
Under review as a conference paper at ICLR 2024

RESOURCE EFFICIENT TEST-TIME TRAINING WITH
SLIMMABLE NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-Time Training (TTT), an innovative paradigm for enhancing a model’s gener-
alization in a specific future scenario, commonly leverages self-supervised learn-
ing to adapt the model to the unlabeled test data under distribution shifts. How-
ever, previous TTT methods tend to disregard resource constraints during the
deployment phase in real-world scenarios and have two fundamental shortcom-
ings. Firstly, they are obligated to retrain adapted models when deploying across
multiple devices with diverse resource limitations, causing considerable resource
inefficiency. Secondly, they are incapable of coping with computational budget
variations during the testing stage. To tackle these issues, we propose a resource-
adaptive test-time training framework called SlimTTT, which allows for the seam-
less switching of different sub-networks for adaptive inference. Furthermore, we
discover that different width of sub-networks can capture different views of im-
ages and these views are complementary and beneficial to the ones created by
data augmentation, which is widely used in TTT. To utilize these views, we in-
troduce Width-enhance Contrastive Learning (WCL), Logits Consistency Regu-
larization (LCR) and Global Feature Alignment (GFA) to promote representation
consistency at both feature and prediction space in a self-supervised manner, en-
abling networks of different widths to excel in TTT tasks. Our proposed method,
SlimTTT, has achieved state-of-the-art (SOTA) results across a variety of adapta-
tion methods and four different datasets with varying backbones. Remarkably, de-
spite a significant reduction in computational complexity - over 70% less than the
current SOTA method - SlimTTT continues to deliver competitive performance,
rendering it highly conducive for adoption in practice.

1 INTRODUCTION

Generalizing deep learning models to new domains holds significant importance, and numerous
existing methods strive to train models to exhibit robustness against potential distribution shifts en-
countered during training (Ganin & Lempitsky, 2015; Long et al., 2018; Ilse et al., 2020). Recently,
a novel adaptation protocol known as Test-Time Training (TTT) (Sun et al., 2020; Liu et al., 2021;
Su et al., 2022; Gandelsman et al., 2022) seeks to improve a model’s generalization performance in
a specific future scenario where it is deployed or tested under distribution shifts. TTT achieves this
goal by optimizing a self-supervised objective using unlabeled test data at test time, making it more
practical for realistic applications. Nevertheless, having an extra training stage after the model de-
ployment makes the new protocol highly dependent on computational resources (e.g., GPU memory,
peak memory) that can vary widely across different devices, yet none of the existing TTT methods
have taken the resource constrains into consideration. Consequently, it is imperative to explore Re-
source Efficient Test-Time Training algorithms that can tackle a larger range of practical scenarios.

Test-Time Training (TTT) typically involves three phases: training-time training, test-time training,
and inference. Here exists two realistic scenarios with computational constraints as depicted in Fig-
ure 1(left). First, the computational resources differ across devices, and thus the training-time
trained model must meet the requirements of each device to enable on-device test-time training after
deployment (Chakraborty et al., 2023; Meng et al., 2022; Yang et al., 2020). Second, after deploy-
ment, the available computational budget of a same device may change during inference (Yu
et al., 2018; Yu & Huang, 2019b;a) (for example, the power saving mode will reduce available com-
puting capacity). For the first scenario, a vanilla solution would be to pretrain an individual model

1

Under review as a conference paper at ICLR 2024

Inference

(Personalized model)

(Pretrained model) Test-Time Training

Challenge Ⅱ: budgets

Challenge Ⅰ: resources Original 1.0× width 0.5× width

Figure 1: Left: Slimmable network addresses two practical resource-aware scenarios of test-
time training. After training-time training, different width of pretrained slimmable network (blue)
can be deployed according to devices’ resource constraints. During Inference, the personalized
slimmable network (orange) can be switched to different width according to the real-time limita-
tion of the device. Right: The visualization of the attention of sub-networks of different widths
using Grad-CAM. Different sub-networks pay attention to different parts of the object, which vi-
sually confirms that they capture multiple views of the image.

for each device that is tailored to its specific limitations. However, apart from being expensive, such
method fails to manage the second scenario under TTT protocol: when device’s resources become
limited during inference, a smaller pretrained model must be redeployed and then updated all over
again using test data. Therefore, to conduct more applicable Test-Time Training in both scenar-
ios, we seek for networks that can operate with their sub-networks instantly and adaptively without
requiring retraining, and design TTT algorithms specifically tailored to these networks.

In this paper, motivated by the characteristic of anytime neural networks (Li et al., 2022; Cai et al.,
2019; Yu et al., 2020; Yu & Huang, 2019b), we proposes to leverage the typical slimmable net-
work (Yu et al., 2018) to achieve resource efficient Test-Time Training. Conceptually, slimmable
network offers a solution to the challenges outlined above as depicted in Figure 1. After training a
single supernet, its sub-networks with different widths can be deployed depending on the device’s
resource limitations. Furthermore, each sub-network is considered a device-specific supernet and
is further updated using test data after deployment, which allows all sub-networks to collectively
enhance generalization performance. During inference, these sub-networks can be flexibly switched
to achieve optimal accuracy-efficiency trade-off, depending on the device’s status.

