure of language token embeddings, thereby aligning the two modalities at the representation
level. While these pre-alignment strategies have proven effective, they typically require extensive retraining and are not
designed to enable inference-time intervention based on visual context.

A.1.2. POST-ALIGNMENT

Post-alignment refers to strategies that operate on the generated output sequence, aiming to correct hallucinations or factual
inconsistencies after the generation process is complete. Unlike pre- or intra-alignment methods that intervene during
training or decoding, post-alignment introduces no changes to the model’s parameters or inference-time logic. A key
distinction among post-alignment methods lies in how the correction is applied. Some approaches train an auxiliary revision
module, while others rely on external vision models to validate and refine the generated content. For example, LURE (Zhou
et al., 2023) learns a dedicated revisor that takes the original image and the LVLM-generated caption as input, and outputs a
hallucination-corrected caption. The training signal is derived from statistical indicators such as co-occurrence bias and
positional uncertainty observed in model outputs. In contrast, Woodpecker (Yin et al., 2024) does not require finetuning,
but instead performs post-hoc correction through a multi-stage pipeline. Starting from the generated text, it extracts visual
concepts, formulates corresponding questions, and verifies them using a pretrained VQA model. Each stage of this process
relies on existing pretrained components including question generation, visual verification, and text editing modules to
systematically identify and correct hallucinated content. While post-alignment strategies offer a practical way to improve
output consistency without altering the base model, they typically rely on additional training or auxiliary models.

A.1.3. INTRA-ALIGNMENT

Improving visual grounding (e.g., mitigating object hallucination) of LVLMs during decoding has evolved through distinct
methodological paradigms, each addressing unique aspects of visual-textual misalignment. The research trajectory begins
with Contrastive Decoding (Li et al., 2023b) strategies, pioneered by VCD (Leng et al., 2024), which introduced input
distortions to contrast original and perturbed visual distributions, thereby reducing reliance on language priors within LVLMs.
This foundation expanded into instruction-aware variants such as ICD (Wang et al., 2024), which amplifies alignment
uncertainty through textual prompt disturbances, and M3ID (Favero et al., 2024), which identifies language priors in the
LLM decoder via vision-agnostic input perturbations. Concurrently, attention-centric approaches emerged (Gong et al.,
2024; Liu et al., 2024b; Woo et al., 2024; Huo et al., 2025; Kang et al., 2025), aiming to mitigate attention misallocation by
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recalibrating cross-modal attention or introducing contrastive signals for token-level grounding. Other paradigms (Chen
et al., 2024b; Huang et al., 2024; Wang et al., 2025) have also been explored in recent literature, but all these intra-alignment
approaches require additional computation to obtain vision-related reference information.

A.2. Dataset and evaluation setup

CHAIR evaluation. CHAIR (Rohrbach et al., 2018) is a generative benchmark designed to measure object hallucinations
in image captioning. A hallucinated object refers to any entity mentioned in the generated caption that is not present in the
corresponding image. This metric is widely adopted to evaluate the visual grounding capability of vision-language models.
We follow the standard CHAIR evaluation procedure based on the object annotations from the MS COCO dataset (Lin
et al., 2014). Each image is associated with a set of ground-truth objects defined by the 80 category COCO detection
vocabulary. During evaluation, noun phrases extracted from generated captions are matched against this predefined object
list. Mentions of out-of-vocabulary objects are ignored, while in-vocabulary objects absent from the ground-truth annotations
are considered hallucinated. We report two standard metrics provided by the CHAIR benchmark and one additional metric:

CHAIRS =
|{hallucinated captions}|
|{total captions}|

,

CHAIRI =
|{hallucinated object mentions}|
|{total object mentions}|

,

Recall =
|{correctly predicted objects}|
|{total ground-truth objects}|

We use the official CHAIR evaluation code1 and randomly sample 500 images from the MS COCO validation set using
a fixed seed (seed=42) for reproducibility. For each image, we prompt the model with "Please describe this
image in detail." to generate captions.

