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Abstract

We propose photonic integrated circuits augmented with a χ(3) nonlinearity – e.g.,
a semiconductor exciton-polariton nonlinearity – to accomplish two fundamental
tasks in quantum processing: quantum state tomography and quantum state genera-
tion. We demonstrate in simulations that the design of the circuit can be optimized
to great effect and showcase the efficacy of the optimized nonlinear circuits for
the quantum machine learning tasks of i) fully identifying a family of emblematic
quantum states and ii) stabilizing an accurate train of single photons.

1 Introduction

Figure 1: Schematic depiction of our photonic integrated chip.

Advancements in quantum
computing heavily rely on
the manipulation, stabiliza-
tion, and detection of quan-
tum states [1, 2]. Ever since
its conception, the gener-
ation and characterization
of non-classical quantum
states of light have been at
the heart of quantum optics [3], thus paving the way towards large-scale optical quantum comput-
ing [4, 5]. While in the classical approach to optical computing [6, 7] information is captured solely
in the relatively easily measurable and modulatable amplitude and/or phase of different components
of light, a quantum state of light is fully determined by (i) full-counting photon statistics and (ii) the
relative phase of each photon number outcome – features of fundamental importance for quantifying
quantum entanglement and state superposition [8].

Strongly coupled matter-light systems, such as exciton-polaritons [9, 10], have attracted growing
interest in the quantum-computing community. Thanks to the flexible state manipulation provided
by the incident laser field and direct access to the emitted light, experiments with exciton-polaritons
have accomplished a plethora of impressive results – e.g., the creation of spontaneous long-range
coherence (Bose-Einstein condensation) [11, 12], realization of a superfluid flow [13, 14], or the
stabilization of an optical topologically protected insulator [15, 16]. It is, therefore, not surprising
that recently these platforms have also been proposed for optical quantum computing [17–19].

In this paper, we introduce a photonic integrated circuit (PIC), built upon a platform of nonlin-
ear photonics, that creates a novel pathway for achieving universal quantum state generation and
characterization. See Fig. 1 for a schematic depiction.
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Related work. Recently, a series of papers showcased the potential of quantum reservoir computing
for the tasks of state tomography – an all-encompassing characterization of a photonic quantum state
[20–23] – and state generation [24]. Although the presented results were innovative and notable from
a conceptional point of view, limited efforts were dedicated to the actual implementation, the design,
or the potential deployment in state-of-the-art experimental settings. The primary goal of this paper
is to do precisely that.

The realization of polaritonics [9] in integrated photonics [25] served as a motivational cornerstone
for this work. We demonstrate a feasible implementation of both quantum tomography and quantum
state generation using polaritonic PICs. Moreover, while reservoir computing is, by definition, a
non-tunable technique to enlarge the feature space, we apply machine learning training methods for
optical quantum circuit design to shape an optimal feature space for the task at hand.

Our contributions can be summarized as follows:

1. we showcase the potential of integrated nonlinear photonics to perform the quantum machine
learning tasks of quantum state tomography and quantum state generation

2. we provide evidence that one can efficiently and to great effect optimize the design of the
polaritonic PIC for tomographical tasks

3. we show the efficacy of our polaritonic device for the task of photonic state generation.
Specifically, we focus on the technologically relevant case of generating highly accurate
trains of single photons, at maximal emission rate.

2 Polaritonic Photonic Integrated Circuit Optimization

On-chip quantum dynamics. The full quantum dynamics, describing photons traversing the
chip of interconnected nonlinear waveguides illustrated in Fig. 1, is governed by the interplay of
energy-conserving Hamiltonian dynamics and dissipation in the form of, primarily, polariton losses.
Under the Born-Markov approximation, this is fully captured by the Lindblad master equation for the
photonic density matrix – see, e.g., Ref. [26]. Using the paraxial approximation, mapping the spatial
axis of polariton propagation onto time t (see Ref. [27] and Appendix B), we find,
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where we set Planck’s constant ℏ and the polariton group velocity vg to one – see also Appendix A.
The first term of equation (1) describes the coherent dynamics, defined by the Hamiltonian,
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and the second term the photonic losses. Here, ai and a†i are the photon creation and annihilation
operators, respectively, which create or remove a photonic quantum from a quantum state |ψ⟩, and L
is the number of waveguides. Let us clarify the parameters that were used in Eqs. (1) and (2). Some
of them are semiconductor material properties and are, therefore, not easily accessible for tuning.
These include the detuning ∆ of the incoming light with respect to the exact polariton resonance –
in what follows, we assume exact resonance, so ∆ = 0; the polariton loss rate γ; and the strength
of the nonlinear photon interaction U that is mediated by excitons, which are effective bosonic
quasi-particles arising from semiconductor excitations.