Unfortunately, directly applying existing TTT methods to a slimmable architecture yields no im-
proved or even worse results due to the change in the network structure. To promote resource effi-
cient Test-Time Training, we intensively study one characteristic of the slimmable network, which
is its capability of capturing multiple views of the data simultaneously, and then explicitly enhance
semantic consistency learning using such property. Specifically, this architecture enables the execu-
tion of sub-networks with different width, and these sub-networks produce distinct representations
of the same input data, laying the foundation for their knowledge interaction during test-time training
process. Here, we provide a visual demonstration and a toy example to support for key observation.

Visually, the Grad-CAM visualization (Selvaraju et al., 2017) in Figure 1(right) shows the atten-
tion of sub-networks of different widths, where we can observe that the regions of interest for net-
works with widths of 1.0× and 0.5× are different, which demonstrates that networks of different
widths learn different views of the same inputs. Mathematically, we build connection to the pre-
vious work (Allen-Zhu & Li, 2023) which proves that differently initialized networks can capture
different views of data. We use a three-layer MLP as a toy example to show that sub-networks in
the slimmable architecture can be regard as the full network with different initializations. Our full
MLP model contains two input neurons, three hidden layer neurons and one output neuron. Its sub-
network drops a neuron in the hidden state. Given input data x, the sub-network output ysub and the
full output ysup can be represented as:

ysub = Ã
(
σ(B̃x)

)
= [a11 a12]

(
ReLU(

[
b11 b12
b21 b22

] [
x1

x2

]
)

)
, (1)

ysup = [a11 a12 a13]

(
ReLU(

[
b11 b12
b21 b22
b31 b32

] [
x1

x2

]
)

)
=
[
Ã a13

](
ReLU(

[
B̃
b3

] [
x1

x2

]
)

)
(2)

2

Under review as a conference paper at ICLR 2024

It is evident that when a13 = 0 and b3 = 0, we have ysub = ysup, indicating the equivalance in
output between the sub-network and the full network with certain parameter changes.

Expanding upon our findings, we develop a new SlimTTT framework based on comprehensive
multi-view consistency learning, which includes a Width-enhanced Contrastive loss and Logit Con-
sistency Regularization. These strategies fully exploit information within multiple data views cap-
tured by the sub-networks at both feature and logit space. Additionally, an Resource-Aware Ensem-
ble strategy is proposed, aimimg to improve inference performance without increasing the required
inference resources beyond acceptable time limits. We demonstrate the superiority of our method,
through comparing with various TTT methods on standard benchmarks including ImageNet-C,
CIFAR10-C, CIFAR10.1, and CIFAR100-C with different backbones such as ResNet50, Mo-
bileNetV1, MobileNetV2 and ViT. In a nutshell, our contributions can be summarized as:

• We investigate a more challenging yet realistic Test-Time Training scenario by taking re-
source constrains into consideration, and propose a general solution using the represen-
tative architecture of slimmable neural network. Moreover, we exploit the architecture
of slimmable network and find that different width of sub-networks can capture multiple
views of the same input data, possessing a talent for enhancing TTT performance.

• We propose a resource efficient SlimTTT framework that includes Width-enhanced Con-
trastive Learning, Logit Consistency Regularization and Global Feature Alignment in test-
time training phase and Resource-Aware Ensemble in inference phase. Our framework not
only addresses the pratical challenges of TTT, but also encourages multi-view consistency
that enhance the model’s generalization performance.

• Comprehensive experimental results demonstrate that SlimTTT consistently achieves supe-
rior performance on ImageNet-C and other standard benchmarks compared to other com-
petitive methods that use similarly scaled backbones. Notably, even with a computing
complexity reduced by 70%, our method still can outperform most of other methods.

2 RELATED WORK

Anytime Neural Network Anytime neural networks (Huang et al., 2018; Yu et al., 2018; Li et al.,
2022; Yang et al., 2020; Cai et al., 2019; Yu et al., 2020) are elaborately designed architectures that
contain various sub-networks within a single network. These sub-networks can be trained jointly and
executed independently, allowing the single supernet can be deployed instantly and adaptively under
different resource constraints to address practical scenarios in real-world applications. According to
the structure of the sub-networks, anytime neural networks can be generally divided into networks
with variable depth (Huang et al., 2018; Cai et al., 2019; Yu et al., 2020; Larsson et al., 2016) and
variable width (Lee & Shin, 2018; Yu et al., 2018; Li et al., 2021a). Slimmable network (Yu et al.,
2018; Yu & Huang, 2019b) is a typical architecture with variable width. The original slimmable
network (Yu et al., 2018) uses switchable batch normalization and in-place distillation to guarantee
the sub-networks’ performance in any width. Building upon prior research, DSNet (Li et al., 2021a)
dynamically adjusts filter numbers of networks at test time with respect to different inputs. Mutu-
alNet (Yang et al., 2020) uses varying input resolutions to train slimmable networks, allowing each
sub-network to learn multi-scale representations in a mutually beneficial manner. However, they all
assume that training and test data follow the same distribution, and the model’s performance may
significantly drop once the distribution differs.

Test-Time Training/Adaptation Improving the generalization capabilities of models to effec-
tively address domain shift has been a prominent focus in deep learning. Many research efforts
have emerged under settings such as Domain Adaptation (DA) (Tzeng et al., 2014; Long et al.,
2015; Ganin & Lempitsky, 2015; Long et al., 2018; Li et al., 2020), Source-Free Domain Adapta-
tion (Liang et al., 2020b;a), Domain Generalization (Yue et al., 2019; Balaji et al., 2018; Ilse et al.,
2020), etc. Recently, Sun et al. first propose Test-Time Training (TTT) (Sun et al., 2020) as a novel
approach towards domain shift by updating the model parameters using test samples in an unsu-
pervised manner before actually making a prediction. This method incorporates a self-supervised
branch (rotation prediction) and only updates the feature encoder using self-supervised loss in test-
time training process. The subsequent works TTT++ (Liu et al., 2021) and TTAC (Su et al., 2022)
improve the test-time training performance by replacing the rotation prediction objective with con-
trastive learning objective (Chen et al., 2020) to learn more informative representations.