POPE evaluation. POPE (Li et al., 2023c) is a discriminative benchmark designed to evaluate the object-level visual
grounding capabilities of LVLMs. It formulates the task as a binary object presence question-answering problem, where
the model is asked to determine whether a specific object is present in a given image. Evaluation is conducted using
standard classification metrics derived from the confusion matrix, including accuracy, precision, and F1 score. Accuracy
measures the overall proportion of correct predictions, while precision captures the fraction of predicted positive instances
that are indeed correct. F1 score, defined as the harmonic mean of precision and recall, provides a balanced assessment of
model performance on this binary classification task. The benchmark covers three datasets: MS COCO (Lin et al., 2014),
A-OKVQA (Schwenk et al., 2022), and GQA (Hudson & Manning, 2019). For each dataset, POPE defines three types
of query strategies—random, popular, and adversarial—yielding a total of nine evaluation scenarios. Binary questions
are constructed in the form \Is there a <object> in the image?", with the queried object selected according
to the designated strategy. Random queries are uniformly sampled from the dataset’s object vocabulary. Popular queries
focus on frequently occurring objects, while adversarial queries target objects that are semantically plausible in the given
context but are absent from the image, thus probing the model’s reliance on prior co-occurrence statistics rather than visual
evidence. Ground-truth labels indicating object presence are provided by the official POPE benchmark2. For MS COCO,
labels are derived from object detection annotations, whereas for A-OKVQA and GQA, they are obtained via SEEM-based
segmentation annotations. Each query type consists of 3,000 binary QA instances, evenly split between positive and negative
samples. As a result, we evaluate across a total of nine scenarios comprising 27,000 QA examples.

AMBER evaluation. AMBER (Wang et al., 2023) is a comprehensive benchmark designed to assess hallucination
phenomena in LVLMs across multiple dimensions. Unlike CHAIR and POPE that focus on object existence, AMBER
evaluates three core hallucination types: existence (fabricating non-existent entities), attribute (misrepresenting object
properties), and relation (incorrectly describing inter-object interactions). The benchmark supports both generative tasks and
discriminative tasks. We focused on generative setting, where AMBER calculates hallucination rates through automated
object matching against ground-truth annotations, similar to CHAIR but extended to attribute and relation verification. We

1https://github.com/LisaAnne/Hallucination
2https://github.com/AoiDragon/POPE
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report four metrics provided in the AMBER benchmark to quantify hallucination phenomena in the generative setting:

• CHAIR measures the proportion of hallucinated object mentions in the response. Given a generated object set R′
obj

and the ground-truth annotated object set Aobj, it is defined as:

CHAIR(R) = 1−
|R′

obj ∩Aobj|
|R′

obj|
.

• Cover evaluates the object coverage of the model output, measuring how well the response mentions the ground-truth
objects:

Cover(R) =
|R′

obj ∩Aobj|
|Aobj|

.

• Hal is a binary indicator of hallucination presence. A response is considered hallucinatory if any hallucinated object is
detected:

Hal(R) =

{
1 if CHAIR(R) ̸= 0

0 otherwise
.

• Cog captures the proportion of hallucinated objects that belong to a predefined cognitively plausible hallucination set
Hobj:

Cog(R) =
|R′

obj ∩Hobj|
|R′

obj|
.

All metrics are averaged over the full validation split comprising 1,004 generative samples. Lower values of CHAIR
and Hal indicate fewer hallucinations, while higher Cover and Cog scores reflect better object recall and alignment with
cognitively plausible patterns. We use the official AMBER benchmark3 without modification. For Qwen2.5-VL experiments,
input images exceeding a resolution of 1400 × 1400 were resized to fit GPU memory constraints, due to its dynamic
high-resolution encoding.

LLaVA-Bench-In-the-Wild dataset. We additionally employ the LLaVA-Bench-In-the-Wild (Liu et al., 2023) dataset to
qualitatively evaluate the visual grounding ability of LVLMs in open-ended image understanding. The dataset consists of 24
diverse images, including both real-world photographs and abstract illustrations, and 60 textual prompts designed to elicit
complex visual reasoning and language generation. Following prior work (Leng et al., 2024), we present representative
qualitative examples to illustrate how different decoding strategies affect grounding fidelity and response quality in
challenging scenarios.

