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ABSTRACT

Gradient descent (GD) in modern neural networks initially sharpens the loss land-
scape by increasing the top Hessian eigenvalues until the step size becomes un-
stable. Subsequently, it enters the “Edge of Stability” (EoS) regime, characterized
by unstable step size and non-monotonic loss reduction. EoS regime challenges
conventional step size wisdom, sparking recent intensive research. However, a de-
tailed characterization of EoS within the fine-grained GD neural network training
dynamics remains under-explored. This paper provides a comprehensive analysis
of both the sharpening phase and the EoS regime throughout the entire GD dynam-
ics, focusing on shallow ReLU networks with squared loss on orthogonal inputs.
Our theory characterizes the evolution of the top Hessian eigenvalues and eluci-
dates the mechanisms behind EoS training. Leveraging this analysis, we present
empirical validations of our predictions regarding sharpening and EoS dynamics,
contributing to a deeper understanding of neural network training processes.

1 INTRODUCTION

Gradient descent (GD) has demonstrated remarkable effectiveness in training neural networks, yet
our theoretical understanding of its operation remains incomplete. Conventional optimization theory
relies on the descent lemma, which assures GD’s monotonic loss reduction with a step size η, pro-
vided the maximum Hessian eigenvalue λ1 remains below a critical sharpness threshold λ∗ = 2/η.
However, if λ1 exceeds λ∗, GD iterations diverge. The descent lemma has formed the basis for
practical heuristics and convergence theories associated with GD and its variants.

A recent seminal discovery by Cohen et al. (2021) has drawn considerable attention within the re-
search community (See Section 1.1) due to its divergence from conventional optimization theory.
This work reveals the “Progressive Sharpening” (PS) regime, in which GD systematically sharpens
the loss landscape until the top Hessian eigenvalues reach the critical sharpness threshold λ∗. PS
regime starkly contrasts with quadratic loss, which has globally constant Hessian eigenvalues. Sub-
sequently, GD transitions into the “Edge of Stability” (EoS) regime. In the EoS, Hessian eigenvalues
hover just above λ∗, and the loss undergoes a non-monotonic reduction accompanied by oscillations
and sporadic spikes. In contrast, GD would diverge in the EoS regime for quadratic loss functions.

Understanding these intriguing phenomena within modern neural networks presents significant the-
oretical challenges due to the intricate interactions among various configurations involved in neural
network training. Existing analyses often resort to simplified models that focus solely on EoS dy-
namics along restricted dimensions. While these analyses yield valuable insights, their direct appli-
cability to neural networks remains somewhat elusive. Our investigations have unveiled a broader
perspective: the PS and EoS regimes span multiple eigenspaces, each operating independently. (See
Figure 1.) Furthermore, while the PS regime is typically simulated using normalization techniques
that increase sharpness or step size as loss decreases, the PS regime can still occur empirically with-
out such normalization. Our analysis demonstrates the PS regime without any normalization.

Our work embarks on a nuanced exploration, characterizing the PS and EoS regimes through a fine-
grained analysis of GD dynamics in shallow ReLU networks. We extend and refine the insights from
recent research by Boursier et al. (2022), which offers a comprehensive characterization of gradient
flow (GF) dynamics for training two-layer ReLU networks with squared loss functions and orthog-
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Figure 1: Sharpness of the Top-5 Eigenvalues. A fully-connected ReLU network is trained to
completion using gradient descent on a 5k subset of the CIFAR-10 dataset. The left plots the sharp-
ness of the top 5 eigenvalues during training. The progression of training loss is shown in the right
figure.

onal inputs at small initialization. Our extension from GF to GD may be of independent interest
due to unique challenges arising from the broken invariances and discretization errors. Leveraging
our extensive characterization of GD dynamics, we elucidate the driving forces behind progressive
sharpening in neural networks and the emergence of independent EoS phenomena across multiple
eigenspaces.

1.1 RELATED WORKS

Our motivation stems from the empirical demonstration of the EoS phenomenon in Cohen et al.
(2021). However, we note that similar empirical observations have surfaced in other works as
well (Xing et al., 2018; Jastrzębski et al., 2020; Lewkowycz et al., 2020; Ahn et al., 2022b).

