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ABSTRACT

Previous research endeavors have sought to tailor BERT-family for non-
autoregressive generation tasks through task-specific fine-tuning, and more re-
cent work has also attempted to evolve them into instruction followers after in-
struction tuning, but their generation quality, even with more powerful iterative
decoding methods, continues to lag behind the competitive autoregressive (AR)
models. Furthermore, these progress rely on additional fine-tuning procedures,
while the generative potential of the BERT-family without fine-tuning still re-
mains unexplored. Hence, we delve deeper into the key issues leading to the
performance gaps of BERT-family in generation tasks and put forth innovative so-
lutions. Specifically, existing studies often overlook the significance of the train-
ing sequence decomposition format. Unlike autoregressive models that naturally
decompose text sequences in a left-to-right fashion during both training and in-
ference, BERT-family are trained using a random decomposition approach (i.e.,
randomly masking the texts) but strive to identify an optimal composition (re-
ferred to decoding paths) during inference. To alleviate this mismatching, we
introduce a path selection method to expand the search space during inference,
facilitating the discovery of more suitable compositions. Additionally, we pro-
pose path selection*, which further integrates path selection into the training pro-
cess, enabling the model to learn preferences for specific paths. Our experiments
across a range of zero-shot common sense reasoning and reading comprehension
tasks and several task-specific generation tasks showcase the substantial perfor-
mance enhancements for the BERT-family using the proposed methods, reaching
the performance levels that are on par with, and in some cases surpassing the AR
pre-trained models. Our models and code will be publicly accessible on GitHub.

1 INTRODUCTION

In recent years, the progress of large language models, such as Llama (Touvron et al., 2023a;b),
Gemini (Team et al., 2023), and GPT-4 (OpenAI, 2023), has revolutionized the natural language pro-
cessing (NLP) tasks, demonstrating remarkable capabilities across a diverse range of applications.
The majority of these models follow a decoder-only autoregressive architecture, drawing inspiration
from the successful GPT series models (Radford et al.; 2019; Brown et al., 2020). Conversely, the
BERT-family series models (Devlin et al., 2018; Liu et al., 2019; Conneau et al., 2020; He et al.,
2020), which have long been recognized for their excellent performance in various language under-
standing tasks, appear to be progressing at a relatively slower pace recently. Researchers attribute
this deceleration to challenges encountered in language generation scenarios, where BERT-family
models struggle to achieve competitive performance when compared to autoregressive (AR) models.

Previous works have delved into strategies for leveraging the BERT-family for language generation
tasks, particularly following the introduction of the Mask-Predict algorithm (Ghazvininejad et al.,
2019), which offers a promising approach for adapting BERT-family to non-autoregressive (NAR)
generation scenarios. Researchers have attempted to customize BERT-family for simple specific
generation tasks (Chan & Fan, 2019; Jiang et al., 2021; Su et al., 2021; Liang et al., 2023b;a), and
recent advancements have also explored the potential for BERT-family in becoming instruction fol-
lowers after instruction tuning (Xiao et al., 2024). Despite their efforts, performance gaps persist
when compared to AR models. Furthermore, these endeavors need additional fine-tuning proce-
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Figure 1: The sequence decomposition for training, and composition methods (i.e., decoding path
to achieve the outputs sequence) for different language models.

dures to endow BERT-family models with generation capabilities, thereby leaving the BERT-family
without fine-tuning under-explored.

In this paper, we delve deeper into the key issues leading to the performance gaps of BERT-family
in generation tasks and put forth innovative solutions. One of the central challenges may stem from
the sequence decomposition format. As shown in the Figure 1, AR models naturally decompose
language modeling as the task of next-token prediction in a left-to-right order and leverage the
corresponding composition strategy during inference. In contrast, BERT-family adopt a random
decomposition approach during training (i.e., randomly masking several tokens) but follow certain
given criteria to identify an optimal composition (denoted as decoding path in this paper) to achieve
target sequences during inference, resulting in a significant training-inference gap. Regarding this
mismatching, we propose path selection which enables BERT-family models to choose a more
appropriate composition from multiple candidates during inference. Additionally, we present path
selection*, a novel approach that incorporates path selection into the training process, which aims
to instruct BERT-family on learning preferences for the outputs achieved by various compositions.

