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Abstract

Semi-supervised video object segmentation (VOS) refers to
segmenting the target object in remaining frames given its an-
notation in the first frame, which has been actively studied in
recent years. The key challenge lies in finding effective ways
to exploit the spatio-temporal context of past frames to help
learn discriminative target representation of current frame. In
this paper, we propose a novel Siamese network with a specif-
ically designed interactive transformer, called SITVOS, to en-
able effective context propagation from historical to current
frames. Technically, we use the transformer encoder and de-
coder to handle the past frames and current frame separately,
i.e., the encoder encodes robust spatio-temporal context of
target object from the past frames, while the decoder takes the
feature embedding of current frame as the query to retrieve
the target from the encoder output. To further enhance the
target representation, a feature interaction module (FIM) is
devised to promote the information flow between the encoder
and decoder. Moreover, we employ the Siamese architecture
to extract backbone features of both past and current frames,
which enables feature reuse and is more efficient than existing
methods. Experimental results on three challenging bench-
marks validate the superiority of SITVOS over state-of-the-
art methods. Code: https://github.com/LANMNG/SITVOS.

1 Introduction
Video object segmentation (VOS) refers to separating the
foreground from the background in all frames of a given
video (Pont-Tuset et al. 2017; Xu et al. 2018). As an impor-
tant tool for video editing and many other down-stream ap-
plications, it has recently gained increasing attention (Zhang
and Tao 2020). In this work, we study the challenging semi-
supervised VOS problem, which aims at finding the pixel-
level position of target objects in a short video, only given
the ground truth masks of the objects in the first frame. Due
to the variance in appearance and scale of the target objects
over time as well as the similar appearance ambiguity issue
in the background, semi-supervised VOS is very challenging
and actively studied. In this paper, if not specified, the term
“VOS” refers to semi-supervised VOS for simplicity.
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Figure 1: Visualized feature maps from our SITVOS. (a) The
feature map from backbone. (b) The feature map after self-
attention. (c) The feature map after feature interaction. The
feature representation of target object is gradually enhanced.

A critical problem in VOS is how to exploit the spatio-
temporal context of target objects in historical frames to
guide the object segmentation process of current frame, and
many explorations have been made to implement the infor-
mation propagation across frames. RGMP (Oh et al. 2018)
propagates the object context of the first and previous frames
to the current frame by concatenating the features of these
frames. This is an intuitive yet simple strategy and brings im-
provement in performance, although the feature-level con-
catenation may result in coarse segmentation and is not ro-
bust to occlusion and drifting. To obtain more accurate re-
sults, researchers propose the matching-based methods to
achieve the pixel-level object information propagation. STM
(Oh et al. 2019) encodes the past frames into a memory
and uses the current frame as a query to read the memory,
which is a non-local pixel matching, to obtain the target ob-
ject representation, achieving high accuracy. However, sim-
ple global matching is vulnerable to interference from back-
ground distractors and requires large computational cost.
Recently, some researchers try to solve these problems from
new perspectives. CFBI (Yang, Wei, and Yang 2021) sepa-
rates the feature embeddings into the foreground object and
background context to implicitly make them more discrim-
inative and improve the segmentation. RMNet (Xie et al.
2021) proposes the local-to-local matching solution by con-
structing the local region memory and query regions based
on optical flow. Although the current matching-based ap-
proaches compute the correspondences of the pixels in the
query frame against pixels in each reference frame, they do
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not explicitly model the temporal dependency of the target
object among the referenced historical frames. which cannot
guarantee to learn robust and discriminative target feature
representation for VOS. Besides, previous approaches typi-
cally take the target mask of past frames as prior to explicitly
enhance the object representation in the memory and main-
tain two different encoders for memory and query, making
the model is computationally inefficient.

