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PCNN: Deep Convolutional Networks for
Short-Term Traffic Congestion Prediction

Meng Chen , Xiaohui Yu, Member, IEEE, and Yang Liu, Member, IEEE

Abstract— Traffic problems have seriously affected people’s
life quality and urban development, and forecasting short-term
traffic congestion is of great importance to both individuals and
governments. However, understanding and modeling the traffic
conditions can be extremely difficult, and our observations from
real traffic data reveal that: 1) similar traffic congestion patterns
exist in the neighboring time slots and on consecutive workdays
and 2) the levels of traffic congestion have clear multiscale
properties. To capture these characteristics, we propose a novel
method named PCNN, which is based on a deep convolutional
neural network, modeling periodic traffic data for short-term
traffic congestion prediction. PCNN has two pivotal procedures:
time series folding and multi-grained learning. It first temporally
folds the time series and constructs a 2-D matrix as the network
input, such that both the real-time traffic conditions and past
traffic patterns are well considered; then, with a series of
convolutions over the input matrix, it is able to model the local
temporal dependency and multiscale traffic patterns. In partic-
ular, the global trend of congestion can be addressed at the
macroscale, whereas more details and variations of the congestion
can be captured at the microscale. Experimental results on a real-
world urban traffic data set confirm that folding time series data
into a 2-D matrix is effective and PCNN outperforms the baselines
significantly for the task of short-term congestion prediction.

Index Terms— Traffic congestion prediction, periodic traffic
data, convolutional neural network.

I. INTRODUCTION

PEOPLE are getting increasingly concerned about traffic
congestion, which has seriously affected their life quality

and urban development. To monitor real-time traffic condi-
tions, many cities around the world have deployed embed-
ding sensors, e.g., inductive-loop detectors and video image
processors, in road networks [1], and GPS (Global Position
System)-based services such as Google Maps have been devel-
oped to show traffic conditions and even details regarding
individual vehicles [2]. The increasing availability of data
from such devices and services has created unique oppor-
tunities to predict traffic conditions (e.g., predicting travel
speed and traffic volume [3]–[5], predicting city-scale traffic
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flow [2], [6]), benefiting the decision making of individuals
and governments. For example, people can adjust their driving
routes dynamically and authorities can optimize traffic signal
time according to predicted traffic conditions.

Most existing work on predicting traffic conditions has
focused on predicting future traffic flows at a given loca-
tion [7], [8] or the travel time on a given road segment [9].
In this paper, we target instead at directly forecasting short-
term traffic congestion levels for road segments in urban road
networks. The reason is that very often people would just like
to know how “jammed” the traffic is going to be in the next
minutes or hours on the road segments of their interest, rather
than the actual traffic flow values or travel time. In this paper,
we define the congestion level c for a road segment during a
given time slot as c = max[0, (t− t)/t], where t is the average
travel time of vehicles for that segment in that time slot, and
t is the baseline travel time for the same road segment in
ideal traffic conditions. Congestion level is an intuitive way
to depict the traffic condition and is suitable for visualization,
as it resembles an evaluative meter that is understandable to
most people.

Forecasting traffic congestion levels, however, is filled with
challenges, because of a series of complex factors. To demon-
strate this, we carefully depict the congestion time series
with an urban traffic dataset. We randomly choose two road
segments (1 and 2) in Jinan and show their traffic congestion
levels during one week in Fig. 1(a), and further plot the
congestion levels of road segment 1 from 6:30 am to 8:00 am
on workdays in Fig. 1(b).
• Local coherence. The traffic congestion level in a time

slot has a strong correlation with those in the neighboring
time slots, and the correlation diminishes as the temporal
distance increases. For example, the traffic conditions of
6 pm may be affected by the congestion occurring at
5 pm, but can be considered free from the influence of
the traffic at 8 am of the same day.

• Periodicity. Traffic congestion levels on different work-
days exhibit a temporal periodicity, i.e., repeating a
similar pattern roughly every 24 hours. For example,
as shown in Fig. 1, traffic congestion levels during the
same time slots (e.g., morning rush hours) are similar
on consecutive workdays, but are different from those in
other time periods, e.g., from 11 am to 1 pm, of the same
day. Further, our analysis of the real traffic data during
a span of six weeks reveals that the congestion levels of
a given workday are more similar to those of adjacent
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Fig. 1. Examples of traffic congestion levels of two road segments.
(a) Traffic congestion levels of two road segments during one week. (b) Traffic
congestion levels of road segment 1 from 6:30 am to 8:00 am.

days, rather than the same days in other weeks.
• Multiscale property. Traffic congestion levels have clear

multiscale properties. At the microscale, the variation of
congestion levels can be observed with precise details,
while it is hard to discover the global trend of large
temporal scope. In contrast, at the macroscale, the global
trend of congestion levels can be easily revealed, while
many details are lost. Thus, the traffic congestion level
in a given time slot is the result of both global and
local effects, and a combination of global trend and local
fluctuation may help make better prediction.