Of fundamental importance is the dimensionless ratio U/γ, quantifying the effective nonlinearity
experienced by the photon field. While in traditional microcavity platforms a modest optical non-
linearity has been reported [28], it has been shown that much larger effects can be engineered in
integrated waveguide designs [25].

Besides the fixed properties of the material stack ∆, U, and γ, the set of parameters Jij(t) in (2)
remains directly accessible for the purpose of optimizing the circuit design. These parameters
describe the graph matrix of waveguide couplings, as fabricated using directional couplers (DCs)
or multi-mode interferometers (MMIs). We choose to keep the matrices Jij real, configured in a
brick-like pattern of couplings, see Fig. 1.
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In this work, it is precisely the flexibility in the design of the PIC, parametrized by Jij(t) in (2),
that we exploit to optimize the performance of the chip on two exemplary tasks: (i) the quantum
tomography of incoming Gaussian squeezed states of light and (ii) the emission of a single-photon
train at maximal emission rate.

Quantum simulation. In principle, full exact quantum simulation of the dynamics governed by
Eqs. (1) and (2) can be achieved using the toolbox of linear algebra, by representing quantum states
|ψ⟩ as vectors and the operators as matrices. Noteworthy, even though the method is, in principle,
exact, the vector space dimension grows exponentially as D = NL, for L waveguides carrying
photon states up to occupation number N . This exponential growth is well-known to constitute
the fundamental hardness of classically simulating quantum mechanics. Also worth noting is that
for photonic systems, the occupation number can be any positive integer. That’s why we rely on
computationally more efficient techniques with manageable memory overhead, to wit, a Gaussian
variational approximation and the method of Monte Carlo unravelings of the master equation [29].
For details on these simulation techniques we refer the reader to the supplementary material, see
Appendices B and C.

Quantum state tomography and generation. For quantum state tomography, the photonic inte-
grated circuit establishes a quantum extreme learning machine [30]. Recall that a classical extreme
learning machine pre-processes data via a memoryless (i.e., non-recurrent) non-linear map, while
the final output is obtained via a trainable linear layer. In its quantum version, the preprocessing
of the input data – in our case a quantum state of light – is governed by a quantum-mechanical
time-evolution, followed by the quantum measurement of a collection of observable quantities. In
our realization, the quantum dynamics is governed by the above-described effects, while we measure
the expected photon count at the end of each waveguide.

For quantum state generation, the PIC receives standard laser beams as its input, which are subse-
quently intertwined into an entangled multi-mode quantum output state, thanks to the interplay of
waveguide interference and the photonic nonlinearity. This quantum state is next sent through a
traditional (hence, fully linear) mesh of tunable phase-shifters and DCs which performs an entangling
mixture governed by an L× L unitary matrix V and whose output is the desired quantum state.

Quantum circuit optimization. For tomographical tasks, going beyond the extreme learning
machine paradigm, we optimize the circuit via its coupling coefficients Jij(t) , which are easily
adjustable during the design phase of the chip. As these coefficients govern the quantum dynamics as
in (2), they appear as parameters in the ordinary differential equations (ODEs) describing the time
evolution of the quantum state. Choosing a gradient descent approach to perform the optimization,
we can rely on the adjoint state (or sensitivity) method to find the updates to the ODE parameters.
Within the machine learning community, this approach was reintroduced in [31], and we leverage the
associated PyTorch package. Note that the linear layer is always fitted perfectly optimally given the
measurements of the occupation numbers (output intensities).

Non-tunable quantum circuit,
• Polariton-mediated interaction
• Waveguide couplings
• Photon losses

... ...

... ...

Tunable linear optical circuit,
• Optimization for specific task
• Experimentally tunable knobs

Optimize       for accurate single 
photons in one channel

Figure 2: The quantum state generation setup
focused on the task of single-photon generation.

Fig. 2 shows the setup of state generation
focused on the task of single-photon genera-
tion. We optimize the parameters of the uni-
tary mixing, which we parameterize as V (θ⃗) :=

exp
{
iG(θ⃗)

}
. Here, G is an L × L Hermitian

matrix, representing the inter-waveguide cou-
plings that we want to optimize to obtain sta-
ble high-probability single-photon outcomes –
this is perfectly similar to the optimization of
the coefficients Jij(t) for tomography. For this
usecase, we choose to keep the nonlinear PIC
random and fixed. The rationale is that we ul-
timately aim for a device that is universal in its
quantum state generation capabilities. There is,
however, no obstruction to designing a device
tailored to generating a specific state by leveraging the techniques of the previous paragraph.
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3 Results

In this section, we present our results, based on numerical simulations, on optimizing the tasks of
quantum tomography and state generation. See Appendix E for the simulation details.