3https://github.com/junyangwang0410/AMBER
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Algorithm 1 ReVisiT decoding algorithm

Input: LVLMM with final decoder layer L, projection (language modeling) head Wproj, and vocabulary V), input
image I , set of candidate decoder layers J , input text prompt xraw

Tokenize input text: x = {x0, . . . , x|x|−1} ← Tokenizer(xraw)

Encode image: v = {v0, . . . , v|v|−1} ← VisionEncoder(I)

Construct input sequence: z = v ∥ x ▷ z = {z0, . . . , zT−1} where T = |v|+ |x|
Initialize output sequence y← ∅ ▷ t← 0

while not end-of-sequence do
Get decoder hidden states hL

T+t−1 fromM with context (z,y)
if first-timestep then

Given {hj
i} for i = 0, . . . , T − 1 and j ∈ J from initial forward pass

Initialize cache lvision ← ∅
for each layer j ∈ J do

for i = 0 to |v| − 1 do
lji = W⊤

projh
j
i

Append lji to lvision
end for

end for
Cache matrix lvision ∈ R|J |·|v|×|V|

first-timestep← False
end if
Compute vanilla distribution pbase = softmaxV

(
W⊤

projh
L
T+t−1

)
(Eq. 1)

Select constrained vocabulary Vt
cons ⊆ V based on APC of pbase (Eq. 3.1)

Let pconsbase = softmaxVt
cons

(
W⊤

projh
L
T+t−1

)
(j∗, i∗)← argmin(j,i) JSD

(
pconsbase ∥ softmaxVt

cons
(lvision[j, i])

)
Let pconsref = softmaxVt

cons
(lvision[j

∗, i∗])

Logit adjustment via element-wise multiplication: lReVisiT = pconsbase ⊙ pconsref
Normalize over constrained vocabulary: pReVisiT = softmaxVt

cons
(lReVisiT)

Sample next token: yt ∼ pReVisiT

Append yt to y

t← t+ 1

end while
return y

A.3. ReVisiT

In this section, we first provide the pseudo-code of ReVisiT in Algorithm 1, which illustrates how vision tokens are
leveraged to refine the output distribution at each decoding step. We highlight that our implementation is memory-efficient,
model-agnostic, and requires no additional training or modification to the base model; the decoding function alone is
modified. ReVisiT involves two hyperparameters: (1) the pool of decoder layer(s) where vision tokens are selected, and
(2) the alignment weight α that determines the size of constrained vocabulary subset. For LLaVA-1.5-7B, we empirically
found that using vision tokens from the final decoder layer (“last”) mostly yielded the best grounding fidelity. In contrast,
for Qwen2.5-VL-7B, aggregating vision tokens from all even-numbered decoder layers (“all”) was more effective. These
selections were fixed per model across all benchmarks. The threshold α controls the size of the constrained vocabulary
subset. Lower values (resulting in larger subsets) are used for generative tasks where broader linguistic diversity is desired,
while higher values (yielding smaller subsets) are preferred in discriminative tasks to enhance precision. We select α from a
logarithmic range between 10−1 and 10−6, with 10−5 serving as the default when task-specific adaptation is not required.
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B. Detailed Quantitative Results
B.1. Comprehensive POPE results

Table 5. Comprehensive Results on POPE benchmark. Higher scores (↑) on Accuracy, Precision, and F1 indicate better performance.

SETUP METHOD
LLAVA-1.5 QWEN2.5-VL

ACC. ↑ PREC. ↑ F1 ↑ ACC. ↑ PREC. ↑ F1 ↑

M
S-

C
O

C
O

RANDOM

GREEDY 89.07 89.54 89.00 84.33 99.71 81.47
DOLA 89.00 89.58 88.92 81.40 99.89 77.17
VCD 87.23 86.62 87.34 84.50 98.96 81.81
M3ID 89.07 89.54 89.00 84.27 99.42 81.42
SID 89.73 91.22 89.55 86.00 99.09 83.85
OURS 89.10 89.82 89.00 84.67 99.62 81.95

POPULAR

GREEDY 85.63 83.72 86.03 83.77 98.10 80.92
DOLA 85.63 83.85 86.00 81.10 98.95 76.89
VCD 83.53 80.75 84.25 83.93 97.39 81.27
M3ID 85.63 83.72 86.03 83.77 98.01 80.94
SID 86.03 84.71 86.29 85.33 97.32 83.21
OURS 85.80 84.16 86.13 84.17 98.21 81.47

ADVERSARIAL

GREEDY 79.27 74.72 81.01 83.43 97.18 80.61
DOLA 79.40 74.97 81.08 80.83 98.03 76.65
VCD 77.67 72.90 79.77 83.50 96.31 80.85
M3ID 79.27 74.72 81.01 83.40 97.00 80.59
SID 80.20 76.22 81.60 84.33 94.86 82.25
OURS 79.90 76.21 81.22 83.70 97.11 80.99

