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Abstract
Recent developments in Large Language Models (LLMs) have sparked significant attention in
Reinforcement Learning from Human Feedback (RLHF). A simple, widely used, and resource-
efficient method for gathering human feedback is through relative queries based on human prefer-
ences, where the pairwise preference of two alternatives is often modeled as the sigmoid of their
respective utility scores. Despite the popularity of these ‘sigmoid-based RLHF’ frameworks, their
theoretical foundations remain underdeveloped as existing algorithms often lack the desired perfor-
mance guarantees or are limited to small-scale problems due to computationally intractable steps.
We address this challenge by developing the first efficient online gradient descent-based algorithm
for the problem with provably optimal performance guarantees. In fact, our proposed methods
work even for adversarially changing preferences, unlike the existing attempts which assume a
fixed underlying stochastic preference model. Formally, we consider the adversarial online convex
(linear) optimization (OLO) problem in d-dimension, but unlike the existing OLO framework, we
only assume that the learner can only observe a (weaker) preference feedback upon choosing a few
alternatives at each round. With the objective of identifying the ‘best arm’, we propose an efficient
online mirror descent (OMD) based approach for the problem with regret and sample complexity
guarantees. The main challenge lies in finding a suitable ‘gradient approximation’ of the underlying
(adversarially changing) utility functions solely from the weak preference feedback, as opposed to
the conventional gradient or value feedback used in OLO. We also extend our methods beyond pair-
wise preferences to multi-way preferences (B-sized batched pairwise) with improved performance
guarantees. Additionally, our algorithms are optimal as we proved by matching lower bounds clos-
ing the potential of any better algorithms for the settings. Our contribution lays the groundwork for
practical gradient descent-based algorithm in RLHF. Supported by robust theoretical guarantees,
our approach holds promise in the current landscape of developing efficient algorithms for LLMs
and addressing human-AI alignment challenges.

1. Introduction

The rapidly advancing field of AI has sparked interest in Reinforcement Learning from Human
Feedback (RLHF), which incorporates human input to refine AI systems, mitigating risks in au-
tonomous decision-making and fostering systems that act in humanity’s best interests. This paper
explores the theoretical aspects of RLHF with preference feedback, emphasizing its potential to
enhance AI alignment.
Preference feedback, in particular, is a critical form of human feedback within the field of RLHF.
Unlike the conventional feedback models used in the ML optimization literature for designing pre-
dictive AI models, which includes demonstration [11, 25, 26], gradient-based [2, 9, 29], value-based
feedback [8, 10, 14], preference feedback is a much weaker form of feedback that only receives rel-
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ative desirability (a.k.a. preference) of different outcomes/actions for a given task. However, on
the positive end, preference feedback is a much more nuanced understanding of human values and
priorities by explicitly capturing human judgments about the relative desirability of different out-
comes. Studies in psychology and cognitive neuroscience also corroborate the fact that humans are
often naturally more comfortable providing relative feedback compared to the other modes [12, 19],
hence the training data tend to be less biased and cost-effective. Consequently, this form of feed-
back enables AI systems to learn more complex and subtle aspects of human preferences, which
are often difficult to encode explicitly through demonstrations or reward feedback. For instance, in
environments where trade-offs between multiple objectives are necessary, preference feedback can
help an AI system align its actions more closely with ‘human expected system behaviour’ by under-
standing their tradeoff across different objectives from the relative choices, which otherwise would
have been hard to gauge from. This helps the AI systems to become more interpretable, trustworthy,
and ‘human-aligned’!
Existing work on preference-based learning for AI alignment, whether empirical or theoretical,
is limited by computationally inefficient algorithms. Many current approaches struggle to scale
effectively with the complexity of real-world scenarios, often requiring extensive computational re-
sources and time to process human feedback and update AI models accordingly. This inefficiency
not only hampers the practical deployment of preference-based learning systems but also restricts
their ability to quickly adapt to dynamic environments and evolving human preferences. Conse-
quently, there is a pressing need for the development of more computationally efficient algorithms
that can harness preference feedback in a timely and resource-effective manner, thereby enhancing
the feasibility and responsiveness of AI alignment strategies.
In this work we present the first gradient descent based algorithm that addresses the problem of
regret minimization in RLHF, accessing only preference feedback, and providing an optimal guar-
antee with a bound of O(

√
T ), where T is the time horizon of the game. Our main motivation in

doing so is to deepen our understanding of the design of popular RLHF algorithms [5, 21? ] which
lack convergence guarantees. The gradient descent based approach we study in this work represents
an advancement over existing attempts to provide provable guarantees for the RLHF or trajectory
feedback settings [4, 6, 13, 22, 24, 28]. These works based their algorithms on the optimism in the
face of uncertainty principle, and require optimizing over confidence sets. Such an optimization
procedure is often non-convex and cannot be easily implemented by contemporary neural network
architectures. Alternatively, several studies [7, 16, 27] considered a Thompson Sampling (TS) based
algorithm, which requires sampling from a posterior distribution that adds additional complexity to
the design of algorithm. Hence, previous efforts often fail to scale effectively and suffer from com-
putational overhead, rendering them impractical for real-world applications. In contrast, our algo-
rithm not only achieves optimal regret minimization but also does so in a computationally efficient
way. This breakthrough is particularly important for the practical deployment of RLHF systems,
enabling them to quickly and effectively incorporate preference feedback in a manner that is both
scalable and resource-efficient. In this work we propose a solution that marries optimal theoretical
performance with practical feasibility, setting a new benchmark for future research in the field.