In our study, we introduce a newly developed variant of the BERT-family, which we refer to as
Generative BERT (GeBERT), to launch a fair comparison with AR models. GeBERT is built on an
encoder-only architecture with a bidirectional attention mechanism akin to the conventional BERT-
family. Additionally, in line with several current mainstream AR pre-training models (Zhang et al.,
2022; Black et al., 2022; Biderman et al., 2023; Peng et al., 2023), we integrate several innovative
techniques and adopt a more widely-used training corpus to pre-train GeBERT. Initially, we assess
our proposed methods across a range of zero-shot common sense reasoning and reading compre-
hension tasks using GeBERT without fine-tuning. Our results illustrate that our methods lead to
significant performance improvements compared to the baseline GeBERT model, surpassing all AR
baselines with comparable model parameters. Besides, we evaluate our methods on two traditional
language generation tasks after fine-tuning the models. The corresponding results demonstrate the
effectiveness of our proposed methods, with GeBERT achieving state-of-the-art performance in var-
ious testing scenarios compared to previous AR and NAR pre-training models.

2 PRELIMINARY

2.1 UTILIZING BERT-FAMILY FOR LANGUAGE GENERATION TASKS

Previous works (Dong et al., 2019; Wang & Cho, 2019) have theoretically indicated that the BERT-
family can be utilized for generating texts by predicting the masked positions in the target sequence.
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Despite early efforts by researchers to leverage BERT-family for language generation tasks (Chan &
Fan, 2019; Jiang et al., 2021; Su et al., 2021), these attempts yielded suboptimal results compared
to the mainstream generative models. Subsequently, researchers attempt to adapt BERT-family to
NAR scenarios (Liang et al., 2023b;a; Xiao et al., 2024) via the the Mask-Predict decoding algo-
rithm (Ghazvininejad et al., 2019), which first predicts the entire masked target sequence in the first
decoding step, and then refines the target sequence by replacing the unreliable parts with masked
tokens and re-generating them in parallel in the subsequent decoding step as details shown in the
Appendix A.1, and receives relatively positive feedback regarding performance. During training,
these models learn to predict the masked parts in the target sequence, whose loss can be computed
as L = −

∑
yi∈Ymask

logP(yi|Yobs, X; θ), where X denotes the source sequence, Ymask and Yobs

are the masked and unmasked parts in the target sequence Y , respectively. In this paper, we further
delve into the essential technological advancements of BERT-family that leverage the Mask-Predict
decoding algorithm to achieve better performance in generation tasks.

2.2 DECODING PATHS FOR BERT-FAMILY

Formally, we consider the process of generating a sequence of discrete tokens Y = (y1, ..., yN ),
where yi ∈ V , a finite vocabulary specific to a language model. This generation process can be
interpreted as deterministically sampling a series of successive state spaces S, where each state
si ∈ S corresponds to a sequence of tokens sampled from V , and relies on a policy π to transition
to the next state. A policy π serves as a determinate mapping from states to actions, outlining how
the model processes the current sequence and achieves the subsequent sequence in the next state.
We denote this specific process to compose the target sequence as the decoding path P of a given
language model, where each node represents the current state si in ith decoding step and each edge
represents the policy πi indicating the actions for transitioning from state si to si+1.