A
-O

K
V

Q
A

RANDOM

GREEDY 86.33 81.00 87.42 87.87 96.86 86.58
DOLA 86.43 81.25 87.47 84.97 97.73 82.65
VCD 83.70 77.91 85.23 88.43 96.91 87.28
M3ID 86.33 81.00 87.42 87.30 96.05 85.97
SID 87.07 82.55 87.91 87.87 96.18 86.67
OURS 87.37 84.75 87.83 88.20 97.36 86.94

POPULAR

GREEDY 78.77 71.74 81.72 86.07 92.73 84.89
DOLA 79.00 72.06 81.85 83.07 92.91 80.87
VCD 76.47 69.58 79.99 86.20 92.36 85.12
M3ID 78.77 71.74 81.72 85.80 92.22 84.63
SID 80.33 73.82 82.70 86.33 92.71 85.23
OURS 81.97 77.54 83.31 86.17 92.42 85.07

ADVERSARIAL

GREEDY 68.20 61.86 74.91 81.27 83.26 80.69
DOLA 68.33 62.00 74.95 79.37 84.77 77.63
VCD 67.80 61.69 74.47 81.53 83.12 81.08
M3ID 68.20 61.86 74.91 80.23 81.51 79.82
SID 70.90 64.30 76.36 81.57 83.37 81.06
OURS 72.83 67.00 76.81 81.40 83.31 80.85

G
Q

A

RANDOM

GREEDY 85.97 79.72 87.30 87.50 97.15 86.08
DOLA 86.07 79.92 87.36 83.47 97.36 80.62
VCD 83.77 77.16 85.53 87.87 96.86 86.58
M3ID 86.00 79.74 87.33 87.27 96.82 85.82
SID 85.97 79.72 87.30 86.80 96.94 85.20
OURS 87.13 83.47 87.80 87.83 97.17 86.50

POPULAR

GREEDY 73.80 66.38 78.64 84.40 90.12 83.20
DOLA 73.97 66.56 78.73 79.60 87.76 77.13
VCD 71.87 64.76 77.32 84.33 89.07 83.32
M3ID 73.83 66.39 78.67 82.20 85.88 81.24
SID 73.80 66.38 78.64 83.47 89.34 82.13
OURS 78.67 72.42 81.28 84.63 90.37 83.46

ADVERSARIAL

GREEDY 68.17 61.60 75.19 81.80 84.97 80.94
DOLA 68.40 61.80 75.30 78.80 86.00 76.44
VCD 67.63 61.22 74.82 81.93 84.66 81.19
M3ID 68.20 61.62 75.22 81.17 83.95 80.36
SID 68.17 61.60 75.19 81.17 84.76 80.14
OURS 73.40 66.91 77.68 82.17 85.14 81.38
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B.2. Token-Level computation speed

Table 6. Per-token inference latency (ms/token) of different decoding strategies. We report the mean ± standard deviation over 300
samples.

METHOD LLAVA-1.5-7B QWEN2.5-VL-7B

GREEDY 25.9 ± 0.2 71.7 ± 0.5
DOLA 33.5 ± 0.3 82.2 ± 0.4
VCD 51.6 ± 0.4 143.8 ± 0.9
M3ID 49.5 ± 0.1 143.8 ± 9.8
SID 51.9 ± 0.4 148.4 ± 0.8
OURS 26.5 ± 0.2 73.2 ± 0.4

B.3. Additional evaluation on DeepSeekVL2

To further demonstrate the model-agnostic applicability of our decoding strategy, we evaluate ReVisiT on the recent
DeepSeekVL2 model (Wu et al., 2024), a 27B-parameter LVLM with a Mixture-of-Experts (MoE) decoder backbone based
on DeepSeek-MoE. Despite its large total parameter count, only 4.1B parameters are activated per inference due to expert
sparsity. This architecture poses a distinct challenge compared to dense decoder models such as LLaVA or Qwen.

During implementation, we observed frequent degeneration in the form of repetition even under vanilla greedy decoding. To
ensure fair comparison, we apply a repetition penalty of 1.1 across all methods for this experiment, following practices from
prior work on decoding calibration.

As shown in Table 7, ReVisiT consistently reduces hallucinations in the CHAIR benchmark: CHAIRS drops from 20.4 to
14.2, and CHAIRI from 7.04 to 2.1. These results reaffirm the effectiveness of ReVisiT in mitigating hallucinated object
mentions across diverse LVLM architectures, including sparsely activated expert-based models.

