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Abstract

Due to rapid progress in optical imaging technologies, contemporary neural calcium imaging
studies can monitor the dynamics of 10,000 or more neurons at once in the brains of
awake behaving mammals. After automated extraction of the neurons’ putative locations, a
typical experiment involves extensive human labor to cull false-positive cells from the data,
a process called cell sorting. Efforts to automate cell sorting via the use of trained models
either employ pre-trained, suboptimal classifiers or require reduced but still substantial
human labor to train dataset-specific classifiers. In this workshop paper, we introduce
an active-learning accelerated cell-sorting paradigm, termed ActSort, which establishes an
online feedback loop between the human annotator and the cell classifier. To test this
paradigm, we designed a benchmark by curating large-scale calcium imaging datasets from
5 mice, with approximately 40,000 cell candidates in total. Each movie was annotated by
4 (out of 6 total) human annotators, yielding about 160,000 total annotations. With this
approach, we tested two active learning strategies, discriminative active learning (DAL) and
confidence-based active learning (CAL). To create a baseline representing the traditional
strategy, we performed random and first-to-last annotations, in which cells are annotated
in either a random order or the order they are received from the cell-extraction algorithm.
Our analysis revealed that, even when using the active learning-derived results of < 5% of
the human-annotated cells, CAL surpassed human performance levels in both precision and
recall. In comparison, the first-to-last strategy required 80% of the cells to be annotated
to achieve the same mark. By decreasing the human labor needed from hours to minutes
while also enabling more accurate predictions than a typical human annotator, ActSort
overcomes a bottleneck in neuroscience research and enables rapid pre-processing of large-
scale brain-imaging datasets.
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1. Introduction

Over the last two decades, systems neuroscience research has been revolutionized by the
large-scale fluorescence calcium imaging techniques for tracking the dynamics of large popu-
lations of individual neurons in awake behaving animals (Grienberger and Konnerth (2012);
Packer et al. (2015); Sofroniew et al. (2016); Kim and Schnitzer (2022)). With the rapid,
roughly an order of magnitude per decade, increase in the number of recorded neurons, iden-
tification of neural footprints and their activity traces from brain imaging movies required
automation, giving birth to so-called cell extraction algorithms (Pachitariu et al. (2016);
Giovannucci et al. (2019); Inan et al. (2021)). Though they opened the doors for probing
brain-wide neural computations by extracting activities of thousands of cells, cell extraction
algorithms can occasionally output non-neuronal sources of perceived Ca2+ activity. Hence,
to prevent spurious, non-neuronal, signals from leading to incorrect biological conclusions
(See Gauthier et al. (2022); Inan et al. (2021) for examples of altered biological results due
to incorrect pre-processing of calcium imaging movies), neuroscience experiments regularly
require extra steps to refine and prune the cell extraction results (Pachitariu et al. (2016)).

To prune non-neuronal candidates from the cell extraction output, a process called
cell sorting, experimentalists either spend hours of research time annotating all the cell
candidates via custom software (See Corder et al. (2019)) or utilize “cell classifiers” with
occasional fine-tuning through partial annotation, i.e., offline human feedback (Giovannucci
et al. (2019); Pachitariu et al. (2016), also see CLEAN in Ciatah pipeline: Corder et al.
(2019)). While the former approach is no longer feasible on the large datasets of today, which
will eventually become mainstream of systems neuroscience research in the future (Kim and
Schnitzer (2022)), the latter still requires a substantial amount of human labor to provide
accurate results as we show in this work. That being said, utilizing expert neuroscientists to
annotate cells for several hours, only to obtain one accurately annotated imaging session, has
become unrealistic in this ever-improving experimental landscape. Hence, there is an urgent
need for a principled strategy that leads to minimal human labor from the experimentalist’s
side without sacrificing cell sorting accuracy. Instead of developing heuristic solutions that
are impervious to human errors and aim to resolve challenges associated with narrow sets
of datasets (Giovannucci et al. (2019); Pachitariu et al. (2016)), it may be past time that we
address this challenge in a scalable, generalizable, and robust manner, e.g., by promoting
online human feedback.

In this work, we propose a well-studied approach from machine learning, called “active
learning” (see Appendix B), as a solution to address broad challenges surrounding the cell
sorting problem. By leveraging online human feedback, active learning provides a path
forward for developing scalable solutions and testing their accuracy online, limiting the
arbitrariness of the human annotation and decreasing the required labor. We introduce
ActSort: an active-learning accelerated cell sorting algorithm for large-scale calcium imaging
datasets. Our novel contributions include the introduction of the active learning paradigm
to the calcium imaging literature via ActSort (Fig. 1), the engineering of unique features to
aid classifier training (Fig. S1), creating a large-scale annotation benchmark for training and
testing ActSort on large-scale calcium imaging datasets (Figs. S1, S3, S4, and Table S1),
and decreasing the required human labor to annotating 5% of the dataset, which enables
ActSort to outperform human annotators (Fig. 2).
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2. Results

2.1 A new calcium imaging benchmark for cell sorting

Though there are publicly available calcium imaging movies with annotated cells, see for
example the Neurofinder benchmark (Berens et al., 2017), our primary motivation has been
to develop a cell sorting algorithm that is benchmarked on the contemporary large datasets
that contain up to 10,000 simultaneously recorded neurons across multiple brain regions in
a single imaging session. To the best of our knowledge, no such dataset is publicly available.