Recent years have witnessed a surge in research dedicated to unraveling the mysteries of the Pro-
gressive Sharpening (PS) and Edge of Stability (EoS) regimes in neural network dynamics. Given
the formidable complexity of fully characterizing these dynamics, many studies have delved into
minimalistic models, isolating specific aspects of the EoS phenomenon. For instance, Zhu et al.
(2023) examined GD trajectories in a 2-parameter 4-layer 1-width scalar network, showcasing their
convergence towards a minimum with EoS sharpness. Chen & Bruna (2023) explored fixed points
for two-step updates in a 2-layer 1-width network and matrix factorization. Agarwala et al. (2023)
scrutinized the quadratic regression model, establishing EoS behavior in two dimensions. Kreisler
et al. (2023) focused on the linear scalar network, revealing that each GD update reduces the sharp-
ness of the Gradient Flow (GF) solution initiated at the current point. Ahn et al. (2022a) provided
insights into the bouncing dynamics of EoS in 2-dimensional loss functions and phase transitions in
approximate GD dynamics when input weights are fixed in 2-layer ReLU networks. Building upon
this foundation, Song & Yun (2023) extended and elucidated the trajectory alignment behavior of
EoS dynamics within 2-dimensional loss landscapes through bifurcation theory. Lastly, Wu et al.
(2023) showcased EoS dynamics in 2-layer diagonal linear networks. In contrast, our paper presents
a comprehensive analysis of the full GD dynamics of 2-layer ReLU networks, where all parameters
are trained.

Using minimalistic models simplifies the analyses of GD dynamics and sharpness, thereby facilitat-
ing the EoS phenomena in isolation. However, it is notable that conventional analyses predominantly
concentrate on a singular EoS direction and its interaction with non-sharp direction, inadvertently
overlooking the intricate interplay among multiple EoS directions that frequently emerge during
neural network training. In this paper, we address this significant gap in the literature by conduct-
ing a comprehensive examination that accounts for the often neglected multi-directionality inherent
in such scenarios. Our study delves into the evolution of not just one but multiple EoS directions,
contributing to a more nuanced understanding of the complexities involved in network convergence.

Another avenue of research seeks to delineate the general conditions conducive to the emergence
of the EoS phenomenon. Ma et al. (2022) demonstrated that sub-quadratic loss functions prevent
the unstable GD from diverging. Arora et al. (2022) and Lyu et al. (2022) illustrated how, as loss
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decreases, normalization amplifies the effective step size, ushering in the EoS regime. Wang et al.
(2022) employed the output weight norm as a proxy to the sharpness, unveiling a four-phase cycle
arising from the interplay between output weight norm and loss gradient. Damian et al. (2023)
proposed a similar four-stage cycle but rooted in self-stabilizing mechanisms stemming from higher-
order terms in Taylor expansions. Even et al. (2023) explored the influence of stochasticity and large
step sizes on GD and stochastic GD in diagonal linear networks for overparametrized regression.
Most recently, MacDonald et al. (2023) established connections between Hessian eigenvalues and
Jacobian singular values. The identification of these general conditions where PS and EoS may
occur does not imply that neural networks invariably exhibit PS and EoS due to these conditions.
Our work adopts a distinct approach by scrutinizing the detailed GD dynamics of ReLU networks.

2 PRELIMINARIES

2.1 NOTATIONS AND SETUP

Notations. For m ∈ N, we define [m] = {1, 2, · · · ,m}. We denote a vector by a lower case bold
letter. For a vector x, we represent its Euclidean norm as ∥x∥. We use 1 to represent the indicator
function having value 1 when the condition in subscript is true and 0 otherwise. We use subscripts
to represent index for neurons, data points or iterates. When there is a conflict, we put iterate index
in superscripts.

Shallow ReLU network. We consider a two-layer ReLU network

hθ(x) =

m∑
j=1

ajσ(⟨wj ,x⟩),

where m denotes the width of the network and the activation function σ is the ReLU function.
wj ∈ Rd and aj ∈ R represents the input and output weights of the j-th neuron for j ∈ [m]. We
encapsulate all parameters in θ ∈ Rmd+m.

Mean squared error loss. We use the mean squared error loss function

L(θ) = 1

2n

n∑
k=1

(hθ(xk)− yk)
2,

where n denotes the number of data. xk ∈ Rd and yk ∈ R represents the k-th input and output data
point for k ∈ [n]. Following Boursier et al. (2022), we make the following assumptions on the data.
Assumption 2.1. The input points are orthogonal to each other. Formally, we assume ⟨xk, xk′⟩ =
1k=k′ for all k, k′ ∈ [n]. The output is nonzero yk ̸= 0 for all k ∈ [n] and unbalanced:∑

k|yk>0 y
2
k ̸=

∑
k|yk<0 y

2
k. Without loss of generality, we take

∑
k|yk>0 y

2
k >

∑
k|yk<0 y

2
k.