As shown in Figure 1, different language models have their specific decoding paths to compose the
target sequence. The traditional AR and NAR language models typically have a single decoding
path for composing a specific target sequence, while BERT-family can explore multiple optional
decoding paths, resulting in varied output sequences of differing generation qualities. Selecting a
specific decoding path from the multitude of optional paths available in BERT-family is crucial for
achieving high-quality outputs. With approximately 2TN possible paths for a BERT-family model,
as detailed in the Appendix A.2, determining the optimal path is essential for the success of these
models. In Ghazvininejad et al. (2019) where the Mask-Predict decoding algorithm was first pro-
posed, the authors heuristically regulate the policy πt in tth decoding step as predicting the masked
parts in current Y and selecting the specific nt tokens which are with lowest prediction probabilities
to be re-masked, where the number of re-masked tokens can be computed as nt = (1− t/T ) ∗N ,
N denotes the total number of tokens in Y , t and T denote the current and total decoding step,
respectively. While the Mask-Predict algorithm provides a heuristic approach to selecting decoding
paths, it may not always yield optimal results. There exist other decoding paths in the candidate
space leading to better composition of target sequences (Kreutzer et al., 2020). Hence, we aim to
identify an optimal decoding path from such multitudinous candidates by introducing path selection
method. Moreover, we further propose path selection* which empowers the model to learn the pref-
erence between different decoding paths. Our methods seek to enhance the BERT-family’s ability
to navigate through the complex decoding spaces and generate higher-quality output sequences.

3 APPROACH

3.1 PATHS SELECTION

We first sample several optional decoding paths from the candidate spaces and select the best one
with the highest total prediction probability. Specifically, we follow most of the practice in the
Mask-Predict algorithm, except for the selection of the re-masked tokens in each decoding step.
As shown in the left of Figure 2, rather than just selecting a specific number of tokens with the
lowest prediction probabilities to transform to the unique next state (i.e., the first beam), we allow
total k candidate selections for re-masked tokens with the lowest-k total prediction probabilities
for each decoding path, where k is the position beam number set in advance. Notice we keep
the number of candidate states in each decoding step as k, which is similar to the beam search
algorithm for AR models (Meister et al., 2020). However, the search times to select those with
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Figure 2: Overview of the path selection and path selection* methods. As for the path selection
method during inference, we select the positions for masked tokens with the lowest-k prediction
probabilities, while the path selection* randomly samples the positions for masked tokens.

the lowest-k total prediction probabilities is quite large especially when N is large, i.e., given the
total decoding step T , generated target tokens N , and the position beam number k, the total search
times is k ∗

∑
t∈{1,2,...,T} C

N
nt

, where its detailed proof is in Appendix A.3. Therefore, to reduce
the search overhead, we further introduce a simplified version that transforms the search times in tth
decoding step from CN

nt
to k in which only one position in masked parts can be replaced by the one

in unmasked parts to obtain the candidate decoding states, thus the upper bound of search times can
be reduced to T ∗ k2. For example, as shown in Figure 2, after obtaining the first beam sequence
by Mask-Predict algorithm, we can choose one token in its masked parts with the largest prediction
probability (i.e., go) to replace the one in its unmasked parts with the least prediction probability
(i.e., often) to obtain the second beam sequence in each decoding step.

3.2 PATHS SELECTION*

Motivated by the recent direct preference optimization (DPO) algorithm (Rafailov et al., 2024)
which adopts positive-negative pair samples to train human preferences for language models, we
aim to teach BERT-family the decoding path preference by training with positive-negative pair sam-
ples achieved from composition methods. Specifically, as shown in the right of Figure 2, given a
specific instance in which several tokens in the target sequence are replaced with masked tokens,
denoted as Ymask, we randomly1 sample two different decoding paths to generate these masked
tokens in multiple steps, then achieve two different output sequences, and the specific output tokens
of Ymask are denoted as Y 1

out and Y 2
out, the details of the sampling methods are presented in Ap-

pendix A.4. Subsequently, we use a score function Score(·), such as the exact match accuracy
with ground truth tokens or the BLEU score (Papineni et al., 2002), to identify the specific positive
and negative ones. Once Score(Y 1

out) > Score(Y 2
out), we adopt Y 1

out as the positive output Yw

and Y 2
out as the negative output Yl, and vice versa. Finally, following the common practice in online