In this paper, inspired by the superior capability of trans-
former in capturing long-range dependencies, we propose a
simple yet effective pipeline, termed SITVOS, for VOS task.
Different from most STM-based methods, which maintain
two independent encoders, i.e., memory encoder for the past
frames with corresponding object mask and query encoder
for current frame, our SITVOS employs a Siamese network
architecture to extract the feature embeddings of the past
and current frames from a shared backbone while adopting a
light-weight encoder for mask embedding. The decoupling
of frame and object mask allows the feature of current frame
to be cached and reused later as the memory feature, thus im-
proving the information flow and computational efficiency.
Moreover, we also devise an interactive transformer to al-
low effective feature learning, as shown in Fig. 1. Specifi-
cally, the past frame embeddings are fed into the transformer
encoder to model the spatio-temporal dependency of target
object among the referenced historical frames, therefore im-
proving the feature representation of target object. Then, the
current frame embeddings and the above encoder output are
fed into the transformer decoder, where the spatial depen-
dency of target object in the query frame can be efficiently
modeled via the self-attention while the cross-attention en-
ables to retrieve and aggregate target information from past
frames to highlight the target object for better segmentation
performance. To further bridge the object information prop-
agation between the past and current frames, we design a
feature interaction module within the interactive transformer
based on cross-attention, i.e., the feature embeddings from
the encoder and decoder separately serve as the query to at-
tend the other via cross-attention to enhance the target rep-
resentation mutually. Finally, the output embeddings of the
transformer decoder are fed into a segmentation decoder to
predict the final segmentation result.

The contribution of this paper is threefold.

• We propose to leverage transformer encoder and decoder
to efficiently model the spatio-temporal dependency of
target objects among the referenced historical frames
as well as the spatial dependency of target object in
the query frame, allowing effective feature learning and
matching.

• We devise a feature interaction module (FIM) within the
transformer to bridge the target information interaction
between past and current frames to enhance the target
representation mutually.

• SITOVS has a Siamese network architecture that allows
feature reuse and is computationally efficient. It matches
the performance of state-of-the-art (SOTA) methods on
three popular benchmarks while running faster.

2 Related Work
2.1 Semi-supervised Video Object Segmentation
In the early stage of this field, VOS methods are almost
based on online learning, which first fine-tune on the ground
truth in the first frame and then perform the inference on the
rest of the test frames. OSVOS (Caelles et al. 2017) is the
pioneering work in this direction using deep convolutional
neural networks, which fine-tunes a pre-trained foreground
segmentation model on the first frame. OnAVOS (Voigtlaen-
der and Leibe 2017) extends OSVOS by introducing an on-
line adaptation strategy, which adopts highly confident pre-
dictions into the fine-tuning process. However, they suffer
from the high computation cost of the fine-tuning process.

To address this issue, recent works turn to offline learning,
which exploit the given mask prior in the first frame and the
intermediate predictions as reference to directly guide the
object segmentation of current frame. They can be roughly
grouped into two categories. First, propagation-based meth-
ods learn an object mask propagator by introducing the
object mask features from historical frames to the current
frame(Perazzi et al. 2017; Oh et al. 2018; Lan et al. 2020) .
For example, RGMP (Oh et al. 2018) concatenates features
of the first, previous, and current frames to explicitly en-
hance the target representation. SAT (Chen et al. 2020) up-
dates a dynamic global feature of the target and propagates
to the current inference. Second, matching-based methods
find the target objects in the current frame by calculating
the pixel-level similarity with the past frames (Voigtlaender
et al. 2019; Oh et al. 2019; Li, Shen, and Shan 2020; Xie
et al. 2021). FEELVOS (Voigtlaender et al. 2019) proposes a
global and a local pixel-level matching mechanism to gather
information from the first and previous frames, respectively.
Recently, the STM network (Oh et al. 2019) is proposed
to propagate the non-local object information, which has
been a solid baseline in VOS task for its simple architec-
ture and competitive performance (Seong, Hyun, and Kim
2020; Wang et al. 2021). GC (Li, Shen, and Shan 2020) im-
proves the STM architecture by only using a fixed-size fea-
ture representation and updates a global context to guide the
segmentation of current frame. RMNet (Xie et al. 2021) uses
the optical flow to get the target region and performs local-
to-local matching, which effectively mitigates the ambiguity
of similar objects in both memory and query frames.

2.2 Vision Transformers
Transformer is first proposed in (Vaswani et al. 2017) for
machine translation. Recently, transformer has witnessed
great success in vision tasks like image classification (Doso-
vitskiy et al. 2020; Xu et al. 2021; Liu et al. 2021), object
detection (Carion et al. 2020; Zhu et al. 2020), and seman-
tic segmentation (Zheng et al. 2021). ViT (Dosovitskiy et al.
2020) first applies the transformer to image classification by
splitting an image into patches and provides the sequence
embeddings of these patches as input to the transformer.
DETR (Carion et al. 2020) adopts a transformer with a fixed
set of learned object queries to reason about the relations be-
tween objects and global image context, and directly outputs
the final set of predictions in parallel.
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Figure 2: The framework of our SITVOS, which consists of three parts: 1) the Siamese network extracts features of the past and
current frames, 2) the interactive transformer promotes the feature representation in the encoder and decoder, and propagates
object cues from the past to the current frame, and 3) the segmentation decoder produces the final segmentation result.

