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Fig. 1: Transcribe3D enables complex 3D referring in the robotic pick-and-place task. In this example, given the query with
challenging referring expressions “cover the toy duckie among the cups with the black cup farthest from the shortest cup”,
snapshots of the robot movement are shown sequentially from left to right.

Abstract— If robots are to work effectively alongside people,
they must be able to interpret natural language references to
objects in their 3D environment. Understanding 3D referring
expressions is challenging—it requires the ability to both parse
the 3D structure of the scene as well as to correctly ground
free-form language in the presence of distraction and clutter.
We propose Transcribe3D, a simple yet effective approach to
interpreting 3D referring expressions, which converts 3D scene
geometry into a textual representation and takes advantage
of the common sense reasoning capability of large language
models (LLMs) to make inferences about the objects in the
scene and their interactions. We experimentally demonstrate
that employing LLMs in this zero-shot fashion outperforms
contemporary methods. We then improve upon the zero-
shot version of Transcribe3D by performing finetuning from
self-correction in order to generalize to new data. We show
preliminary results on the Referit3D dataset with state-of-
the-art performance. We also show that our method enables
real robots to perform pick-and-place tasks given queries that
contain challenging referring expressions.

I. INTRODUCTION

3D referring expression understanding is a task that in-
volves identifying a unique object in a 3D scene given
the natural referring expression. The key challenge of this
grounding problem lies in the presence of multiple objects
similar to the target object that act as distractors. On the
standard benchmarks such as Referit3D [1], the strongest
methods are still significantly behind human performance.
For example, humans achieve approximately 90% accuracy
on the human-annotated subset of Referit3D (NR3D), yet
the current state-of-the-art method only achieves around
60%. Modern methods typically use a Transformer-based

*Denotes equal contribution
Toyota Technological Institute at Chicago {fjd, vincenttann,

slin, hongyuan, mwalter}@ttic.edu

architecture that takes as input (the embeddings of) different
modalities (e.g., language, images and point-clouds) and
predicts the target object [2–4].

In this work, we take the initiative to investigate the
effectiveness of using text as the primary modality for
interpreting 3D referring expressions, drawing inspiration
from the understanding and reasoning capabilities of modern
large language models (LLMs) [5–8]. In particular, our LLM-
based framework converts spatial and semantic information
about 3D scenes—such as the location, orientation, spatial
extent, and colors of objects—into text strings that a modern
LLM can directly work with. Then the LLM reasons about
the given information and identifies the target object.

Precisely, we integrate multiple innovative approaches that
are pivotal to the success of our framework, including (i)
text-based spatial-semantic 3D scene description; (ii) general
principles guided reasoning with interactive code generation;
and (iii) finetuning with self-correction from feedback.

First, from the input colored point-cloud, we use off-the-
shelf 3D object detection tools like [9] to obtain the objects,
each annotated with its type, color, location, orientation and
spatial extent (i.e., the 3D bounding box). We compose
the information into a list, and feed this text-only scene
description along with the query utterance to the LLM.

Second, we propose to use interactive code generation and
general principles guided prompting that drastically improve
the LLMs’ compositional reasoning abilities, which further
improve the performance of our framework on a considerable
portion of the challenging cases.

Third, in order to scale to new datasets that potentially
require different reasoning logic, we propose to automati-
cally incorporate introspection into the model. Our approach
handles new reasoning logic by having the language model



reflect on its own mistakes when it fails and then generate
the correct reasoning for finetuning.

We achieve state-of-the-art results on prominent 3D re-
ferring reasoning benchmarks, Referit3D, effectively solving
the task with near-human performance. We then deploy
our Transcribe3D framework on a real robot manipulator,
demonstrating the ability to perform pick-and-place tasks that
involve complex free-form commands.

II. METHODOLOGY

In this section, we detail our proposed Transcribe3D
framework, which we visualize in Figure 2. We first describe
an implementation of the “Referring Model” (Fig. 2 (right))
that uses large language models in a zero-shot fashion with
general principles guiding (Section II-D). We then propose
the use of introspection as a means of finetuning the rea-
soning capability of LLMs via self-correction (Section II-E).
Sections II-A, II-B and II-C present general techniques that
are relevant for both variants of the referring model.

A. Detect and Transcribe 3D Information

Given a colored point-cloud of the scene, we first ob-
tain a semantic segmentation of detected objects using
Mask3D [10]. We associate with each detected object its
category based on the semantics, center location, spatial
extent according to the 3D bounding box, as well as average
RGB color. The 3D orientation of an object can also be incor-
porated using Scan2CAD [11] or PartNet [12]. Transcribe3D
compiles the information associated with all detected objects
as a list to form an object-centric scene description. Prompt 1
provides an example of such a scene description.