The properties of local coherence and periodicity imply that
the traffic congestion level in a time slot is related to those
in the neighboring slots of both the same day and previous
days. However, most existing methods [8], [10] predict future
traffic congestion cm,n in the time slot n of day m, by taking
just the immediately preceding t values and/or the values of
the same slot in previous d days into consideration. They fail
to consider the similar patterns on preceding workdays, which
may degrade the prediction accuracy. In addition, to the best
of our knowledge, none of these existing methods consider the
multiscale property in making short-term traffic prediction.

A. Present Work

To capture the similar traffic patterns and multiscale conges-
tion properties, we propose PCNN, a Convolution-based deep
Neural Network modeling Periodic traffic data, which converts
the one-dimensional data into an image-like input matrix and
applies a series of convolutions on it. Specifically, PCNN has
two pivotal procedures: time series folding and multi-grained
learning. To predict future traffic congestion level cm,n , we fold
the time series of congestion levels based on the period (i.e.,
24 hours), and combine the 2t values around the current time
slot n in the previous d days with the immediately preceding
t values (replicating once) to generate the input matrix with
size (d + 1) × 2t . Consequently, the two-dimensional matrix

contains both the traffic conditions in the immediate past and
a large volume of similar historical patterns; thus both local
coherence and periodicity are taken into consideration.

Another key contribution of PCNN is in learning a set of
multi-grained features. By performing an array of convolutions
over the input matrix, PCNN could capture the local temporal
dependency and numerous higher-level features. Then, these
features are transmitted to the output layer to predict the
future traffic congestion levels. Finally, the objective can be
efficiently optimized with stochastic gradient descent (SGD)
akin to back propagation on the deep convolutional networks.

Our experiments focus on short-term traffic conges-
tion prediction with the real vehicle passage records data
in Jinan, China. We contrast the performance of PCNN
with state-of-the-art traffic forecasting methods, including
regressive models (e.g., ARIMA (autoregressive integrated
moving average) [11]), pattern recognition methods (e.g.,
K-NN (K-nearest neighbors) [7]), and neural networks (e.g.,
MLP (multilayer perceptrons ) [12] and LSTM (long short-
term memory) [13]). Experiments show that PCNN has smaller
forecast errors. In addition, we also apply the two-dimensional
input matrix to some baselines, and the results demonstrate
that the methods with the two-dimensional input performs
better than those with original one-dimensional input.

The main contributions can be summarized as follows:
• Different from existing methods that model traffic

patterns with one-dimensional time-series, we propose to
fold the traffic data based on the period and model them
as a two-dimensional matrix, which considers the traffic
conditions in the immediate past and similar historical
patterns simultaneously.

• We propose to apply a series of convolutions on the
two-dimensional input matrix to model local temporal
dependencies and multi-grained features. We are thus able
to estimate the approximate range of future congestion
levels at different scales. To the best of our knowledge,
this is the first time to apply convolutions on the periodic
traffic data.

• We conduct extensive experiments with the real vehicle
passage records in an urban road network to investigate
the effectiveness of the proposed PCNN. For the task
of congestion prediction, the results demonstrate that the
methods with two-dimensional input perform better, and
PCNN shows remarkable improvement compared with
several baselines.

The rest of this paper is organized as follows. Section II
reviews the studies on short-term traffic prediction. Section III
introduces the definition of congestion level and the problem
solved in this paper. Section IV presents our deep convolu-
tional networks for short-term traffic congestion level predic-
tion. The experimental results are discussed in Section V.
Section VI concludes this paper.

II. RELATED WORK

Traffic congestion prediction can be considered as an exten-
sion of short-term traffic forecasting, which is a pivotal appli-
cation in intelligent transportation systems. See Bolshinsky
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and Freidman [14] for a thorough survey on different tech-
niques (e.g., time series models, Markov chain models, non-
parametric methods) used for traffic forecasting. Here we only
focus on summarizing existing works that are directly related
to our study. These works fall into three broad categories,
i.e., regressive models, pattern recognition methods and neural
networks (NN).