To bridge the gap, we performed cell extraction on three one-photon calcium imaging
movies (from three distinct mice), spanning the half-hemisphere through a 7mm window
(Figs. 1, 2, S1, S2, and Table S1), one movie from Ebrahimi et al. (2022) spanning eight
neocortical regions (Fig. S3), and one two-photon imaging movie capturing layer 2/3 cortical
pyramidal neurons (Fig. S4). The cell extraction algorithm (EXTRACT, Inan et al. (2021))
identified a total of approximately 40,000 cells across five imaging datasets. Next, we asked
a total of 6 annotators to independently perform cell sorting on these movies, utilizing
4 annotators per movie (Table S1, Figs. S3 and S4). The resulting dataset contained
approximately 160,000 annotations, which we used to benchmark ActSort.

2.2 A new feature set for cell classification

When working with images, deep-learning based approaches have proven to be valuable
within experimental neuroscience (Stringer et al. (2021)). However, in this work, we took
the opposite approach: feature engineering (See Fig. S1), followed by logistic regression.
There were several motivations behind this design choice: i) the convexity of the logistic
regression proved to be desirable for online training of cell classifiers during cell sorting, ii)
pre-training a deep-network to learn features and then performing logistic regression for fine-
tuning required substantial amount of data and standardization across different sizes and
styles of calcium imaging videos, which was not feasible due to the size and heterogeneous
nature of the different datasets, and iii) logistic regression on expert-engineered features
was sufficient to outperform human annotators. Hence, our work can be considered as a
strong baseline driven from domain knowledge for any potential future work that aims to
utilize deep-learning approaches.

2.3 ActSort: Active-learning accelerated cell sorting

We illustrate the inner-workings of the ActSort algorithm in Figs. 1A, B and Algorithm
1. The cell candidates, i.e., the cell extraction outputs, are fed into the query algorithm
together with the engineered features (Figs. S1 and 1A). The query algorithm, which is the
heart of the active learning framework here, creates a closed-loop online feedback between
human annotator and the cell classifier training. Specifically, it decides the next cell to
be sorted by the human annotator. Then, the new labeled dataset is used to train the
cell classifier and the process continues iteratively. The goal of the query algorithm is to
minimize the number of annotated samples without compromising on the cell classification
accuracy, which is achieved by selecting the most “informative” cells for annotation that
best capture the uncertainty in the cell classification.
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Figure 1: ActSort convergences rapidly to the annotator’s preference. A ActSort
workflow, which contains an online closed-loop feedback between the human annotator
and the cell classifier. Engineered features and classifier predictions are fed back into the
query algorithm, which provides the next cell or group of cells for the human annotator
to sort. The (default) query algorithm picks the most informative cells i.e., those that are
on the decision boundary, to present to the annotator. This results in faster convergence
of the classifier to the asymptotic performance with fewer number of samples than using a
randomized approach that picks up samples that are easy to be classified with the features
alone, and therefore, are not needed to be shown to the annotator. Red text denotes
innovations introduced in ActSort to the traditional pipeline in Fig. S1. B Query algorithms
tested: First-to-last, random sorting, discriminative active learning (DAL), and confidence-
based active learning (CAL, the default for ActSort). DAL trains a second classifier, termed
the label classifier (Methods), whereas CAL makes use of the existing cell classifier.C-G
Comparison between query strategies as a function of the percentage of human-annotated
cells. C Pearson’s correlation between the current and the final (i.e., the one trained on the
full dataset) classifier weights. D Root mean-squared error (RMSE) between target and
predicted probabilities. E Precision and F recall of ActSort where the annotator labels were
allowed to supersede the classifier labels. G Fraction of annotated controversial samples,
defined as the data points where the final classifier and the human annotator disagreed.
CAL, but not others, preferentially picked the data points that the cell classifier would
eventually disagree with the annotator, allowing the final result to match the annotator’s
preference. Solid line, mean; shaded area, standard errors of the mean across 15 annotations.

In this work, we tested two active-learning approaches that aim to mitigate two distinct
types of uncertainties: i) uncertainty regarding whether currently labeled samples faithfully
represent the full dataset, and ii) uncertainty in the fine location of the decision boundary
of the current model. The active learning approach that addresses the former is called
“discriminative active learning (DAL, Gissin and Shalev-Shwartz (2019)).” In this paradigm,
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Figure 2: ActSort with CAL outperforms human annotators with 5% sorted cells.
A Workflow to test online classifiers’ accuracy with respect to individual annotators. B-E
Benchmark of the different sampling approaches: First-to-last, random, DAL, and CAL. B
Area under the receiver operating characteristic (ROC) curve as a function of the percentage
of human-annotated cells, summarizing the accuracy of the classifiers without specifying any
classification threshold. (C) Precision and (D) Recall the difference between annotators and
the cell classifiers, using 0.65 as the classification threshold (based on the calibration curves
in Fig. S2). Positive values reflect that the cell classifier more accurately predicted the
ground truth labels than the human annotator. Solid lines, mean; shaded areas, standard
error of means over 12 annotation instances. E Example precision-recall (PR) curve for
a single annotation instance. Solid lines, PR curves of each classifier’s predictions on the
full dataset; black dot, human annotator accuracy. Only with 5% annotated cells, ActSort
outperforms the human annotator in both recall and precision.

a second label classifier is trained within the query algorithm to pick the least represented
unlabeled sample (Fig. 1B, Methods). In contrast, confidence-based active learning (CAL,
Settles and Craven (2008)) picks the unlabeled sample closest to the decision boundary,
i.e., where the cell classifier is least certain (Fig. 1B). In simpler terms, DAL assumes the
labeled set does not faithfully represent the full dataset and explores far away from the
cell classifier boundary; whereas CAL exploits the boundary of the current cell classifier for
fine-tuning, accelerating convergence substantially if the current estimate of the boundary
is approximately correct.

