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ABSTRACT

Spiking self-attention (SSA) has emerged as a promising approach for medical
image segmentation due to its event-driven and energy-efficient nature. How-
ever, segmentation performance still degrades in complex scenarios where salient
and non-salient regions coexist. Two fundamental issues remain: i) existing
SSA mechanisms rely only on activated neurons, overlooking the contextual cues
carried by inactivated neurons, and ii) the binary spike representation causes
distribution distortions that make spiking self-attention lag behind their ANN-
based self-attention (SA) in spatial discriminability. To overcome these chal-
lenges, we propose MedSpikeFormer, a spiking transformer built on the princi-
ple that all neurons matter, both activated and inactivated. MedSpikeFormer in-
troduces a Spike-based Decomposed Self-Attention (SDSA) that explicitly mod-
els four types of neuronal interactions: activated—activated, activated—inactivated,
inactivated—activated, and inactivated—inactivated, thus recovering rich contextual
dependencies ignored by conventional SSA. Furthermore, we employ a distribu-
tion alignment loss that minimizes the divergence between SDSA and ANN-based
self-attention (SA), significantly closing the performance gap to improve spa-
tial feature discriminability while maintaining the binary nature of spiking neu-
ral networks. Extensive experiments on five medical segmentation benchmarks
demonstrate that MedSpikeFormer consistently outperforms 14 state-of-the-art
methods, achieving up to +2.4% mloU on ISIC2018 and +8.7% on COVID-19.
These results confirm that leveraging both fired and non-fired neurons is cru-
cial for robust spike-driven medical image segmentation. Code is available at
https://github.com/AnonymousPaper2026/MedSpikeFormer.

1 INTRODUCTION

Medical image segmentation (Li et al.| 2024; |Azad et al.| |2024; |Cheng et al., [2023). plays a vital
role in enhancing diagnostic accuracy and assisting clinicians. The task require diverse modalities,
such as dermoscopy for skin lesions (Codella et al., 2019), endoscopic polyp imaging (Jha et al.,
2020), breast ultrasound (Dinh et al., [2021)), nuclei microscopy (Dinh et al., [2021), and CT scans
of pulmonary infections (Dong et al., 2020). Recently, spiking neural networks (SNNs) (Tavanaei
et al., [2019; [Shi et al.l |2024; Izhikevich, 2003} |Yu et al., |2025; Datta et al., [2024) have gained for
their event-driven nature and low energy consumption. In SNNs, neurons transmit information via
sparse binary spikes: 0 is an inactive neuron, whereas 1 denotes an activated neuron (a single firing
event) (Shrestha & Orchard, |2018). While this spike-driven paradigm offers low-power benefits, it
also leads to reduced segmentation accuracy in SNNs. Numerous studies (Guo et al., 2025} [Huang,
20235) have integrated them with self-attention (Strudel et al., 2021} |[Fan et al., |2024; Bao et al.,
2023) to propose spike self-attentions. However, applying them to medical image segmentation
remains challenging. As shown in Figure [I] salient objects in medical images often coexist with
non-salient regions, leading the model to suffer interference from non-salient areas. For instance,
in dermoscopy images, lesion areas coexist with distractive elements; in endoscopy images, polyps
appear alongside similar tissues. However, when the spiking self-attention (SSA) (Zhou et al.}|[2023;
‘Wang et al., 2023; Yao et al.,[2023} [2024) is applied to medical image segmentation, it suffers from
information loss and distortion, limiting perception of both salient and non-salient regions.

Challenge 1: When salient and non-salient targets coexist in medical images, how can spiking
attention effectively model contextual dependencies? Current spiking self-attention (SSA) mecha-
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nisms (Zhou et al.} 2023} |Yao et al.,|2023; [Wang et al.| 2023)) rely solely on activated neurons while
ignoring contextual cues carried by inactivated neurons, leading to severe information loss and de-
graded foreground-background discrimination. Although recent advances—e.g., SDSA (Yao et al.,
2023;2024) and Q-K Attention (Zhou et al., [ 2024)—have been proposed, they still consistently ex-
clude inactivated neurons from the query-key dot product. As shown in Figure[T] this omission con-
strains contextual awareness and robustness in complex co-occurrence scenarios. Spike2Former (Le1
et al., |2025) introduces integer-valued spikes and residual connections, yet still fails to fully inte-
grate information from inactivated neurons. Consequently, it remains the core challenge to realize
an efficient and comprehensive attention mechanism that encompasses all neuronal types, thereby
enhancing segmentation performance in misleading co-occurrence scenes.