Gradient descent. We study the gradient descent (GD) with the update rule

θt+1 − θt = −η∇L(θ) = − η

n

n∑
k=1

(hθ(xk)− yk)∇hθ(xk).

Here, η is the step size. We introduce the error weighted data vector

dt = − 1

n

n∑
k=1

1⟨wt
j ,xt⟩>0(hθ(xk)− yk)xk

to succinctly write the dynamics as

wt+1
j −wt

j = ηatjd
t
j and at+1

j − atj = η⟨wt
j ,d

t
j⟩. (1)

We initialize our parameters as

w0
j = λgj and a0j = λsj ,

where gj and sj are drawn from the uniform distributions U(Sd−1) and U({−1, 1}), respectively.
The parameter 0 < λ < 1 controls the magnitude at initialization.
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2.2 BASIC PROPERTIES

Now we state lemmas for basic properties of GD dynamics in our settings.

Lemma 2.1. (Approximate Balance) GD iterates slowly update the balance:(
∥wt+1

j ∥2 − |at+1
j |2

)
−
(
∥wt

j∥2 − |atj |2
)
= η2

(
∥dt

j∥2|atj |2 − ⟨dt
j ,w

t
j⟩2

)
. (2)

Equivalently, the balance updates as

∥wt+1
j ∥2 − |at+1

j |2 =
(
1− η2∥dt

j∥2
) (

∥wt
j∥2 − |atj |2

)
+ η2

(
∥dt

j∥2|atj |2 − ⟨dt
j ,w

t
j⟩2

)
. (3)

Since |⟨dt
j ,w

t
j⟩| ≤ ∥dt

j∥∥wt
j∥, if ∥wt

j∥ ≥ |atj |, then from the Equation 2, we have ∥wt+1
j ∥ ≥

|at+1
j |. If we initialize ∥w0

j∥ ≥ |a0j |, then we have ∥wt
j∥ ≥ |atj | for all t ≥ 0. Note that the gradient

flow would keep the balance unchanged (Arora et al., 2019). Our analysis initialize at balance i.e.
∥w0

j∥ = |a0j | and bound the approximate balance throughout GD dynamics.

Lemma 2.2. (Neuron Preactivation) GD iterates update the pre-activation value as

⟨wt+1
j ,xk⟩ − ⟨wt

j ,xk⟩ = ηatj⟨dT
j ,xk⟩ = −ηatj

1

n
1⟨wt

j ,xk⟩>0 (hθt(xk)− yk) .

If the neuron is inactive at some data as ⟨wt
j ,xk⟩ ≤ 0, then we have ⟨wt+1

j ,xk⟩ = ⟨wt
j ,xk⟩. Thus,

if the neuron is inactive at some data point at initialization as ⟨w0
j ,xk⟩ ≤ 0, then it will keep being

inactive as ⟨wt
j ,xk⟩ ≤ 0 for all t ≥ 0. Because of this property, we assume that some neurons at

the beginning to be aligned with all data point. We refer to Boursier et al. (2022) for the justification
of this assumption.

Assumption 2.2. Define

S1,+ :=
{
j ∈ [m] : sj = +1 and for all k such that yk > 0, ⟨wk

j ,xk⟩ ≥ 0
}
,

S1,− :=
{
j ∈ [m] : sj = −1 and for all k such that yk < 0, ⟨wk

j ,xk⟩ ≥ 0
}
.

We assume that the sets S+,1 and S−,1 are both non-empty.

3 MAIN RESULT

We state our main theorem.

Theorem 3.1. Let θ ∈ Rmd+m be ordered as

θ(j−1)(d+1)+1:j(d+1) = (wj ; aj).

Define the vector v+,v− ∈ Rmd+m as

v+,(j−1)(d+1)+1:j(d+1) =

{
(d+, ∥d+∥) if j ∈ S1,+,
0d otherwise,

and

v−,(j−1)(d+1)+1:j(d+1) =

{
(d−, ∥d−∥) if j ∈ S1,−,
0d otherwise.