Table 7. DeepSeekVL2 results on CHAIR benchmark. ReVisiT effectively reduces hallucinations while maintaining comparable recall.

METHOD CHAIRS ↓ CHAIRI ↓ RECALL ↑
GREEDY 20.40 7.04 59.51
REVISIT 14.20 2.10 57.49
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C. Detailed Qualitative Results
C.1. Case studies for vision token analysis

To support the qualitative visualization presented in Figures 1 and 2, we provide the detailed numerical values and positional
metadata used in our vision token analysis. All examples are drawn from the LLaVA-Bench-In-the-Wild dataset, using
the LLaVA-1.5-7B. Vision token embeddings are extracted from decoder layer L = 32, and the threshold for constrained
vocabulary selection is set to α = 10−5.

First, Figure 1 presents a case study from the LLaVA-Bench-In-the-Wild dataset (image ID: 002.jpg, query: “How many
uncut fruits are in the image?”). At decoding step t = 2, ReVisiT selects vision token index 229 as the most relevant
reference based on the constrained vocabulary distribution. Table 8 reports the log-probability values from three sources: (1)
the base model output (Eq. 1), (2) the vision token projection at index 229 (Eq. 5), and (3) the final combined distribution
after log-probability fusion (Eq. 3.3). These values are computed over the constrained subset V2

cons. The token ‘‘three’’
is ultimately selected, as the vision token significantly boosts its relevance, increasing its probability from 35.45% to 58.27%,
while suppressing ‘‘four’’ from 50.78% to 38.21%.

Next, Figure 2 visualizes a comprehensive case from the same dataset (image ID: 003.jpg, prompt: “Describe this photo
in detail.”). Four vision tokens are selected to highlight different aspects of visual grounding. The three tokens shown on the
left of the figure are used to examine interpretability and semantic alignment of vision token projections. For each token, we
compute the projected distribution over (1) the full vocabulary V and (2) a manually defined constrained subset Venv =
{river, mountain, person, sky, tree, cloud, sea, grass, rock}. This comparison reveals how
visually grounded semantics become more prominent when irrelevant lexical candidates are excluded. The full distribution
shifts are detailed in Table 9.

The token on the right (vision token index 193) is selected to demonstrate the actual decoding behavior of ReVisiT. At
generation step t = 72, this token serves acts as a reference informer to refine the output distribution through log-probability
fusion. The final token ‘‘painting’’ is selected, with its probability increasing from 8.08% (base) to 39.15% (final),
while alternatives such as hallucinatory token ‘‘person’’ are suppressed. Detailed values are presented in Table 10.
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C.2. Without vocabulary subset case study

Q. Describe this photo in detail.

Certainly!

This photographic depiction renders bustling aerospace爺 Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh 
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh  
Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh Cảnh ...

The image is a view from inside a terminal, looking out through a window, at an airport 
tarmac. The scene is overcast, with a cloudy sky, and the terminal's distinctive architecture, 
featuring a series of arched, white support structures, is visible in the background. A Thai 
Airways plane, identifiable by the purple and white livery and the Thai Airways logo, is parked 
at the gate, connected to the terminal. The aircraft's tail is prominently visible, with the Thai 
Airways logo and a gold and purple design.  
In the foreground, a row of parked buses, likely for ground transportation, is visible. The 
buses are purple and white, and some of them have the Thai Airways logo. A few other 
vehicles, including a van and a small van, can be seen on the tarmac, and a few other aircraft 
and ground support equipment are in the distance. The overall setting is a busy airport 
terminal, with a focus on the Thai Airways plane and the terminal's unique architecture.

w/o subset

w/ subset

Q. Describe this photo in detail.

Certainly! 
This image showcases neatly plated desserts arranged centrally upon plates atop what 
seems like dining seating—all톱갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖
갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖
갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖갖 Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ ...

The image depicts a table with a central circular cutout, on which four plates of different 
colorful desserts are placed. The table is white, and the plates are black. The desserts are 
neatly arranged, each on its own plate, and include the following: 
1. **Pink Roll Cake**: A rolled cake, possibly a Swiss roll, with a pink filling and a white layer, 
placed on a black plate with a knife resting on the side. 
2. **Yellow Layer Cake**: A slice of cake with multiple yellow and cream-colored layers, 
placed on a black plate. 
3. **Green Layer Cake**: A slice of cake with multiple green and cream-colored layers, 
placed on a black plate with a knife resting on the side. 
4. **Patterned Roll Cake**: A rolled cake with a patterned surface, possibly a Swiss roll, with 
a yellow and white pattern, placed on a black plate with a knife resting on the side. 
In the background, there is a stack of black plates, a chair with a patterned cushion, and a 
wooden floor. The setup suggests a dessert or tea time setup, with the table and plates 
arranged for serving.

w/o subset

w/ subset

Q. Describe this photo in detail.

Certainly! 
This captivating photographic portrayal brilliantly juxtaposes innocence—an modalità Cuộc 
Đề Ấ Đề Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ 
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ  
Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ Ấ ...