Advantage of Gradient Descent Methods: Gradient-based methods have multiple advantages
compared to confidence-based methods: (1) GD/OMD handle high-dimensional problems effi-
ciently due to their reliance on gradient information: (2) They are suitable for both stochastic and
adversarial environments, making the gradient-based methods robust to changing data distributions
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or the underlying loss/reward functions which is often more practical for modeling real-world prob-
lems, (3) These methods can optimize a wide range of objective functions, including non-linear,
non-convex, and constrained problems, (4) Gradient descent algorithms are simple to implement,
even seamlessly integrate with modern deep learning frameworks, making these methods computa-
tionally efficient, unlike many UCB and TS based methods which often do not have a closed form
solution [6, 24] or sampling from the posteriors could be complicated [20], and (5) Gradient descent
techniques are inherently robust to model misspecification and smoothly integrate with differential
privacy techniques.

Contributions. Our contributions are twofold. At a high level, we address the problem of solv-
ing adversarial linear bandits with gradient descent and with preference feedback, more popularly
studied as the RLHF with preference feedback setting. Our specific contributions are:

1. In Sec. 3, we design an online mirror-descent based algorithm to obtain an optimal Õ(d
√
T )

algorithm for online optimization with adversarial preferences (Alg. 1,Thm. 1).

2. In Sec. 4, we generalized the above algorithm to multiwise (batched) preference feedback, where
the learner can query a set of B pairwise preferences in one go. Our improved analysis of Alg. 2
shows that one can achieve a faster Õ( d√

min{B,d}

√
T ) regret learning rate for this case (Thm. 2).

We start our technical results by introducing the basic problem setup first.

2. Problem Setup

Notation. Let [n] = {1, . . . n}, for any n ∈ N. Given a set S and two items x, y ∈ S, we denote
by x ≻ y the event x is preferred over y. For any r > 0, let Bd(r) and Sd(r) denote the ball and the
surface of the sphere of radius r in d dimensions respectively. Id denotes the d× d identity matrix.
For any vector x ∈ Rd, ∥x∥2 denotes the ℓ2 norm of vector x. 1(φ) is generically used to denote an
indicator variable that takes the value 1 if the predicate φ is true and 0 otherwise. Unif(S) denotes
a uniform distribution over any set S. We write Õ for the big O notation up to logarithmic factors.
For any set Ω ⊂ Rd, int(Ω) denotes the interior of the set Ω. Ber(p) defines Bernoulli distribution
with parameter p ∈ [0, 1].

2.1. Problem: Adversarial Logistic Dueling Bandits (Logit-DB):

We consider a decision space D ⊂ Rd and the finite T horizon adversarial linear optimization
setting. At every round, the algorithm plays xt,yt ∈ D and observes a binary ot s.t.

ot ∼ Ber
(
σ
(
θ∗
t
⊤(xt − yt)

))
.

We denote the probability of arm x being preferred over arm y as:

Pt(x,y) = σ
(
θ∗
t
⊤(x− y)

)
=

exp(θ∗
t
⊤x)

exp(θ∗
t
⊤x) + exp(θ∗

t
⊤y)

, ∀x,y ∈ D.

Note we call the problem Logit-DB since the preference relation Pt follows a logistic model, as
σ : R 7→ [0, 1] is the logistic link function, i.e. σ(x) = (1 + e−x)−1.
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Objective: Regret Minimization w.r.t. the Best Choice. The goal of the algorithm is to minimize
the cumulative regret, defined as:

Reg
Logit-DB
T :=

T∑
t=1

[
(Pt(x

∗,xt)− 1/2) + (Pt(x
∗,yt)− 1/2)

2

]
,

assuming x∗ ← argmaxx∈D
∑T

t=1 θ
∗
t
⊤x the best (highest scoring) arm in the hindsight.

Remark 1 For any x ∈ D,

θ∗
t
⊤(x∗ − x)

4
≤ Pt(x∗,x)− 1/2 ≤ θ∗

t
⊤(x∗ − x)

when D ⊆ Bd(1). We prove this in App. A. Consequently, in the rest of the paper, we will address
the regret

R̂eg
Logit-DB
T :=

T∑
t=1

[
θ∗
t
⊤(x∗ − xt) + θ∗

t
⊤(x∗ − yt)

2

]
,

noting RegLogit-DB
T ≤ R̂eg

Logit-DB
T from Rem. 1, thus designing algorithm to bound R̂eg

Logit-DB
T would

suffice to bound RegLogit-DB
T .