DPO algorithm, given the reference model πref and the policy model πθ, we first use πref to sample
the positive-negative pair samples, then update πθ with the DPO loss:

LDPO(πθ;πref) = − log σ

[
β

(
πθ(Yw|Yobs, X)

πref(Yw|Yobs, X)
− πθ(Yl|Yobs, X)

πref(Yl|Yobs, X)

)]
, (1)

where X denotes the source sequence, Yobs denotes the unmasked parts in Y , σ denotes
the sigmoid function, β is the hyperparameter controlling the DPO loss, πθ(Yw|Yobs, X) =∑

yi∈Yw
P(yi|Yobs, X; θ), etc. Besides, we add two penalty terms to reduce the failure cases of

DPO as mentioned in Pal et al. (2024), i.e., the model reduces the probabilities of positive outputs
and meanwhile more significantly reduces the probabilities of negative outputs, then the probability
gap between two outputs will be larger, and the DPO loss will be smaller. However, reducing the

1We randomly sample the number and specific positions of re-masked tokens to transform to the next state
in each decoding path rather than that according the rule in the Mask-predict algorithm mentioned above.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

probabilities of positive outputs is contrary to our expectations. The penalty terms can be computed
as follows:

LPEN(πθ;πref) = max

(
0, log

πref(Yw|Yobs, X)

πθ(Yw|Yobs, X)

)
+max

(
0, log

πref(Yl|Yobs, X)

πθ(Yl|Yobs, X)

)
. (2)

Then, combining the above DPO loss and the penalty terms with the traditional masked language
modeling loss in BERT-family as mentioned in Section 2.1, which aims to predict the masked tokens:

LMLM(πθ) = −
∑

yi∈Ymask

logP(yi|Yobs, X; θ). (3)

Our final training loss can be computed as L = LMLM + λ1LDPO + λ2LPEN, where λ1 and λ2 are
the hyperparameters to balance the different loss items.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Backbone Models For better evaluation of various generation tasks, we pre-train new variants of
BERT-family with a modified masking mechanism during training, which aims to better equip these
masked language models for tasks involving generation (Liang et al., 2023b; Xiao et al., 2024),
thus we name our model as Generative BERT (GeBERT). Specifically, unlike earlier BERT-like
models that only mask 15% of tokens in each instance for prediction (Devlin et al., 2018; Liu et al.,
2019), we first decompose the training instance into two parts which simulates a scenario akin to
conditional generation. Drawing inspiration from prior practice (Song et al., 2019; Li et al., 2022b;
Guo et al., 2020; Xiao et al., 2023), we assign different masking methods for these two parts to
enable GeBERT to learn both understanding and generation capabilities. Details of our pre-training
task are presented in the Appendix A.5. Based on our modified pre-training task, we pre-train two
versions of GeBERT containing 124M and 352M parameters which are similar to the base and large
versions of other previous pre-trained language models (Devlin et al., 2018; Lewis et al., 2019;
Raffel et al., 2020; Huang et al., 2023), denoted as GeBERT-124M and GeBERT-352M.

Pre-training Settings As for the model architecture, we follow the most practice in previous
BERT-like models to build an encoder-only language model with a bi-directional attention mecha-
nism and further incorporate several effective techniques: 1) We use Rotary Positional Embedding
(RoPE) (Su et al., 2024) to inject positional information into GeBERT rather than the traditional
absolute/relative position encoding. 2) We adopt swiglu Shazeer (2020) as our activation function
rather than the traditional ReLU. For pre-training corpus, we adopt the Pile (Gao et al., 2020; Bi-
derman et al., 2022), which is a curated collection of English language datasets containing around
300B tokens and has been widely used for training language models (Zhang et al., 2022; Black et al.,
2022; Biderman et al., 2023; Peng et al., 2023). During training, we set the max length as 2048 and
pre-train GeBERT for 150k update steps (1 epoch on the Pile) with a batch size of 1024 samples
(i.e., 2M tokens). We use Adam optimizer (Kingma & Ba, 2014) with a weight decay of 0.01, the
learning rate warms up to 6e-4 in the first 1.5k steps and then decreases gradually with cosine
decay strategy. We utilize the Megatron-Deepspeed 2 library to train GeBERT on 8 NVIDIA A100-
PCIE-80GB GPU cards. We present the details for the model and pre-training in the Appendix
A.6.