SSA Images GT Ours SA SSA

Figure 1: The misleading co-occurrence of salient and non-salient objects. SA is ANN-based self-
attention and SSA denotes spike self-attention.

Challenge 2: How can spike-based self-attention achieve accurate spatial-feature importance as-
sessment, comparable to ANN-based self-attention, when salient and non-salient regions co-occur
?  Current spike self-attention (SSA) mechanisms (Zhou et al.l 2023} [Yao et al., 2023; Wang
et al.l 2023) based on Leaky Integrate-and-Fire (LIF) (Neftci et al., 2019) inherently suffer from
spike—information distortion caused by their binary spike property. As illustrated in Figure 1, such
distortion prevents spike self-attention from accurately evaluating the importance of spatial features
in complex co-occurrence scenarios, a task at which its ANN counterpart excels. Furthermore, the
study by (Qiu et al., 2025)) attempts to align the information distribution between SSA and ANN-
based self-attention to improve salient-object detection. However, this approach compromises the
binary spike property and neglects the contextual information carried by inactivated neurons. Con-
sequently, reducing spike-information distortion in SSA to enhance both contextual modeling capa-
bility and spatial discriminability remains an open challenge for medical image segmentation tasks.

To address the above challenges, we propose MedSpikeFormer, a spiking transformer framework.
Guided by the principle that all neurons matter, we introduce the Spike-based Decomposed Self-
Attention (SDSA) to address Challenge 1 by modeling all neuronal interactions. Plus, to tackle
Challenge 2, we propose the distribution alignment loss to minimize the performance gap between
SDSA and ANN-self attention. The contributions of this work are as follows:

* The SDSA explicitly models four types of neuronal interactions—activated—activated
(A-A), activated—inactivated (A-I), inactivated—activated (I-A), and inacti-
vated—inactivated (I-I)—to recover rich contextual dependencies.

* The distribution alignment loss minimizes the divergence between SDSA and ANN-based
self-attention feature response distributions, thereby enhancing the model’s discriminative
ability for spatial feature importance assessment under complex co-occurrence scenarios.

* The comparative experiments and ablation studies conducted on 5 different medical image
datasets demonstrate that our method outperforms 14 state-of-the-art methods.

2 PRELIMINARIES

This section introduces Spiking Neural Networks (SNNs) and spike-based attention mechanisms.
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Figure 2: Illustration of the overall architecture of MedSpikeFormer.

2.1 SPIKING NEURON MODELS

Leaky Integrate-and-Fire neuron (LIF). The LIF neuron (Maass, [1997}; [Luo et all 2024} [Guo
2024) models membrane potential dynamics using temporal accumulation and thresholding:

Ult] = H[t — 1] + X[t] (1)
Sl =eUlt] — Vin) (2)
Hlt] = p(U[t] — S[t]) 3)

where U[t] is the membrane potential, X [¢] is the input at timestep ¢, H [t — 1] is the prior state, 8
is the decay factor, and O(-) is the Heaviside step function, with the firing threshold V;,. It gener-
ates binary spikes S[t] € {0, 1}, whose coarse quantization limits the neuron’s ability to represent
nuanced spatial information—an issue critical for pixel-level medical image segmentation tasks.