3

Under review as a conference paper at ICLR 2024

Test-Time Adaptation (TTA) is a similar setting to TTT that further considers the case where source
supervision is not available. With only the source pretrained model, Test-time Normalization (Ioffe
& Szegedy, 2015) updates the affine parameters in batch normalization using the test samples,
Tent (Wang et al., 2020) adopts entropy minimization across a batch of test data and T3A (Iwa-
sawa & Matsuo, 2021) maintains a number of support sets. The latter approaches MEMO (Zhang
et al., 2022) and TPT (Shu et al., 2022) both utilize a various kinds of strong data augmentation and
minimize the entropy of the ensemble of model prediction across all the augmented images.

However, these TTT/TTA methods address the domain-shift challenge in an ideal scenario, while
in realistic applications, various constraints, particularly computational resource limitations, need to
be taken into consideration. This paper considers resource limitation of edge devices and proposes
SlimTTT using slimmable network to achieve the optimal accuracy-efficiency trade-off on different
devices in Test-Time Training.

Resource Efficient Domain Adaptation This work also takes inspiration from resource-efficient
domain adaptation, which focuses on saving computational resources of domain adaptation mod-
els (Jiang et al., 2020; Li et al., 2021b; Meng et al., 2022; Chakraborty et al., 2023). DDA (Li et al.,
2021b) and REDA (Jiang et al., 2020) propose efficient DA algorithms based on MSDNet (Huang
et al., 2018), whereas SlimDA (Meng et al., 2022) and AnyDA (Chakraborty et al., 2023) improve
the adaptation performance using slimmable networks (Yu et al., 2018; Yang et al., 2020). Com-
pared to these approaches addressing domain adaptation problems, our resource efficient Test-Time
Training is more flexible, which no longer anticipates a certain target domain in advance but adapts
the model depending on the test samples. Moreover, our SlimTTT takes fully advantage of the
Slimmable Network structure by jointly exploiting different views of the data produced by both
sub-networks and augmentation using a comprehensive contrastive learning framework.

3 METHOD

In this section, we will provide a comprehensive explanation of our methodology to enable resource-
efficient Test-Time Training. To begin with, we formalize the problem for both the training-time
training phase and test-time training phase. Then, a joint training approach following standard prac-
tice (Sun et al., 2020; Liu et al., 2021) is introduced for the training-time training phase. Moving
on to the test-time training phase, we propose three techniques to facilitate multi-view consistency
learning for better adaptation, namely Width-enhanced Contrastive Learning (WCL), Logits Con-
sistency Regularization (LCR) and Global Feature Alignment (GFA). Finally, we elaborate on an
ensemble approach for inference. The key section of test-time training is illustrated in Figure 2.

3.1 PROBLEM DEFINITION AND NOTATIONS

Test-Time Training incorporates three stages: training-time training, test-time training and inference.
In the first stage, a model is trained on the labeled source dataset Ds = {xs, ys} and then deployed.
In the second stage, test-time training, the deployed model adapts to the test distribution according
to the unlabeled test set Dt = {xt}, which could be sampled from a different domain. Since the
source dataset and the test set are not simultaneously available, for ease of notations, we omit the
subscript s, t on the data and denote them as x uniformly in the rest of this section. The goal of
Resource Efficient Test-Time Training is to maximize the model’s inference performance without
exceeding the resource constraint B.

Each slimmable network adopted in this paper can be considered as a set of K sub-networks of
different width. We denote the slimmable feature encoder g, main classification head πm and
self-supervised head πs as l = {l(1), l(2), ..., l(K)}l∈{g,πm,πs}, where network with larger in-
dex has larger width (l(K) denotes the supernet). For the k-th sub-network, we denote p

(k)
i =

softmax(π
(k)
m ◦ g(k)(xi)) its prediction of sample xi with softmax(·) being the standard softmax

function, and hi = π
(k)
s ◦ g(k)(xi) its projected feature.

3.2 TRAINING-TIME TRAINING PHASE

To facilitate the model training during test-time with unlabeled data, we follow standard prac-
tice (Sun et al., 2020; Liu et al., 2021) here in the training-time and consider a joint training process

4

Under review as a conference paper at ICLR 2024

Strong Aug

Weak Aug

𝝅𝝅𝒎𝒎 argmax

𝝅𝝅𝒔𝒔
[𝒉𝒉(1). .𝒉𝒉 𝐾𝐾]

[𝒑𝒑 1 . .𝒑𝒑 𝐾𝐾]

�𝒑𝒑(𝐾𝐾)
�𝑦𝑦

𝒩𝒩(𝝁𝝁𝑡𝑡 ,𝜮𝜮𝑡𝑡)
𝑓𝑓

a) WCL

b) LCR

𝒈𝒈

c) GFA

ℎ1
(𝑘𝑘)

𝑔𝑔(𝐾𝐾)

𝑔𝑔(𝑘𝑘)

ℎ2
(𝑘𝑘)

𝜋𝜋𝑠𝑠
(𝑘𝑘)

𝜋𝜋𝑠𝑠
(𝐾𝐾)