3.1 Gaussian quantum state characterization

Gaussian quantum states are multi-mode optical states characterized by the property that number
statistics – as expressed by expectation values of strings of creation and annihilation operators – are
governed by Gaussian statistics. Amongst this class of states, we focus on single- and two-mode
thermal squeezed states, often abbreviated as SMTSS and TMTSS respectively. As squeezed versions
of thermal states, they are specified by three real parameters: the thermal average number of photons
n̄ in each mode and the complex squeezing parameter ξ = reiθ. These parameters fully determine
the covariance matrix of the above-mentioned Gaussian statistics. We do not displace the state, i.e.,
we keep the distribution’s first moments zero. In formulae, the tomographical information of an
SMTSS can be summarized by the following expectation values [3]:

⟨a⟩ = 0 , n = ⟨a†a⟩ =
(
n̄+

1

2

)
cosh(2r)− 1

2
, c = ⟨aa⟩ = −

(
n̄+

1

2

)
sinh(2r)eiθ .

(3)
For two-mode thermal squeezed states similar expressions determine the equal diagonal elements
of Nij = ⟨a†iaj⟩, while the off-diagonal entries are zero, and the equal off-diagonal elements of
Cij = ⟨aiaj⟩, whose diagonal is zero. Naturally, the indices i, j run over the values 1 and 2. We
implement the quantum state characterization of thermal squeezed states as the task of determining n
and the real and imaginary parts of c.

Concretely, we inject the single/two-mode thermal squeezed state into one/two input waveguides
of the chip of Fig. 1. We choose the chip to have five waveguides, and send fixed coherent laser
light, described quantum mechanically by coherent states, into the remaining four/three waveguides.
We consider five layers of interference regions in a brick-pattern. We created a training and test
dataset, each consisting of 250 random samples. We measure the total mean squared error (MSE)
loss after the linear layer. To efficiently optimize the MSE during training, we implement a two-stage
optimization. First, we optimize the linear layer given the features provided by the quantum circuit.
As this is standard linear regression, it is an easily solved convex optimization problem that, in fact,
has an analytical solution. Next, we freeze the weights of the linear layer and optimize the coupling
parameters of the quantum circuit, simulated using the Gaussian variational approximation, by taking
a gradient descent step. In practice, we use SciPy’s L-BFGS-B algorithm to perform the gradient
descent.

In Fig. 3, we summarize our results. Panel (a) contains a boxplot showing statistical information
on the improvement in the test MSE that can be achieved by optimizing a randomly initialized
quantum circuit; we do so as a function of the nonlinear interaction strength. We start by noting that
a random circuit is the waveguide equivalent of the currently state-of-the-art quantum reservoirs of
[20–23]. In particular we observe a more than ten thousand-fold improvement in median MSE for
the currently experimentally feasible interaction strength of U/γ = 0.1 [28]. The necessity of the
photonic nonlinearity is also made manifest by the very poor results in the bin log10 U/γ = −∞, i.e.,
U = 0. In panel (b), we showcase an example of a circuit for SMTSS characterization at U/γ = 0.1.
Finally, in panel (c), we show several circuit optimization curves, initialized with random circuits, as
measured by the test MSE on the two-mode characterization task for U/γ = 0.1. We easily achieve
an order of magnitude improvement. As we didn’t change the overall architecture of the PIC, it is
natural that the MSE of the two-mode characterization cannot fully match the single-mode MSE.
Indeed, two-mode characterization requires the system to disentangle the statistical cross-correlation
between two strongly entangled modes, instead of merely identifying single-mode, uncorrelated,
statistics. Nevertheless, we obtain perfectly satisfactory values for the MSE.

3.2 Single-photon generation

Our setup for quantum state generation is illustrated in Fig. 2. Coherent states (laser fields) are
injected into the waveguides and traverse the first nonlinear quantum PIC, thereby generating a
multi-mode entangled output state ρout. Two different figures of merit (FOM) were investigated to
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(a) Test mean squared error for SMTSS tomography

(b) Optimized J/γ-values for SMTSS
at U/γ = 0.1.