A. Regressive Models

Regressive models are a type of general methods for fore-
casting time series data. As most traffic data tend to be
closely related to their previous values, a special group of
regressive models named autoregressive integrated moving
average (ARIMA) are usually adopted for short-term traffic
prediction. ARIMA is parameterized by three non-negative
integers, commonly represented as ARIMA(p; d; n), where
p is the number of autoregressive terms, d is the number
of nonseasonal differences, and n is the number of lagged
forecast errors in the prediction equation. Ahmed and Cook
first introduce the model to predict the freeway traffic volume
and occupancy time series [11]. After that, numerous ARIMA-
based variants have been proposed in traffic time series predic-
tion, e.g., seasonal ARIMA [15] and space-time ARIMA [16].
Chung and Rosalion [17] systemically compare ARIMA and
its variants with some alternative solutions including regres-
sion, historical average, etc. Their results reveal that the above
strategies perform reasonably well under normal conditions,
but less satisfactory when external changes (e.g., weather,
special events) happen.

B. Pattern Recognition Methods

Pattern recognition methods have also been applied to short-
term traffic forecast, e.g., support vector machines (SVM) [18],
and K-nearest neighbors [7], [19], [20]. Wang and Shi [18]
integrate Wavelet-Chaos Analysis and SVM regression
theory, and construct a new kernel function to capture
the non-stationary characteristics of the short-term traffic
speed data for prediction. Considering the time-varying and
continuous characteristic of traffic flow, Yu et al. [20] propose
a multi-time-step prediction model based on the K-nearest
neighbors (K-NN) algorithm for short-term traffic condition
prediction. Further, Habtemichael and Cetin [7] present an
enhanced K-NN method using weighted Euclidean distance to
identify similar traffic patterns for short-term traffic forecast.
In addition, Xia et al. [19] propose a K-NN model in a
general MapReduce framework on a Hadoop platform to
enhance the efficiency of short-term traffic flow forecasting.
However, the pattern recognition methods cannot work well
when the number of historical data exhibiting similar patterns
is limited, for example, the time slots with extreme traffic
congestion are rare, and these methods fail to identify similar
patterns for prediction in this case.

C. Neural Networks

Most early studies along this line exploit feed-forward
multilayer perceptrons (MLP) [12], [21], in which the

temporal relationships are augmented in the input data during
pre-processing. Besides, there are approaches [22], [23]
adopting dynamic neural networks, e.g., Lingras and Mount-
ford [22] use a genetic algorithm to optimize the connec-
tions between inputs and hidden layers for traffic volume
estimation.

Deep neural network (DNN), which refers to a feed forward
neural network with more than one hidden layers, has recently
revolutionized the machine learning society, and achieved
great success in natural language processing, computer vision,
etc. Convolutional neural network (CNN) and recurrent neural
network (RNN) are two main types of DNN architectures.
In general, CNN is hierarchical, and originally applied to
capture spatial features in image classification [24]. RNN
exhibits a sequential architecture, and is intuitively plausible
for sequence modeling tasks, e.g., language modeling [25].
In practice, both kinds of neural networks have been explored
to capture spatial and temporal dependencies, and sometimes
are even applied simultaneously [26]. Despite the great success
of DNN, only few efforts have been made to use it for
traffic forecasting. As a representative piece of work, Tian
and Pan [13] adopt the LSTM (long short-term memory
method) which could determine the optimal length of the input
historical data dynamically to make short-term traffic flow
prediction.

In this paper, we work on the specific problem of short-term
traffic congestion prediction, and introduce a novel convolu-
tional neural network to model the intricate natures of temporal
features, including periodicity, local coherence, etc., which
have been rarely considered in previous studies. In the same
vein, some recent studies attempt to perform the city-scale
crowd flow prediction with DNN [6], [27], whose objective is
to estimate the total traffic of crowds entering/leaving a region
during a given time interval. Nonetheless, in contrast to our
work that aims to explain the temporal dependencies, they tend
to focus on capturing spatial dependencies, as the inflow of
one region is affected by outflows of nearby regions in their
applications.

III. PRELIMINARIES

We first introduce the definition of congestion level and then
formally define the problem to be addressed in this paper.

Definition 1 (Congestion Level): Given a road segment,
we define the congestion level ci, j based on the average travel
time ti, j for that segment in time slot j of day i and the
baseline travel time t for the same road segment, formally as
ci, j = max(0, (ti, j − t)/t), where t can be estimated using
data from periods of light traffic (e.g., after midnight).