ℎ1
(𝐾𝐾) ℎ2

(𝐾𝐾) ℎ1
(𝑘𝑘) ℎ2

(𝑘𝑘)

Activated neuron
Positive pair (sub-network)
Positive pair (augmentation)

Inactivated neuron Negative pairSlimmable Network Features (diff. width)
Predictions (diff. width)

Test-Time Training Phase

Figure 2: Overview of the SlimTTT framework which includes three techniques: a) WCL the pro-
jections of two augmented views of each width of network are combined with the biggest network’s
projections to encourage the consistency between both multiple augmented views and multiple width
views. b) LCR The weak augmented version is sent to the biggest network to obtain a pseudo label,
which supervises the predictions of each width of the sub-networks. c) GFA The global test data dis-
tributions of different width are aligned to the source one of the same width using KL-Divergence.

that involves a main training objective and an auxiliary self-supervised learning task. For a batch of
N labeled images in Ds, the main training loss function Lmain can be expressed as:

Lmain =

N∑
i=1

(

K∑
k=1

E(p(k)
i , yi) +

K−1∑
k=1

E(p(k)
i ,p

(K)
i)), (3)

where E(·, ·) is the cross-entropy loss. The first term minimizes the empirical risk and the sec-
ond term improves the prediction consistency between sub-networks and the supernet and is only
minimized with respect to each sub-network.

The self-supervised loss Ls is a width-enhanced contrastive loss which will be introduced in detail
in § 3.3. Overall, the joint training loss Ljoint is:

Ljoint = Lmain + Ls. (4)

3.3 TEST-TIME TRAINING PHASE

In test-time training phase, we fully exploit the slimmable network’s capability of capturing multiple
data views to improve its performance. Specifically, our framework consists of three parts: WCL and
LCR that encourage the multi-view consistency on both feature and logit level, and GFA that apply
a restriction over the multi-view features. Next, we provide detailed explanations and discussions of
these techniques.

3.3.1 WIDTH-ENHANCED CONTRASTIVE LEARNING

As discovered in early experiments (Figure 1(b)), sub-networks of different width in the slimmable
network can capture different aspects of the same test input, which enables multi-view consistency
learning without requiring the label. Therefore, upon the common practice of contrastive learning
that only encourages feature consistency between differently augmented views, we propose WCL
(Figure 2a) that comprehensively exploits data-views generated from both data augmentation tech-
niques and slimmable network structures. In this regard, our model benefit from stronger supervision
brought by increased variety of data views (Tian et al., 2020).

For a randomly sampled batch of N images from the test dataset Dt, we begin by obtaining two
views for each sample by applying two random data augmentations, resulting in 2N data views
as the batch input for the slimmable network, which finally yields a total of 2KN representations.
Since the network with full width is most powerful, we consider the 2N views created by the largest
network as the “core views” (Tian et al., 2020), and the features created by other width of network
are all encouraged to make consistency with the “core views”. In this case, each sub-networks can
have knowledge interaction with the largest network.

More specifically, for each of the K − 1 sub-networks except the biggest one, we combine its 2N
representations {h(k)

i }2Ni=1 with those embedded by the biggest network {h(K)
i }2Ni=1, resulting in 4N

5

Under review as a conference paper at ICLR 2024

features Hall = {h(k)
i ,h

(K)
i }2Ni=1. We define the positive set and negative set for each representation

h
(k)
i as Hpos = {h(k)

i ,h
(k)
j ,h

(K)
i ,h

(K)
j } and Hneg = Hall \ Hpos, where h

(k)
j is generated from

another augmentation. Given that now we have multiple positive pairs for each representation, we
adopt the multi-positive NCE loss (Lee et al., 2022), which can avoid interference between positive
pairs:

Lsd,i = −
K−1∑
k=1

∑
hp∈Hpos

log
exp

(
δ(h

(k)
i ,hp)/τ

)
exp

(
δ(h

(k)
i ,hp)/τ

)
+

∑
hn∈Hneg

exp
(
δ(h

(k)
i ,hn)/τ

) , i = 1, ..., 2N,

(5)
where δ(·, ·) denotes the cosine similarity. Additionally, we ensure the consistency between two
augmented views created by the largest network ⟨h(K)

i ,h
(K)
j ⟩ with the following contrastive loss:

Ls,i = − log
exp

(
δ(h

(K)
i ,h

(K)
j)/τ

)
exp

(
δ(h

(K)
i ,h

(K)
j)/τ

)
+

2N∑
m=1

1[m ̸=i,m̸=j] exp
(
δ(h

(K)
i ,h

(K)
m)/τ

) , i = 1, ..., 2N.

(6)
Finally, the WCL loss for the whole batch is expressed as:

Ls =

2N∑
i=1

(Ls,i + Lsd,i). (7)

Discussion: We find empirically that the automatically obtained views from varing width of sub-
networks contain complementary information to data views manually generated by data augmenta-
tion techniques, where the latter part is widely adopted in recent TTT and TTA methods to boost
adaptation performance (Liu et al., 2021; Su et al., 2022; Zhang et al., 2022). Hence, we argue that
the slimmable network should be highly favorable for conducting TTT. See appendix for supports.