3. Dueling Case: Algorithm for Logit-DB Problem

In this section, we investigate the Logit-DB problem (Sec. 2.1) for the pairwise preference (du-
eling) feedback.
Algorithm description: Our algorithm is motivated by the Scrible algorithm from [1, 10], which
is a variant of the online mirror descent algorithm with a self-concordant barrier [2] as the regu-
larizer.1 The algorithm iteratively updates the decision variable wt by minimizing the sum of the
ψ-regularized linearized loss within the δ-contracted decision set Dδ := {x | 1

1−δx ∈ D}. Pre-

cisely at each step t, we compute wt = argminw∈Dδ

{
η
∑t−1

τ=1 g
⊤
τ w + ψ(w)

}
. We then perform

eigendecomposition of the Hessian∇2ψ(wt), sample an index it uniformly at random from [d], and
generate perturbed solutions xt = wt + γt

1√
λt,it

vt,it and yt = wt − γt 1√
λt,it

vt,it . It is important

here to note that xt,yt ∈ D owing to the properties of self-concordant barrier functions, as argued
in Lem. 3. By playing the pair (xt,yt) and observing the outcome ot, we construct the gradient
estimator gt = d

γt
(ot− 1

2)
√
λt,itvt,it for the next iteration and continue to the step iteration. Thm. 1

analyze the regret performance of Alg. 1 yielding an optimal O(
√
T ) regret for the problem, as

justified in Rem. 3. The detailed regret analysis of Double-Scrible (Alg. 1) is given in App. B.2.

1. Interested readers may check [2, 10, 17] for the properties and examples of self-concordant barrier functions.
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Algorithm 1 Double-Scrible

1: Input: Decision set D with ν-self concordant barrier ψ, parameters η, δ, γt.
2: for t = 1 to T do
3: Compute: wt = argminw∈Dδ

{
η
∑t−1

τ=1(−gτ )⊤w + ψ(w)
}
.

4: Compute eigendecomposition s.t. ∇2ψ(wt) =
∑d

j=1 λt,jvt,jv
⊤
t,j .

5: Sample it ∈ [d] uniformly at random
6: Choose xt = wt + γt

1
2
√
λt,it

vt,it and yt = wt − γt 1
2
√
λt,it

vt,it .

7: Play (xt,yt), observe ot ∼ Ber(Pt(xt,yt)).
8: gt =

d
γt

(
ot − 1

2

)√
λt,itvt,it .

9: end for

Theorem 1 (Regret Analysis of Alg. 1) Consider the decision space D, such that ∇2ψ(w) ≥
H2

D,ψId, ∀w ∈ D. Then for the choice of η =
√
νHD,ψ

d
√
T log T

, δ = 1
T and γt ≤ 0.7HD,ψ, the Double-

Scrible (Alg. 1) guarantees a regret bound:

R̂eg
Logit-DB
T ≤ O

(
d
√
νT log T

HD,ψ

)
.

It is worth noting that HD,ψ is generally a problem dependent constant for bounded decision sets
and most choices of ψ, as we explain in Rem. 5.

Remark 2 (Minimal Eigenvalue Assumption) Thm. 1 holds assuming the minimal eigenvalue of
∇2ψ(w) is larger than H2

D,ψ. This assumption was not required in the analysis of Scrible [1],
however, we could not circumvent it. The reason we are required to make this assumption lies in
the fact the reward model we optimize is a non-linear model, whereas the reward model in [1] is
linear in w. This assumption is equivalent for assuming ψ(w) is strongly convex and may hold for
different choices of decision sets. For example, for a decision set which is the interior of the unit ball
Bd(1) and choosing ψ(w) = − ln(1− ∥w∥22) is a 1-self concordant barrier and it is easy to check
that H2

D,ψ = 2. Another example could be ψ(w) = −
∑d

i=1 lnwi, which is a d-self-concordant
barrier in the unit ball Bd(1) and it is straightforward to verify that in this case H2

D,ψ = d.

Remark 3 (Optimality of Thm. 1) The rate depicted in Thm. 1 is optimal (up to logarithmic fac-
tors), as follows from the existing lower bound of the Logit-DB problem ([23]).

Remark 4 (Advantage of Our Approach over Existing Algorithms for Logit-DB) (1) Prior works
that considered online learning in the generalized linear bandit setting [15, 16] are required to as-
sume a lower bound on the derivative of the sigmoid link function, which results in a multiplicative
dependency on κ = mint∈[T ] arg inf∥θ−θ∗

t ∥≤1 σ
′(θ⊤(x − y)) in the Logit-DB problem [6, 24].

Interestingly, we do not need to make this assumption, owing to the nice trick of exploiting the pair-
wise preference of symmetrically opposite points xt and yt, as shown in Lem. 4. This is a clean
advantage of our approach over the existing GLM-bandits based approach for Logit-DB which
relies on UCB estimation based confidence bounding technique. (2) Further, since our approach
relies on gradient based techniques, they are extremely computationally efficient–the runtime re-
quirement of our method is just O(dT ), compared to the prior methods which are computationally
infeasible and not implementable in practice [6, 13, 24].

Due to page limitations, the complete proof is moved to App. B.
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4. Batched Feedback: Algorithm for B-Batched Logit-DB Problem

In this section, we will analyze a variant of Logit-DB problem where the learner actively gets
to query B-pairwise queries in a batched fashion. More precisely, at each round t, the learner
gets to query B-pairs {(x1

t ,y
1
t ), (x

2
t ,y

2
t ), . . . , (x

B
t ,y

B
t )} together and observes the corresponding

B-pairwise preferences o1t , o
2
t , . . . o

B
t , where oit ∼ Ber

(
σ
(
θ∗
t
⊤(xit − yit)

))
.

Regret Objective. Same as R̂eg
Batched-LogitDB

T , the objective of the learner, in this case, is to
minimize the regret over T rounds, defined as:

R̂eg
Batched-LogitDB
T :=

T∑
t=1

1

B

[ B∑
i=1

θ∗
t
⊤(x∗

t − xit) + θ∗
t
⊤(x∗

t − yit)

2

]
.