Furthermore, define sharpness along these directions as

λ+ =
⟨v+,∇2L(θ)v+⟩

∥vv+∥2

and

λ− =
⟨v−,∇2L(θ)v−⟩

∥vv−∥2
.

Then, they develop in each phase as follows:
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• Phase 1: The sharpness stays small throughout as

λ+ ≤ 2|S1,+|λ1−rϵ and

λ− ≤ 2|S1,−|λ1−rϵ.

• Phase 2: The sharpness in positive direction grows rapidly as

λ+ ≥ n∥d+∥2

4|S1,+|
1

1 + exp(−a+(λ)(t− τ))

while the sharpness in negative direction stays small as

λ− ≤ 2|S1,−|λϵ.

• Phase 3: The sharpness in negative direction grows rapidly as

λ− ≥ n∥d−∥2

4|S1,−|
1

1 + exp(−a−(λ)(t− τ))
.

Therefore, the smoothness along the two dimensions develops independently. Moreover, two di-
mensions have different growth rates of a+(λ) and a−(λ).

4 EXPERIMENTS

In this section, we verify our theory by tracking the trajectories of lower eigenvalues. A two-layer
fully-connected ReLU network is trained with mean squared error (MSE) on a 5k subset of CIFAR-
10 (Krizhevsky et al., 2009). The details of our experimental settings can be found in Appendix B.

As depicted in Figure 1, upon the entry of the maximum eigenvalue into the EoS phase, the sta-
bility of gradient descent is compromised. A noticeable consequence of this shift is the oscillation
observed in the sharpness of the maximum eigenvalue, leading to corresponding oscillations in the
remaining eigenvalues, all converging toward the threshold 2/η. Intriguingly, we observe that the
sharpness of each individual eigenvalue demonstrates independent movement in various directions
during this process. Variations in directions are shown more distinctly in Figure 2. In every direction,
there exists a distinct rate at which sharpness increases.

Further, we investigate the growth rate of sharpness of different eigenvalues through learning rate
decay. We run gradient descent on the network with stepsize η until the eigenvalues reach the
threshold. The learning rate is reduced once the chosen number of eigenvalues is in the EoS phase.
We vary the iteration step at which the learning rate decay occurs and compare the resulting figures
(Figure 2). Regardless of the chosen steps, the growth rate of sharpness after learning rate decay
displays a relatively constant progression. Observed dynamics of sharpness of eigenvalues verify
the assumptions of our theory.

We perform additional experiments on the effects of varying widths, depths, activation functions,
and loss functions on the evolution of sharpness. See Appendix C for details.

5 CONCLUSION

In this paper, we study the underlying mechanisms driving progressive sharpening and independent
EoS behaviors across various eigenspaces. We propose a comprehensive exploration of GD dynam-
ics in shallow ReLU networks, where all parameters are trained. Our theoretical study is evaluated
via experiments on fully-connected ReLU networks. We analyze the trajectories of sharpness of
lower eigenvalues and independent progression with different directions, supporting our theoretical
analysis. Our work extends the understanding of the PS and EoS regimes to shallow ReLU networks,
shedding light on the dynamics of GD in these regimes, even without normalization techniques.
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Figure 2: Independent EoS Directions. The evolution of the top 20 eigenvalues during the training
of the fully-connected ReLU network is shown. The maximum eigenvalue reaches the EoS first,
followed by the rest of the eigenvalues. Observe independent and diverse trajectories of the eigen-
values.

0 1000 2000 3000 4000
Iteration

50

75

100

125

150

175

200

225

250

275

Sh
ar

pn
es

s

eig 1
eig 2
eig 3

0 1000 2000 3000 4000
Iteration

50

75

100

125

150

175

200

225

250

275

Sh
ar

pn
es

s

eig 1
eig 2
eig 3

0 1000 2000 3000 4000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

0 1000 2000 3000 4000
Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

Figure 3: Learning Rate Decay. We observe the sharpness and training loss change due to learning
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line shows the step at which learning rate decay occurs.
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A MAIN PROOFS

A.1 PHASE 1

During phase 1, GD aligns neurons with the data while the weights remain small in magnitude and
input-output layers remain balanced. Concretely, for t-th iteration in phase 1, the neurons remains
small as

∥wt
j∥ ≤ Aλ,

∣∣atj∣∣ ≤ Aλ,

for some A > 1; the balance is approximately maintained as

∥wt
j∥ −

∣∣atj∣∣ ≤ Bλ

for some B < 1; and the output weight does not change the sign as

sign(atj) = sign(a0j ).