3 Method

3.1 Architecture Overview

SITVOS is illustrated in Fig. 2, which is well suited for both
single-object and multi-object segmentation. Specially, for
the multi-object segmentation, it predicts the segmentation
mask for each object in a single forward pass and merges
the predicted maps to generate the final segmentation re-
sult rather than repeating single object segmentation mul-
tiple times. SITVOS consists of three parts, i.e., Siamese
network for feature extraction, interactive transformer for
target information propagation, and segmentation decoder
for mask prediction. First, the features of past frames and
current frame are extracted by the two parallel branches of
Siamese network respectively, and then they are further em-
bedded via an 1×1 convolutional layer. Then, the past frame
features are reshaped to the memory embeddings and fed
into the transformer encoder, while the current frame fea-
ture is transformed to query embeddings. Together with the
encoder output, they are fed into to the transformer decoder,
which retrieves and aggregates the object cues from the past
frames to the current one to enhance the target representation
for segmentation. Moreover, we devise a feature interaction
module within the transformer to promote target informa-
tion propagation between past frames and current frame and
enhance the target representation mutually. The transformer
output is fed into the segmentation decoder to generate the
final segmentation result.

3.2 Siamese Network for Feature Extraction

Siamese network is a widely used architecture in the field
of video processing, especially for object tracking (Xu et al.
2020; Wang et al. 2019). Here we adopt a Siamese network
architecture for feature extraction from the RGB frames and
a light-weight encoder for the object mask. As shown in Fig.
2, the two branches of Siamese network extract the features
of the past and current frames respectively, where the fea-
tures of past frames are further embedded and stacked along
the temporal dimension and reshaped to memory embedding
(Mori ∈ RTHW×C), and the features of current frame is
transformed to query embedding (Qori ∈ RHW×C). The
object mask embedding from the light-weight encoder is de-
noted as ME ∈ RTHW×C . Here, T is the number of in-
volved past frames, H and W are the height and weight
of the features, and C is the channel number. We employ
ResNet50 (He et al. 2016a) as the backbone of Siamese net-
work and the two branches share the same weights. Follow-
ing the setting of STM (Oh et al. 2019), we remove the
last stage of ResNet50 and take the output of the fourth
stage with stride 16 as the extracted feature. ResNet18 is
adopted as the light-weight mask encoder and the input
channel of the first convolutional layer is changed to 1 to
adapt to object mask. Notably, due to the weight sharing of
the Siamese network, the extracted feature of current frame
could be cached and reused in the subsequent inference pro-
cess, which makes SITVOS more computationally efficient
compared with previous STM-based architectures.



3.3 Interactive Transformer
The structure of interactive transformer is shown in the mid-
dle part of Fig. 2. Similar to the traditional transformer
(Vaswani et al. 2017), our transformer employs the encoder-
decoder architecture. However, we make some modifica-
tions to adapt our transformer to the Siamese-like frame-
work as well as the VOS task. First, we separate the encoder
and decoder as two branches. The encoder takes the mem-
ory embeddings as input and models the spatio-temporal
dependency of the target objects among the past frames
via self-attention. The decoder receives the encoder out-
put and current frame feature as input and leverages cross-
attention to propagate the temporal context. Second, we
devise the feature interaction module (FIM) within trans-
former to further promote the information communication
between the encoder and decoder. Third, to achieve a de-
cent balance between segmentation accuracy and inference
speed, we simplify the classic transformer by removing the
fully connected feed-forward network and only maintaining
a lightweight single-head attention.

Transformer encoder The transformer encoder consists
of a self-attention (SA) block. An attention function can be
described as mapping a query and a set of key-value pairs to
an output, which is computed as a weighted sum of the val-
ues, where the weight assigned to each value is the similarity
between the query and the corresponding key. Here, follow-
ing (Vaswani et al. 2017), we adopt the scaled dot-product
attention with residual connection and layer normalization
to implement self-attention (as well as cross-attention (CA))
block, which could be formulated as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where Q ∈ RNq×dk ,K ∈ RNq×dk and V ∈ RNq×dv are the
query, key and value, respectively. dk is the channel dimen-
sion of query and key, and

√
dk is temperature parameter

which controls the softmax distribution. For SA block, Q,
K,V are the same, while they could be various in CA block.