Fine-tuning Settings We follow the training procedure in previous works (Liang et al., 2023b;
Xiao et al., 2024) to fine-tune GeBERT on downstream datasets for non-autoreressive sequence
generation tasks. For the fine-tuning settings, we tune the learning rate from {1e-5, 2e-5, 5e-5, 1e-
4} for different downstream tasks. We train for a total of 50 epochs and validate the model after each
epoch, then obtain the final model with the best validation performance. During the training of the
path selection* method, we initialize the policy and reference model with that after fine-tuning for
downstream sequence generation tasks. Then, we freeze the parameters of the reference model and
only update the parameters of the policy model with the same dataset adopted in fine-tuning. We set
the learning rate as 2e-5 and other training hyperparameters the same in the fine-tuning stage. Then,

2https://github.com/microsoft/Megatron-DeepSpeed
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Table 1: Results on zero-shot common sense reasoning and reading comprehension tasks. The first
line of GeBERT denotes the baseline which adopts the same decoding path as AR models. Bold
values denote the best average result (AVG.) through all models. underlined values denote the result
of our methods outperforming the baseline GeBERT. The abbreviations Wino., Hella., and Truth.
denote the WinoGrande, Hellaswag, and Truthfulqa datasets, respectively.

Models LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

≈ 150M parameters
OPT-125M 27.93 75.2 43.52 22.78 50.28 61.07 62.02 37.21 30.05 31.25 23.99 42.31
GPT-neo-125M 28.88 76.5 43.73 23.12 50.43 62.02 62.46 37.21 27.56 30.40 25.83 42.56
Pythia-160M 24.27 75.4 43.64 23.63 51.30 62.14 61.97 36.90 28.71 30.30 24.97 42.11
RWKV-169M 24.73 75.2 47.52 23.46 50.67 62.17 64.04 37.00 26.89 32.25 22.25 42.41
GeBERT-124M 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.76 24.60 42.27

+ Path Selection 27.65 81.8 42.09 22.36 51.87 62.17 59.69 36.80 29.28 31.70 25.70 42.89
+ Path Selection* 28.88 80.5 42.47 22.18 52.72 62.17 60.88 36.94 29.76 32.25 25.74 43.14

≈ 350M parameters
OPT-350M 28.57 74.90 44.19 23.98 52.49 61.87 64.74 39.30 29.76 32.66 23.50 43.27
Pythia-410M 29.34 81.30 52.10 24.32 53.20 61.68 67.08 38.95 30.91 40.52 23.50 45.72
RWKV-430M 24.42 79.00 52.23 25.17 52.80 62.05 68.44 38.84 28.71 40.78 22.28 44.98
GeBERT-352M 28.88 83.10 51.43 23.86 52.93 62.17 65.21 39.02 30.68 40.12 24.35 45.01

+ Path Selection 29.87 83.60 51.65 24.24 52.87 62.17 65.03 39.26 30.83 41.03 25.58 46.03
+ Path Selection* 30.33 83.30 51.97 24.18 53.19 62.17 65.78 39.51 31.00 41.30 25.80 46.21

we train the model with 5 epochs. As for the DPO training of the vanilla GeBERT, we initialize the
policy and reference model with the final saved checkpoint during pre-training. We sampled a small
subset from the pile to conduct DPO training and avoid introducing extra training data.