(c) TMTSS tomography optimization curves

Figure 3: Results on single- and two-mode thermal squeezed state (SMTSS and TMTSS) tomography
obtained by using a chip as in Fig. 1.

find the optimal configuration of the second, linear, PIC for the task of generating a single-photon
output in one output arm, using ρout as input. Additional details on the simulation and optimization
procedure are provided in the Supplementary Material, see Appendix D.

Density-density correlations. The correlation function g(2)(τ) defines the density-density correla-
tions between a pair of quantum modes i and j. It is defined as,

g
(2)
ij (τ) =

⟨a†i (0)a
†
j(τ)aj(τ)ai(0)⟩
ni(0)nj(τ)

. (4)

We focus on single-photon generation in one output arm l (i.e., i = j = l), at zero time delay
(τ = 0). It can be shown that the quantity g(2)ll (0) is non-negative. Moreover, it is only zero for
single-photon states. In fact, minimizing g(2)ll (0; θ⃗), where θi are the PIC configuration variables,
amounts to maximizing the single-photon generation efficiency [32–34].

Density matrix. We also formulate a FOM in terms of the entries of the reduced density matrix ρ̃l
of output arm l,

Fl = −ρ̃l,11 − w0ρ̃l,00 +
(∑

l,ij

|ρ̃l,ij | − ρ̃l,11 − ρ̃l,00

)
. (5)

Now, the goal is to maximize the matrix entry ρ̃l,11, the single-photon probability, or otherwise filling
the vacuum mode ρ̃l,00 (0 ≤ w0 ≤ 1). All matrix elements other than ρ̃l,00 and ρ̃l,11 are penalized in
the last term. In (5), we explicitly aim at maximizing the single-photon probability, which was absent
in g(2)(0). Indeed, in (4), very accurate single-photons can be generated, at the cost of obtaining a
very low intensity nl.

Nevertheless, measuring g(2)ll (τ) is a standard task, accomplished in a Hanbury Brown - Twiss
interferometric setup (e.g., Refs. [28, 35]), opening the possibility of real-time PIC optimization
based on experimental outcomes. In stark contrast, experimentally obtaining matrix entries of ρl for
(5) is much more complicated [36].

3.2.1 Results

Fig. 4 contains an overview of our single-photon generation results. On the left-hand side, in panel
(a), a scan of the 2D parameter space (U,α) is shown for moderate interaction strengths U/γ and
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Optimization of g(2)(V )

(a) Optimal value (U,α)

(b) L-BFGS convergence

(c) g(2)(0) vs. density

Optimization of F(V )

(d) Optimal value for different U/γ

(e) obtained density matrix for U = 35γ

(f) number probabilities

Figure 4: A comparison of the two methods for single-photon state generation using the setup of Fig.
2; (left) the g(2)(0) optimization (4) vs. (right) the matrix-entry objective F(V ) (5).

input laser amplitudes α. One notices that the optimal g(2)(0;Vopt)-values are obtained for large U
and small α. In panel (b), we illustrate the convergence of PyTorch’s L-BFGS optimizer. Noteworthy,
as shown in panel (c), while small input amplitudes α and stronger interaction U give good results
for g(2)(0;Vopt), this comes at the expense of low single-photon output intensities and thus low
probabilities – only a few percent chance of single-photon emission, see yellow dots.

On the right-hand side of Fig. 4, we show the results for using the objective F(V ) of Expr. 5. These
results were obtained for the same nonlinear PIC configuration, but allowing for larger interaction
coefficients U . The input intensity is set to α = 1. The curve in panel (d) shows some wiggles, but we
observe that generally better values of the FOM are obtained at higher U/γ. In panel (e), the obtained
optimal density matrix for U = 35γ is shown and it is clear that, to a good approximation, only the
matrix entries ρ11 and ρ00 are occupied. Finally, in panel (f), we compare the probability of producing
vacuum and the probability of single-photon generation. We find a single-photon probability of about
p1 = 0.4 for large values of U/γ. Clearly, higher photon numbers (inducing spurious signals ) are
strongly suppressed, since p0 + p1 ≈ 1 for all U -values (black dotted line).

4 Conclusions and Outlook

We have proposed a novel polaritonic PIC to perform universal quantum state characterization and
generation. Moreover, we introduced and successfully brought to bear a methodology to optimize
the circuit so as to maximize the efficiency of the respective tasks. We provided evidence, based on
numerical simulations, of the efficacy of the optimized chips in the tasks of characterizing single- and
two-mode squeezed thermal states and the highly accurate generation of single photons.