To test ActSort with both DAL and CAL, we used the three movies from Fig. S1. To
provide baselines for the traditional approaches, we also allowed the query algorithm to
pick the next sample randomly or in the order the cells are received from the cell extrac-
tion algorithm (Fig. 1B). Our results indicated that CAL, but not others, leads to fast
convergence (Fig. 1C-G). Notably, CAL preferentially picked the samples with which the
annotator and the fully trained cell classifier would eventually disagree on (Fig. 1G). In
other words, ActSort with CAL converged rapidly to the annotator’s preference.
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2.4 ActSort beats human level performance with 5% annotation

So far, our tests focused on ActSort’s ability to match the annotator’s preference in sorting
cells. But, what if the human annotator is not always correct and has some inherent
biases? Can ActSort provide more accurate cell classification results? To test the accuracy
of the online classifiers with respect to the individual annotators, we designed an evaluation
process (Fig. 2A). To validate one annotator, we first created a ground truth evaluator by
taking the majority vote of the other annotators. The classifier was trained by the left-out
annotator in an online manner following the active learning paradigm. Both the left-out
annotator and the classifier accuracies were then computed from the ground truth evaluator
labels.

In this scenario, once again, CAL outperformed other approaches (Fig. 2B). Notably,
ActSort with CAL outperformed individual human annotators even though it was trained
on their output (Fig. 2C-E). Specifically, when the online classifiers were trained with only
5% of the data, CAL outperformed the human annotator in the precision-recall curve (Fig.
2E). In comparison, the approach of sorting from first-to-last achieved the same mark only
when approximately 80% of the cells were sorted (Fig. 2C, D). We benchmarked ActSort
further on diverse conditions, results are discussed in Appendix C.

3. Discussion

In this work, we introduced ActSort, an active-learning accelerated cell sorting algorithm
for large-scale calcium imaging datasets. We prepared a large-scale benchmark to evaluate
the cell sorting performance of different approaches. On this benchmark, we showed that
ActSort can rapidly match the annotator performance in comparison to random or first-to-
last sampling, and outperforms a typical human annotator when approximately 5% of the
full dataset was annotated.

In order to train a classifier to achieve accelerated cell sorting that surpasses human
performance without requiring a large amount of pre-training data, we engineered 76 fea-
tures that quantify the aspects of the data that human annotators pay attention to. These
included temporal features (e.g., number of spikes in a trace, the signal-to-noise ratio of the
spikes, etc.), spatial features (e.g., mean pixel intensity, circumference, etc.), and spatiotem-
poral features (e.g. severity of non-Gaussian noise contamination in movie snapshots). The
newly engineered features were able to more accurately reject false-positive cells while hav-
ing a minimal impact on the true-positive accuracy.

The potential impact of this work is two-fold: i) vastly decrease the amount of hours
humans spent annotating modern calcium-imaging data sets and ii) surpass the accuracy
of cell classification by experts. A paradigm requiring that merely 5% of cells be annotated
by a human, can reduce cell sorting from several hours per calcium-imaging data set, to
merely tens of minutes. Through ActSort, researchers can reclaim tens of hours that would
have otherwise been spent labeling modern massive data sets. Importantly, increasing cell
detection accuracy can be largely beneficial to modern systems neuroscience, which relies
on minimizing false positive cell identification to avoid spurious results. Thus, removing the
human element from repetitive tasks that can be prone to errors can ultimately improve
the reliability, robustness, and reproducibility of systems neuroscience research.
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Appendix A. Methods

A.1 Cell sorting with binary classifiers

The accelerated automated cell sorting is built with a traditional cell classifier and an active
learning framework that prompts the human annotator to label the sample that will result
in the highest improvement in the prediction accuracy, i.e., creating an online feedback
loop between the human annotator and the cell classifier. Within this paradigm, the query
algorithm controls the iterative process of training and labeling between the cell classifier
and the human annotator, which continues until convergence.

To start with, we defined a binary classification problem between cell and not cell, with
input data X ∈ RN×d, where N is the total number of extracted putative neurons and d is
the dimension of features, and ground truth labels Y ∈ RN . We labeled cell as 1 and not

cell as 0. We further defined two sets, the labeled set L(t) = {(xi, yi)}
n
(t)
1

i=1 and the unlabeled

set U (t) = {xi}
n
(t)
2

i=1 , where n
(t)
1 + n

(t)
2 = N .

To allow real-time training and owing to its already sufficient accuracy thanks to the
new feature set, we used logistic regression as our cell classifier with the following model:

hθ(x) =
1

1 + e−θ⊤x
, x ∈ X (S1)

We trained the cell classifier hθ using the labeled dataset L

θ̂ = arg max
θ

ℓ(θ) = arg max
θ

n1∑
i=1

ci[yi log hθ(xi) + (1 − yi) log(1 − hθ(xi))] + λ||θ||1, (S2)

where ci are empirical class prior probabilities and λ is the L1 regularization strength.
Though we used a fixed value of λ = 1/nsamples for our experiments, to allow near real-time
training that would be slowed down in a cross-validation scenario, we tested in Figure S5 a
range of regularization parameters. We concluded that undershooting, but not overshooting,
the optimal regularization parameter leads to comparable accuracies, a condition that the
default value we chose satisfied.