Scene Description
scene0422: objs with quant description based on r-h Cartesian
coord sys with x-y-z axes, x-y plane=ground, z-axis=up or down.
coords format [x, y, z]. objs list:
trash can,id=8,
ctr=[-3.18,2.68,0.66],size=[0.55,0.56,0.93],rgb=[47,52,45];
recycling bin,id=35,
ctr=[-3.17,2.37,0.49],size=[0.54,0.41,0.75],rgb=[44,46,39];
trash can,id=39,
ctr=[-2.64,2.66,0.54],size=[0.47,0.37,0.78],rgb=[111,130,114];
trash can,id=42,
ctr=[-2.33,2.7,0.52],size=[0.45,0.37,0.76],rgb=[86,89,76];
trash can,id=46,
ctr=[-2.68,-3.05,0.57],size=[0.46,0.39,0.7],rgb=[133,120,107];
picture,id=48,
ctr=[-2.17,-3.09,0.49],size=[0.61,0.17,0.53],rgb=[181,166,138];

Prompt 1: Example scene description with transcribed 3D
information.

B. Pre-Filtering of Relevant Objects for the Utterance

The aforementioned procedure results in a representation
of every detected object in the scene. However, usually only
a small fraction of these objects will be relevant to the given
referring expression. For example, scene scene0006 in
ScanNet has an object list produced by II-B (only showing
name and id) as

[name=wall,id=0; name=bed,id=1; name=bed,id=2;
name=curtain,id=3; name=desk,id=4; name=chair,id=5;
name=chair,id=6; name=chair,id=7; name=floor,id=8;
name=tv,id=9; name=pillow,id=10; name=pillow,id=11;
name=pillow,id=12; name=pillow,id=13; name=nightstand,id=14;
name=lamp,id=15; name=telephone,id=16; name=table,id=17;
name=pillow,id=18; name=backpack,id=19; name=purse,id=20;]

From the given utterance,

this is a white lamp. it is on a desk.

the following objects are deemed relevant by the model,

[desk (id=4) - Relevant (same name as: ‘desk’ in utterance), lamp
(id=15) - Relevant (same name as: ‘lamp’ in utterance), table
(id=17) - Relevant (synonyms of: ‘desk’ in utterance)]

while the rest of the items are deemed irrelevant. Simplifying
the object list by filtering out irrelevant items not only
reduces processing time and the number of tokens for LLMs,
but also facilitates reasoning by reducing content that may
potentially be distracting. Such an approach has been shown
to improve the efficiency of language grounding [13].

C. Iterative Code Generation, Execution and Debugging

Compositional reasoning that involves arithmetic calcula-
tions, which is crucial for spatial reasoning, is well known
to be a weakness of LLMs [14]. In order to mitigate this
weakness, Transcribe3D equips the LLM with a Python
interpreter and directs the LLM to generate code whenever
quantitative evaluations are necessary. The generated code is
then locally executed using the Python interpreter, of which
the outputs are appended to the original conversation. The
resulting prompt is sent to the LLM in order to generate the
next response. If there is any error in executing the generated
code, Transcribe3D feeds information about the error back
to the LLM for re-generation. This process continues until
the LLM believes that the reasoning is complete. Prompt 2
provides an example of this reasoning procedure.

D. General Principles Guided Prompting

Spatial reasoning can require complex compositional logic
that is challenging for autoregressive LLMs [14]. For exam-
ple, when handling left/right spatial relations, which should
be determined according to the observer’s viewpoint, LLMs
often reason over the concept of left and right simply
in terms of smaller/larger values for the x-coordinates of
the objects. Related problems arise with behind/in-front-
of relations, for which LLMs attempt to reason over the
y-coordinates of the objects. In order to overcome these
deficiencies, Transcribe3D employs a few general principles
to guide LLM reasoning. We find that this set of principles
works across 3D referring benchmarks. Prompt 3 provides
an example of these principles.

E. Finetuning from Self-Correction with Feedback

Rule-based systems [15] are effective for relatively sim-
ple domains that involve a limited set of spatial-semantic



Fig. 2: The overall framework of Transcribe3D.