We are currently actively corresponding with experimental research groups about realizing our
proposed PICs, using cryogenic GaAs-based polariton quantum wells. Once implemented, the PIC
will be tested and benchmarked against our numerical simulations. Furthermore, for both state
tomography and generation, we aim at scaling up our simulations to larger system sizes, using matrix-
product based methods [37], to the end of characterizing and generating states of higher complexity –
e.g., for performing full density-matrix tomography or generating Bell-pair states. These results will
be benchmarked and compared against the original (conceptual) results of Refs. [20, 24]. Finally,
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[25] opens up the possibility of enlarging the design space by introducing tunable nonlinearities U ,
while [38] introduces techniques to perform noise-adaptive co-search.
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A Choice of units

In Eqs. (1) and (2) we briefly indicated that we choose to set ℏ = vg = 1, with ℏ the reduced Planck
constant and vg the polariton propagation group velocity. Here we give an overview of the motivation
and the conversion to actual experimental units.

A photon with frequency ω has an energy equal to E = ℏω. Thus, by choosing ℏ = 1, energy and
frequency scales have, by construction, the same units. One can similarly argue for the effect of
setting the polariton group velocity to one by considering d = vgt, the distance a polariton propagates,
in a time t, through the waveguide after injection. The value for vg can be determined from the
waveguide polariton dispersion ϵ(k), vg = ∂ϵ(k)

∂k . Note that it is strongly dependent on the angle of
laser incidence and the Rabi coupling, the coupling between the photon and exciton field – see Ref.
[9].

Unifying the dimensions of time and length, using vg as the conversion factor, facilitates the simu-
lations but has, on the other hand, a few important assumptions; all photon backscattering, due to
roughness in the waveguides, is neglected, as well as potential inter-waveguide dephasing effects,
caused by small length mismatches – see the paraxial approximation [27].

Our simulations are generally performed with polariton decay rate set to unity, γ = 1. Consequently,
experimentally obtaining a value for polariton lifetime of, e.g., τ = γ−1 = 10 ps (ps: picoseconds)
and for group velocity vg = 20µm · ps−1 allows for the conversion to actual energy, frequency and
length units, using ℏ = 0.658meV · ps (meV: mili-electronvolt). As an example, a value U

γ = 0.1

from the main text, would, in this case, correspond to U = 0.1 · ℏγ = 66µeV and a circuit length of
T = 0.5 γ−1 to T = 0.5 · vgτ = 100µm.

B Quantum simulation of the polariton circuit dynamics

Simulating the dynamics of a quantum system is achieved by integrating the Schrödinger equation,

i∂t|ψ(t)⟩ = H(t)|ψ(t)⟩. (6)

Here, |ψ(t)⟩ is conveniently represented as the quantum-state vector, |ψ⟩ = ψ⃗, where each vector
element ψn⃗ is a complex numbers (amplitude and phase). Evaluating pn⃗ = |ψn⃗|2 gives the probability
of detecting the system in a number state n⃗, upon performing a photon-resolved measurement. The
number states are labeled as n⃗ =

[
n1, n2, . . . , nL

]T
, with ni the number of photons in waveguide

i and we consider L waveguides in total. The core obstacle of quantum simulation on classical
hardware is the exponential increase of the vector space (Hilbert space). Indeed, suppose we want
to track up to N photons in one channel, and we have L channels in total, the full vector-space
dimension is given by D = NL.

The Hamiltonian H(t) appearing in Eq. 6 is the energy operator applied to the quantum state |ψ⟩. It
is represented as a D ×D matrix, acting on the state vector ψn⃗. For the photons traversing a set of L
coupled nonlinear waveguides, the space axis of photon propagation can be mapped to an effective
time dimension, for which the Hamiltonian is given by,

H(t) = −∆

L∑
i=1

a†iai −
∑
⟨i,j⟩

(
Jij(t)a

†
iaj + J∗

ij(t)aia
†
j

)
+
U

2

L∑
i=1

a†ia
†
iaiai. (7)

Here, ai and a†i are, respectively, the bosonic annihilation and creation operators. The former
annihilates one photon from waveguide i with ni photons, ai|ni⟩ =