This image shows the interior of a classic convertible car, likely a vintage model, with a black 
leather interior. The car's top is down, and the rear seats and dashboard are visible. The 
dashboard features a wood panel, a design characteristic of older car models, and the 
steering wheel is on the left side, indicating the car is likely from a country where driving on 
the left is the norm, such as the UK. The car's seats and door panels are upholstered in black 
leather, and the car's exterior is yellow, visible in the background. A dog with brown and 
black fur is sitting in the front passenger seat, looking out. The dog's expression appears 
calm and curious. The car's interior is clean and well-maintained, and the overall scene 
suggests a relaxed, leisurely moment, perhaps a car ride.

w/o subset

w/ subset

Figure 5. Without vocabulary subset case study. Qualitative case study from Qwen2.5-VL-7B. w/o subset refers to ablation result
of without vocabulary subset constraint, whereas w/ subset refers to our proposed ReVisiT.
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C.3. Additional qualitative examples

Q. What are the animals in the painting and what are they doing?

The painting features a bear, a cat, and a rabbit sitting 
around a table, eating food. They are enjoying a meal 
together, with the bear eating a donut, the cat drinking from 
a cup, and the rabbit eating a .  cookie

The painting features a bear, a cat, and a rabbit sitting 
around a table, eating food. They are enjoying a meal 
together, with the bear eating a donut, the cat drinking from 
a cup, and the rabbit eating a .cookie

Greedy

DoLa

The painting features a bear, a bunny, and a cat sitting 
around a table, eating cookies. They are all gathered around 
the table, enjoying their treats together.

VCD

The painting features a bear, a cat, and a rabbit sitting 
around a wooden table, enjoying a meal together. They are 
eating cookies and drinking  cups.pink

M3ID

The painting features a bear, a cat, and a rabbit sitting 
around a table, eating cookies and drinking from cups.

SID

The painting features a bear, a cat, and a rabbit. The bear is 
eating a donut, while the cat and the rabbit are sitting at a 
table with a plate of donuts.

ReVisiT

Figure 6. Additional qualitative example. The input image is a illustration showing a bear, a cat, and a rabbit seated around a table
with a plate of donuts. We compare the responses of vanilla greedy decoding and ReVisiT to the question, “What are the animals in
the painting and what are they doing?” While the greedy output introduces a hallucinated detail (\cookie") and assigns actions not
visually supported (e.g., “the cat drinking from a cup”), ReVisiT provides a more faithful description aligned with the visual content,
accurately identifying the animals and their activities.
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D. Broader Impacts and Limitations
Broader impacts. Like most approaches built upon LLMs, the proposed method inherits the limitations and potential
societal risks of the underlying models, including biases in training data, reinforcement of stereotypes, and the generation of
factually incorrect or harmful content. While our decoding strategy improves visual grounding by constraining generation
based on vision token signals, it does not explicitly eliminate such biases and may inadvertently propagate them through
vision-conditioned outputs. On the other hand, by incorporating grounded visual evidence during generation, our method
may contribute to mitigating hallucinations and increasing the interpretability of multimodal outputs. We believe that this is
an important step toward trustworthy and reliable deployment of LVLMs in the real-world.

Limitations. A potential limitation of our method is its strong reliance on the semantics encoded in vision tokens, which
may lead to overfitting to visually salient cues. While this behavior improves visual grounding in most cases, it can result in
an overemphasis on perceptually grounded elements at the expense of implicit, commonsense, or non-visual contextual
information. To mitigate such overfitting issue, future work could explore adaptive interpolation strategies between reference
logits and vanilla logits, or incorporate auxiliary confidence calibration mechanisms to balance multimodal importance
dynamically. Another limitation of our approach is its exclusive reliance on the model’s internal representations without
access to external knowledge sources. As a result, it cannot correct factual errors or hallucinations originating from
pretraining data, particularly in cases where visual evidence alone is insufficient for disambiguation or grounding. While our
method improves the alignment between visual inputs and generated text, it does not incorporate retrieval mechanisms that
could supplement the model with up-to-date or context-specific information. Nevertheless, due to its modular and decoding-
time nature, our method is compatible with retrieval-augmented generation (RAG) pipelines and could be integrated with
external knowledge modules in future work.
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Rank Token Base Logit (229) Vision Token Logit Final Logit
Log-Prob Prob (%) Log-Prob Prob (%) Log-Prob Prob (%)