Interactive Code Generation and Execution
The constraint in the description is ‘closest to the foot of the bed’.
This is a spatial constraint. We can define a quantitative metric to
assess this constraint: the Euclidean distance between the center
of each chair and the foot of the bed. The foot of the bed can be
determined by the center of the bed and its direction vector. The
chair with the smallest distance to the foot of the bed is the one
we are looking for.
Let’s calculate the distances.
import numpy as np
import math
# Define the coordinates of the objects
bed_center = np.array([1.06, -0.75, 0.5])
bed_front_vector = np.array([-1.0, 0.01, 0.0])
bed_size = np.array([2.34, 1.9, 1.02])
chair20_center = np.array([-0.69, -2.11, 0.43])
chair21_center = np.array([1.84, 1.17, 0.44])
# Calculate the coordinates of the bed foot
bed_foot = bed_center + 0.5 * bed_size[0] * \

bed_front_vector
# Calculate the distances from
# the chairs to the bed foot
dist20 = np.linalg.norm(chair20_center - \

bed_foot)
dist21 = np.linalg.norm(chair21_center - \

bed_foot)
print(f"Distance from chair 20 to the \

foot of the bed: {dist20:.2f}")
print(f"Distance from chair 21 to the \

foot of the bed: {dist21:.2f}")
(Executed locally) Execution result of the above code is:
Distance from chair 20 to the foot of the bed: 1.49
Distance from chair 21 to the foot of the bed: 2.73
Based on the calculated distances, chair 20 is the closest to the
foot of the bed. Therefore, the object described in the instruction
is chair 20.
Now the answer is complete – ‘ID’:20

Prompt 2: An example of interactive code generation and
execution in the reasoning process.

concepts and structured language, but struggle to scale,
particularly to open-world domains [16]. Motivated in the
high level by the benefits of data-driven alternatives to rule-
based methods, we adopt a novel finetuning method for
LLMs that enables learning beyond the given set of rules

General Principles for Zero-Shot Prompt
First, you can identify potential objects from the object list based
on the category name of the focal object. You should rely on your
common sense to comprehensively identify all relevant candidates
without writing code. For example, for the category name ‘table,’
objects such as ‘table,’ ‘desk,’ ‘end table,’ ‘coffee table,’ and
so on from the object list should all be considered as potential
candidates.
Then, count(do not write code) and tell me the number of
candidate objects. If it is 1, which means only one candidate
object, you must directly choose it as answer, then stop your
response. For example, if the description is ‘the white bathhub on
the left of the toilet’ and there is only one ‘bathhub’-like object
in the list, answer it directly, ignore ‘white’ and ‘left of the toilet’
constraints.
If there are multiple candidate objects, you can continue. Iden-
tify the constraints in the description. There might be multiple
constraints to help finding the unique target object from multiple
candidate objects. For each constraint, you can define a quanti-
tative metric to assess the degree to which each candidate object
satisfies this constraint.
You can write code to calculate the metrics, printing out the
metrics of each candidate objects, instead of only print the most
possible object id.
Some special tips for some constraints:
- Color(if given). Be lenient with color, because different shades
of color mentioned in description can have different RGB values
- Direction relation ‘left’‘right’(if given). To judge obj A on
‘left’ or ‘right’ of B, calc vector observer-A and observer-B(both
projected to x-y plane). If cross product of vector observer-A and
vector observer-B(in this order) has positive z, A on right of B. If
z neg, A on left of B. Note that order of cross product matters, put
vec observer-A at first. DON’T determine left and right relation
by comparing x or y coords.
- Vertical relation such as ‘on’‘above’‘under’(if given). If obj M
has vertical relation with obj N, the x,y coord of ctr of M should
be inside the x,y range of obj N, while z of M and z of N should
satisfy the corresponding order.

Prompt 3: An example of general principles.

(i.e., the general prompting principles) by reasoning over
its own mistakes. In effect, this seeks to endow LLMs
with introspection capabilities. The procedure is described
as below:

1) Use the prompt with general principles on the training



set for the LLM to generate an initial set of answers
with reasoning processes.

2) For any incorrect answer, inform the LLM of the cor-
rect object ID, and let it reason about why the original
answer is incorrect. After it realizes the mistake, ask
it to generate a new reasoning process.

3) Take the reasoning processes of the correct examples,
and the re-generated ones of the initially incorrect
examples to produce the dataset for LLM finetuning.

Note that after finetuning, we no longer include principles
to the prompt. Instead, Transcribe3D relies solely on the
examples learned during finetuning. In such a way, the
system is not limited by the rules that instruct it, but adapts
to exceptions that the LLM makes mistakes on and learns
to improve beyond the original rule-based prompt. Prompt 4
shows an example of self-correction.