√
ni|ni − 1⟩, the latter injects

a photon, a†i |ni⟩ =
√
ni + 1|ni + 1⟩, and their combination gives the photon number, a†iai|ni⟩ =

ni|ni⟩.
The parameter ∆ = ωL − ωLP is the detuning between frequency of the incoming light ωL and
the lower-polariton resonance ωLP . The matrix J(t) is the graph matrix of waveguide couplings,
so each matrix entry Jij(t) describes the tunneling amplitude of one photon from waveguide i to
waveguide j at time t. The parameters Jij(t) are kept explicitly time-dependent (or, equivalently,
distance-dependent in the paraxial approximation), since, by design, couplings between waveguides
change as photons cross different layers imprinted on the chip. Finally, the parameter U is constant
and quantifies the photonic nonlinearity.
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Integrating the Schrödinger equation (6) assumes coherent energy-conserving dynamics in a perfectly
isolated environment, without any effects of dissipation or noise. However, in polaritonic systems,
polariton losses (due to exciton non-radiative decay, photon scattering...) are unavoidable and must
be included in the dynamics. This is described by the the Lindblad Master Equation [26],

∂tρ = Lρ ≡ − i
[
H(t), ρ

]
+ γ

∑
i

(
aiρa

†
i −

1

2

(
a†iaiρ+ ρa†iai

))
, (8)

in which the first term describes the coherent unitary dynamics, analogous to Eq. (6), and the second
the photonic losses in the waveguides (operators ai) with a (uniform) rate γ. Often this is described
by the Liouvillian L, a superoperator of which the spectrum shows interesting details about the
dissipative dynamics and convergence to the steady state [39].

Crucially, now the quantum simulation must be evaluated on the full density matrix ρ, which is a
D ×D matrix that can be composed in a set of pure states,

ρ ≡
∑
k

pk|ψk⟩⟨|ψk|, (9)

with pk the probability of encountering the pure quantum state k. Importantly, the representation
in terms of a quantum state ensemble |ψk⟩ is not unique and this relates back to a fundamental
invariance of the Lindblad master equation (8) [40, 41].

Fortunately, the full simulation of the master equation can be circumvented by using a Monte Carlo
(MC) sampling technique to collect a set of k pure quantum states |ψk⟩ (so D-dimensional, not D2),
which approximately describe the density matrix in some unraveling,

ρ(t) ≈ 1

Ns

∑
k

|ψk(t)⟩⟨ψk(t)|. (10)

Importantly, the density must never be explicitly evaluated from the sampled states |ψk⟩ if only
expectation values of operators are important (that is, measurement outcomes),

⟨O⟩ = 1

Ns

∑
k

⟨ψk|O|ψk⟩ (11)

The method was originally introduced, independently, in Refs. [29, 42], see Ref. [26] for a good
overview. We resorted to the MC quantum trajectory technique for the quantum simulation needed
for state generation in Sec. 3.2.

Numerically, the quantum simulations were performed using the python package qutip [43].

C The Gaussian variational approximation of the dynamics

Rather than performing a full quantum simulation of the Lindblad master equation (8), the dynamics
can be captured using the ansatz that the quantum states attain Gaussian statistics.

In quantum mechanics, a Gaussian quantum state obeys Gaussian number statistics and is, as a direct
consequence, fully defined by the following quantities:

• Operator expectation value: αi := ⟨ai⟩,

• Normal operator correlations: Nij := ⟨δa†i δaj⟩,
• Anomalous operator correlations: Cij := ⟨δai δaj⟩.

Above, we defined the fluctuation operator δai := ai − ⟨ai⟩.
A coupled set of closed-form nonlinear ordinary differential equations (ODEs) can be derived to
describe the lossy circuit dynamics, within the approximation of the photons obeying Gaussian
number statistics – the so-called Hartree-Fock-Bogoliubov method (see, e.g., Ref. [44] for a clean
derivation),
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i∂tαi =
(
−∆− i

γ

2
+ U |αi|2

)
αi − Ji,i+1αi+1 − J∗

i,i−1αi−1 + U
(
2niαi + ciα

∗
i

)
(12)

i∂tNij = −iγNij + Ji+1,iNi+1,j + J∗
i−1,iNi−1,j − Jj,j+1Ni,j+1 − J∗

j,j−1Ni,j−1 (13)

+U
(
2Nij

(
|αj |2 + nj − |αi|2 − ni

)
+ C∗

ij

(
α2
j + cj

)
− Cij

(
α∗2
i + c∗i

))
i∂tCij = −

(
2∆ + iγ

)
Cij − Ji+1,iCi+1,j − J∗

i−1,iCi−1,j − Jj,j+1Ci,j+1 − J∗
j,j−1Ci,j−1(14)

+U
(
2Cij

(
|αi|2 + |αj |2 + ni + nj

)
+

1

2

(
α2
i + ci

)(
2Nij + δij

)
+
1

2

(
α2
j + cj

)(
2N ∗

ij + δij
))

(15)

Here, we defined ni := Nii and ci := Cii and only nearest-neighbor couplings Ji,i±1 are considered.