A.2 Benchmarking

In this work, we tested four strategies as query algorithms, first to last, random sampling,
confidence-based active learning (CAL, see for example Culotta and McCallum (2005);
Settles and Craven (2008)), and discriminative active learning (DAL) Gissin and Shalev-
Shwartz (2019). The overall training structure is depicted in Algorithm 1.

Traditional baselines

The first-to-last algorithm simply selects x(t) = u1 ∈ U for human labeling, where u1 is
the first unlabeled sample in the order of cell extraction output. The random sampling
algorithm randomly select an unlabeled sample x(t) from U . After human annotation, the
sample point is moved to the labeled set L(t+1) and the cell classifier is updated accordingly:
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L(t+1) = L(t) ∪ {(x(t), y(t))}, (S3a)

U (t+1) = U (t)\x(t) (S3b)

Confidence-based active learning

The CAL algorithm selects sample according to the uncertainty sampling decision rule,
which identifies unlabeled items that are near a decision boundary in the current cell clas-
sifier model. In a multi-class setting, one can use entropy to define the uncertainty of the
sample points in the unlabeled dataset, which is how we shall motivate the CAL algorithm.
Let H(·) represent the entropy of a set of samples. In round t + 1, we want to choose the
sample that produces the maximum reduction in entropy given the trained cell classifier

h
(t)
θ in round t:

x(t+1) = arg max
x

H
(
U (t)|L(t)

)
−H

(
U (t+1)|L(t+1)

)
= arg min

x
H

(
U (t+1)|L(t+1)

)
= arg min

x∈U(t)
h
(t)
θ (x) log

(
h
(t)
θ (x)

)
.

(S4)

In this work, since we are using only two classes, the probability distribution that maximizes
the entropy is the one where hθ is as close to 0.5 as possible. However, extension of ActSort
to multi-class problems, for example one that includes the identification of dendrites, could
benefit from the more general entropy minimization framework.

Discriminative active learning

The DAL algorithm considers a different type of uncertainty, i.e., how well a data point
is represented in the labeled pool Gissin and Shalev-Shwartz (2019). Here, one constructs
a new label space, Ỹ = {l, u}, that specifies whether the data sample is from the labeled
set or the unlabeled set. For example, in round t, the training dataset becomes D̃ =
{(xi, u), (xj , l) | ∀xi ∈ U (t),∀xj ∈ L(t)}. For each round of the active learning process, we

train a binary classifier, p
(t)
ϕ (ỹ|x), to predict whether the samples in D̃ are labeled or not.

Then, one selects the sample from the unlabeled set that satisfies

x(t+1) = arg max
x∈U(t)

p̂
(t)
ϕ (y = u|D̃). (S5)

A.3 Calcium imaging datasets

In the calcium imaging studies depicted in Figures 1, 2, S1, S2, and Table S1, we used triple
transgenic GCaMP6f-tTA-dCre mice from Allen Institute (Rasgrf2-2A-dCre/CaMK2a-tTA/
Ai93). To prepare mice for in vivo imaging sessions, we performed surgeries while mice were
mounted in a stereotaxic frame under anaesthesia. We created a cranial window by remov-
ing a 7mm diameter skull flap over the right cortical area S1 and surrounding cortical tissue.
We covered the exposed cortical surface with a 7mm diameter glass coverslip. A custom
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Algorithm 1 ActSort

Data: L(0) = {(xi, yi)}
n
(0)
1

i=1 , U (0) = {xi}
n
(0)
2

i=1 ▷ Initial Labeling
for t = 1, . . . , T do

Train the cell classifier h
(t)
θ using L(t)

Select x(t+1) based on the Query-Algorithm and h
(t)
θ

Human annotator label x(t+1) with y ∈ {0, 1}
L(t+1) = L(t) ∪ (x(t+1), y)
U (t+1) = U t\x(t+1)

end for

wide-field fluorescence macroscope with a field of view covering the full cranial window was
used for neural activities imaging. For epifluorescence illumination, we used a LED with
spectrum centered 475nm. We acquired Ca2+ videos of neural activity (50 Hz frame rate,
1, 708 × 1, 708 pixels) on the fluorescence macroscope.

In the calcium imaging studies depicted in Figure S3, we used previously published
imaging datasets imaging eight neocortical brain regions Ebrahimi et al. (2022). To test
ActSort under the scenario of multiple false-positives, we performed cell extraction with
weak quality checking Inan et al. (2017, 2021) on one of the sessions of roughly 20 min
duration, which led to 2345 false-positive regions of interest.

In the calcium imaging studies depicted in Figure S4, we employed a custom two-photon
mesoscope with a multi-foci illumination technique Rumyantsev et al. (2020). This system
facilitated recordings over an extensive field-of-view (2 × 2mm2) at a frame rate of 30 Hz
and a resolution of 2 µm pixels (1024× 1024 pixels). Utilizing this equipment, we captured
a movie of layer 2/3 cortical pyramidal neurons in live triple transgenic mice from the Allen
Institute.

A.4 Feature engineering

Below is the list of features we used for this work. We have 76 features in total and
we categorize the features as follows: Spatial Filter-based features, Trace-based features,
Snapshot-based (from the movie) features, and Spatiotemporal (Combination of all of the
previous ones) features. The traditional ones are colored in blue.

Features 1 to 36 are based on the Ca2+ trace activities (activity signals of the neurons
detected by the cell extraction algorithm) of the given cell dataset.