Self-Correction for Finetuning

Assistant:
Based on the cross products calculated, the chairs on the right of
the backpack are chair 2, chair 4, chair 7, chair 9, chair 14, chair
21, and chair 26.
Now, let’s consider all the constraints together. The chair we are
looking for should be one of the chairs closest to the table, have
a color closest to brown, and be on the right of the backpack.
From the results, we can see that chair 14, chair 2, and chair 26
are the closest to the table. Among them, chair 2 has the color
closest to brown. And chair 2 and chair 26 are on the right of the
backpack. Therefore, the chair we are looking for is chair 2.
Now the answer is complete – ‘ID’:2
User: The correct answer is 1. Can you double check the

information of object 1 and the given prompt and see where you
got wrong?
Assistant: I apologize for the confusion. Let’s review the infor-

mation of object 1 and the given prompt.
Object 1 is a chair with its center position at [0.29, 0.94, 0.41], its
size in x,y,z direction is [0.59, 0.54, 0.85], and its color in RGB
format is [84, 61, 54].
The prompt describes the chair as “brown”, “located at the end of
the table”, and “to the right of the backpack on the floor”.
From the previous calculations, we found that chair 1 is not the
closest to the table, and its color is not the closest to brown among
all chairs. However, it is on the right of the backpack.
It seems that the main issue here is the interpretation of
“located at the end of the table” . In the previous analysis, we

interpreted it as the chair being the closest to the table. However,
“at the end of the table” could also mean that the chair is in the
direction of the longer side of the table, which is not necessarily
the closest.
Let’s calculate the direction from the center of the table to each
chair, and compare it with the direction of the longer side of the
table. The chair with the direction most similar to the direction of
the longer side of the table could be the one “located at the end
of the table”.

Prompt 4: An example of self-correction reasoning for fine-
tuning. LLM misinterprets the concept of “at the end of . . . ”,
which leads to the initial incorrect answer. However, when
prompted with the correct object ID and told to double check,
the LLM realizes the mistake, and learns to correctly utilize
the concept of “end” in the reasoning.

III. EXPERIMENTS

A. Datasets

We evaluate the effectiveness of Transcribe3D using
Referit3D [1] as 3D referring expression benchmarks.
Referit3D presents 3D referring expression understanding
as a multiple-choice problem, assuming that 3D segmented
object instances are given. The task is then to identify the
uniquely referred object among several instances of the same
fine-grained category. Referit3D includes the SR3D dataset
that contains template-based utterances and the NR3D dataset
comprised of free-form utterances collected from human
annotators. Referit3D measures performance in terms of
accuracy.

B. Grounding Accuracy on Referit3D Dataset

We test different variations of our method against baselines
on the two subsets of Referit3D, namely SR3D and NR3D,
and report the results in Table I.

C. Ablation of Interactive Code Generation on SR3D

We ablate the use of “interactive code generation, exe-
cution and debugging” II-C and “general principles guided
prompting” II-D on the SR3D dataset, which provides re-
lation type labels for fine-grained analysis. There are 5
different types of relations in SR3D, namely “Horizontal”,
“Vertical”, “Support”, “Between” and “Allocentric”, dis-
tributed roughly as 81%, 4%, 2%, 8% and 5% respectively.
Even though “Horizontal” type comprises the majority of the
dataset, reasoning on the other four types is equally important
and interesting. We use equal number of samples for each
type, and show results in Table II.

D. Pick-and-Place Referring for Robotic Manipulations

We incorporate our single-object 3D referring method into
pick-and-place robot manipulations. Being arguably the most
common robotic manipulation domain, language-based pick-
and-place involves (i) breaking down the language query into
two referring expressions, corresponding to the “pick” and
“place” identities respectively; and (ii) resolving the referring
expressions in the context of the robot’s surrounding environ-
ment. We perform the pick-and-place task with a UR5e robot
under the table-top setting. See Figure 1 for an example.

To parse a given command, we employ a language
model generated program (LMP) from few-shot prompting
as in Code-as-Polices [19], which is instructed to call the
put_first_on_second(arg1, arg2) function with
desired arguments arg1 and arg2. This approach allows
free-form texts as input, which is more flexible and natural
than template parsing. We show an example used in the
prompt for the LMP as below.
'# query: Pick up the orange between the apples \
and place it in the bowl with a banana in it.
put_first_on_second("orange between the apples", \
"bowl with a banana in it")'

Within the put_first_on_second(arg1, arg2)
function, an exhaustive list of objects in the environment is
first composed. Specifically, we run MDETR [20], an open-
vocabulary object segmentation method, with an RGB image



Nr3D Sr3D

Method Overall Easy Hard View Dep. View Indep. Overall Easy Hard View Dep. View Indep.