Using standard methods (e.g., Runge-Kutta-45), the system of equations (12)-(14) can be integrated
to simulate the Gaussian quantum state of photons emitted by the coupled nonlinear waveguides.
Evaluating the waveguide intensities at time t is easily done by reading out Ii(t) := |αi(t)|2 + ni(t).

Notably, assuming Gaussian statistics of the photonic quantum state greatly reduces the complexity of
quantum simulation. Indeed, instead of requiring the quantum simulation of the Schrödinger equation
(coherent) (6) or Lindblad master equation (8) in the full exponential Hilbert space with dimension
D = NL, we can now resort to a set of coupled nonlinear ODEs (12)-(14) – with polynomial scaling,
not exponential. Of course, this gain in efficiency comes at the cost of omitting part of the quantum
correlations that builds up during quantum time evolution. For short enough times and sufficiently
low nonlinearity U , however, we see the results can be reliable [44].

D Optimizing the PIC for single-photon generation

The task of designing a PIC to obtain an optimal train of single photons as output consists of two
parts, as was depicted in the main text in Fig. 2. First, coherent laser light is coupled into a first
non-tunable PIC, with a polaritonic nonlinearity, to generate a multimode entangled output state.
This generated state is next injected in a fully linear PIC for the single-photon optimization task. We
describe in detail the simulations below.

D.1 Quantum simulation of the lossy circuit

The input laser light is defined as a coherent state |β⟩, which have as defining property that they are
eigenstates of the bosonic annihiliation operator, a|β⟩ = β|β⟩. As a direct consequence, coherent
states show Poissonian number statistics, ⟨a†a⟩ = Var(a†a) = |β|2, with n = ⟨a†a⟩ the number
expectation value. A single-frequency continuous wave (CW) – i.e., alaser beam – is described by
a coherent state |β⟩, where the complex number β = |β|eiθ defines the amplitude and phase of the
laser.

The output light of the first circuit is represented by the density matrix, expressed using the sampled
MC trajectory states,

ρout =
1

Ns

Ns∑
s=1

|ψs⟩⟨ψs|. (16)

For a given optical quantum circuit, characterized by the interaction strength U , the dissipation rate γ
and a set of waveguide couplings Jij (see Eqs. (2) and (1)), a set of sampled quantum states |ψs⟩ was
stored on local hardware for the ensuing task of optimizing the linear circuit.

D.2 Optimizing the Linear PIC for single-photon generation

The generated set of MC quantum states |ψk⟩, describing the density matrix ρout, are now injected in
a second, fully linear PIC. We aim at maximizing the probability of generating a single-photon as
output in one of the output channels of this second PIC. Given that (i) the PIC is now fully linear and
(ii) we neglect losses during optimization, we can circumvent a cumbersome full quantum simulation
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of its dynamics and resort to an equivalent operator formalism – see [45]. The output modes of the
PIC are now a linear transform of the original bosonic operators,

bi(V ) =
∑
j

Vijaj , (17)

with V the unitary matrix to be optimized and representing the PIC. V is of size L× L (so quadratic
in the number of waveguides, not exponential). We define it as the matrix exponent of a Hermitian
matrix G that represents the graph of waveguide connections,

V (θ⃗) := eiG(θ⃗). (18)

Since the only restriction to G is it being Hermitian, this guarantees a straightforward and efficient
expression of V in terms of optimization variables θi.

Expressing the optimization objective in terms of the transformed operators bi(V ) from Eq. (17) is
essential. For single-photon generation, we present two possible objectives,

The density-density correlations. The coincidence rate of photons is quantified by the g(2)(0)
function, defined as,

g
(2)
ll (V ) =

〈
b†l (V )b†l (V )bl(V )bl(V )

〉
n2l (V )

, (19)

where ⟨·⟩ is the expectation value of a quantum state ρ, here evaluated over the MC sampled trajectory
states (see Eq. (11)). We optimize for one output mode l. Essentially, (19) represents the ratio
of fourth-order correlations (∼ density variation) over density squared. For a coherent laser beam,
thanks to the Poissonian number statistics, g(2)l (V ) = 1, regardless of the choice of V . In contrast,
g
(2)
l (V ) = 0 is the correlation value of a single-photon state. Thus, we want to minimize Expr. (19),

to approach a single-photon state as closely as possible. Any value 0 ≤ g
(2)
l (V ) < 1 is considered a

genuine signature of quantum statistics, referred to as antibunched statistics (∼ the particle nature of
light)

Density matrix entries. A considerable problem with the optimization of g(2)l (V ) = 0 is that
optimal values are typically obtained at very low photon density (intensity) nl – there is no a priori
constraint for ensuring high nl .