Problem 1 (Short-Term Traffic Congestion Forecasting):
For a specific road segment, given a sequence of observed
congestion data {ci, j }, i = 0, 1, . . . , m, j = 0, 1, . . . , n − 1,
where i represents the index of day and j is the index of
time slot in day i , the problem is to predict anticipated traffic
congestion level cm,n in the next time slot of day m.

IV. DEEP CONVOLUTIONAL NETWORKS

In this section, we first elaborate the architecture of the
proposed neural network, and then provide details of each
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Fig. 2. Architecture of PCNN. conv: convolutional layer, fc: fully-connected.

component. Finally, we introduce the objective function and
the method for parameter learning.

A. Overview

Intuitively, due to local coherence and periodicity, the vari-
ations of congestion levels in the neighboring time slots on
consecutive workdays are similar. Besides, traffic congestion
levels have shown distinct multiscale features. These proper-
ties can be effectively handled by the convolutions that have
proved effective in capturing the local structural information
and multiscale features from pixel-level raw images [24].
Inspired by this idea, we propose a tailored method named
PCNN to capture the periodic traffic congestion patterns at
different scales for predicting short-term traffic congestion
levels. Fig. 2 presents the architecture of PCNN, which
consists of two major components: time series folding and
multi-grained learning. As illustrated in the left part of Fig. 2,
for the raw input data, we take 5 minutes as the size of time
slots as an example, and obtain 288 slots in one day. We first
choose the historical data from the previous d days and fold
them into a two-dimensional matrix. The input matrix is then
fed into multi-grained learning component, capturing multi-
scale features by a series of convolutions. Finally, the output
of the final convolutional layer is transmitted to the output
layer, yielding the predicted value.

B. Time Series Folding

We have observed local coherence and periodicity, but there
is no observed evidence that the congestion levels of a partic-
ular workday (say, Tuesday) bears higher similarity with those
of the same days in previous weeks (past Tuesdays), according
to our traffic data. Thus, we only consider the historical
values in the preceding d days and fold them into d vectors.
Furthermore, the traffic congestion level in a specific time slot
has a strong correlation with those in the neighboring time
periods. Therefore, to predict the traffic congestion level cm,n ,
where m and n are the indexes of day and time slot, we take
the 2t values (�cm−i,n−t , . . . , cm−i,n+t−1�, i ∈ {1, 2, . . . , d})
around the current slot n in every day into consideration.
Note that, it is superior to only using the d values of slot n
in previous d days, as the 2t time slots exhibit similar
traffic congestion patterns in the d days because of local

coherence and periodicity. Further, the traffic conditions in
the immediate past are pretty important, and we duplicate
the congestion levels of the recent t slot to get a vector
�cm,n−t , . . . , cm,n−1, cm,n−1, . . . , cm,n−t � of length 2t . After-
wards, these vectors are integrated to yield the (d + 1) × 2t
input matrix Xm,n :

Xm,n =

⎡
⎢⎢⎢⎣

cm,n−t · · · cm,n−t

cm−1,n−t · · · cm−1,n+t−1
...

...
...

cm−d,n−t · · · cm−d,n+t−1

⎤
⎥⎥⎥⎦. (1)

In our study, d and t are data-independent, and we will
evaluate their effects in the experiments. Further, we use
ci,0(m − d ≤ i ≤ m) to pad those elements of each row
vector whose index is less than 0 under condition of n < t;
similarly, we use c0, j (n − t ≤ j ≤ n + t − 1) to pad each
column vector under condition of m < d .

C. Multi-Grained Learning

In order to capture the multiscale congestion patterns,
we decide to apply a series of convolutions on the input matrix.
As one convolution only accounts for near dependencies,
limited by the size of their kernels, we need to use multiple
convolutional layers to model the dependency over a greater
time range. Here we do not use pooling operations, but only
convolutions, following the suggestion in [6] and [28].

Given the input matrix Xm,n , we apply the convolutional
operation (i.e., conv 1 in Fig. 2) on it:

H(1) = f (W(1) ∗ Xm,n + b(1)), (2)

where ∗ denotes the convolution, and f is an activation func-
tion, e.g., the rectified linear function (ReLU) [24]. W(1) and
b(1) ∈ R are the learnable parameters in the first convolutional
layer. We then feed H(1) to the next layer, until the L-th layer:

H(l) = f (W(l) ∗Hl−1 + b(l)), l = 2, . . . , L . (3)

For each one in the first (L−1) layers, we use 64 filter maps
of size 2×2 at a stride of 1 over the input data. Note that each
filter map is replicated across the entire input matrix, and a unit
in the filter map has 4 inputs connected to a 2× 2 area in the
input matrix, called the receptive field of the unit. Therefore,
each unit has 4 trainable coefficients W(l) plus a trainable
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bias b(l), and all the units in a filter map share the same
set of weights. A complete convolutional layer is composed
of 64 filter maps, and each map uses different sets of weights
and biases, thereby extracting different types of local features.
These features are then combined by the subsequent layers in
order to capture higher order features. For the last convolution,
we take 16 filters to reduce the dimension of output, and the
experimental results prove that it is superior to 64 filters.