4.1. Algorithm for Batched-LogitDB

Our proposed algorithm for this case is Batched-DouBle-Scrible (BaBle-Scrible) which is a variant
of Double-Scrible we detailed in the previous section for the Logit-DB. Same as algorithm, it
takes input parameters η, δ, and γt, and a ν-self concordant barrier function ψ.
Similar to Alg. 1, in this case too the idea is to build an estimate of θ∗

t from the pairwise observations.
However, due to the batched feedback of size B, we can build an estimate with better variance
leading to B-factor improvement in the final learning rate of O( dB

√
T ). However, one would need

B ≤ d since it is impossible to obtain a regret rate better than Ω(
√
T ), which is the rate one obtains

in the full information setting [29].
More precisely, at any round t, assuming wt is the running estimate of the optimizer over the
decision set Dδ, our proposed algorithm BaBle-Scrible first computes the eigendecomposition of
the Hessian ∇2ψ(wt) =

∑d
i=1 λt,ivt,iv

⊤
t,i, and samples B indices i1t , i

2
t , . . . , i

B
t , uniformly from

[d]. Upon this it assigns xℓt = wt + γt
1

2
√
λ
t,iℓt

vt,iℓt
and yℓt = wt − γt 1

2
√
λ
t,iℓt

vt,iℓt
. and plays the

batch of B-pairs {(x1
t ,y

1
t ), (x

2
t ,y

2
t ), . . . , (x

B
t ,y

B
t )}. Upon this it receives the corresponding B

pairwise preferences o1t , . . . , o
B
t and computes a gradient (θ∗

t ) estimate gt = 1
k

∑k
ℓ=1 g

ℓ
t , where

gℓt =
d
γt

(
oℓt − 1

2

)√
λt,iℓt

vt,iℓt
. The process is then repeated for a T rounds, iteratively, refining the

running estimate wt+1 by minimizing the sum of the ψ-regularized linearized loss over Dδ. The
algorithm pseudocode is given in Alg. 2.
Thm. 2 analyzes the regret performance of Alg. 2 which is shown to yield an optimalO

(
d

min{d,B}
√
T
)

regret for the the problem. The regret analysis of BaBle-Scrible (Alg. 2) is given in App. C.1.

Theorem 2 (Regret Analysis of Alg. 2) Consider the decision space D, such that ∇2ψ(w) ≥
H2

D,ψI, ∀w ∈ D. Then for the choice of η =

√
νmin{B,d}HD,ψ
d
√
T log T

, δ = 1
T and γt ≤ 0.7HD,ψ, the

BaBle-Scrible (Alg. 1) guarantees a regret bound:

R̂eg
Logit-DB
T ≤ O

(
d
√
νT log T√

min{B, d}HD,ψ

)
.

Due to page limitations, the complete proof is moved to App. C.
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Algorithm 2 BaBle-Scrible

1: Input: Decision set D with ν-self concordant barrier ψ, parameters η, δ, γt.
2: for t = 1 to T do
3: Compute: wt = argminw∈Dδ

{
η
∑t−1

τ=1(−gτ )⊤w + ψ(w)
}
.

4: Compute eigendecomposition s.t. ∇2ψ(wt) =
∑d

i=1 λt,ivt,iv
⊤
t,i.

5: for ℓ = 1, 2, . . . , B do
6: Sample iℓt ∈ [d] uniformly at random.
7: Choose xℓt = wt + γt

1
2
√
λ
t,iℓt

vt,iℓt
and yℓt = wt − γt 1

2
√
λ
t,iℓt

vt,iℓt
.

8: Play (xℓt,y
ℓ
t), observe oℓt ∼ Ber(Pt(xℓt,y

ℓ
t)).

9: gℓt =
d
γt

(
oℓt − 1

2

)√
λt,iℓt

vt,iℓt
.

10: end for
11: Update gt =

1
B

∑B
ℓ=1 g

ℓ
t

12: end for

5. Conclusion

In this paper, we introduced an efficient gradient descent-based approach for regret minimization
for online linear optimization with adversarial preferences. Our results has critical implications in
learning problems of RLHF which has wide applications in fields of AI-alignment, fine tuning lan-
guage models, etc. Our proposed novel online mirror descent (OMD) algorithm achieves an optimal
regret bound of O(

√
T ) while only relying on binary preference feedback. This advancement im-

proves upon existing methods by addressing key computational challenges, particularly in handling
high-dimensional and adversarial environments while still respecting optimal performance guaran-
tees. We also extended our algorithm to accommodate batched preference feedback, which yields
provably faster performance guarantees for larger batch size. The computational efficiency of our
algorithms makes them suitable for large-scale real-world applications.