SAT† [4] 49.2 56.3 42.4 46.9 50.4 57.9 61.2 50.0 49.2 58.3
BUTD-DETR† [2] 54.6 60.7 48.4 46.0 78.0 67.0 68.6 63.2 57.0 67.7
MVT† [3] 59.5 67.4 52.7 59.1 60.3 64.5 66.9 58.8 58.4 64.7

ViL3DRel§ [17] 64.4 70.2 57.4 62.0 64.5 72.8 74.9 67.9 63.8 73.2
3D-VisTA§ [18] 64.2 72.1 56.7 61.5 65.1 76.4 78.8 71.3 58.9 77.3

Transcribe3D (GPT-3.5-NP) 33.8 42.6 25.0 26.9 36.0 79.3 82.8 70.7 70.6 80.5
Transcribe3D (GPT-3.5-P) 46.6 56.0 37.1 29.9 51.9 80.0 80.8 78.1 82.4 79.7
Transcribe3D (GPT-3.5-NP-F-C) 62.6 71.6 53.6 46.3 67.7 97.1 100.0 90.2 94.1 97.6
Transcribe3D (GPT-3.5-NP-F-SC) 63.7 73.8 53.6 53.7 66.8 96.4 99.0 90.2 100.0 95.9
Transcribe3D (GPT-4-NP) 64.5 71.8 57.1 49.4 71.3 97.9 97.0 100.0 88.2 99.2
Transcribe3D (GPT-4-P) 69.4 78.7 60.0 55.2 73.8 98.6 100.0 95.1 100.0 99.1

TABLE I: Grounding accuracy (%) on Nr3D and Sr3D. †denotes results from the official benchmarks while §denotes results
reported in the respective papers. “P”: “with principles”, “NP”: “no principles”, “F”: “finetuning”, “C”: “correct cases only”,
“SC”: “correct and self-correction cases”. Our finetuned models are trained on 500 reasoning data samples from GPT-4
on NR3D. Our models are evaluated on 281 samples on the test set of NR3D and 140 examples on SR3D due to limited
computational budget. The results show that Transcribe3D with GPT-4 and general principles surpasses all baselines by a
large margin. Finetuned GPT-3.5 models have close performance compared to GPT-4 even without general principles, and
self-correction brings noticeable improvement.

Type Horiz. Vert. Supp. Betw. Allocent.

No-Code & NP 93.3 93.3 83.3 96.7 66.7
Code & NP 96.7 93.3 90.0 96.7 70.0
Code & P 100.0 90.0 100.0 96.7 90.0

TABLE II: Ablation of “interactive code generation” and
“general principles guided prompting” on SR3D. “Code”:
“interactive code generation”, “NP”: “no principles”, “P”:
“with principles”. Results show that “Code” and “Princi-
ples” help in the challenging cases like “Allocentric” and
“Support“.

and the list of candidate objects as input, obtaining a 2D
spatial-semantic description of the scene. By incorporating
depth information from a RealSense camera, the description
is lifted to 3D, and then used as input for our referring
module to identify the objects in question. Finally, pick
and place poses are computed accordingly to manipulate the
robot’s end effector. We provide the pseudocode as below.
def put_first_on_second(self, arg1, arg2):

# obtain the objects list in the environment
objs = self.env.get_objs()
pick_id = get_obj_id(objs, arg1) # Referring
place_id = get_obj_id(objs, arg2) # Referring
pick_pose, place_pose = self.get_obj_pose(

objs, pick_id, place_id)
self.env.step({'pick': pick_pose, \

'place': place_pose}) # robot manipulation

IV. RELATED WORKS

A. The 3D Referring Task and Methods

The 3D referring task was initiated by the benchmark
of Referit3D, which has the SR3D subset that contains
template-based utterances and the NR3D subset for free-form
utterances collected from human annotators.

Significant attention has been paid of late to the prob-
lem of interpreting 3D referring expressions. On Referit3D,
the highest-performing methods relevant to our work are

MVT [3] (NR3D and SR3D), BUTD-DETR [2] (NR3D and
SR3D), SAT [4] (NR3D) and NS3D [21] (SR3D).