The alignment that is achieved at the end of the training is represented as

⟨ŵτ1
j ,d+⟩ ≥ (1− factor)∥d+∥

for j ∈ S1,+ and
⟨ŵτ1

j ,d−⟩ ≥ (1− factor)∥d−∥
for j ∈ S1,−.

We begin our proof by defining the time period during which the weights remain small in magnitude
and input-output layers remain balanced.
Lemma A.1. Let A > B + 1 > 1. Define

τinit(A,B) = inf{t ≥ 0 : ∃j ∈ [m] such that either ∥wt
j∥ > Aλ or

∣∣atj∣∣ > Aλ or

∥wt
j∥ −

∣∣atj∣∣ > Bλ or sign(atj) ̸= sign(a0j )}. (4)

Denote L = ∥D+∥+mA2λ2. Then, GD with step size η < 1
L satisfies

τinit(A,B) ≥ max

{
1

ηL
log

A

1 +B
,
1

ηL
log

B + 1

B
,

1

(ηL)2
log

A2

A2 −B2

}
.
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Proof. Let t ≤ τinit := τinit(A,B). First, for k ∈ [m], we bound the output as

|ht(xk)| ≤
m∑
j=1

∣∣atj∣∣ ∣∣σ(⟨wt
j ,xk⟩)

∣∣ ≤ m∑
j=1

∣∣atj∣∣ ∥wt
j∥ ≤ mA2λ2.

Thus, from the assumption mA2λ2 ≤ mink |yk|, during t ≤ τinit, the error ht(xk) − yk and the
label yk have the opposite sign.

The output neuron update has the form

at+1
j − atj = η⟨dt

j ,w
t
j⟩ = − η

n

n∑
k=1

1⟨wt
j ,xk⟩>0(ht(xk)− yk)⟨xk,w

t
j⟩.

Define the error weighted data vectors

dt
j,+ = − 1

n

n∑
k=1

1⟨wt
j ,xk⟩>01yk>0(ht(xk)− yk)xk,

dt
j,− = − 1

n

n∑
k=1

1⟨wt
j ,xk⟩>01yk<0(ht(xk)− yk)xk.

Then, we have
dt
j = dt

j,+ + dt
j,−, ⟨dt

j,+,w
t
j⟩ > 0, ⟨dt

j,−,w
t
j⟩ < 0,

∥dt
j,+∥ ≤ ∥d+∥+mA2λ2 and ∥dt

j,−∥ ≤ ∥d−∥+mA2λ2.

We recall the definition of data vectors

d+ =
1

n

n∑
k=1

1yk>0ykxk,

d− =
1

n

n∑
k=1

1yk<0ykxk

and the assumption ∥d+∥ > ∥d−∥. Using these notations, the output neuron update is bounded as

at+1
j − atj ≤ η⟨dt

j,+,w
t
j⟩ ≤ η∥dt

j,+∥∥wt
j∥ ≤ η

(
∥d+∥+mA2λ2

) (∣∣atj∣∣+Bλ
)
,

at+1
j − atj ≥ η⟨dt

j,−,w
t
j⟩ ≥ η∥dt

j,−∥∥wt
j∥ ≥ −η

(
∥d−∥+mA2λ2

) (∣∣atj∣∣+Bλ
)

and consequently∣∣∣∣at+1
j

∣∣− ∣∣atj∣∣∣∣ ≤ ∣∣at+1
j − atj

∣∣ ≤ η
(
∥d+∥+mA2λ2

) (∣∣atj∣∣+Bλ
)
. (5)

Applying Lemma A.2, we obtain∣∣atj∣∣ ≤ (1 + ηL)t(
∣∣a0j ∣∣+Bλ)−Bλ,

∥wt
j∥ ≤ (1 + ηL)t(

∣∣a0j ∣∣+Bλ).

From approximate balancedness in Lemma 2.1

A.2 AUXILIARY LEMMAS

This section lists and proves the lemma used throughout our main proofs.
Lemma A.2. Let A > 0 and B = AC −A. If a sequence {at}t≥0 is recursively bounded as

at+1 ≤ Aat +B

for each t ≥ 0, then we have a bound on the sequence as

at ≤ At(a0 + C)− C.