In the encoder, the memory embedding Mori is sent into
the self-attention block, where Mori is first converted to
query, key and value via linear projections. The SA block
models the spatio-temporal dependency among all the in-
volved past frames and enhances the feature representa-
tion of target objects, which is beneficial to the subsequent
pixel-level propagation of object cues. The output MSA ∈
RTHW×C is then fed into FIM in the transformer decoder,
which will be described as follows.

Transformer decoder The transformer decoder is com-
posed of a SA block, the FIM that will be detailed in the
next part, and a CA block. Similar to the encoder, the query
embedding Qori first goes through a SA block to obtain
QSA ∈ RHW×C . Then, MSA, Mori, and QSA are fed into
FIM to generate Qout ∈ RHW×C and Mout ∈ RTHW×C

respectively. They are used as the input to the CA block,
where Qout serves as the query and Mout acts as key and
value. Finally, the output Tout ∈ RHW×C of the transformer
could be obtained as follows:

Tout = LN(Attention(Q,K, V ) +Qout), (2)

Cross-AttentionCross-Attention

Add & Norm Add & Norm

𝑀𝑜𝑟𝑖
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Figure 3: Diagram of the feature interaction module.

where Q = QoutW
Q, K = MoutW

K , V = MoutW
V . WQ ∈

RC×dk , WK ∈ RC×dk and WV ∈ RC×C are linear pro-
jection weights with C = 256 and dk = 64. LN denotes
Layer Normalization. The same hyper-parameter settings
are adopted in the remaining attention formulations.

Feature Interaction Module In the traditional trans-
former architecture, the sequence embeddings go through
the encoder and decoder in serial order. While in our frame-
work, the encoder and the SA block in the decoder are par-
allel branches and take the past and current frames as input
respectively, which both contain the target object informa-
tion. Inspired by (Chen et al. 2021), we argue that in addi-
tion to propagating the spatio-temporal information of target
objects from the past to the current frame to enhance the tar-
get representation in current frame, the current frame can
also be used as a reference to reinforce the target feature
representation in the past frames. Therefore, we design FIM
based on cross-attention for information interaction between
the encoder and the SA block in the decoder.

As depicted in Fig. 3, FIM consists of a separate CA block
for each branch. The CA block for the encoder branch takes
MSA and QSA as input, where MSA serves as the query to
compute the similarity with the key QSA and retrieve the
object information from the value QSA. The output of this
CA block Mout can be calculated as follows:

Mout = LN(Attention(Q,K, V ) +MSA), (3)
where Q = MSAW

Q, K = QSAW
K , V = QSAW

V .
For the CA block after the SA block in the decoder, QSA

and MSA are the query-key pair. The mask embedding ME

and Mori are element-wise multiplied to generate a new
embeddings Mx ∈ RTHW×C , where ME is used to filter
the background distractors and provide more accurate object
cues. Mx acts as the value term and propagates the object
information based on the similarity matrix computed by the
QSA and MSA. The output Qout can be obtained as follows:

Qout = LN(Attention(Q,K, V ) +QSA), (4)
where Q = QSAW

Q,K = MSAW
K , V = MxW

V .

3.4 Segmentation Decoder
The segmentation decoder takes the interactive transformer
output Tout as input and predicts the object mask in the cur-



rent frame. Like STM (Oh et al. 2019), we use the refine-
ment module as the basic block of the decoder. Tout is first
reshaped and converted to 256-channel feature via a convo-
lutional layer and a residual block (He et al. 2016b). Then,
two refinement modules gradually upscale the feature map
by a factor of two each time. The refinement module takes
both the output of the previous module and a feature map
from feature extractor at the corresponding scale through
skip-connections. A 2-channel convolutional layer followed
by a softmax operation is attached behind the last refinement
module to produce the predicted object mask at 1/4 scale of
the input image. Finally, we use bi-linear interpolation to
upscale the predicted mask to the original scale. Every con-
volutional layer in the decoder uses 3×3 kernel, producing
256-channel output except for the last 2-channel one.