Feature 1 calculates the signal-to-noise ratio for the given trace activity. A lower signal-to-
noise ratio indicates a noisy data, which is more likely to contain false positives. A
higher ratio indicates a higher quality data. This feature is taken from EXTRACT
Inan et al. (2021).

Feature 2 calculates how much a cell’s trace activity signal differs from its smoothed version.
If the difference is high after smoothing, then it is likely for the cell trace activity to
contain a good amount of noise. This feature is taken from EXTRACT Inan et al.
(2021).
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Feature 3 calculates the number of bad (noisy) spikes within the trace. Noisy trace activities
tend to have more ’bad’ spikes than clear trace activities. The presence of more bad
spikes can effectively signal a bad candidate cell (false positive).

Feature 4 calculates the standard deviation of the upper decile (top 10%) of each trace
activity, revealing the variability within the higher range of the activity.

Feature 5 measures the average time interval between ’good’ spikes. Non-noisy trace ac-
tivity tends to exhibit less frequent spike occurrences. This characteristic helps the
identification of clear cell activity.

Feature 6 measures the average time interval between ’bad’ (noisy) spikes. Noisy trace
activity tends to exhibit more frequent spike occurrences. This characteristic helps
the identification of ’bad’ cell activity.

Feature 7 computes the average time interval between all spikes within the trace activity,
providing insights of the regularity of cell activities.

Feature 8 measures the average width of all spikes in a trace activity. Spikes with narrower
widths generally indicate more distinct spike events, which can be useful for spotting
a higher proportion of good spikes within a given trace.

Feature 9 measures the average width of ’good’ spikes. A smaller average width suggests
more precise and ideal spike events.

Feature 10 calculates the standard deviation of the spike width within a trace of cell activity.
A more widely distributed spike width can be a good indicator of noisy and less precise
activity.

Feature 11 calculates the standard deviation of the spike width among the ’good’ spikes.
This can serve as an indicator of their quality. A narrower distribution of spike widths
suggests a higher level of consistency and precision in spike events.

Feature 12 measures the proportion of total activity in a cell trace is made up of significant
events rather than noise, referred as relative power. This metric helps the distinction
between actual neural events (consistent signal energy) and a likelihood of noise.

Feature 13 calculates the proportion of cell trace activity that surpasses the noise threshold.
This tells the frequency of cell activities that is distinguished from the background
noise.

Feature 14 counts the instances when the cell’s activity surpasses the noise threshold sig-
nificantly. This provides insights into the frequently of firing or notable cell activities.

Features 15 - 29 are derived from different scales and threshold values: 3, 10, 30, and 100,
respectively— for the calculation of relative power (Feature 12), the proportion of
the cell trace activity that surpasses the noise level (Feature 13), and the number of
significant events (Feature 14).
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Features 30 - 34 calculate a quality score that indicates how much of a neuron’s activity
occurs within certain frequency ranges of the spectrum. A higher score indicates
that the majority of the neuron’s activity is happening within the specified frequency
range, suggesting that the data quality is good and that the neuron is reliably detected.
The frequency ranges are determined by lower and higher threshold parameters. In
our work, the thresholds are set to define four specific ranges within the frequency
spectrum: the lowest 5% (0-0.05), the range from the lowest 5% up to the highest
95% (0.05-0.95), the lower half (0-0.5), and the upper half (0.5-1).

Feature 35 calculates for each cell the proportion of other cells in the dataset with which it
has a high correlation, using a similarity threshold of 70%. This essentially measures
how similar a cell’s activity is to the activity of the other cells in the dataset.

Feature 36 finds the total fluorescence that was caused by the highest 10% activity in a given
cell activity trace. This metric can be useful in detecting unusual neuron activity that
doesn’t reflect a common neuron behavior in the dataset.

Features 37 to 46 are based on the spatial filters (the overall pictures of the cells
according to the cell extraction algorithm) in the given cell dataset.

Feature 37 calculates the total surface area of each cell in the movie. This can be useful in
detecting cells that are too large or too small in size.

Feature 38 finds the number of distinct bodies that a cell candidate has. Cells that are
detected to have more than one body tend to be false positives.

Feature 39 calculates the total sum of pixel values within each cell’s spatial filter, which is
a measure of the total activity or brightness. ’Bad’ cells tend to have unusually high
or low activity.

Feature 40 measures the circumference of the cell. Typically, cells with too large or too
small circumference tend to be false positives.

Feature 41 measures the distance from the cell center to the nearest edge of the movie’s
field of view. Cells that are located closer to the edges tend to be noise or artifacts
due to disruptions in the movie, such as boundary effects or uneven illumination.

Feature 42 computes the circularity of a given cell, which measures how closely it’s shape
aligns with a perfect circle. Cells with a higher degree of circularity are generally
preferable candidates. This feature is taken from EXTRACT Inan et al. (2021).

Feature 43 computes the eccentricity of a given cell, which indicates how stretched out a
cell’s shape is. Candidates with higher eccentricity values tend to be ’bad’ cells. This
feature is taken from EXTRACT Inan et al. (2021).

Feature 44 computes the average pixel value of the given cell, which is a measure of the
average activity. ’Bad’ cells tend to have unusually high or low activity.
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Feature 45 calculates the spatial corruption, which is known as errors or inconsistencies
within the spatial filter of the cell by evaluating the local variance relative to the
overall variance of the cell image. This feature is taken from EXTRACT Inan et al.
(2021).