Future Work. Building on this work, several promising avenues for future exploration emerge:
One potential extension is to generalize the setting beyond linear scores which is certainly not
straightforward even for value-feedback based convex optimization setting []. Extending to partially
observable preferences or partial ranking feedback over a subset of alternatives is also an interesting
open problem. Another direction is to explore hybrid approaches that combine gradient descent with
other optimization techniques like Thompson sampling or Bayesian methods, to reduce variance in
feedback-based learning. Finally, investigating how this algorithm can be adapted for different
AI alignment challenges, such as incorporating fairness or ethical constraints in decision-making,
presents an exciting opportunity for future research.
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Supplementary: Dueling in the Dark: An Efficient and
Optimal Mirror Descent Approach for Online

Optimization with Adversarial Preferences

Appendix A. Appendix for Sec. 2

Remark 1 For any x ∈ D,

θ∗
t
⊤(x∗ − x)

4
≤ Pt(x∗,x)− 1/2 ≤ θ∗

t
⊤(x∗ − x)

when D ⊆ Bd(1). We prove this in App. A. Consequently, in the rest of the paper, we will address
the regret

R̂eg
Logit-DB
T :=

T∑
t=1

[
θ∗
t
⊤(x∗ − xt) + θ∗

t
⊤(x∗ − yt)

2

]
,

noting RegLogit-DB
T ≤ R̂eg

Logit-DB
T from Rem. 1, thus designing algorithm to bound R̂eg

Logit-DB
T would

suffice to bound RegLogit-DB
T .

Proof [Proof of Rem. 1] Let us fix a round t, and for simplicity denote x∗ = x∗
t (dropping the

subscript). Note that due to the underlying preference structure for any x ∈ D,

Pt(x
∗,x)− 1/2 = σ(θ∗

t
⊤(x∗ − x))− 1/2 =

exp(θ∗
t
⊤x∗)

exp(θ∗
t
⊤x∗) + exp(θ∗

t
⊤x)
− 1/2

=

(
exp(θ∗

t
⊤(x∗ − x))− 1)

)
2
(
exp(θ∗

t
⊤(x∗ − x)) + 1)

) (a)

≥
(
exp(θ∗

t
⊤(x∗ − x))− 1)

)
4

=
1

4

(
1 +

∞∑
i=1

(θ∗
t
⊤(x∗ − x))i

i!
− 1

)
>

θ∗
t
⊤(x∗ − x)

4

where (a) follows since θ∗
t
⊤x ∈ [0, 1], ∀x ∈ D, assuming θ∗

t ∈ Bd(1) and D ⊆ Bd(1). On the
other hand,

Pt(x
∗,x)− 1/2 = σ(θ∗

t
⊤(x∗ − x))− 1/2 =

exp(θ∗
t
⊤x∗)

exp(θ∗
t
⊤x∗) + exp(θ∗

t
⊤x)
− 1/2

=

(
exp(θ∗

t
⊤(x∗ − x))− 1)

)
2
(
exp(θ∗

t
⊤(x∗ − x)) + 1)

) (b)

≤
(
exp(θ∗

t
⊤(x∗ − x))− 1)

)
2

=
1

2

(
1 +

∞∑
i=1

(θ∗
t
⊤(x∗ − x))i

i!
− 1

)
.
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Now let us denote a = θ∗
t
⊤(x∗ − x) and note by assumption 0 < a ≤ 2.

Pt(x
∗,x)− 1/2 =

1

2

( ∞∑
i=1

ai

i!

)
≤ a

2
+
a2

2

(
1 +

a

2
+
a2

22
+ . . .

)
=
a

2
+
a2

2

2

(2− a)
≤ a

2
+
a

2
= a = θ∗

t
⊤(x∗ − x),

where the second the last inequality holds since a ∈ (0, 2), assuming θ∗
t ∈ Bd(1) and D ⊆ Bd(1).

Appendix B. Appendix for App. B.2

B.1. Key Lemmas for Thm. 1 (Regret Analysis of Alg. 1)

We define the useful notations which will be useful for stating the claims:
Notations: We denote the history Ht := {(i1, o1), (i2, o2), . . . (it−1, ot−1)} till time t. We define
a norm associated with the Hessian of ψ at w as ∥x∥w = ∥x∥∇2ψ(w) =

√
x⊤∇2ψ(w)x for any

x ∈ Rd. This is indeed a norm since a self-concordant barrier is strictly convex, such that ∇2ψ(w)
is positive definite for any w ∈ int(D).
Further considering the eigen-decomposition of∇2ψ(w) =

∑d
i=1 λiviv

⊤
i , we further note that

∥x∥w =
√
x⊤∇ψ(w)x =

√√√√ d∑
i=1

λt,ix⊤(vt,iv⊤
t,i)x =

√√√√ d∑
i=1

λi(x⊤vt,i)2, ∀x ∈ Rd.

Further, one can define the dual norm of Hessian of ψ at w as:

∥x∥∗w =
√

x⊤∇−2ψ(w)x =

√√√√ d∑
i=1

1

λt,i
x⊤(vt,iv⊤

t,i)x, ∀x ∈ Rd.

The Dikin ellipsoid centered at w with radius r is defined as the ellipsoid

Er(w) =
{
x ∈ Rd : ∥x−w∥w ≤ r

}
.

Property 1 ([2, 17]) If ψ is a self-concordant barrier on D, then E1(w) ⊂ D for any w ∈ int(D).

Property 2 ([17]) Let x ∈ int(D) be such that ∥∇Φ(x)∥∗x ≤ 1
4 , and let x⋆ = argminx∈D Φ(x).

Then for any Φ : D 7→ R,
∥x− x⋆∥x ≤ 2∥∇Φ(x)∥∗x.