3.5 Implementation Details
Training Following most advanced methods (Wang et al.
2021; Oh et al. 2019; Xie et al. 2021; Li, Shen, and Shan
2020), we adopt the two-stage training strategy. In the first
stage, we pre-train our SITVOS model on simulated video
clips generated upon MS-COCO dataset (Lin et al. 2014).
Specifically, we randomly crop foreground objects from a
static image and then pasted them onto a randomly sampled
background image to form a simulated image. Affine trans-
formations, such as rotation, resizing, sheering, and transla-
tion, are applied to foreground and background separately
to generate a 3-frame video clip mimicking deformation and
occlusion scenarios. The pre-training helps our model to be
robust against a variety of object appearance and categories.
In the second stage, we finetune the pre-trained model on
the real video data DAVIS 2017 (Pont-Tuset et al. 2017) and
YouTube-VOS (Xu et al. 2018). Three temporally ordered
frames are sampled from a training video to form a training
sample and the interval of sampled frames are randomly se-
lected from 0 to 25 to simulate the appearance change over
a long time. SITVOS is implemented in Pytorch and trained
using RTX 2080Ti GPU. The input image size is 384 × 384
and batchsize is 4 for both training stages. We minimize the
cross-entropy loss using the Adam optimizer with a learning
rate starting at 1e-5. The learning rate is adjusted with poly-
nomial scheduling using the power of 0.9. All batch normal-
ization layers in the backbone are fixed as their ImageNet
pre-trained parameters during training.

Inference Given a test video with the annotation masks of
the first frame, SITVOS sequentially segments each frame
in only a single forward pass. Since using all past frames
as the memory may result in overflow of GPU memory and
slow running speed, we adopt a dynamic intermediate frame
utilization strategy. Similar to STM, we select the first and
previous frame into the memory frames. However, instead of
saving intermediate frames to memory frames at a fixed in-
terval, which is limited by the GPU memory and long video
sequence, and thus cannot use more intermediate frame in-
formation in a relatively short video sequence, we dynami-
cally sample the intermediate frame but fix the total number
of memory frames as N based on the GPU memory limita-
tion. We set N = 7 in our paper.

4 Experiments
4.1 Datasets and Evaluation Metrics
SITOVS is evaluated on three benchmark datasets, namely
DAVIS 2016-Val for single-object segmentation, DAVIS
2017-Val and YouTube-VOS validation sets for multi-object
segmentation. The DAVIS 2016 validation set comprises
20 videos while the DAVIS 2017 validation set extends
the DAVIS 2016 validation set to 30 videos with multiple
objects annotations. The official YouTube-VOS validation
set has 474 video sequences with objects from 91 classes.
Among them, 26 classes are not present in the training set.

For the DAVIS datasets, we adopt the official performance
criteria, i.e., the Jaccard index (J ) to denote the mIoU
between the predicted and the ground-truth masks, the F-
measure (F) to represent the contour accuracy, and the over-
all score J&F which is the mean of the J and F . In addi-
tion, inference speed in frames per second (FPS) is also re-
ported. As for YouTube-VOS dataset, we calculate J and F
scores for classes included in the training set (seen) and the
ones that are not (unseen). The overall score G is computed
as the average over all four scores.

4.2 Comparison with State-of-the-art
DAVIS 2017 We first compare SITVOS with SOTA meth-
ods on the multi-object DAVIS 2017 validation set. As
shown in Table 1, SITVOS achieves the best J&F score,
i.e., 83.5%, at an inference speed of 11.8 FPS. Specially,
compared with sparse spatio-temporal transformers based
SSTVOS (Duke et al. 2021), our SITVOS is 1% higher in
J&F while enjoying a simpler pipeline. In the series of ap-
proaches of using YouTube data for training, SITVOS out-
performs STM, Swift and GC, and achieves a comparable
performance with the latest LCM and RMNet. In addition,
since the reported FPS of the comparison methods in their
paper are tested on different platforms, a direct comparison
will be not fair. Therefore, we test the FPS of those methods
that have official code on the same platform (RTX 2080Ti).
The results show that our SITVOS achieves the best seg-
mentation accuracy with a decent inference speed. Some vi-
sual results are shown in the left of Fig. 4, where we present
some challenging scenarios such as occlusion, deformation
and disappearance of target objects.

DAVIS 2016 Compared with multi-object segmentation,
the single object segmentation task in DAVIS 2016 vali-
dation set is relatively easy. As reported in Table 1, our
SITVOS attains 90.5% in J&F score and surpasses all the
comparison methods except for a slight 0.2% lower than
LCM. Besides, we find that the methods using additional
Youtube-VOS data for training have better performance than
those without using additional data.