3.3.2 LOGITS CONSISTENCY REGULARIZATION

The Width-enhanced Contrastive Loss can be regarded as encouraging multi-view consistency
within feature embedding space created by the auxiliary head πs. To further encourage the multi-
view consistency in prediction space, we additionally present Logits Consistency Regularization
strategy (Figure 2b)). Particularly, a weakly augmented view of the test sample xα is sent to the
largest network to obtain a prediction p̂(K) = softmax(π

(K)
m ◦ g(K)(xα)). Then the pseudo-

label defined as ŷ = argmaxc(p̂
(K)
c) is used to regularize the prediction consistency among all

sub-networks. The LCR loss is defined as:

Ld =

N∑
i=1

(
K∑

k=1

E(p(k)i , ŷi)

)
. (8)

During optimization, the main classification head πm is kept frozen to prevent overfitting. In this
way, the slimmable encoders are actually trained to capture invariant features across multiple views.

Discussion: The significance of the additional supervision from the main branch during TTT is
largely ignored by previous TTT methods. TTT-R (Sun et al., 2020), TTT++ (Liu et al., 2021) and
TTAC (Su et al., 2022) all construct supervise signal solely on the auxiliary branch, leading to the
possibility of feature deterioration with respect to the main task. The proposed LCR loss, on the
contrary, balances the supervision from both branches during the TTT optimization process.

3.3.3 TOTAL OBJECTIVE

Besides the two strategies for multi-view consistency learning above, the global feature alignment
(GFA) loss La (Su et al., 2022) is applied to ensure that the test features do not deviate far from the
source feature distribution during the whole adaptation process and it can apply a restriction over
the multi-view features for each width of sub-networks and ensure the correctness of the multi-view
representations. Combining all three training objectives with trade-off parameters λs, λd and λa, the
total loss in test-time training phase can be expressed as follows.

L = λsLs + λdLd + λaLa. (9)

6

Under review as a conference paper at ICLR 2024

3.4 RESOURCE-AWARE ENSEMBLE OF OUTPUTS FOR INFERENCE

This technique is based on the principle (Allen-Zhu & Li, 2023) that each model can learn different
views of an image, and combining these views can result in a better prediction. In our case, different
widths sub-networks within the slimmable network can capture different views of an image. To
fully leverage the abundant multi-view knowledge of the slimmable network, we provide a strategy
of ensembling outputs of different width within the slimmable network. For the kth sub-network, its

final prediction from assembled outputs is: p(k)
ens =

k∑
j=1

p(j). Note that the ensemble process will not

violate the resource constraints, given that all the outputs aggregated are produced by sub-networks
smaller than the current one.

4 EXPERIMENTS

In this section, we describe four datasets that are utilized to evaluate our method. We conduct a com-
parative study between our method using various sub-networks (1.0×, 0.75×, 0.5×, 0.25×) within
the slimmable network and other TTT/TTA methods using ResNet models (Res101, Res50, Res34,
Res18) of comparable sizes on different datasets. Additionally, we present ablation and analytic
experiments to investigate impact of different network components and running cost analysis.

4.1 DATASETS AND SETUP

To assess the effectiveness of our method on CIFAR10-C/CIFAR100-C (Hendrycks & Dietterich,
2019), which consists of 10/100 classes with 50,000 training samples and 10,000 corrupted test
samples, we pretrain the slimmable network from scratch on CIFAR10/CIFAR100 (Krizhevsky
et al., 2009). In addition, we examine the performance of our approach on a challenging dataset
CIFAR10.1 (Recht et al., 2019), which comprises approximately 2,000 difficult testing images col-
lected over several years of research on the original CIFAR10. To evaluate on large-scale corrupted
test samples, we fine-tune the pretrained slimmable network (Yu et al., 2018) on ImageNet (Deng
et al., 2009) and use ImageNet-C (Hendrycks & Dietterich, 2019), which consists of 1,000 classes
with 50,000 corrupted test samples for test-time training. The implementation details of different
datasets and backbones can be found in Appendix.

4.2 OVERALL RESULTS

Our approach, slimTTT, utilizes Res50 (He et al., 2016) as the backbone, incorporating four switch-
able widths (1.0×, 0.75×, 0.5×, 0.25×). We conduct experiments comparing SlimTTT to various
TTT and TTA methods using Res101/50/34/18 as the backbone. Specifically, we compare multiple
widths of SlimTTT against comparable backbone scales of other methods, in order to ensure a fair
comparison. The detailed results of different datasets can be found in Appendix.

Figure 3: Error rate (%) of our method and other TTT/TTA
method base on resource constraints on the ImageNet-C (left)
and CIFAR100-C (right) datasets. Lower is better.

0 1 2 3 4 5 6 7 8
FLOPs(G)

42

44

46

48

50

52

54

56

58

60

Er
ro

r R
at

e(
%

)

ImageNet-C
TTAC
TTT++
Ours

0 1 2 3 4 5 6 7 8
FLOPs(G)

28

30

32

34

36

38

40

42

44

Er
ro

r R
at

e(
%

)

CIFAR100-C
TTAC
TTT++
TENT
SHOT
Ours

In Figure 3, we employ a range of
network widths as the largest net-
work during the test-time training
phase, which allows us to simulate
different resource constraints of di-
verse devices. For instance, if a de-
vice has a FLOPs constraint of less
than 4.0G, we can only use a 0.75×
(2.3G) network width as the biggest
network and apply our method dur-
ing test-time training. As a result,
the error rate of the 0.75× network
width is 45.41% on the ImageNet-
C dataset and 30.91% on the CIFAR100-C dataset. In the same situation, other TTT/TTA methods
can only use Res34 (3.7G) as the backbone and our method’s performance is better than all of them.
Remarkably, our approach achieves superior performance with fewer FLOPs on both datasets. For
example, our method using the 0.5× (1.1G) network width as the biggest network even can outper-
form most of other TTT/TTA methods using Res101 (7.8G) as the backbone.