2.2  SELF-ATTENTION MECHANISMS

ANN-based Self-attention. Given an input sequence X € RV*¢ where N is the number of tokens
(e.g., spatial positions) and C' is the feature dimension (e.g., channels), ANN-based self-attention

(Dosovitskiy et al.}[2021)) generates float-form query @, key K, and value V matrices as:
Q, K,V =XWg, XWgk, XWy, “4)
where Wo, Wic, Wy, € RE*Y are learnable weights. The output attention is computed via:
Qe KT
VO

O, = SA(Q, K, V) = Softmax( )RV (5)

where ® denotes a matrix multiplication operation.
Spike Self-attention. Given an input sequence X € RV X spike self-attention (SSA) (Zhou et al.}
2023) generates spike-form query @, key K, and value V' € {0,1} as:
Q, K,V =SNN (XWg, XWi, XWy) (6)
where SINN(-) is spike activation function chosen as LIF. The output attention is computed via:
QKT )
O, =SSA(Q,K,) V)= ——— |V (M
@)= (27

where Q, K,V € {0,1}V*© are binary spike matrices. Moreover, the attention is restricted to pairs
where both neurons are activated, ignoring inactivated entries and thus limiting contextual modeling
in challenging segmentation contexts.
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3 METHOD

3.1 PROBLEM SETUP

Medical image segmentation using Spiking Neural Networks (SNNs) faces two fundamental chal-
lenges: the Sparse Attention Problem and the Spike-information Distortion Problem: the first arises
when spike-based attention mechanisms compute interactions only among activated neurons, yield-
ing a sparse attention support set:

Ssa = {(4,7)| Qi; >0ANK,; ; >0}, |Ssa| < N2,

restricting context modeling, and while the second stems from the binary spike characteristic of
conventional spiking neurons, which causes the spiking Transformer to lag behind its ANN-based
Transformer in segmentation performance:

DKL(OsHOa) 2613 HOS*OaHg 262; €1 > 0,€2>>05
leading to the degraded spatial discrimination, which is due to the information distribution misalign-
ment between the spiking Transformer and ANN-based Transformer.

Together, these challenges lead to the following constrained optimization objective:
mein Lseo(f6(X), Y) s.t. Senn 2 Ssas D r.(05]|04) + |05 — O4l]3 ~ 0,

where § € R? denotes the learnable network parameters, X € RV*C is the input feature map,
Y € RV*1 s the corresponding ground-truth segmentation, Ssa C {1, ..., N}? is the sparse atten-
tion support set computed from activated neuron pairs, Sy, denotes the enhanced support set with
broader spike interactions with Senn 2 Ssa, D1 (+) denotes the degree of information-distribution
mismatch between O, and Oy; || - H% denotes the pixel-level discrepancy between Oy and O,,.

Building on this setup, we design MedSpikeFormer with the key modules: Spike-based Decomposed
Self-Attention (SDSA). First, the SDSA expands spike interaction coverage by explicitly modeling
all neuron pair types—activated—activated (A—A), activated—inactivated (A-I), inactivated—activated
(I-A), and inactivated—inactivated (I-I)—thereby mitigating the sparse attention problem. Second,
the distribution alignment losses (Dx7,(-) and || - ||2) are introduced to minimize the divergence
between SDSA and ANN-based self-attention feature response distributions, thereby effectively re-
solving the spike-information distortion. To this end, these modules are integrated into a multi-stage
encoder—decoder framework for robust spatial encoding and segmentation under spike constraints.

3.2 SDSA: EXPANDING SPIKE ATTENTION SCOPE

Salient object detection in medical image segmentation often suffers from misleading co-occurrence
between salient and non-salient regions, as shown in Figure [I] Traditional spike-based attention
mechanisms (Zhou et al.| [2023}2024) compute attention maps only among activated neurons, dis-
carding contextual cues from inactivated neurons. This sparse representation limits the model’s
ability to perceive complete spatial information and degrades performance in complex scenes.

To address this, we propose the Spike-based Decomposed Self-Attention (SDSA), which expands
the attention scope by explicitly modeling all possible neuron pair interactions — A-A, A-I, I-A and
I-I —thus preserving richer information flows across the network.

Definition 1. Complementary Spike Decomposition.  Given discrete binary spike-form query
and key matrices Q, K € {0,1}V*C generated by LIF neurons, we define their activated and
complementary inactivated components as:

RQu=Q, Qr=1-Q, Ka=K, Kr=1-K,

where Q 4, K 4 capture neuron activations, while QQz, K1 represent complementary responses from
inactivated neurons.