Therefore, besides optimizing the accuracy of a single-photon outcome, we also aim at maximizing
the probability for this to occur. We propose an objective expressed in terms of density-matrix entries
of the density matrix ρ̃ of output mode l,

F(V ) = −ρ̃11(V )− w0ρ̃00(V ) +
(∑

ij

|ρ̃ij(V )| − ρ̃11(V )− ρ̃00(V )
)
. (20)

That is, we want to maximize the single-photon matrix entry ρ̃11 and, with a lower weight (0 < w0 <
1), the vacuum entry ρ̃00. The occupation of any other matrix entry is penalized (last term). Note
that a non-zero value vacuum entry ρ00 is not penalized in (20). The relatively low input intensities,
αi ≤ 1, necessitate a non-zero occupation of the vacuum state. Moreover, if no single photon is
emitted, we prefer to have a clear-cut zero signal, instead of generating spurious signals with higher
photon numbers.

The matrix entries are expressed using the transformed operators from (17),

ρ̃mn(V ) = C ·
⟨0|bml (V )× ρout × b†nl (V )|0⟩√

m!n!
, (21)

with ρout the density matrix representing the output state of the first, nonlinear optical network. C is
some constant of normalization – diagonal entries of ρ̃ are probabilities, so trρ̃ = 1 by definition.

Both objectives are conveniently computed as tensor contractions. For this, the stored MC quantum
states |ψs⟩ are loaded and appropriately contracted with the PIC unitary V , each iteration in the
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optimization. As an example, obtaining the fourth-order correlation from Expr. (19) requires the
evaluation of,

〈
b†l (V )b†l (V )bl(V )bl(V )

〉
=

1

Ns

Ns∑
s=1

L∑
i1,i2,i3,i4=1

V ∗
l,i1V

∗
l,i2Vl,i3Vl,i4

〈
a†i1a

†
i2
ai3ai4

〉
s
. (22)

The fourth-order correlator can be precomputed and stored as a rank-4 tensor, to be reused for every
optimization step,

Ai1,i2,i3,i4 :=
1

Ns

Ns∑
s=1

⟨a†i1a
†
i2
ai3ai4⟩s. (23)

Starting from the generated set of quantum Monte Carlo trajectory states |ψk⟩, the PIC unitary V was
optimized using PyTorch [46] with the LBFGS solver.

E Simulation parameters

Quantum Tomography. The single/two-mode squeezed thermal state is injected into the third (and
fourth) waveguide out of the five waveguides of the PIC. Into the remaining four/three waveguides,
we inject coherent states with displacement amplitudes and phases, in order, 0.5, 0.1, (0.1,) 0.5 and
−π/2, −π/4, (π/4,) π/2 respectively. We consider five layers of interference regions in a brick-
pattern, each of duration ∆t = 0.1/γ, and initialize the hopping coefficients randomly in the range
[0.5, 1.5]× π

4∆t . Note that, in the linear regime, J = π
4∆t corresponds to a 50:50 beamsplitter. We

created a training and test dataset of single- and two-mode thermal squeezed states, each consisting
of 250 samples, by randomly sampling in the intervals r ∈ [0, 0.4], θ ∈ [−π, π], n̄ ∈ [0, 0.2]. Finally,
the optimization domain of each of the coupling coefficients Jij is bounded to the range [0, 2 π

4∆t ].

Single-photon generation. We simulated a first nonlinear PIC consisting of 5 waveguides and
10 stacked, brick-pattern layers. The PIC Jij(t)-values were presampled (constant for each (α,U)
datapoint in Fig. 2(a)) in the range [0.5, 1.5]× π

4∆t , with ∆t the photon propagation time through
one layer. The 5 laser input fields were chosen with uniform amplitude α, but with different phases,
[−π

2 ,−
π
4 , 0,

π
4 ,

π
2 ]. The total circuit duration is T = 0.5

γ . We collected Ns = 500 MC quantum
samples for each datapoint.

For the optimization task for single-photon generation in the second linear PIC, we used the LBFGS
solver of the PyTorch library [46]. The graph matrix G was represented in the basis of trace zero
Hermitian matrices, so that V is a unitary from the special unitary group SU(L), having the condition
detV = 1. The coefficients of the basis matrices, N2 − 1 real numbers, were chosen randomly from
the normal distribution (so µ = 0 and σ2 = 1) for the initial value. Each datapoint (α,U) started
from the same presampled random condition to guarantee consistency for comparison.
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