4.2 EVALUATION DETAILS

Datasets and Metrics We evaluate our proposed methods on common downstream task-specific
generation tasks, which have been widely used in previous pre-trained AR and NAR works, and
various zero-shot common sense reasoning and reading comprehension tasks, which are popular to
evaluate the vanilla version of current large language models without fine-tuning (Zeng et al., 2022;
Touvron et al., 2023a;b). To the best of our knowledge, we are the first to evaluate the pre-trained
NAR models for these zero-shot tasks. Specifically, For downstream task-specific generation tasks,
we adopt XSUM (Narayan et al., 2018) for the summarization task and MSQG ( MicroSoft Ques-
tion Generation) dataset for the question generation task from the GLGE benchmark (Liu et al.,
2021). For the evaluation metrics, we adopt ROUGE F1 (ROUGE-1/2/L) (Lin & Hovy, 2002)
for XSUM, and BLEU (BLEU-4) (Papineni et al., 2002), Rouge-L and METEOR (Lavie & Agar-
wal, 2007) for MSQG. For zero-shot common sense reasoning and reading comprehension tasks,
we adopt ARC-easy, ARC-challenge (Clark et al., 2018), BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021), Race (Lai et al., 2017),
Sciq (Johannes Welbl, 2017), LogiQA (Liu et al., 2020), Hellaswag (Zellers et al., 2019), and Truth-
fulqa (Lin et al., 2021), which are all widely used for evaluating recent language models. We adopt
Language Model Evaluation (Gao et al., 2021) framework to evaluate these datasets under a zero-
shot setting (Biderman et al., 2023). We adopt normalized accuracy for PIQA, ARC-challenge,
LogiQA, Hellaswag, and accuracy for other tasks following previous works (Biderman et al., 2023).

Baseline Models For the downstream task-specific generation tasks, we adopt the vanilla Trans-
former baseline (Vaswani et al., 2017) and previous pre-trained AR models including MASS (Song
et al., 2019), BART Lewis et al. (2019), and ProphetNet (Qi et al., 2020) which are included in the
official GLGE evaluation leaderboard as autoregressive baselines. For NAR baselines, we adopt
the previous pre-trained NAR models including BANG (Bang et al., 2023), ELMER (Li et al.,
2022a) and PreDAT (Huang et al., 2023). Besides, we also include MIST (Jiang et al., 2021) and
DEER (Liang et al., 2023a) which also fine-tune the traditional BERT-family to complete the gener-
ation tasks. For common sense reasoning and reading comprehension tasks, which are only widely
used after the popularity of large language models and never been included in the evaluation of pre-
vious NAR models, we adopt the recent large language models which are also trained on the Pile for
around 300B tokens and contains the comparable model parameters with GeBERT, including OPT-
125M/350M (Zhang et al., 2022), GPT-neo-125M (Black et al., 2022), Pythia-160M/410M (Bider-
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Table 2: Results on task-specific generation tasks. Bold denotes the best result. underlined values
denote the result of our methods outperforming the baseline GeBERT.

Model XSUM MSQG Speedup
Rouge-1 Rouge-2 Rouge-L Rouge-L BLEU-4 METEOR

Transformer 30.66 10.80 24.24 29.43 4.61 9.86 -
Base Version (≈ 150M parameters)
BANG 32.59 8.98 27.41 - - - -
ELMER 37.30 13.17 29.92 - - - -
PreDAT 39.79 17.38 32.71 - - - -
MIST 34.63 11.29 28.70 - - - -
DEER 39.10 16.80 32.40 38.70 9.70 23.30 -
MASS-base 39.70 17.24 31.91 38.90 10.20 23.30 -
BART-base 38.79 16.16 30.61 38.20 10.20 22.90 1.0x
ProphetNet-base 39.89 17.12 32.07 37.10 9.10 22.30 -
GeBERT-124M 40.32 16.90 32.54 39.13 9.66 23.50 3.1x

+ Path Selection 40.52 17.11 32.71 39.06 9.52 23.51 1.2x
+ Path Optimization 40.92 17.39 33.08 39.46 9.72 23.68 1.2x