This decomposition enables complementary modeling of spike activations and their inactivated
counterparts, which is crucial for attention mechanisms operating on binary spikes. By consider-
ing both Q 4, K4 and Qz, K7, SDSA constructs an enriched attention support that alleviates the
sparsity introduced by traditional spike attention, ensuring that information from all spiking units —
activated or inactivated — contributes to the segmentation process.
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Proposition 1. Information Gain of SDSA. Let Ssy denote the output of conventional spike at-
tention (e.g., SSA, Q-K attention) which only models interactions among activated neurons. Suppose
the inactivated components (Q7 = 1 or K7 = 1) carry non-trivial information about the input X.
Then the enhanced attention output S,y constructed by SDSA satisfies:

I(X7 Senh) = I(X7 QA7 QI? K.Aa KI) > I(X1 Q.A7 KA) = I(X7 SSA)'

where I(- ;) denotes the mutual information.

Proof can be found in the Section B of Supplementary Material. Conventional spike attention re-
stricts the attention support to pairs (4, j) where both @; ; = 1 and K; ; = 1, yielding:

Ssa = ¢(Qa, Ka),

where ¢ denotes a simplified token-level interaction such as element-wise multiplication. According
to Definition 1, any pair involving inactivated components (7 = 1 or K7 = 1) is excluded,
limiting information flow and representation capacity, especially in cases where semantic signals lie
in inactivated neurons (e.g., blurred lesions, fuzzy boundaries).

SDSA overcomes this by incorporating the full interaction space through spike decomposition.
Specifically, we compute spike-level attention weights as:

T T
Seat = [@Q1, Q2] 9 [Ka, Kz] 3 [Qz, Q] &K a, K] | ®)
These decomposed attention weights are contributed to V' via matrix multiplication to yield:

T T
Q4 Q1] %KA, K1) (Qz,Q.4] i@ﬁ[CKm K1] ® V] 9)

which explicitly models all interactions: A-A, A-I, I-A, and I-I. Plus, we rigorously ablate the
contribution of each interaction type (see Table [3]in Section 4.3), confirming that all interactions
are critical for segmentation performance.

®V;

os:[[

This proposition theoretically supports SDSA’s ability to enhance information retention in spiking
attention. By reintroducing inactivated neurons into the attention computation, SDSA is better suited
for dense prediction tasks like medical image segmentation where clinically relevant details may
reside in ambiguous, low-saliency regions. As shown in Figure|[T] this mechanism leads to improved
contextual modeling and segmentation performance in complex co-occurrence scenarios.

3.3 DISTRIBUTION ALIGNMENT BETWEEN SDSA AND ANN-BASED SELF-ATTENTION

Motivated by the spike-information distortion in conventional spiking attention—where binary spike
properties cause significant divergence in attention distributions between Spiking self-attention and
ANN-based self-attention—we address this misalignment as evidenced by Figure[T} SDSA’s atten-
tion focus differs markedly from ANN-based self-attention, with ANN-based self-attention demon-
strating superior lesion localization accuracy. This distribution mismatch impairs spatial discrim-
inability under complex co-occurrence scenarios. To resolve this, we propose a distribution align-
ment loss that minimizes the divergence between SDSA and ANN-based self-attention feature re-
sponse distributions, thereby correcting SDSA’s attention focus for precise medical segmentation
while preserving the binary nature of spike neurons.

Definition 2. Distribution alignment.  Given the SDSA’s attention output O, and the ANN-
based self-attention’s attention output O,, as shown in Figure E] they are transformed to O and
O, through learnable linear layers that map features to pixel-level segmentation logits. O4 and

O, are the feature response distributions of SDSA and ANN-based self-attention respectively. The
distribution alignment between them is formulated as a distribution alignment loss, as follows:

['align = % Z

(@,9)e{1,...N}?