7

Under review as a conference paper at ICLR 2024

Table 1: Error rate (%) comparison between our method taking 1.0× width of network as the biggest
network and different adaptation methods on ImageNet and CIFAR datasets. ImageNet-C Avg,
C10-C Avg, C10.1 Avg and C100-C Avg refer to the average error rate in percentage of 15 corrup-
tion task in level 5 severity on ImageNet-C, CIFAR10-C, CIFAR10.1 and CIFAR100-C. The best
results are in bold black lettering.

Method Backbone #Params #FLOPs ImageNet-C Avg. C10-C Avg. C10.1 Avg. C100-C Avg.

25.6M
#Params

TEST R-50 25.6M 4.1G 80.70 29.10 12.10 59.20
BN (Ioffe & Szegedy, 2015) R-50 25.6M 4.1G 63.04 15.70 14.10 43.30

TTT-R (Sun et al., 2020) R-50 25.6M 4.1G - 14.30 11.00 40.40
SHOT (Liang et al., 2020a) R-50 25.6M 4.1G 51.59 14.70 11.10 38.10
TENT (Wang et al., 2020) R-50 25.6M 4.1G 56.89 12.60 13.40 36.30
TTT++ (Liu et al., 2021) R-50 25.6M 4.1G 53.67 9.80 9.50 34.10
TTAC (Su et al., 2022) R-50 25.6M 4.1G 45.71 8.52 9.20 30.57

SlimTTT (w/o ensemble) R-50 25.6M 4.1G 44.39 8.86 9.05 30.42
SlimTTT (w/ ensemble) R-50 25.6M 7.8G 43.98 8.33 8.95 29.36

14.7 - 21.8M
#Params

TEST R-34 21.8M 3.7G 80.23 29.10 10.75 59.00
SHOT(Liang et al., 2020a) R-34 21.8M 3.7G - 10.57 12.75 38.52
TENT(Wang et al., 2020) R-34 21.8M 3.7G - 11.88 12.55 36.72
TTT++(Liu et al., 2021) R-34 21.8M 3.7G 54.35 9.83 9.90 34.80
TTAC(Su et al., 2022) R-34 21.8M 3.7G 47.57 8.69 9.85 31.57

SlimTTT (w/o ensemble) R-50[0.75×] 14.7M 2.3G 45.08 9.37 9.65 31.11
SlimTTT (w/ ensemble) R-50[0.75×] 14.7M 3.7G 44.77 8.63 9.25 30.34

6.9 - 11.9M
#Params

TEST R-18 11.9M 1.8G 84.53 31.44 12.85 60.10
SHOT(Liang et al., 2020a) R-18 11.9M 1.8G - 11.27 13.05 39.43
TENT(Wang et al., 2020) R-18 11.9M 1.8G - 12.53 13.00 37.27
TTT++(Liu et al., 2021) R-18 11.9M 1.8G 57.99 10.73 10.05 35.81
TTAC(Su et al., 2022) R-18 11.9M 1.8G 51.34 9.72 11.50 33.75

ITTA(Chen et al., 2023) R-18 11.9M 1.8G - 10.52 11.20 34.53
SlimTTT (w/o ensemble) R-50[0.5×] 6.9M 1.1G 47.24 9.62 10.45 33.05
SlimTTT (w/ ensemble) R-50[0.5×] 6.9M 1.4G 47.05 9.12 9.85 32.07

2.0M SlimTTT R-50[0.25×] 2.0M 278M 53.60 10.68 11.25 37.71

In Table 1, we take 1.0× width of network as the biggest network to show the best performance
each width can achieve. Table 1 shows the average error rate in percentage of 15 corruption tasks in
level 5 severity on ImageNet-C, CIFAR10-C, CIFAR10.1 and CIFAR100-C. Our method achieves
superior performance compared to prior SOTA TTT/TTA methods on each dataset. It is worth noting
that the ensemble strategy leads to an increase in FLOPs but results in a significant performance
improvement. Moreover, even without using the ensemble technique, the performance of SlimTTT
can still surpass existing TTT/TTA methods. Remarkably, even with smaller parameters and FLOPs
for the 0.5× and 0.75× width of SlimTTT, they exhibit better performance than other TTT or TTA
methods that use Res34 and Res18 as backbones.

4.3 ABLATION STUDY

Table 2: The average error rate (%) results of ablation study
for individual components on CIFAR10-C dataset.

Component SlimTTT

WCL - - - - ✓ ✓ ✓ - ✓
LCR - - - ✓ - ✓ - ✓ ✓
GFA - - ✓ ✓ ✓ ✓ ✓ ✓ ✓

Ensemble - ✓ - - - - ✓ ✓ ✓

R-50 29.53 27.62 11.61 9.83 8.99 8.86 8.68 8.96 8.33
R-50[0.75×] 30.85 28.00 12.44 10.44 9.82 9.37 9.14 9.43 8.63
R-50[0.5×] 29.19 28.60 13.77 10.84 10.08 9.62 10.00 10.22 9.12
R-50[0.25×] 31.63 31.63 15.41 12.06 12.05 10.71 12.33 12.27 10.68

Ablation study for individual com-
ponents. We conduct the first ab-
lation experiment on CIFAR10-C to
study the impact of individual com-
ponents. The results presented in Ta-
ble 2 show that Global Feature Align-
ment (GFA) is a fundamental strat-
egy to apply restriction of the multi-
ple views. Adding Width-enhanced
Contrastive Learning (WCL) resulted
in a significant improvement in performance for all widths, e.g. 11.61% → 8.99%. The WCL
ensures consistency in the multi-view created by both data augmentation and multiple widths.
The Logits Consistency Regularization (LCR) further ensures consistency in the logits dimension,
thereby improving performance. These two methods work together and complement each other so
that the multiple widths of networks within the slimmable network can interact with each other,
leading to better generalization. Adding the ensemble component also resulted in a performance
boost, especially for the 1.0× and 0.75× network, e.g. 9.83% → 8.96% for 1.0× network and
10.44% → 9.43% for 0.75× network. Our complete method in the last arrange, which includes all
components, achieved the best performance for all widths of network.