Large Version (≈ 350M parameters)
MASS-middle 39.10 16.50 31.40 38.90 9.50 23.50 -
BART-large 45.10 22.20 37.20 38.80 9.20 24.30 -
ProphetNet-large 44.40 21.30 36.40 38.30 9.60 23.30 -
GeBERT-352M 44.12 21.03 36.27 39.32 10.23 23.87 -

+ Path Selection 44.33 21.23 36.40 39.38 10.21 23.90 -
+ Path Optimization 44.84 21.89 36.89 39.78 10.29 24.32 -

man et al., 2023), and RWKV-169M/430M (Peng et al., 2023). We re-run all the baseline models
under the same Language Model Evaluation framework (Gao et al., 2024) using their open-source
Hugging Face models to ensure consistent evaluation procedures.

4.3 MAIN RESULTS

Zero-shot common sense reasoning and reading comprehension We present the results on var-
ious zero-shot common sense reasoning and reading comprehension tasks in Table 1. Compared
with GeBERT and the previous AR models, we can find that: (1) GeBERT can also complete these
zero-shot tasks and achieve comparable performance while adopting the same decoding path during
inference3. (2) Our final models (i.e., GeBERT with path selection and path selection*) achieve
the best performance through all the previous AR models on average, outperforming the previous
best models (i.e., GPT-neo-125M and Pythia-410M) by around 0.8 and 0.5 score. (4) GeBERT is
better at reading comprehension tasks which enable the model to answer questions given supports
or evidences such as Sciq and LogiQA, we attribute this to the bi-directional attention mechanism of
GeBERT. Besides, Compared with baseline GeBERT which adopts the same decoding path as AR
models and those with our path selection and path selection* methods, we can find that: (1) With the
path selection method, GeBERT outperforms the baseline GeBERT in most of the evaluation tasks,
leading to 0.6/1.0 performance improvements on GeBERT-124M/352M. (2) Further, with the path
selection* method, GeBERT can outperform the baseline GeBERT in 10 of 11 evaluation tasks and
be on par in BoolQ, leading to around 1.0 performance improvements on average. (3) By compar-
ing GeBERT only with the path selection method and with both proposed methods, the former can
achieve performance improvements on most tasks, indicating the effectiveness of the path selection*
method. However, the path selection* may also result in performance declines in several tasks, such
as Sciq for GeBERT-124M and ARC-C for GeBERT-352M.

Task-specific generation Table 2 presents the results on task-specific generation task. We can find
that: (1) For the summarization task, though GeBERT-352M underperforms BART-large GeBERT-
124M, it outperforms all the other baseline models in all evaluation metrics, indicating that GeBERT
can generate more informative and reasonable summaries. (2) For the question generation task,
GeBERT-124M outperforms all the baseline models on Rouge-L and METEOR and only presents

3For GeBERT, we append a masked token after the current sequence and enable the model to predict it, thus
realizing the same decoding path as AR models that adopt the policy as predicting the next token.
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Table 3: Results of different methods to select the decoding paths for zero-shot common sense
reasoning and reading comprehension tasks. Hyper. denotes the corresponding hyperparameter.

Hyber. LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

multi-step-based
T = 1 23.50 64.6 36.49 21.93 50.75 62.17 54.19 34.75 23.44 28.15 21.42 38.30
T = 4 26.73 80.4 41.20 21.33 50.99 62.17 57.24 36.64 28.71 30.74 25.95 42.01
T = 7 26.42 80.5 41.04 22.19 52.41 62.17 58.16 36.54 29.67 31.11 24.48 42.24

multi-token-based
nnew = 2 29.03 71.1 40.15 22.44 50.99 62.17 59.19 36.89 29.47 31.68 25.09 41.65
nnew = 3 27.96 66.8 37.79 22.36 50.12 62.17 57.07 35.31 27.94 30.83 24.97 40.30
nnew = 4 29.65 65.5 38.39 22.53 49.17 62.17 55.06 35.47 27.37 30.40 24.24 40.00