01 log (Ooji ) + || - |

2

2

where @il/fl) denotes the feature value at position (i,7) in @s/a, with (i,5) € {1,...,N}2. The

term O log( @Ois) minimizes information distribution mismatch in attention focus, and the term

|Os — O[3 enforces pixel-level spatial discriminability.
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This formulation addresses the spike-information distortion problem by minimizing the discrepancy
between the attention distributions of SDSA and ANN-based self-attention, enabling precise medical
image segmentation while preserving spike sparsity, as further analyzed in Proposition 2.

Proposition 2. Gradient Dynamics and Stability of Distribution Alignment.  Under the stan-
dard assumption that Oy € [e,1] and O, € [e,1] for a small ¢ > 0 (ensuring no log-domain
singularity), the combined gradient effectively guides the optimization process to address the afore-
mentioned challenges in practice:

aAcalign i < @

s 2
vE(/Llign - 805 - N log @ + 1> + N(Os - Oa)a

O,
Oq

cies in probabilistic structure. The gradient %((’)S — O,) enforces geometric fidelity by penalizing
absolute pixel-wise errors.

where the gradient + (log

+1) governs distributional alignment by measuring relative discrepan-

Further, the Frobenius norm of the gradient satisfies:

1 2
[|V Latign||F < N\/NQ(loge—l— 1)2 + N\/NZ(l —€)2 =3—2¢—loge,

This guarantees that gradients remain bounded for any matrix, which ensures convergence. There-
fore, the VLgji4n effectively minimizes the divergence between SDSA and ANN-based self-
attention feature response distributions, thereby reducing spike-information distortion to enhance
segmentation performance under cluttered or low-contrast conditions. Proof can be found in the
Section C of Supplementary Material.

3.4 OVERALL ORCHESTRATION OF MEDSPIKEFORMER

MedSpikeFormer is designed with a two-stage architecture to progressively extract and integrate
hierarchical features for accurate medical image segmentation. As illustrated in Figure [2} the two
main stages are: Stage I—Feature Extraction and Stage II—Feature Fusion. Pseudocode and de-
tailed description are provided in Section D of the Supplementary Material.

Stage I: Feature Extraction. This stage contains three cascaded encoder units. Each unit has a
Patch Embedding (PE) module followed by the proposed SDSA module. The PE module integrates
a convolution layer and a spike convolution to encode local spatial patterns, while SDSA enhances
global interaction via complementary spike decomposition. The output of the ¢-th encoder unit is:

fo =SDSA(PE(X)) + PE(X), (10)

. H w i-1
where X € RT*H*xWxC i the input feature map, and fi € RT* 21X 27 C (j € {1,2,3,4})
is the output after feature enhancement and residual connection.

Stage II: Feature Fusion. This stage performs progressive integration of features extracted at dif-
ferent depths using spike convolution blocks. Deep semantic features are refined, and shallow infor-
mation is preserved through skip connections. The fusion process is formulated as:

fi— SpikeConv( f?), i =4,
SpikeConv(f! + fit1), i€ {1,2,3},

S

Y

where f! is the fused output at i-th layer, and SpikeConv(-) denotes the spike convolution operation
with discretized binary outputs.

Prediction Head. The final prediction Y is generated from the shallowest fused feature f! via a
prediction head:

Y = 6(f)ws), (12)

where ¢ (-) is a learnable transformation with parameters w; that maps features to pixel-level seg-
mentation logits.
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Loss Function. To optimize MedSpikeFormer for accurate medical image segmentation, we adopt
a composite objective function that balances region-level and pixel-level supervision. Specifically,
we define the segmentation loss as:

. - 23, YVi+e
Lowy = — [Y.lo Vi) +(1—Y)log(l—Yy)| +1 - =2 . (13)
seg XZ: i log(Y3) + ( i) log( i) Zj,YiQJFZin?JFE
LpcE LDice

where Y; € {0,1} is the ground truth label for the i-th pixel, and Y; € [0, 1] is the predicted mask
value. The term € is a small constant for numerical stability. £pc g provides fine-grained pixel-wise
guidance and £ p;.. encourages global structure alignment. The total loss function is defined as:

ﬁtotal = Cseg + »Caligna (14)