With these convolutional operations, PCNN is able to extract
the local temporal dependency among neighboring days and
time slots and learn multi-grained features. Then we transmit
these features H(L) to the output layer to generate the predicted
congestion level ĉm,n . Here we use the identity function as the
activation function,

ĉm,n =Wo ·H(L) + bo, (4)

where Wo is a weight term and bo is a bias term in the layer.

D. Loss Function
We use the square error between the predicted congestion

levels and the observed values to define the objective function,
i.e.,

� = min
M∑

m=1

N∑
n=1

1

2
�ĉm,n − cm,n�2 + 1

2
λ���2, (5)

where M is the number of days in the training set and N is
the number of time slots in a day. � represents the whole
parameters in PCNN, and λ is the regularization coefficient.

Note that, our proposed PCNN is able to make not only one-
step ahead predictions, but also multi-step ahead predictions.
Given a sequence of observed congestion data {ci, j }, i =
0, 1, . . . , m, j = 0, 1, . . . , n − 1, when predicting u-step
ahead congestion level cm,n+u−1, we just take the 2t × d
values (�cm−i,n+u−1−t , . . . , cm−i,n+u−2+t �, i ∈ {1, 2, . . . , d})
of the past d days around the time slot n + u − 1 and the 2t
values �cm,n−t , . . . , cm,n−1, cm,n−1, . . . , cm,n−t � as the input
of PCNN. Then we compute ĉm,n+u−1 with PCNN and define
the objective function according to Equation (5).

E. Algorithm and Optimization

We then use the stochastic gradient descent (SGD) method
with the RMSprop update rule [29] to minimize the square
errors between our predictions and the actual congestion
levels. Algorithm 1 outlines the training process of PCNN.
We first construct the training instances from the original
traffic congestion level data (lines 1-5), i.e., building the input
matrix Xm,n for each predicted traffic congestion level cm,n

in time slot n of day m. Then, PCNN is trained via back
propagation (lines 6-10).

V. EXPERIMENTS

In this section, to evaluate the effectiveness of PCNN,
we first introduce our dataset and basic settings, and then
demonstrate the performances evaluated with different para-
meters. Finally, we show the experimental results compared
with several baselines.

Algorithm 1 PCNN Training Algorithm
Input: historical congestion levels C, the size of the input

matrix, the number of convolutions;
Output: the learned model;

// construct training instances
1: D← ∅;
2: for cm,n ∈ C do
3: build the input matrix Xm,n according to Equation (1);
4: put a training instance (Xm,n, cm,n) into D;
5: end for

// train the model
6: initialize all parameters �;
7: repeat
8: randomly select a batch of instances Db from D;
9: update � by minimizing the objective (5) with Db;

10: until stopping criteria is met

TABLE I

DEFINITION OF TRAFFIC CONDITIONS

A. Dataset and Settings

With the deployment of surveillance cameras on road
networks, vehicles are photographed when they pass by,
and structured vehicle passage records (VPRs) containing
vehicle ID, location, and timestamp can be subsequently
extracted from pictures using optical character recogni-
tion (OCR) [1]. The accuracy of recognizing the plate number
by OCR could reach 97% in ideal weather/lighting conditions.
In our experiments, we collect six weeks of VPRs from
614 road segments in Jinan, China.

1) Preprocessing: In this study, we notice that traffic condi-
tions on weekends clearly differ from those on workdays, and
traffic jam rarely occurs on weekends (as indicated in Fig. 1);
therefore we only use the traffic data on workdays (30 days
in total) in our experiments. Further, as few people drive late
at night, we only keep those records captured from 6:00 to
24:00 everyday. Here we first take 5 minutes as the size of
time slot (later we compare different methods with various
sizes of slot), and compute the traffic congestion levels for
all the slots based on Definition 1. Thus, we have 3,978,720
(614× 30× 18× (60/5)) values of traffic congestion level.
As forecast of congestion level is more important when traffic
is heavy, we differentiate the traffic conditions based on the
value of congestion level c, and define the traffic condition as
congested if c is larger than 1, as shown in Table I.