Feature 46 calculates the maximum spatial correlation of each cell with all other cells in
the movie. This is helpful to identify cells that have similar activity patterns. This
feature is taken from EXTRACT Inan et al. (2021).

Features 47 to 76 are based on spatial filters and trace activities of the cells that are
captured by the cell extraction algorithm, along with key movie frames that correspond
to the highest points of cell activity. We call these spatiotemporal features.

Features 47 - 50 evaluate the alignment between the cell’s spatial filter, obtained from the
cell detection algorithm, and critical movie frames extracted from the actual movie
during the cell’s highest activity time intervals. Feature 47 averages the errors to
identify cells with pronounced deviations. Feature 48 seeks the minimum error to
check the accuracy of the closest match. Feature 49 uses the 10th percentile to detect
rare but significant errors. Feature 50 uses the 20th percentile for a broader to avoid
missing detections in the alignment of spatial filters and key movie frames.

Features 51 - 66 calculate the correlations of activity within the neuropil area -a dense net-
work of neurons and their components that can cause false positives when activated-
by analyzing the interactions between neighboring pixels in and around the cells. This
feature is taken from EXTRACT Inan et al. (2021).

Features 67 - 76 calculates correlation between the cell activity traces and movie frames.
This feature is taken from EXTRACT Inan et al. (2021).

Appendix B. Background

B.1 Processing calcium imaging movies

Enabled by the development of the first fluorescent calcium indicators (Tsien (1980)), cal-
cium signals represent an accurate proxy for simultaneous measurement of the neural ac-
tivities (Gobbo et al. (2022); Ebrahimi et al. (2022); Musall et al. (2019); Harvey et al.
(2012); Chantranupong et al. (2023); Murugan et al. (2017)) and can be combined with op-
togenetics techniques, allowing both recording and manipulation of neural circuits with un-
precedented precision (Rickgauer et al. (2014); Packer et al. (2015); Adesnik and Abdeladim
(2021); Carrillo-Reid et al. (2019)). This, in turn, allows the study of neural computation
and discovery of the neural code at an unprecedented level across multiple brain regions
and months of imaging sessions at single-cell level resolutions (Lin and Schnitzer (2016);
Kim and Schnitzer (2022); Cardin et al. (2020); Shenoy and Kao (2021)). The advent of
the experimental techniques, however, calls for an equally urgent push at the computa-
tional frontier to analyze these large-scale neural datasets (Urai et al. (2022); Stevenson
and Kording (2011); Paninski and Cunningham (2018)).

In the early days of calcium imaging, owing to the low number of cells that could be
recorded and tracked, identifying the sources of neural signals was as simple as drawing
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regions of interest (ROIs) within the neural videos, and subsequently averaging their pixel
activities (Dombeck et al. (2007); Chen et al. (2013)). As neuroscience experiments in-
creased in complexity, the computational burden to process resulting raw datasets became
an experimental bottleneck. This urgent need gave rise to the development of cell extraction
algorithms that extract neural signals from large-scale recordings in an automated manner
(Pnevmatikakis et al. (2016); Zhou et al. (2018); Pachitariu et al. (2016)), though primar-
ily developed for datasets of ∼ O(10) gigabyte sizes. Hence, even though cell extraction
regularly led to false-positive neuronal sources, which could disrupt the biological conclu-
sions (Inan et al. (2021); Gauthier et al. (2022)), these datasets could in principle be fully
annotated by humans within reasonable time frames (Corder et al. (2019)).

In this decade, on the contrary, large-scale neural recordings regularly produce video
datasets of terabytes in size, with tens of thousands of neurons imaged across weeks (Kim
and Schnitzer (2022); Syeda et al. (2023); Demas et al. (2021); Das et al. (2023)). Therefore,
processing high volumes of large datasets efficiently is crucial. Recently, Inan et al. (2017,
2021) introduced a fast, scalable, and robust convex optimization algorithm, called EX-
TRACT, to extract neural dynamics from calcium imaging movies, with the ability to scale
to large neural datasets. However, despite the high precision of EXTRACT, cell sorting
may still be desired to achieve a perfect accuracy. This could, however, take days or even
weeks of manual curation. As a first attempt, widely used CIATAH (Corder et al. (2019)),
Suite2p (Pachitariu et al. (2016)), and CAIMAN (Giovannucci et al. (2019)) pipelines train
cell classifiers using basic spatial and temporal features, and a small subset of randomly
annotated cells. However, as we show in this work, blind randomization of training data
is suboptimal and requires a substantial amount of human labor to be accurate, whereas
existing features are insufficient for classifier training. Instead, we show below that a more
principled solution not only reduces human labor in this post-processing bottleneck, but
also improves the reliability, robustness, and reproducibility of the results.

B.2 Active learning for systems neuroscience

When training machine learning models for classification, some samples are more informa-
tive than others (Joshi et al. (2009); McCallum et al. (1998)). When labeling of training
samples comes at a cost, it is not uncommon to design a closed-loop data annotation pro-
cess that preferentially picks up the informative samples for the human annotators to label
(Folmsbee et al. (2018); Liu et al. (2017); Sayantan et al. (2018)). The branch of machine
learning that addresses the data annotation optimization is called active learning, in which
the model’s performance is optimized while requiring as few annotated samples as possi-
ble. To achieve this, active learning paradigms utilize a query algorithm to select the most
informative samples from the unlabeled dataset and hand them over to human annotators
for labeling.