Objective Alignment. This loss design reflects the core motivation of MedSpikeFormer: to enable
spike-driven segmentation networks to retain global contextual cues while preserving fine-grained
boundaries and textures. Specifically, £.., emphasizes shape integrity and region-wise coverage
and focuses on detail preservation and sharps boundaries, aligning with the goal of mitigating frag-
mented predictions in complex medical imaging scenarios. L4y is essential for recovering spatial
precision lost to reduce the spike-information distortion. By jointly optimizing these two com-
ponents, L, enables the model to robustly learn salient object distributions under spike con-
straints—bridging the global-local gap induced by event-driven computation.

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENT DETAILS

Our method is evaluated on 5 medical datasets, including the ISIC2018 (Codella et al., 2019)), Kvasir
(Jha et al.l [2020), BUSI (Al-Dhabyani et al., |2020), Moun-Seg (Dinh et al., 2021), and COVID-19
(Dong et al., [2020). Plus, we adopt 5 metrics (Ruan et al., |2024), including Mean Intersection over
Union (mloU), Dice Similarity Coefficient (DSC) , Accuracy (Acc), Specificity (Spe) and Sensitivity
(Sen). For detailed information on datasets and experimental setups, refer to the Section E.1 of
Supplementary Material.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

We compare our method with 14 current methods on 5 medical image datasets, and meanwhile, all
models are trained and evaluated under the same experiment settings.

Quantitative Comparison. Table [I] shows the superior segmentation performance of our model.
Specifically, in the mloU metric, on the ISIC2018 and Kvasir datasets, our method improves STDv3
by 3.47% and 2.72%, respectively. Notably, on the COVID-19 dataset, our method improves the
MFMSA by 8.06%. on the Monu-Seg dataset, our model improves the UCTransNet by 1.78%,
showing the robustness of our method in the multi-object scenario. Plus, on the BUSI dataset, our
method achieves the best segmentation performance, indicating the robustness of our model in low-
contrast scenes. See Section E.2 and E.3 of Supplementary Material for statistical significance tests,
mloU curves and more details.

Visual Comparison. As shown rows 3 and 5 in Figure[3] in scenes of low-contrast and fuzzy edges
in medical images, other methods perform poorly in salient object edge detection and are easily
affected. However, our method can effectively identifies the segmentation boundaries of salient
objects. Plus, as shown rows 3 and 4 in Figure[3] in multi-object detection scenarios, especially when
there are a large number of objects and the object size is small, other methods are easily affected
by the background. However, our method performs well in this case. Experimental results show
the superior capability of our method in image segmentation tasks. See Figure 1 of Supplementary
Material for more visualization comparisons.

Computational Efficiency. Though not lightweight-oriented, MedSpikeFormer keeps low overhead
with 2.9M parameters and 26.87 GFLOPs. It outperforms larger models such as SDSA (13.6M,
28.6 GFLOPs) and FSTA-SNN (45.7M, 20.6 GFLOPs), while preserving spiking sparsity. Plus,
hardware-friendly energy efficiency are detailed in Section E.4 of the Supplementary Material.
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Table 1: Performance comparison with 14 SOTA methods on 5 medical image datasets.

UCTrani EGE- SAM- UltraLight FSTA
Dataset| Metsic U-Net D-LKA UNet Med2D SDSA MLW-Net VM-UNet MFMSA VPTTA EMCAD QKFormer STDV3 SNN  Our
i MICCAI AAAI WACV MICCAI arXiv NeurlPS CVPR arXiv ~ CVPR CVPR CVPR NeurlPS TPAMI AAAI