In order to understand the traffic congestion data better,
we compute the cumulative distribution functions (cdf) of the
congestion levels and the distribution of congested traffic by
time of day, as shown in Fig. 3. Clearly, congested traffic
occurs in about 36% time slots, and is mainly concentrated
around the morning peak and the evening peak.
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Fig. 3. Characteristics of the traffic dataset. (a) Cdf of congestion levels.
(b) Distribution of congested traffic.

In the training process, we use the Min-Max normalization
method to scale the whole dataset into the range [0, 1]. In the
evaluation, we re-scale the predicted values back to the normal
values, to compare with the ground truth.

2) Hyperparameters: We use the open-source deep learning
library, deeplearning4j,1 to build our models. The first (L−1)
convolutions use 64 filters of size 2× 2, and the last one uses
a convolution with 16 filters of size 2×2. We use ReLU as the
activation function, and fix the learning rate at 0.005. We set
the l2 regularization parameter at 0.001, and the batch size at
128. These values are selected via a grid search on our dataset.
We take the traffic congestion values of the first 20 days as
the training set, and the next 5 days’ data as the validation set
for tuning parameters. Afterwards, we continue to train the
model on the full dataset for a fixed number of epochs (e.g.,
10 epochs), and compare the performance on the last 5 days’
data with baselines.

3) Evaluation Metrics: To evaluate the effectiveness of
PCNN, we use three performance metrics, namely, the mean
absolute error (MAE), the root-mean-square error (RMSE),
and the mean relative error (MRE), which are defined as

M AE = 1

M 
 × N

M 
∑
m=1

N∑
n=1

�ĉm,n − cm,n�,

RM SE =
⎡
⎣ 1

M 
 × N

M 
∑
m=1

N∑
n=1

�ĉm,n − cm,n�2
⎤
⎦

1

2
,

M RE = 1

M 
 × N

M 
∑
m=1

N∑
n=1

�ĉm,n − cm,n�
cm,n

, (6)

where ĉm,n is the predicted congestion level, and cm,n is the
observed value. M 
 is the number of days in the test set and
N is the number of time slots in a single day.

B. Performance of PCNN

In this section, we first evaluate the performance of PCNN
with different parameters, namely, the size of the input
matrix (the number of days, d and the number of time slots, t),
and the number of convolutional layers (L), and tune them
one by one on the validation set. Then we show the detailed
forecast performance with respect to varying traffic conditions
and time of day.

1https://deeplearning4j.org/

1) Identifying a Suitable Size of the Input Matrix: On one
hand, we know that the variations of congestion level in one
day are similar to those in the preceding days. On the other
hand, the congestion level is closely related to those in the
adjacent slots. Thus, we set t and d at 3, 6, 9, 12 respectively
in this case, and choose the optimal number of convolutions
for the models with different input matrix sizes. We first
evaluate the effect of t with defined d on forecast accuracy,
as shown in Fig. 4 (a), (b) and (c). It can be observed that (1)
with increase in the number of training epochs, the prediction
errors (including MAE, RMSE, and MRE) start to decline,
and remain stable after about 8 epochs; (2) the model with
t = 3 performs relatively poor, as it only considers the
traffic conditions in the neighboring 15 minutes, without taking
enough related values into consideration; (3) the model with
t = 6 performs the best, indicating that exploiting traffic
conditions in half an hour around the current slot is the
most suitable in our case. The impact of t with other d (i.e.,
d = 3, 6, 12) on forecast accuracy is similar, and we set t at
6 in the following experiments.

We then measure the impact of d on forecast accu-
racy in terms of the three error criteria, as shown
in Fig. 4 (d), (e) and (f). Similarly, for different d , the predic-
tion errors decrease when the number of epoches increases,
and the model with d = 9 obtains the best performance.
In addition, the model involving the larger input matrix
contains more parameters, and it needs more time to complete
the training procedure. Therefore, we choose t = 6, d = 9 and
10 training epochs as our default setting, and the size of the
input matrix is 10× 12.

2) Identifying the Number of Convolutional Layers: The
number of convolutional layers determines the depth of PCNN,
and we need to validate whether deep networks are more
effective than the shallow ones. With the 10×12 input matrix,
we consider a series of L (the number of convolutions) values
in this study, ranging from 1 to 9, and train the models
with the same parameter setting. The experimental results are
demonstrated in Fig. 5. Clearly, a consistent improvement in
forecast accuracy is observed with an increase in the number
of convolutional layers, as the proposed model cannot capture
enough multi-grained features with the shallow networks (e.g.,
1 or 2 convolutions); on the other hand, the models with very
deep networks (e.g., 8 and 9 convolutions) also get relatively
large forecast errors, and take more time in the training process
to train. Thus, we set the number of convolutional layers at
5 in our study based on the performance of prediction.