MVT, BUTD-DETR and SAT all propose to merge dif-
ferent input modalities into a combined embedding using
Transformers-like architectures [22] in an end-to-end fash-
ion. MVT projects 3D information into 2D to achieve a
better feature encoding. BUTD-DETR finetunes detected
3D bounding boxes within the Transformer. SAT uses 2D
semantics in training to facilitate learning a mapping between
the query and their 3D groundings. Different from these
methods, NS3D proposes a neural-symbolic way that lever-
ages language-to-code model to generate programs, where
each module is represented by neural networks.

B. Groundings for Large Language Models

Large language models (LLMs) trained on Internet-scale
text data have shown dominant performance across various
NLP tasks [5, 6, 8]. However, LLMs have to be grounded
so as to answer questions about the real world for robotic
applications. SayCan [23] and SayPlan [24] use predicted
robotic affordance by separate modules or scene graph as
the grounding. Other works train multi-modality models
that directly incorporate 3D representations into the token
library [18, 25]. 3D-LLM [25] incorporates distilled 3D
features [26] with language tokens. 3D-Vista [18] does multi-
modal fusion of language and PointNet++ features [27] with
self-supervised masked encoding training. However, our text-
only approach outperforms the best multi-modality approach
on the 3D Referring task by a large margin [18]. Although
we believe the multi-modality approach is promising in the
future, in this paper, we would like to push the text-only
approach so as to lay out the foundation to answering the sci-
entific question of what we could gain by leveraging multi-
modality and when language is insufficient for grounding.



C. Large Language Models Finetuning

There is a large effort in the LLM community to finetune
the pre-trained language models in order to improve perfor-
mance on specific target tasks (e.g., conversations, coding) or
to align their outputs with human values [28, 29]. However,
human preference data are collected in the form of sparse
binary signals, so techniques like RLHF [30, 31] or DPO [32]
are introduced to facilitate the training. On the other hand,
when external signals are absent, there are works that propose
to use self-evaluation by LLMs as supervision [33].

In this paper, we perform finetuning in a manner that
differs from both of these approaches. We have labels from
the training dataset and so we do not rely on self-evaluation,
but we do not feedback using binary right-or-wrong signals.
Instead, if the inference is incorrect, we provide the LLM
with the correct object ID, and instruct it to identify its own
reasoning mistakes as a form of introspection, and then to
re-generate a full correct reasoning process. We take the rea-
soning process of both correct examples and self-corrected
ones together for finetuning. In this way, we provide denser
signal for finetuning and allow the finetuned model to adapt
to new data with potentially different reasoning logic.

V. LIMITATIONS AND FUTURE WORKS

We acknowledge several limitations to our approach. First
of all, since we rely on off-the-shelf 3D detectors, the quality
of the 3D detection is a bottleneck. During our tests, even
some of the state-of-the-art 3D detection models [9, 10] are
producing results less than desired. We think 3D detection
methods need to be improved in order to enable future
robotic foundation models that can be grounded in 3D.
Secondly, currently our scene description is object-centric.
While object-level information is sufficient for many 3D-
related tasks, there are many cases that do require a more

fine-grained resolution of objects, e.g. color of a non-uniform
colored object, referring expression related to the shape of
an object. Thirdly, we do manually specify the kind of
information we want to extract from the 3D detection, i.e.
center, size, orientation etc. However, such design may be
non-optimal, an adaptive feature-selection strategy or more
expressive vector representation may be desired.

Overall, while we showed that text-as-grounding is a
surprisingly simple and effective approach to serve as the
bridge between 3D scenes and LLM, our main purpose is
not to go against the multi-modality approach of building 3D
robotic foundation models, but instead we want to explore the
limit of language-only approach and hope it could serve as
the basis for scientifically understanding what can be gained
with multi-modality 3D robotic foundation models.

VI. CONCLUSION

In this paper, we propose Transcribe3D, a simple yet
effective approach to the 3D grounding of natural language
referring expressions. We show that transcribing relevant
spatial-semantic 3D scene information into a purely textual
form can serve as a bridge between 3D scenes and large lan-
guage models. We show preliminary results on the Referit3D
dataset with state-of-the-art performance. We introduce cru-
cial techniques including object filtering, interactive code
generation and execution, general principles guided prompt-
ing and importantly, a finetuning method that endows LLMs
with the capability for introspection that allows them to
learn improved reasoning from the self-correction of its own
mistakes based on feedback. The finetuning method not only
improves performance, but also allows the model to adapt to
unseen datasets that potentially require different reasoning
logic.
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