2015 2022 2023 2023 2023 2023 2023 2024 2024 2024 2024 2024 2025 2025 2025

ISIC mloUT| 0.8004 0.8185 0.8033 0.8108 0.7383 0.7853 0.7650  0.8110 0.8163 0.7842 0.8071  0.7706  0.8303 0.6403 0.8550
2b18 DSCt| 0.8891 0.9002 0.8909 0.8955 0.8494 0.8579 0.8613  0.8956 0.8988 0.8790 0.8932 0.8614 0.8965 0.7400 0.9081
AccT]| 09513 09565 0.9514 0.9535 0.9397 0.9572  0.9404  0.9527 0.9549 0.9467 09531 0.9475 0.9666 0.9110 0.9812

mloUT| 0.7330 0.7670 0.7212 0.5604 0.5911 0.7970 0.6636  0.6100 0.7625 0.5164 0.7173 0.7658 0.8215 0.6313 0.8534
Kvasir | DSCT| 0.8459 0.8681 0.8380 0.7182 0.7430 0.8726 0.7977  0.7577 0.8652 0.6811 0.8353  0.8521 0.8915 0.7642 0.9093
Acct]| 0.9253  0.9579 0.9495 0.9108 0.9324 0.9741 0.9378  0.9190 0.9568 0.9076 0.9478  0.9662 0.9722 0.9264 0.9804

Moun mloUT| 0.6784 0.6890 0.6300 0.5009 0.2699 0.6554 0.6535 0.5600 0.6111 0.4151 0.5603 0.6003 0.6696 0.6495 0.7014
_Se DSCt1| 0.8084 0.8159 0.7730 0.6674 0.4250 0.7883 0.7904  0.7180 0.7586 0.5867 0.7182  0.7475 0.8008 0.5834 0.8238
S | Accl] 0.9348 09433 09284 0.8873 0.9433 0.9414 09332 09094 09338 0.8662 0.9263 09335 0.9467 0.9095 0.9518
COVID mloUT| 0.3605 0.3971 0.3098 0.3912 0.4025 0.5062 0.4295 0.5532 0.6262 0.4591 0.4120 04701 0.5974 0.4902 0.7138
19 DSCT| 0.5300 0.5684 0.4730 0.5624 0.5739 0.6261 0.6009  0.7123  0.7201 0.6293 0.5835 0.6357 0.6933 0.6517 0.8009
Acct]| 0.9784 0.9804 0.9766 0.9805 0.9856 0.9782 0.9808  0.9867 0.9901 0.9859 0.9790 0.9715 0.9286 0.9713 0.9565

mloUT| 0.4775 0.5870 0.4969 0.5103 0.4770 0.5115 0.4811 04743 05771 0.4420 04620 04310 0.2854 0.5582 0.6006

BUSI | DSCT| 0.6463 0.7382 0.6639 0.6758 0.6459 0.5917 0.6496  0.6434  0.7318 0.6131 0.6320 0.6041 0.3774 0.7165 0.6676
Acct]| 0.9605 0.9637 0.9502 0.9551 0.9616 0.9571 0.9491  0.9462 0.9629 0.9426 0.9412  0.9377 0.9362 0.9652 0.9759

Params (M) | [ 14.7518 66.2424 22.8401 0.0458 - 135588 94.9794 0.0376 31.2192 22.0224 26.7643 16.9599 25.528645.6777 1.7369
GFLOPs | |32.8948 30.9839 16.8894 0.0072 - 28.5805 108.0758 0.0602  9.9752 40.0514 5.5960 32.8858 12.334920.651519.0929
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Figure 3: We compare our method with 14 methods. The red box denotes incorrect prediction areas.

4.3 ABLATION STUDIES

To thoroughly validate the design of the MedSpikeFormer, we conduct extensive ablation experi-
ments on 5 datasets using the mIoU metric. Our investigations center around 6 key questions:

Q1: How critical is the Spike-based Decomposed Self-Attention (SDSA)? Removing SDSA (w/o
SDSA) leads to drops in mIoU, e.g., —9.07% on ISIC2018, as shown in Table showing SDSA’s
importance for capturing comprehensive attention in complex co-occurrence scenarios. Plus, Figure
[] shows that removing SDSA (w/o SDSA) leads to drops in segmentation performance. Then, we
further provide heatmaps to show SDSA’s effectiveness (Figure[5). See Section E.5 and Figure 3 in
the Supplementary Material for more details.

Table 2: Ablation on SDSA, ANN-based self-attention and Spike Conv (mIoU).