3) Accuracy of Forecast by Different Traffic Conditions and
Time of Day: To evaluate the effectiveness of the proposed
model further, we examine the performance by different traffic
conditions and time of day. Fig. 6 shows the performance of
short-term congestion forecast using PCNN in terms of MAE,
RMSE and MRE by various traffic conditions and hour of day.
The box plots show the spread of the forecast errors and the
red solid line represents the mean of the errors.

At forecast time, MAE and RMSE have consistent improve-
ments when the traffic conditions change from normal to
congested, as both MAE and RMSE consider only the magni-
tude of deviations of the forecasted values from the observed
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Fig. 4. Effect of size of input matrix. (a) MAE (d = 9). (b) RMSE (d = 9). (c) MRE (d = 9). (d) MAE (t = 6). (e) RMSE (t = 6). (f) MRE (t = 6).

Fig. 5. Effect of number of convolutional layers. (a) MAE. (b) RMSE. (c) MRE.

ones. Meanwhile, MRE provides a better sense of forecast
accuracy as the errors are examined in terms of percentage
deviations from the observed value, and it has consistent
reduction evidently. Similarly, when the nature of the errors
corresponding to the hour of day is examined, the forecast
accuracy during peak-hours (7:00 - 9:00 and 17:00 - 18:00) is
relatively lower when compared with off-peak hours. This is
because of the fact that the patterns are more complicated and
the values of congestion level are larger during peak-hours,
as depicted in Fig. 3.

Moreover, examining the mean errors and the third quar-
tiles (i.e., the top of the box), we find that the mean values
are always greater than or approximately equal to the third
quartiles, indicating that a few extremely large forecast errors
exist in this case. To explore such cases, we investigate the
distributions of errors, i.e., the cdf (cumulative distribution
function) of MRE, as shown in Fig. 7. Clearly, about 74%
of the MREs are less than 0.3, and only 1.6% of them are
greater than 2. The reason may be that traffic accidents occur
frequently, which often lead to a sudden surge in congestion
levels within a short period of time. As instances with sudden

change are rare, a general statistic model will be dominated
by normal instances, and is difficult to capture the special
patterns.

Generally speaking, according to the spread of MRE (the
mean error is around 20%) in Fig. 6 (c), it can be said that
the proposed PCNN provides reliable and accurate forecasts
of traffic congestion levels.

C. Comparisons With State-of-the-Art Methods

To evaluate the performance of our proposal, we compare
PCNN with several state-of-the-art methods for predicting
short-term traffic congestion levels. To ensure a fair compar-
ison, a common dataset and measure of performance are used.

• HA: This is probably the most straightforward method
which assumes that the future value ĉm,n is the average
of the historical data.

• LR: Weuse linear function on the input data to minimize
the square error between our predictions and the actual
values.

• ARIMA: This is a general method for forecasting a time
series, illustrated in detail in Section II.



CHEN et al.: PCNN: DEEP CONVOLUTIONAL NETWORKS FOR SHORT-TERM TRAFFIC CONGESTION PREDICTION 3557

Fig. 6. Forecast errors by level of traffic and time of day. (a) MAE by level of traffic and hour of day. (b) RMSE by level of traffic and hour of day. (c) MRE
by level of traffic and hour of day.

Fig. 7. Cdf of MRE.

• SARIMA: We compare with the Seasonal ARIMA [15],
as traffic congestion levels have temporal periodicity.

• K-NN: This is an enhanced K-nearest neighbors (K-NN)
algorithm for short-term traffic forecasting based on
identifying similar traffic patterns [7].

• MLP: We construct many MLP structures with different
numbers of hidden layers to predict traffic congestion
values.

• LSTM: This is a long short-term memory network which
shows superior capability for time series prediction with
long temporal dependency [13].

To validate the necessity of folding the temporal data into
a two-dimensional matrix, we experiment with both vectors
and matrices as the inputs of HA, LR and MLP, denoted
as HA(1), HA(2), LR(1), LR(2), MLP(1) and MLP(2).
When predicting future congestion level cm,n , the data in
previous t slots of day m and in the n-th slot of preceding

d days are used to construct the one-dimensional vectors
�cm,n−t , . . . , cm,n−1, cm−1,n, . . . , cm−d,n� of length (t + d)
as the inputs of HA(1), LR(1) and MLP(1). For the
matrices, we flatten them and construct the new vectors
�cm−d,n−t , . . . , cm−d,n+t−1, cm−d+1,n−t , . . . , cm,n−t � of
length (d+1)×2t as the inputs of HA(2), LR(2) and MLP(2).