Youtube-VOS Since not all the annotations of the
YouTube-VOS validation set are released, we obtain the seg-
mentation results based on the provided first mask of ob-
jects in each video sequence and then submit the results to
the official evaluation server to get the quantitative evalua-
tion results. The results of SITVOS and SOTA methods are



Method OL DAVIS2016 DAVIS 2017

J&F JM FM J&F JM FM FPS

PReMVOS (Luiten, Voigtlaender, and Leibe 2018) ✓ 86.8 84.9 88.6 77.8 73.9 81.7 0.01
OnAVOS (Voigtlaender and Leibe 2017) ✓ 85.5 86.1 84.9 67.9 64.5 71.2 0.08
OSVOS (Caelles et al. 2017) ✓ 80.2 79.8 80.6 60.3 56.7 63.9 0.22

LCM† (Hu et al. 2021) × 90.7 89.9 91.4 83.5 80.5 86.5 8.6
RMNet† (Xie et al. 2021) × 88.8 88.9 88.7 83.5 81.0 86.0 9.6
CFBI+† (Yang, Wei, and Yang 2021) × 89.9 88.7 91.1 82.9 80.1 85.7 6.0
GIEL (Ge, Lu, and Shen 2021) × - - - 82.7 80.2 85.3 6.6
EGMN† (Lu et al. 2020) × - - - 82.8 80.2 85.2 5.0
SSTVOS (Duke et al. 2021) × - - - 82.5 79.9 85.1 -
STM† (Oh et al. 2019) × 89.3 88.7 89.9 81.8 79.2 84.3 8.7
Swift† (Wang et al. 2021) × 90.4 90.5 90.3 81.8 79.2 84.3 6.3
FRTM† (Robinson et al. 2020) × 83.5 - - 76.7 - - 16.3
TVOS (Zhang et al. 2020) × - - - 72.3 69.9 74.7 7.7
FEELVOS† (Voigtlaender et al. 2019) × 81.7 81.1 82.2 71.5 69.1 74.0 2.2
GC†(Li, Shen, and Shan 2020) × 86.6 87.6 85.7 71.4 69.3 73.5 25.0
SAT† (Chen et al. 2020) × 83.1 82.6 83.6 71.2 67.6 74.8 34.0
AGAME† (Johnander et al. 2019) × 82.1 82.0 82.2 70.0 67.2 72.7 14.8
RGMP (Oh et al. 2018) × 81.8 81.5 82.0 66.7 64.8 68.6 8.0
SITVOS† × 90.5 89.5 91.4 83.5 80.4 86.5 11.8

Table 1: Results on the DAVIS validation set. OL denotes online fine-tuning. † indicates using YouTube-VOS for training.

reported in Table 2. SITVOS outperforms most recent ap-
proaches, such as STM, Swift and GIEL, and achieves com-
petitive overall performance compared with the latest meth-
ods. In particular, SITVOS performs stably in both seen and
unseen categories, demonstrating its good generalizability.
Some qualitative results are presented in the right of Fig. 4.

Version OL G Js Ju Fs Fu

PReMVOS ✓ 66.9 71.4 56.5 75.9 63.7
OSVOS ✓ 58.8 59.8 54.2 60.5 60.7
OnAVOS ✓ 55.2 60.1 46.1 62.7 51.4

LCM × 82.0 82.2 75.7 86.7 83.4
RMNet × 81.5 82.1 75.7 85.7 82.4
GIEL × 80.6 80.7 75.0 85.0 81.9
EGMN × 80.2 80.7 74.0 85.1 80.9
STM × 79.4 79.7 72.8 84.2 80.9
Swift × 77.8 77.8 72.3 81.8 79.5
GC × 73.2 72.6 68.9 75.6 75.7
FRTM × 72.1 72.3 65.9 76.2 74.1
TVOS × 67.4 66.7 62.5 69.8 70.6
AGAME × 66.1 67.8 60.8 69.5 66.2
SAT × 63.6 67.1 55.3 70.2 61.7
RGMP × 53.8 59.5 45.2 - -
SITVOS × 81.3 79.9 76.4 84.3 84.4

Table 2: Results on the YouTube-VOS 2018 validation set.