1 three −1.04 35.45 −1.47 22.98 −2.51 58.27

2 four −0.68 50.78 −2.25 10.52 −2.93 38.21

3 two −4.57 1.04 −1.19 30.44 −5.76 2.26

4 five −2.54 7.91 −4.45 1.16 −6.99 0.66

5 a −4.33 1.31 −3.08 4.58 −7.42 0.43

6 six −3.94 1.94 −5.15 0.58 −9.10 0.08

7 −5.10 0.61 −4.22 1.47 −9.32 0.06

8 several −5.75 0.32 −5.39 0.45 −11.15 0.01

9 seven −5.79 0.31 −6.12 0.22 −11.90 0.00

10 un −8.65 0.02 −3.80 2.24 −12.45 0.00

11 at −8.28 0.03 −4.77 0.85 −13.05 0.00

12 one −10.05 0.00 −3.69 2.50 −13.74 0.00

13 in −11.15 0.00 −2.99 5.01 −14.14 0.00

14 eight −7.38 0.06 −6.78 0.11 −14.16 0.00

15 f −9.52 0.01 −4.76 0.86 −14.28 0.00

16 multiple −7.66 0.05 −6.66 0.13 −14.32 0.00

17 only −8.68 0.02 −5.89 0.28 −14.57 0.00

18 nine −7.71 0.04 −6.97 0.09 −14.68 0.00

19 half −8.62 0.02 −6.22 0.20 −14.85 0.00

20 many −8.70 0.02 −6.21 0.20 −14.91 0.00

21 all −10.38 0.00 −4.85 0.78 −15.23 0.00

22 still −11.11 0.00 −4.15 1.57 −15.26 0.00

23 an −10.33 0.00 −5.10 0.61 −15.43 0.00

24 some −10.05 0.00 −5.40 0.45 −15.46 0.00

25 more −11.15 0.00 −4.68 0.92 −15.83 0.00

26 about −10.05 0.00 −5.90 0.27 −15.95 0.00

27 both −10.74 0.00 −5.23 0.53 −15.98 0.00

28 the −11.98 0.00 −4.07 1.71 −16.05 0.00

29 not −11.58 0.00 −4.59 1.02 −16.16 0.00

30 over −11.99 0.00 −4.25 1.42 −16.25 0.00

31 different −11.93 0.00 −4.73 0.88 −16.66 0.00

32 ten −8.56 0.02 −8.15 0.03 −16.71 0.00

33 just −10.97 0.00 −5.78 0.31 −16.75 0.00

34 fruit −11.81 0.00 −5.04 0.65 −16.85 0.00

35 as −12.06 0.00 −4.82 0.81 −16.88 0.00

36 small −12.11 0.00 −4.86 0.78 −16.97 0.00

37 various −10.39 0.00 −6.71 0.12 −17.10 0.00

38 also −11.94 0.00 −5.21 0.55 −17.15 0.00

39 very −11.80 0.00 −5.54 0.39 −17.35 0.00

40 around −11.28 0.00 −6.07 0.23 −17.35 0.00

41 numerous −10.02 0.00 −7.51 0.05 −17.54 0.00

42 no −10.70 0.00 −6.93 0.10 −17.64 0.00

43 total −11.17 0.00 −6.80 0.11 −17.97 0.00

44 currently −11.17 0.00 −6.89 0.10 −18.06 0.00

45 cut −11.78 0.00 −6.46 0.16 −18.24 0.00

46 quite −11.62 0.00 −6.71 0.12 −18.33 0.00

47 few −11.91 0.00 −6.64 0.13 −18.55 0.00

48 twelve −10.07 0.00 −8.53 0.02 −18.60 0.00

49 lots −11.52 0.00 −7.37 0.06 −18.89 0.00

50 th −11.34 0.00 −7.63 0.05 −18.98 0.00

51 actually −11.84 0.00 −7.40 0.06 −19.24 0.00

52 approximately −11.05 0.00 −8.45 0.02 −19.50 0.00

53 exactly −12.14 0.00 −7.48 0.06 −19.62 0.00

54 plenty −11.78 0.00 −7.95 0.04 −19.73 0.00

55 eleven −10.82 0.00 −9.25 0.01 −20.07 0.00

Table 8. Detailed numerical values for Figure 1. Token scores over the constrained vocabulary V2
cons at decoding step t = 2 with