Property 3 ([10, 17]) Let ψ be a ν-self concordant function over D, then for all x,y ∈ int(D):

ψ(y)− ψ(x) ≤ ν log 1

1− πx(y)
,

where πx(y) = inf{t ≥ 0 : x+ t−1(y − x) ∈ D}.
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The proof sketch of Thm. 1 depends on some key lemmas. First we claim that gt given an ‘almost’
unbiased estimate of θ∗

t up to some constants.

Lemma 3 (Ensuring Decision Boundaries) At any round t, xt and yt ∈ D in Alg. 1.

Proof We will prove the result for xt. A similar analysis will apply to yt as well. Note since
wt ∈ int(D), and ∥xt −wt∥x ≤ γt ≤ 1. Note Rem. 5 ensures γt ≤ 1 and thus the results follows
using Property 1.

Lemma 4 (Gradient Estimation) It can be shown that for any round t,

E[gt | Ht] = Cθ∗
t ,

for some C ∈ [0.22, 0.25], whenever γt ≤ 0.7
√
λmin(∇2ψ(wt)).

Remark 5 (Ensuring appropriate choice of γt) Noting that, given the decision space D, since
∇2ψ(wt) ≥ H2

D,ψId, one can easily satisfy γt ≤ 0.7
√
λmin(∇2ψ(wt)) by choosing γt = min{1, 0.7HD,ψ}.

We have given some specific examples in Rem. 2.

Proof Consider any fixed round t ∈ [T ]. We note that:

Eot [(ot − 1/2) | it,Ht] = Eot [ot | it,Ht]− 1/2 = σ
(
θ∗
t
⊤(xt − yt)

)
− 1/2

= σ
(
(2γt/
√
λt,it)θ

∗
t
⊤vt,it

)
− 1/2

= σ′(εt)(γt/
√
λt,it)θ

∗
t
⊤vt,it [using MVT, where |εt| ∈ [0, |(γt/√λt,it)θ∗

t
⊤vt,it |]. (1)

Let us denote ct = |(γt/√λt,it)θ∗
t
⊤vt,it | and note that we can bound ct ≤ γt√

λt,it
∥θ∗

t ∥∥vt,it∥ ≤
γt√

λmin(∇2ψ(wt))
, where the first inequality follows from the Cauchy-Schwarz inequality.

Then by choosing any γt ≤ 0.7
√
λmin(∇2ψ(wt)) we get ct ≤ 0.7. This along with the results of

Lem. 8 (App. D) implies that σ′(ϵt) ≤ [0.222, 0.25] for the appropriate choice of γt. Note Rem. 5
explains the suitable choice of γt For simplicity, we will use L = 0.222, U = 0.25 for the rest of
this proof and let σ′(εt) ∈ [L,U ]. The interesting thing now is to note that, given the historyHt till
time t, gt in Alg. 1 satisfies:

Eot,it [gt | Ht] = Eit,ωt

[
d

γt
Eot

[(
ot −

1

2

)
| it,Ht

]√
λt,itvt,it

]

= Eit

[
d

γt

(
σ′(εt)(γt/

√
λt,it)θ

∗
t
⊤vt,it

)√
λt,itvt,it

]
using Eq. (1)

∈

[
LEit

[
d

γt

(
(γt/
√
λt,it)θ

∗
t
⊤vt,it

)√
λt,itvt,it

]
, UEit

[
d

γt

(
(γt/
√
λt,it)θ

∗
t
⊤vt,it

)√
λt,itvt,it

]]
∈ [Lθ∗

t , Uθ∗
t ],

where the last inequality follows noting:
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Eit

[
d

γt

(
(γt/
√
λt,it)θ

∗
t
⊤vt,it

)√
λt,itvt,it

]
= Eit

[
d

(
(1/
√
λt,it)θ

∗
t
⊤vt,it

)√
λt,itvt,it

]
= d

( d∑
i=1

1

d
√
λt,i

√
λt,ivt,iv

⊤
t,i

)
θ∗
t = θ∗

t ,

since
∑

i vt,iv
⊤
t,i = Id by the fact that {vt,i}i∈[d] are orthonormal vectors that span Rd.

Equipped with the previous results, we are now ready to proof our main theorem, Thm. 1, as shown
below.

B.2. Regret Analysis: Proof of Thm. 1

Suppose Be The Leader (BTL) algorithm [3, 18] is run on the loss vector sequence−g1,−g2, . . . ,−gT ), gi ∈
Rd. We know that for any u ∈ Dδ:

T∑
t=1

(
wt − u

)⊤
(−gt) ≤

T∑
t=1

(
wt −wt+1

)⊤
(−gt) +

(ψ(u)− ψ(w1))

η
.