Model Variant | ISIC2018 Kvasir Monu-Seg COVID-19  BUSI | Params (M) GFLOPs
Ours 0.8550  0.8534 0.7014 0.7138 0.6006 2.8745 26.8972

w/o SDSA 0.7727 0.7866 0.4785 0.3869 0.5231 2.1258 15.2046
w/o SA 0.7866 0.7647 0.5462 0.5792 0.5384 2.8745 26.8972
w/o SC 0.7999 0.8096 0.6166 0.6049 0.5508 2.3328 20.8422

Q2: Does the ANN-based self-attention (SA) module significantly affect performance? Yes. Remov-
ing ANN-based self-attention (w/o SA) leads to notable performance degradation across all datasets
(e.g., —8.87% on Kvasir), as shown in Table [2| confirming its effectiveness. Plus, Figure [4] also
shows that removing ANN-based self-attention (w/o SA) descends the segmentation performance.
See Section E.5 and Figure 3 in the Supplementary Material for visualization comparisons.

Q3: Does the Spike Convolution (SC) module improve performance? Yes. Removing Spike Conv
(w/o SC) leads to notable performance degradation across all datasets (e.g., —4.98% on BUSI), as
shown in Table 2] confirming its effectiveness for segmentation performance. Similarly, as shown in
Figure 4 removing the Spike Convolution (w/o SC) leads to performance degradation.
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Figure 4: Visual Ablation Comparison. The red box indicates the area of incorrect predictions.
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Figure 5: Visual Ablation Heatmaps.

Table 3: Ablation on interaction types in SDSA (mloU).

Model Variant | ISIC2018 Kvasir Monu-Seg COVID-19 BUSI
Ours 0.8550  0.8534 0.7014 0.7138 0.6006

wlo A-A 0.8243  0.8054 0.6814 0.6411 0.5281
w/o A-1 0.8567  0.8116 0.7063 0.6895 0.5673
w/lo I-A 0.8492  0.8282 0.7079 0.6763 0.5585
w/o I-1 0.8344  0.8140 0.6988 0.6519 0.5032
w/o KL 0.7743  0.7782 0.4988 0.3988 0.5108
w/o Lo 0.7743  0.7782 0.4988 0.3988 0.5108

Q4: Do all four types of spike interactions in SDSA matter? Yes. Table[3|shows that removing any
of the four interaction types (w/o A-A, w/o A-I, w/o I-A, and w/o I-I) leads to performance drop,
confirming that all interaction pairs contribute to comprehensive information modeling. Plus, Figure
[] shows that removing any of the four interaction types leads to performance drop. See Section E.5
and Figure 3 in the Supplementary Material for visualization comparisons and more details.

Q5: Does the distribution alignment loss improve segmentation performance? Yes. The loss con-
sists of KL divergence and Ly loss. As shown in Table [3] removing either loss component (w/o
KL or w/o Ly) leads to a drop in segmentation performance, with the Lo loss having a particularly
significant impact. Plus, Figure [4|also confirms the effectiveness of the distribution alignment loss.

Plus, we also conduct following ablation studies: Q6: Is the timestep D in our method important?
For more details of the ablation study, refer to Section E.5 of the Supplementary Material.

5 OBSERVATIONS AND LIMITATIONS

As shown in Figure [3] MedSpikeFormer can effectively identify salient objects in scenarios with
blurred boundaries and multiple objects, but subtle deviations from the ground truth still exist. Fu-
ture work will explore efficient edge detection techniques, thereby further enhancing overall seg-
mentation performance. For more details refer to Section F of Supplementary Material.

6 CONCLUSION

This paper presents the MedSpikeFormer, which significantly improves segmentation performance
in scenarios with the co-occurrence of salient and non-salient objects via the collaborative work of
the Spike-based Decomposed Self-attention and the distribution alignment loss. Experimental re-
sults show that MedSpikeFormer outperforms 14 methods across 5 public medical image datasets,
underscoring its strong capability in medical image segmentation. Potentially, we will further ex-
plore efficient spike-driven edge detection methods to enhance segmentation performance.
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