ReVisiT are presented. The selected vision token (index 229) amplifies the relevance of \three", increasing its probability from
35.45% (base) to 58.27% (final), while suppressing \four" from 50.78% to 38.21%.
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Vision Token Top (Pink) Middle (Yellow) Bottom (Cyan)
Vocab V Venv V Venv V Venv

Token Log-Prob % Log-Prob % Log-Prob % Log-Prob % Log-Prob % Log-Prob %
river −14.74 0.00 −6.16 0.21 −3.61 2.70 −0.36 69.75 −14.58 0.00 −5.02 0.66

mountain −14.07 0.00 −5.48 0.42 −6.47 0.15 −3.22 3.99 −15.02 0.00 −5.46 0.43

person −13.39 0.00 −4.80 0.82 −12.27 0.00 −9.01 0.01 −9.86 0.01 −0.30 73.81

sky −8.66 0.02 −0.07 93.44 −6.76 0.12 −3.51 2.99 −12.82 0.00 −3.26 3.83

tree −12.06 0.00 −3.48 3.09 −11.71 0.00 −8.46 0.02 −12.47 0.00 −2.92 5.42

cloud −13.88 0.00 −5.30 0.50 −9.52 0.01 −6.26 0.19 −12.46 0.00 −2.91 5.47

sea −13.80 0.00 −5.21 0.55 −6.82 0.11 −3.57 2.81 −13.24 0.00 −3.68 2.52

grass −15.41 0.00 −6.82 0.11 −7.19 0.08 −3.94 1.95 −13.41 0.00 −3.86 2.11

rock −13.35 0.00 −4.77 0.85 −4.95 0.71 −1.70 18.33 −12.41 0.00 −2.85 5.77

Table 9. Detailed numerical values for Figure 2 (left). Log-probabilities and probabilities (%) of selected constrained vocabulary tokens
as projected by three vision tokens (pink, yellow, cyan) under the full vocabulary V and the constrained vocabulary Venv.

Rank Token Base Logit (193) Vision Token Logit Final Logit
Log-Prob Prob (%) Log-Prob Prob (%) Log-Prob Prob (%)

1 painting −2.52 8.08 −1.27 27.99 −3.79 39.15

2 rock −2.60 7.42 −2.28 10.22 −4.88 13.11

3 mountain −2.14 11.76 −3.03 4.83 −5.17 9.82

4 person −1.89 15.10 −3.59 2.75 −5.48 7.19

5 landscape −2.27 10.30 −3.42 3.27 −5.70 5.82

6 d −3.45 3.16 −2.29 10.14 −5.74 5.55

7 p −3.91 2.01 −2.45 8.60 −6.36 3.00

8 scene −3.80 2.23 −2.70 6.75 −6.50 2.60

9 small −2.83 5.91 −3.70 2.48 −6.52 2.54

10 beautiful −3.67 2.54 −3.03 4.84 −6.70 2.13

11 large −2.93 5.34 −3.78 2.28 −6.71 2.11

12 scen −3.57 2.81 −3.17 4.19 −6.74 2.04

13 hill −4.01 1.82 −2.83 5.91 −6.84 1.86

14 chair −2.85 5.78 −4.38 1.26 −7.23 1.26

15 bow −3.87 2.09 −3.68 2.53 −7.54 0.92

16 second −3.80 2.23 −4.52 1.09 −8.33 0.42

17 smaller −3.02 4.90 −6.04 0.24 −9.06 0.20

18 boat −3.00 4.98 −6.34 0.18 −9.34 0.15

19 distant −4.14 1.59 −5.43 0.44 −9.57 0.12

Table 10. Detailed numerical values for Figure 2 (right). Token scores over the constrained vocabulary V72
cons at decoding step t = 72

with ReVisiT. The selected vision token (index 193) amplifies the relevance of \painting", increasing its probability from 8.08%
(base) to 39.15% (final) while suppressing hallucinatory token \person" from 15.10% to 7.19%.
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