Further applying Holder’s inequality, we get:

T∑
t=1

(
u−wt

)⊤
gt ≤

T∑
t=1

∥wt −wt+1∥wt∥−gt∥
∗
wt

+
(ψ(u)− ψ(w1))

η
. (2)

Note we defined: gt = d
γt

(
ot − 1

2

)√
λt,itvt,it and by Lem. 4, we have

0.22θ∗
t ≤ E[gt | Ht] ≤ 0.25θ∗

t ,

which implies :

θ∗
t
⊤(u−wt

)
≤ 1

0.22
E[g⊤t | Ht]

(
u−wt

)
, (3)

combining this with Eq. (2), we get:

0.22θ∗
t
⊤(u−wt

)
≤

T∑
t=1

∥wt −wt+1∥wt∥gt∥
∗
wt

+
(ψ(u)− ψ(w1))

η
. (4)

On the other hand, by definition of ∥·∥∗wt , we have that for any realization of gt:

∥gt∥∗wt =

√√√√ d∑
i=1

1

λi,t
g⊤
t (vt,iv

⊤
t,i)gt =

d

2γt
. (5)

13



DUELING IN THE DARK:AN OMD APPROACH FOR OPTIMIZATION WITH ADVERSARIAL PREFERENCES

Additionally, let us denote by Φt(w) = η
∑t

τ=1(−gτ )⊤w + ψ(w), then note Alg. 1 have wt+1 =
argminw∈Dδ Φt(x). Thus, applying Property 2, we get:

∥wt −wt+1∥wt ≤ 2∥∇Φt(wt)∥∗wt = 2∥∇Φt−1(wt) + ηgt∥∗wt = 2η∥gt∥∗wt ,

where note by definition∇Φt−1(wt) = 0 by definition of wt for all t. But note for Property 2 to be
applied we need ∥∇Φt(wt)∥∗t ≤ 1

4 , but this is indeed true since since Eq. (7) implies

η∥gt∥∗wt ≤
ηd

2γt
,

and thus choosing any η ≤ γt
2d , we have ∥∇Φt(wt)∥∗t ≤ 1

4 , as desired. We will see shortly how to
choose η to ensure η ≤ γt

2d .
Further using Property 2, we have ∥wt −wt+1∥wt ≤ 2η∥gt∥∗wt , which along with Eq. (4) we get:

0.22
T∑
t=1

(
u−wt

)⊤
θ∗
t ≤

T∑
t=1

2η∥gt∥∗2wt +
(ψ(u)− ψ(w1))

η

= 2η
T∑
t=1

d2

4γ2t
+
ν log 1

1−πw1 (u)

η
.

However noting u and w1 ∈ Dδ , by definition of πw1(u) = (1− δ) in Property 3, implying:

0.22
T∑
t=1

(
u−wt

)⊤
θ∗
t ≤ η

T∑
t=1

d2

2γ2t
+
ν log 1

δ

η
. (6)

Further if we choose u := argmaxx∈Dδ
∑T

t=1 θ
∗
t
⊤x, and recalling that we defined x∗ := argmaxx∈D

∑T
t=1 θ

∗
t
⊤x,

note that:

T∑
t=1

(
x∗ −wt

)⊤
θ∗
t ≤

T∑
t=1

(
u−wt

)⊤
θ∗
t + δTLD

=
1

0.22

[
η

T∑
t=1

d2

2γ2t
+
ν log 1

δ

η

]
+ δTLD, from Eq. (6)

≤ 1

0.22

[
ηd2T

min{1, H2
D,ψ}

+
ν log 1

δ

η

]
+ δTLD, since we chose γ ≤ min{1, 0.7HD,ψ}

=
d
√
νT log T

0.22HD,ψ
+ LD,

choosing η =
√
νHD,ψ

d
√
T log T

and δ = 1
T , concludes the prove noting the diameter of the decision set

D ⊆ Bd(1) is bounded by 1, and the lipschitz constant L ≤ maxt∈[T ]∥θ∗
t ∥ ≤ 1.
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Appendix C. Appendix for App. C.1

C.1. Regret Analysis of Alg. 2

We will need to prove some key lemmas before proceeding to the proof of the main theorem Thm. 2.

Lemma 5 (Gradient (θ∗
t ) Estimation) It can be shown that for any round t,

E[gt | Ht] = Cθ∗
t ,

for some C ∈ [0.22, 0.25], whenever γt ≤ 0.7
√
λmin(∇2ψ(wt)).

Proof [Proof of Lem. 5] Let us fix any t ∈ [T ]. Recall that we defined gℓt =
d
γt

(
oℓt − 1

2

)√
λt,iℓt

vt,iℓt
and for any ℓ = 1, 2, . . . , B, Now noting since iℓt ∼ Unif([d]), following the notations and exact
same proof of Lem. 4, we get that: for any ℓ ∈ [B], E[gℓt | Ht] = Cθ∗

t , for some C ∈ [0.22, 0.25].
The proof now follows noting gt :=

1
B

∑B
ℓ=1 g

ℓ
t .

We next prove the most important claim of this analysis that shows that indeed the batched feedback
helped to obtain a more accurate (reduced variance) estimate of the gradient θ∗

t at each time step t.
The proof involves a smart exploitation of the second moment of Binomial distribution, we will see
in the proof of Lem. 6.

Lemma 6 (Improved Variance of gt (Norm bound)) At any time t, one can show that

Eiℓt ,oℓt
[∥gt∥∗wt ] ≤

d

γt
√
{B, d}

. (7)

Proof [Proof of Lem. 6] We start by recalling that we defined the dual norm of Hessian of ψ at w as

∥x∥∗w =
√

x⊤∇−2ψ(w)x =

√√√√ d∑
i=1

1

λt,i
x⊤(vt,iv⊤

t,i)x, ∀x ∈ Rd.