Different Backbones. In Table 3, we conduct experiments with more backbones on CIFAR10-
C to validate the robustness of our method, including MobileNetV1, MobileNetV2, and ViT-Tiny.
The results indicate that our method significantly surpasses the current state-of-the-art TTT method

8

Under review as a conference paper at ICLR 2024

TTAC on a variety of backbones, demonstrating the versatility of SlimTTT. Moreover, our method
even achieves competitive performance to TTAC using the 0.5× sub-network, which only contains
about 30% parameters compared to the full model.
Table 3: The average error rate (%) results of SlimTTT with different backbones on CIFAR10-C.
The numbers presented in red indicate the improvement of our method compared to TTAC.

Method Backbone #Params Err Avg. Backbone #Params Err Avg. Backbone #Params Err Avg.

TTAC MobileV1 4.2M 19.80 MobileV2 3.5M 25.01 ViT-Tiny 5.4M 23.52

SlimTTT

MobileV1 4.2M 16.34(3.46↑) MobileV2 3.5M 19.09(5.92↑) ViT-Tiny 5.4M 18.87(4.65↑)
MobileV1[0.75×] 2.6M 17.87(1.93↑) MobileV2[0.75×] 2.6M 21.26(3.75↑) ViT-Tiny[0.75×] 3.2M 19.35(4.17↑)
MobileV1[0.5×] 1.3M 20.62 MobileV2[0.5×] 2.0M 25.81 ViT-Tiny[0.5×] 1.6M 21.77(1.75↑)
MobileV1[0.25×] 0.5M 26.13 MobileV2[0.25×] 1.7M 31.59 ViT-Tiny[0.25×] 1.2M 25.08

Table 4: The average classification error rates (%)
on CIFAR10-C dataset using slimmable networks
with varying number of widths.

0.25× 0.375× 0.5× 0.625× 0.75× 0.875× 1.0×
Individual - - - - - - 8.95
2-switch - - 9.72 - - - 8.85
4-switch 10.46 - 9.22 - 8.85 - 8.48
5-switch 10.43 - 9.17 9.06 8.72 - 8.45
7-switch 10.42 9.46 9.06 9.02 8.70 8.56 8.41

Slimmable networks with varying number of
widths. Table 4 presents the results obtained
by employing a pre-training model with an in-
creased number of widths. All the results re-
ported in the table were obtained by conducting
test-time training and testing on the CIFAR10-
C dataset using the same pretrained model with
seven sub-networks of varying widths. As

shown in Table 4, the performance of each width of network improves as the number of widths
increases. This corroborates our claim presented in § 1 that different width networks can capture
distinct views of the same input data. Therefore, when the number of different width sub-networks
grows, the number of views that can be captured relative to fewer widths also increases. However,
when the number of widths increases, the training time at the test-time training phase and the ensem-
ble time in inference phase will also increase. Thus, in practical deployment scenarios, it is essential
to consider the trade-off between resources and performance and accordingly determine the number
of widths.

Table 5: The running cost during test-time training phase of
our SlimTTT compared to other TTT methods on the actual
NVIDIA Jetson TX2 system.

Method Backbone GPU Memory (G) Time/Batch (s) FLOPs (G) Peak memory (G)

TTT++ R-50 1.85 2.12 4.1 5.1
TTAC R-50 1.40 2.39 4.1 5.3

SlimTTT R-50 1.11 2.14 7.8 4.2

TTT++ R-34 0.95 1.19 3.7 4.3
TTAC R-34 0.84 1.21 3.7 4.5

SlimTTT R-50[0.75×] 1.04 1.74 3.7 3.6

TTT++ R-18 0.91 0.31 2.3 4.0
TTAC R-18 0.75 0.72 2.3 4.1

SlimTTT R-50[0.5×] 0.92 0.80 1.4 3.0

Running cost analysis. We pro-
vide a comprehensive overview on
CIFAR10-C of the running costs of
our SlimTTT compared to other TTT
methods during test-time training
phase in Table 5 (batch size=8), in-
cluding GPU memory, training time
per batch, FLOPs and peak memory
usage. All results are tested on the ac-
tual NVIDIA Jetson TX2 system. As
shown in Table 5, the main drawback
of our SlimTTT lies in training time. However, our training process does not consume additional
device resources, and our SlimTTT method also leads to improved performance across networks of
different widths. It is worth noting that during both training and inference phases, SlimTTT offers
the flexibility to switch between networks more efficiently compared to traditional methods, without
incurring additional overhead.

5 CONCLUSION AND FUTURE WORKS

In this work, we consider a more practical TTT scenario by incorporating resource constraints. We
utilize slimmable networks that can execute various widths of sub-networks and demonstrate that
different widths of slimmable networks can capture multi-view input data. To better leverage the
multi-view, we introduce WCL, LCR and GFA method to ensure consistency between multi-view
in both feature and logits dimensions. Our method provides an effective solution to the practical
challenges posed by TTT tasks.