If at+1 ≥ Aat +B, then at ≥ At(a0 + C)− C.

Proof. The lemma follows from the simple observation
at+1 + C ≤ A(at + C).

The other inequality can be proven similarly.

9
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B EXPERIMENTAL SETTINGS

Training data: Our hypothesis is experimented on a subset of the CIFAR-10 image classification
dataset (Krizhevsky et al., 2009). The dataset consists of 60,000 32x32 color images in 10 classes,
with 6000 images per class. We sampled 5,000 images for our experiments.

Architectures: We examine a fully-connected network with an activation function, tanh or ReLU.

The PyTorch code for the fully-connected tanh network is provided as follows:

nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(3072, 128, bias=True),
nn.Tanh(),
nn.Linear(128, 1, bias=True)

)

For the fully-connected ReLU network, the tanh function is substituted with ReLU function:

nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(3072, 128, bias=True),
nn.ReLU(),
nn.Linear(128, 1, bias=True)

)

With the above networks as base models, we experiment on fully-connected networks with different
network widths, depths, and loss functions. Networks are trained until 99% accuracy is reached. A
stepsize η is chosen from one of the subsets {2/200, 2/150, 2/50, 2/30}.

C EXPERIMENTAL RESULTS

In this section, we observe the evolution of the sharpness of training fully-connected networks when
their widths, depths, and loss functions are varied.

Sharpness of Lower Eigenvalues: We observe the progression of top-15 eigenvalues when the
fully-connected (FC) tanh network is trained until convergence. As shown in Figure 4, once the max-
imum eigenvalue crosses 2/η, all eigenvalues exhibit a synchronized destabilization, subsequently
embarking on a discernible ascent, gradually converging toward the value 2/η. The eigenvalues of
the FC tanh network also display different trajectories in many directions.

Learning Rate Decay: In our comprehensive analysis, we focus on the discernible effects of
learning rate decay on the sharpness and training loss dynamics within the neural network. Specif-
ically, during the EoS (Edge of Stability) phase of network training, a strategic reduction of the
learning rate to η/4 is implemented. As shown in Figure 5, this pivotal adjustment instigates a pro-
found transformation in the network’s behavior. Notably, following the application of learning rate
decay, the evolution of sharpness undergoes a stark alteration. The previously observed oscillations
during the EoS phase come to a halt, indicating a newfound stability in the training process. Further-
more, in terms of Mean Squared Error (MSE), we observe a pronounced and monotonic increase in
sharpness, while in the case of Cross-Entropy (CE), a smooth and logarithmic-like progression is
evident. Equally noteworthy is the cessation of oscillations in the training loss, which subsequently
embarks on a consistent and monotonic decline.

Effects of Network Size on Shaprness: In this section, we explore the relationship between net-
work architecture and sharpness. Figures 6 and 7 reveal insights into the effects of varying the
network’s depth and width. When network widths vary, shallower network architectures tend to
reach the Edge of Stability (EoS) phase at an earlier stage in their training trajectory, demonstrating
an accelerated entry into this pivotal state. However, it is noteworthy that these shallower networks
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Figure 4: Progression of 15 Eigenvalues. The plot depicts different trajectories of 15 eigenvalues
of the fully-connected tanh network. When trained to completion, the first eigenvalue enters the EoS
phase first, and the rest follows in turn.
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Figure 5: Learning Rate Decay. We observe the sharpness and training loss change due to learning
rate decay. When the network is in EoS phase, the learning rate is reduced to η/4. A black vertical
line shows the step at which learning rate decay occurs.

linger within the EoS phase for a more extended period. Networks display similar behavior when
depths are varied. The deeper the network is, the more gradual the progression of sharpness is
throughout the training process.
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Figure 6: Width Variations. We track the evolution of sharpness during the training of fully-
connected networks with varying widths. The depth-1 network is the standard architecture. Shal-
lower networks reach the EoS phase earlier but stay longer.
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Figure 7: Depth Variations. We track the evolution of sharpness during the training of fully-
connected networks with varying depths. The depth-1 network is the standard architecture. Deeper
networks show slower progression of sharpness during training.

12


	Introduction
	Related Works

	Preliminaries
	Notations and Setup
	Basic Properties

	Main Result
	Experiments
	Conclusion
	Main Proofs
	Phase 1
	Auxiliary Lemmas

	Experimental Settings
	Experimental Results