At any round t, let us now denote by Nt,i the number of times the i-th eigen basis, vt,i, was drawn
at round t, i ∈ [d]. Clearly

∑d
i=1Nt,i = B. With this view we note that:

gt =
1

B

B∑
ℓ=1

gℓt =
d

Bγt

d∑
i=1

Nt,i

(
oit −

1

2

)√
λt,ivt,i,

and noting that since vis are orthogonal to each other:

Ei1t ,o1t ,...idt ,odt

[
∥gt∥∗wt

]
≤ d

2Bγt
Ei1t ,...,idt

[√√√√ d∑
i=1

N2
t,iv

⊤
t,i(vt,iv

⊤
t,i)vt,i

]

=
d

2Bγt

√√√√ d∑
i=1

Eit
[
N2
t,i

]
.
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We now note that Ni ∼ Bin(B, 1/d) and if X ∼ Bin(n, p), then E[X2] = V (X) + E[X]2 =
np(1− p) + n2p2. Using this and denoting Bd = min{B, d} ≤ d, we get:

Ei1t ,o1t ,...idt ,odt

[
∥gt∥∗wt

]
≤ d

2Bdγt

√√√√ d∑
i=1

3Bd
d

=
d

γt
√
Bd

.

Finally we are now ready to proof the bound of our main theorem, Thm. 2:
Proof [Proof of Thm. 2] The proof follows almost the same steps that of proof of Thm. 1. In
particular, same as the proof of Thm. 1, one can bound:

0.22

T∑
t=1

(
u−wt

)⊤
θ∗
t ≤

T∑
t=1

2η∥gt∥∗2wt +
ν log 1

δ

η

≤ 2η

T∑
t=1

d2

γ2tBd
+
ν log 1

δ

η
,

where the last inequality follows from Lem. 6. Same as before, choosing u := argmaxx∈Dδ
∑T

t=1 θ
∗
t
⊤x,

and recalling that x∗ := argmaxx∈D
∑T

t=1 θ
∗
t
⊤x, we get:

T∑
t=1

(
x∗ −wt

)⊤
θ∗
t ≤

T∑
t=1

(
u−wt

)⊤
θ∗
t + δTLD

=
1

0.22

[
η

T∑
t=1

2d2

γ2tBd
+
ν log 1

δ

η

]
+ δTLD, from Eq. (6)

≤ 1

0.22

[
ηd2T

min{1, H2
D,ψ}Bd

+
ν log 1

δ

η

]
+ δTLD, since we chose γ ≤ min{1, 0.7HD,ψ}

=
d
√
νT log T

0.22HD,ψ
√
Bd

+ LD,

choosing η =
√
νBdHD,ψ
d
√
T log T

and δ = 1
T , concludes the proof noting the diameter of the decision set

D ⊆ Bd(1) is bounded by 1, and the lipschitz constant L ≤ maxt∈[T ]∥θ∗
t ∥ ≤ 1.

C.2. Regret Analysis: Proof of Thm. 1

We start our analysis with noting a key property of Plackett Luce model, which will be crucial for
our proof analysis. Let us denote a MNL(θ1, . . . , θn) model on n items such that, probability of any
ranking σ ∈ Σ The property will rely on some notations, that I will describe below:
Ranking respecting pairwise comparison. Let σ ∈ Σn any ranking such that σ(i) ≻ σ(j).
Recall then the probability of any permutation σ ∈ Σ[n]

m is given by:
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Pt(σm|S) =
m∏
i=1

θ∗
t
⊤x

σ(i)
t∑m

j=i θ
∗
t
⊤x

σ(j)
t +

∑
j∈S\Sm θ∗

t
⊤x

σ(j)
t

,

Then let us denote by Σi,j = {σ ∈ Σ | σ(i) < σ(j), i.e. i is preferred over j}. Then it can be
shown that

Lemma 7 (Pairwise Properties of MNL Model)

P (i > j) =
∑
σ∈Σi,j

P (σ)

Appendix D. Some Useful Results

Lemma 8 For any x ∈ [−0.7, 0.7], σ′(x) ∈ [0.222, 0.25].

Proof Let us first consider the positive interval x ∈ [0, 0.7]. Note by definition, since σ(x) =
1

1+e−x , ∀x ∈ R, first derivative and the second derivative of sigmoid is respectively given by:

σ′(x) =
e−x

(1 + e−x)(1 + e−x)

=
1

1 + e−x
− 1

(1 + e−x)2
,

and

σ′′(x) =

[
e−x

(1 + e−x)2
− 2e−x

(1 + e−x)3

]
.

As shown in the right figure, this brings
us to the observation that σ′′(x) < 0 for any x > 0, and thus σ′(·) is a decreasing function in the in-
terval [0,∞). Thus the function σ′(·) attains maximum at x = 0 and minimum at x = 0.7, yielding
σ′(x) ∈ [0.222, 0.25] in the range x ∈ [0, 0.7].
The result follows from the symmetry of σ′(·) function around the Y -axis.

17


	Introduction
	Problem Setup
	Problem: Adversarial Logistic Dueling Bandits (Logit-DB): 

	Dueling Case: Algorithm for Logit-DB Problem
	Batched Feedback: Algorithm for B-Batched Logit-DB Problem
	Algorithm for Batched-LogitDB

	Conclusion
	Appendix for sec:setup
	Appendix for sec:dbreg
	Key Lemmas for thm:db (Regret Analysis of alg:duel)
	Regret Analysis: Proof of thm:db

	Appendix for sec:batreg
	Regret Analysis of alg:bat
	Regret Analysis: Proof of thm:db

	Some Useful Results