Future work. We attempt to incorporate depth refinement on top of SlimTTT to diversify the selec-
tion of sub-networks. In our appendix, we add an exit network at the exit of each slimmable ResNet
block module to allow us to simultaneously have more sub-networks. We hope that future work can
delve deeper into mining components within networks to construct additional sub-networks, thereby
leveraging the multi-view capabilities offered by these sub-networks to better address a wider range
of resource-efficient challenges.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. ICLR, 2023.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In NeurIPS, 2018.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In ICLR, 2019.

Omprakash Chakraborty, Aadarsh Sahoo, Rameswar Panda, and Abir Das. Anyda: Anytime domain
adaptation. In ICLR, 2023.

Liang Chen, Yong Zhang, Yibing Song, Ying Shan, and Lingqiao Liu. Improved test-time adaptation
for domain generalization. In CVPR, pp. 24172–24182, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, pp. 1597–1607, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255, 2009.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
coders. In NeurIPS, pp. 29374–29385, 2022.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
ICML, pp. 1180–1189, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. In ICLR, 2019.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger.
Multi-scale dense networks for resource efficient image classification. In ICLR, 2018.

Maximilian Ilse, Jakub M Tomczak, Christos Louizos, and Max Welling. Diva: Domain invariant
variational autoencoders. In MIDL, pp. 322–348, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015.

Yusuke Iwasawa and Yutaka Matsuo. Test-time classifier adjustment module for model-agnostic
domain generalization. In NeurIPS, pp. 2427–2440, 2021.

Junguang Jiang, Ximei Wang, Mingsheng Long, and Jianmin Wang. Resource efficient domain
adaptation. In ACM-MM, pp. 2220–2228, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
works without residuals. In ICLR, 2016.

Hankook Lee and Jinwoo Shin. Anytime neural prediction via slicing networks vertically. CoRR,
abs/1807.02609, 2018.

Janghyeon Lee, Jongsuk Kim, Hyounguk Shon, Bumsoo Kim, Seung Hwan Kim, Honglak Lee,
and Junmo Kim. Uniclip: Unified framework for contrastive language-image pre-training. In
NeurIPS, 2022.

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Dynamic
slimmable network. In CVPR, pp. 8607–8617, 2021a.

10

Under review as a conference paper at ICLR 2024

Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang, Zhihui Li, and Xiaojun Chang. Ds-
net++: Dynamic weight slicing for efficient inference in cnns and vision transformers. TPAMI,
2022.

Shuang Li, Harold Chi Liu, Qiuxia Lin, Binhui Xie, Zhengming Ding, Gao Huang, and Jian Tang.
Domain conditioned adaptation network. In AAAI, pp. 11386–11393, 2020.

Shuang Li, Jinming Zhang, Wenxuan Ma, Chi Harold Liu, and Wei Li. Dynamic domain adaptation
for efficient inference. In CVPR, pp. 7832–7841, 2021b.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, pp. 6028–6039, 2020a.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source
hypothesis transfer for unsupervised domain adaptation. In ICML, pp. 6028–6039, 2020b.

Yuejiang Liu, Parth Kothari, Bastien Van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexan-
dre Alahi. Ttt++: When does self-supervised test-time training fail or thrive? In NeurIPS, pp.
21808–21820, 2021.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning transferable features
with deep adaptation networks. In ICML, pp. 97–105, 2015.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In NeurIPS, pp. 1647–1657, 2018.

Rang Meng, Weijie Chen, Shicai Yang, Jie Song, Luojun Lin, Di Xie, Shiliang Pu, Xinchao Wang,
Mingli Song, and Yueting Zhuang. Slimmable domain adaptation. In CVPR, pp. 7141–7150,
2022.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In ICML, pp. 5389–5400, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In ICCV, pp. 618–626, 2017.

Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and
Chaowei Xiao. Test-time prompt tuning for zero-shot generalization in vision-language models.
CoRR, abs/2209.07511, 2022.

Yongyi Su, Xun Xu, and Kui Jia. Revisiting realistic test-time training: Sequential inference and
adaptation by anchored clustering. In NeurIPS, 2022.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, pp. 9229–
9248, 2020.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In ECCV, pp.
776–794, 2020.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. CoRR, abs/1412.3474, 2014.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2020.

Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi Zhang, and Andrew Willis. Mutualnet:
Adaptive convnet via mutual learning from network width and resolution. In ECCV, pp. 299–
315, 2020.

Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for channel numbers.
CoRR, abs/1903.11728, 2019a.

11

Under review as a conference paper at ICLR 2024

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In ICCV, pp. 1803–1811, 2019b.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
In ICLR, 2018.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. In ECCV, pp. 702–717, 2020.

Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and Bo-
qing Gong. Domain randomization and pyramid consistency: Simulation-to-real generalization
without accessing target domain data. In ICCV, pp. 2100–2110, 2019.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS, pp. 38629–38642, 2022.

12

	Introduction
	Related Work
	Method
	Problem Definition and Notations
	Training-time Training Phase
	Test-time Training Phase
	Width-enhanced Contrastive Learning
	Logits Consistency Regularization
	Total Objective

	Resource-Aware Ensemble of Outputs for Inference

	Experiments
	Datasets and Setup
	Overall Results
	Ablation Study

	Conclusion and Future works