Our application of interest falls into the pool-based sampling subcategory of active learn-
ing (Lewis and Catlett (1994)), where the models have access to a full unlabeled scientific
dataset that needs to be fully classified with as little human labor as possible. This approach
has already supported scientific research in several disciplines, such as text classification (
Lewis and Catlett (1994); Tong and Koller (2001); Hoi et al. (2006)), image classifica-
tion(Tong and Koller (2001); Joshi et al. (2009); Li and Guo (2013)), video classification
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(Yang et al. (2003); Hauptmann et al. (2006)), and cancer diagnosis (Liu (2004); Smailagic
et al. (2018)), to name a few. On the other side, several benchmarks such as MNIST (Gal
et al. (2017)), CIFAR-10/100 (Gissin and Shalev-Shwartz (2019)), and Image-net (Citovsky
et al. (2021)) are broadly used to test active learning approaches in the field of machine
learning. Given its success across several disciplines, the active learning paradigm may be
the missing piece for speeding up and scaling the cell sorting process for the large-scale
calcium imaging datasets.

Our work starts with this premise but primarily aims to introduce active learning as a
framework. In fact, there are several query strategies already developed in the field of active
learning (Lewis and Catlett (1994); Gal et al. (2017); Settles (2009); Nguyen and Smeulders
(2004); Guo (2010); Roy and McCallum (2001); Ash et al. (2019); Liu et al. (2019)). Yet, as
we show here, even the two most simplest of approaches, confidence-based active learning
(CAL, see for example Culotta and McCallum (2005); Settles and Craven (2008)), and
discriminative active learning (DAL, Gissin and Shalev-Shwartz (2019)), provide massive
improvements compared to the trivial strategies of picking labels randomly, or going from
the first to last identified cell candidates. Inspired by this observation, this work will not
develop new methods for calcium imaging datasets, which is left as future work. Instead,
we will discuss the incorporation of the active learning framework into the calcium imaging
preprocessing pipelines and introduce strong baselines via traditional approaches.

Appendix C. Additional results

C.1 ActSort becomes well calibrated with sparse samples

Having shown that CAL leads to rapid convergence compared to traditional and DAL
baselines, we next asked the question: How well is ActSort with CAL calibrated compared
to annotator agreements? For example, when ActSort made a mistake in annotation, was
the correct label obvious for all human annotators?

To test whether the probabilities of the cell classifiers were well aligned with the uncer-
tainty among the annotators, we divided the full dataset into five subsets, based on how
many annotators accepted a sample as a cell (Fig. S2). Notably, the probabilities predicted
by CAL, but not others, reached a steady equilibrium quickly (Fig. S2A,B), in which the
distinction was apparent even with 1% annotated samples (Fig. S2C-G). Moreover, both
the probabilities and the fraction of candidates classified as cells were distinct between
five subgroups, with CAL making little-to-no mistakes (< %1) when all annotators agreed.
Hence, the predictions made by ActSort with CAL matched the annotator agreement scores,
hinting that ActSort becomes well calibrated after only a few rounds of human annotation.

C.2 ActSort predictions are robust to experimental non-idealities

The half-hemisphere-wide movies we processed so far can be considered in the upper quality
bound of imaging and cell extraction conditions, with false-positive rates already as low as
5-10% per movie and fairly high-quality cells. Next, we asked whether ActSort would
still be able to accurately process a dataset with many false-positives. To test this, we
processed one of the cortex-wide movies from (Ebrahimi et al. (2022)) with less stringent
quality parameters in EXTRACT such that the resulting cell extraction output had many
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false-positives, around 35%, by design (Fig. S3). CAL outperformed all other approaches
in this dataset as well. Finally, we performed the same tests on a two-photon movie with
non-zero residual motion (Fig. S4) and observed once again that CAL outperformed all
other approaches. Hence, the low false-positive rate in the cell candidates or the optimal
imaging/processing conditions cannot explain the success of ActSort in converging rapidly
with few annotated samples.
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NA

0.824

0.387
NA
NA

0.280
NA

0.497

NA
NA
NA

NA
NA

0.479

0.419
NA

0.710

0.29(2)
NA

0.50(6)

0.31(3)
NA

0.55(0)

0.756
0.920
0.962

0.792
0.812

NA

0.963
NA

0.877

NA
NA

0.685

NA
0.914

Na

0.910
0.946
0.950

0.79(5)
0.80(8)
0.72(7)

0.83(3)
0.84(5)
0.79(8)

Ann. 5
NA
NA

0.890

NA
NA
NA

NA
NA

0.695

NA
NA

0.564

NA
NA
NA

NA
NA

0.812

NA
NA

0.57(6)

NA
NA

0.62(8)

Ann. 6
NA

0.721
NA

NA
0.496

NA

NA
NA
NA

NA
NA

0.450
NA

NA
NA
NA

NA
0.649

NA

NA
0.48(4)

NA

NA
0.51(3)

NA

0.772
0.953
0.987

0.832
0.751

NA

0.990
NA

0.868

0.625
0.678
0.659

NA
NA

0.684

NA
0.946

NA
NA

0.63(4)
0.67(6)
0.60(1)

0.65(9)
0.71(7)
0.65(7)

0.(6)
0.(8)
0.9(1)

0.(7)
0.(7)
NA

0.9(1)
NA

0.(7)

0.(5)
0.(6)
0.(5)

NA
NA

0.(5)

NA
0.(8)
NA

0.(7)
0.(8)
0.(7)

0.(6)
0.(6)
0.(6)

0.(6)
0.(7)
0.(6)