For all the baselines, the system configuration parameters
are optimized by a grid search. For instance, we vary K
from 5 to 50 at a step of 5 for K-NN, and find that it obtains
the best performance when K is 15; as it is very tricky to set
up configuration options for MLP, we train a group of MLPs
with the number of hidden layers varying from 1 to 9 and the
number of neurons in each layer varying from 50 to 500, and
the MLP structure with the best performance we can come up
with contains 8 hidden layers with 150 neurons in each layer
for the two-dimensional input and 5 layers with 200 neurons
for the one-dimensional input.

To compare the proposed approach (PCNN) with the base-
lines, we not only evaluate the overall prediction perfor-
mance, but also measure it under different traffic conditions.
We demonstrate the forecast errors on testing data in Table II,
and our evaluation on the proposed method is 3-fold.

1) Forone-dimensional input, we measure all baselines,
including the naive method (HA), the regressive
models (LR, ARIMA and SARIMA), the pattern
recognition method (K-NN), and the neural
networks (MLP and LSTM). Specifically, HA treats
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TABLE II

RESULTS OF METHODS

TABLE III

RESULTS OF METHODS WITH DIFFERENT TIME GRANULARITY

each element equally and LR assigns the elements with
different weights, so LR performs better than the naive
HA; ARIMA and SARIMA use the differencing step to
eliminate the non-stationarity, and their forecast errors
are smaller than LR’s; SARIMA considers the temporal
periodicity, and it performs better than ARIMA;
different from the regressive models, K-NN identifies
the similar patterns and predicts future value based
on them, but it does not obtain decent performances,
especially in the heavy congestion condition, as there
is only 7% of data in that case (as depicted in Fig. 3);
MLP uses many non-linear functions to model the
relationship between the predicted values and the actual
congestion levels, and performs better than K-NN;
LSTM has an advantage of memorizing long historical
data and can achieve lower prediction errors.

2) We then analyze the effect of introducing the two-
dimensional input. HA averages more weakly related
values when using the two-dimensional input, so it
performs worse than with the one-dimensional input.
LR and MLP with the two-dimensional perform better
than those with the one-dimensional (according to the
MRE metric, the error rates of LR(2) and MLP(2)
decline by 2.8% and 5.4% respectively), as they
could extract more effective features through complex
linear or non-linear functions from the input matrix,
validating the effectiveness of folding periodic time
series data and constructing the two-dimensional input.

3) Our proposed method, PCNN, is clearly superior to
the baselines based on the experimental results. Taking
the overall prediction as an example, compared with
the LSTM that has the best performance with one-

dimensional input in the baselines, the MRE rate drops
by 21.1%, which is a considerable improvement; even
compared with MLP(2) that has the same input matrix,
the MRE of PCNN still drops by 15.2%. The reason
is two-fold: on one hand, the two-dimensional input
matrix takes both the real-time traffic conditions and the
historical similar traffic patterns into consideration; on
the other hand, a series of convolutions over the input
matrix could capture the local temporal dependency
and model multiscale traffic congestion features.

Further, we set the size of time slot at 10, 15, 30, and
60 minutes respectively, and compare the proposed PCNN
with the baselines (as MLP and LSTM outperform other
baselines obviously, we only compare PCNN with them).
As shown in Table III, as the size of time slot increases,
the prediction errors decline. It is evident because the conges-
tion levels become smoother when we consider larger time
slot. Furthermore, the proposed PCNN performs better than
these baselines under the circumstances of different time
granularity, further validating the robustness of our model.

VI. CONCLUSION

In this paper, we have proposed a novel method (PCNN)
based on the convolution-based deep neural network modeling
periodic traffic data to make short-term traffic congestion
prediction. The accurate forecast could be used as a decision
support tool for traffic operators to design an alternative
traffic management strategy to avoid traffic jams. Considering
the characteristics of urban traffic congestion data, we fold
the time series data and construct a two-dimensional matrix.
PCNN takes the matrix as its input, and models the local
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temporal dependency and multiscale traffic patterns through
multiple convolutional operations. Finally, we evaluate the
performances of PCNN on a real traffic dataset, and exper-
imental results show that the proposed method outperforms
state-of-the-art baselines significantly.
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