4.3 Ablation Study
Training Data We compare the performance of our model
using three different training strategies, i.e., pre-training
only on COCO dataset, main training only on the DAVIS and
Youtube-VOS datasets, and full training including both pre-
training and main training. As shown in Table 3, SITVOS
benefits from pre-training at a gain of 2.0% J&F and 7.2%
J&F on DAVIS 2016 and 2017, respectively, showing that
the simulated videos based on the multiple foreground ob-
jects from MS-COCO dataset matters a lot for the multi-
object video segmentation task, where SITVOS can learn
generalizable object feature representation via pre-training.

Variants J&F FPS
DAVIS 2016 DAVIS 2017

Pre-training only 74.7 66.6 11.8
Main training only 88.5 76.3 11.8
Full training 90.5 83.5 11.8

STM 89.3 81.8 8.7
SITVOS w/o FIM 89.2 82.0 14.3
SITVOS with FIM 90.5 83.5 11.8

Table 3: Ablation study of the training strategy and FIM in
our SITVOS on the DAVIS 2016 & 2017 validation set.

Interactive Transformer Interactive transformer helps to
bridge the feature representation of the past frames and the
current frame and propagate the target information from the
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DAVIS 2017 YouTube-VOS

Figure 4: Qualitative results of SITVOS on DAVIS 2017 and Youtube-VOS datasets

Past frame

(a) Backbone (b) Self-attention (c) Feature interactionCurrent frame

Figure 5: Visualization of the feature maps in the interactive
transformer. The first column are one past frame on the top
and the current frame on the bottom. (a) The feature maps
from backbone. (b) The feature maps after self-attention. (c)
The feature map after feature interaction module.

past to the current. To validate its effectiveness, we report the
performance of SITVOS with and without FIM as well as the
solid STM baseline in the bottom rows of Table 3. As can
be seen, SITVOS using a naive transformer only achieves
comparable performance as STM, although SITVOS runs
faster owing to the proposed Siamese architecture. After us-
ing FIM, it brings an improvement of 1.3% J&F and 1.5%
J&F over the vanilla SITVOS without FIM on DAVIS
2016 & 2017 respectively, demonstrating that FIM is crucial
for improving the segmentation performance.

To further investigate its effectiveness, we visualize the
feature maps from different modules in SITVOS, including
the backbone, self-attention, and the FIM. As shown in Fig.
5, although self-attention helps to reduce the activation in
the road area, the activation in the background crowd area
is still large, since the persons in the crowd are similar to
the foreground dancer in both appearance and semantics.
Consequently, the segmentation decoder will be affected by
those background feature noise. In contrast, after using FIM,
the activation in the background crowd area has been signif-
icantly reduced. In this way, FIM helps to learn better tar-
get feature representations for both past frames and current
frame and improves the segmentation result.

Memory frame(s) J&F FPS
DAVIS 2016 DAVIS 2017

First-only 83.8 70.7 21.5
Previous-only 86.5 73.5 21.5
First & previous 89.7 81.8 20.8
Every 12 frames 90.3 83.1 12.2
Fixed 7 frames 90.5 83.5 11.8

Table 4: Memory management analysis of SITVOS on the
DAVIS 2016 & 2017 validation sets. FPS is measured on
DAVIS 2017.

Memory Management We compare different memory
management strategies in Table 4. It can be observed that
saving first and previous frames into the memory can also
achieve competitive performance, which shows the robust-
ness and the ability of SITVOS in handling large appearance
variance. When introducing the intermediate frames, more
object information in memory further improves the perfor-
mance and the fixed number strategy slightly outperforms
the fixed interval strategy in our model.

5 Conclusion
In this paper, we propose a novel Siamese network archi-
tecture with a specially designed interactive transformer
for semi-supervised VOS, named SITVOS. It adopts the
Siamese network to extract features of past and current
frames, enabling feature reuse and being computationally
efficient via weight sharing. SITVOS explores the self-
attention and cross-attention in transformer to effectively
model the spatio-temporal dependency of target objects in
the past frames and current frame. With the help of the fea-
ture interactive module, more efficient object information
propagation is realized between the encoder and decoder to
enhance the target representation. Experimental results on
three challenging benchmarks demonstrate the superiority of
SITVOS in both segmentation accuracy and inference speed.



6 Acknowledgements
This work was supported by the National Natural Science
Foundation of China under Grants 62122060, 62076188,
and the Fundamental Research Funds for the Central Uni-
versities under Grant 2042021kf0196.

References
Caelles, S.; Maninis, K.; Pont-Tuset, J.; Leal-Taixé, L.; Cre-
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