Summary

Ann. 1

Ann. 2

Ann. 3

Ann. 4

Ann.
Consensus

Average
accuracy F1 score

Cell
classifier

Ann. 5

Ann. 6

Metric
Annotate

0.86 ±
0.07

0.84 ±
0.11

0.76 ±
0.14

0.81 ±
0.09

0.87 ±
0.08

0.85 ±
0.11

0.67 ±
0.13

0.75 ±
0.07

0.69 ±
0.15

0.76 ±
0.09

0.89 ±
0.07

0.88 ±
0.08

0.83 ±
0.13

0.86 ±
0.09

0.80 ±
0.08

0.75 ±
0.13

Table S1: The fully trained cell classifiers scored similarly to human annotators.
The first two tables denote the cross-accuracy of annotators within each other, whereas
the third one summarizes the average scores The three values in each table entry (i, j)
represent the acceptance/rejection accuracies of annotator j, by assuming annotator i’s
labels are ground truth, computed among three movies. (Continued in the next page)
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Table S1: (Continued from the previous page) The final row denotes the average annotation
accuracies. The annotator consensus baseline is defined as the majority labels across the
four human annotators, where the ties are broken with a coin flip. The accuracies of the
cell classifiers, which were trained with both traditional and new feature sets, are obtained
via the test sets from 10 independent 50-50 stratified train-test splits. The parentheses in
the entries represent the uncertain digit whenever applicable. For the summary table (third
table), the classifier with the new feature set was used. Overall, the accuracy metrics of the
cell classifiers were within the range of typical human annotators, and the new feature set
allowed the cell classifiers to reject more false-positives.
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Figure S1: Expert-assisted feature engineering improves cell classification. A An
example cell map from a 7mm field of view covering half hemisphere. Green lines denote cell
boundaries, red ones belong to false-positives. B Human annotators use different features
for cell sorting: their Ca2+ activity time traces, neuronal spatial footprint, and the movie
snapshots during Ca2+ events. C-D The traditional first-to-last cell sorting workflow (C),
with classifier assistance (D). E Engineered new features captured spatiotemporal informa-
tion used by an expert annotator. F Absolute discriminability index for traditional and new
engineered features. Data points from 15 different annotations (12 human annotators and
3 augmented consensus labels obtained via the majority vote across all annotators, where
ties are broken with coin flips). G New features increase classifiers’ rejection accuracy of
false-positive, as quantified by a two-sided Wilcoxon signed-rank test (***p < 10−3).
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Figure S2: ActSort predictions rapidly become empirically aligned probabilities.
A Probability and B fraction of ROIs being a cell across classifiers based on the uncertainty
across annotators. Solid lines, mean; shaded area, standard errors of the mean across 15
annotations. C-G Empirical vs classifier predicted probabilities of a sample being classified
as a cell computed from annotator agreements (as discrete values: 0, 0.25, 0.5, 0.75, 1). Each
dot, single cell. C Classifiers trained on the full dataset. D First-to-last, E random, F DAL,
and G CAL classifiers with 1% annotated cells. CAL, but not others, achieves similar
probability distributions as the fully trained classifier, despite being trained on only 1% of
data. Red lines, median; green dots, mean of the corresponding distribution.
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Figure S3: ActSort improves cell sorting quality in movies with many false-
positives. A Example cell map from 4mm field of view including eight neocortical brain
regions Ebrahimi et al. (2022). Green lines, cell boundaries; red lines, false-positives.B, C
Semi-supervised 3D UMAP plots from 600 labeled random samples out of 6,691 cells using
the traditional (B) or the new (C) feature sets, illustrating the separability of true and false
positives. (Continued in the next page)
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Figure S3: (Continued from the previous page) D Table, similar to Fig. S1, quantifying
the consistency among the annotators in both accepting and rejecting cells. E Accuracy
of matching annotator labels for both true positives and true negatives. Purple, consensus
between annotators, four new annotators were augmented by taking the majority vote in
combination with three annotators; green, classifier predictions to match the preferences
of the eight annotators. Classifier predictions were consistent with the human annota-
tors, almost matching the consensus labels. F Normalized classifier accuracy. G Empirical
probabilities vs. predicted test probabilities from classifiers trained on half of the dataset,
showing the probability of a sample being classified as a cell. Red lines, median. H RMSE
between predicted probabilities by the current and the final classifiers as a function of per-
centage of human-annotated cells. I Precision-recall curve obtained from classifiers trained
on only 600 out of 6,691 cells. Solid lines, mean; shaded areas, standard errors of the mean
across 9 annotations. Statistical comparisons between classifiers were two-sided Wilcoxon
signed-rank tests. (*p < 0.05, **p < 10−2, ***p < 10−3).
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Figure S4: ActSort improves cell sorting quality when the imaging movie has
remaining residual motion. Same as in Figure S3, but for the dataset acquired with
our two-photon microscope (Methods). This dataset had residual motion, which led to
several false positives in the form of duplicates. Hence, ActSort predicted probabilities
were relatively less consistent with the empirical annotation, though ActSort still converged
rapidly and outperformed traditional approaches.
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Figure S5: The insensitivity to the regularization strength allows rapid train-
ing without cross-validation. Our emphasis on real-time training necessitated using a
pre-defined regularization strength, which was taken to be λdefault = # of samples−1. To
validate this, we performed the active learning experiments of Figure 2 with varying levels
of regularization parameters. λrelative = 1 corresponds to the default value for the problem
of interest. We observed that undershooting the optimal regularization strength had negli-
gible effect, whereas overshooting had the potential to harm training altogether.
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