multi-order-based
left-to-right 27.65 80.3 42.13 22.10 50.75 62.17 60.66 36.49 28.90 29.26 24.60 42.26
right-to-left 28.57 72.2 30.73 22.35 49.17 58.87 55.22 33.78 25.55 30.12 25.70 39.30
random 25.81 79.6 41.71 21.67 50.20 62.17 56.09 33.93 28.13 29.50 24.48 41.20
easy-to-hard 29.19 80.4 41.96 22.44 52.57 62.17 59.79 36.80 29.79 31.73 25.58 42.90
hard-to-easy 26.88 80.4 41.50 21.16 50.04 62.17 58.92 36.34 26.22 31.03 24.97 41.78

multi-beam-based
k = 2 28.11 81.4 42.59 22.01 52.01 62.17 59.69 36.54 30.05 31.98 25.45 42.94
k = 3 27.65 81.8 42.09 22.36 51.86 62.17 60.01 36.80 29.67 32.17 25.58 42.90
k = 4 28.26 81.8 42.51 22.61 51.07 62.17 60.28 36.28 29.28 32.09 25.70 42.91

performance gaps compared with the best baseline models on BLEU-4. GeBERT-352M achieves
the best performance across various models on all evaluation metrics. (3) Compared to the GeBERT
baseline, which adopts the original vanilla Mask-Predict algorithm to generate the output sequence,
the path selection and path selection* methods can bring performance improvements on the XSUM
dataset for both GeBERT-124M/352M, indicating that these two methods can enable the model to
achieve better performance in generating relatively long targets. However, the path selection method
does not lead to consistent performance improvements on the MSQG dataset, which contains rela-
tively short targets. We attribute this to that short sequences will lead to relatively small candidate
space and redundant outputs for different decoding paths, thus we can not achieve better outputs
from multiple candidates. (4) We also compare the decoding efficiency of GeBERT-124M and
BART-base, which contains around 140M parameters, and the results demonstrate that GeBERT
can achieve 3.1x speedup with the vanilla Mask-predict algorithm due to the NAR attribute. Further,
with path selection and path selection* methods, which will bring the extra search overhead for dif-
ferent decoding paths, GeBERT still achieves a faster generation process, leading to a 1.2x speedup
compared to BART.

5 ANALYSIS

5.1 DISCUSSION OF DIFFERENT METHODS TO DETERMINE THE DECODING PATHS

In Table 1, we report the performance of GeBERT which adopt the same decoding path with AR
models and that with our proposed path selection method. However, there still exist multitudinous
optional decoding paths to generate the final target sequences as mentioned in section 3.1, we adopt
GeBERT-124M to compare the different methods to determine the decoding paths here with the
following rules. Notice in Table 1, we regulate the number of newly generated tokens (denoted as
nnew) in each decoding step as nnew = 1 to keep consistent with AR models, i.e., we generate only
one token in a left-to-right order or with the highest-k prediction probabilities in each decoding step,
and adopt the total decoding steps adaptive to the target length. Then, we can (1) set nnew = 2/3/4,
and the corresponding decoding steps as ⌈N/2⌉, ⌈N/3⌉, ⌈N/3⌉, where N denotes the total target
tokens, we denote this method as multi-token-based, (2) set the total decoding steps as T = 1/4/10,
and the corresponding nnew = ⌈N/1⌉, ⌈N/4⌉, ⌈N/10⌉. We denote this method as multi-step-
based. Besides, with nnew = 1, there still exist different rules to achieve the specific generated
token. (3) Rather than a left-to-right order in Table 1, we can also include a right-to-left or a random
order to achieve the final target sequence. Instead of selecting the token with the highest prediction
probability, which denoted as a easy-to-hard order (Kasai et al., 2020), we include a hard-to-easy
order which generate the token with the lowest prediction probability first. These method can be
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denoted as multi-order-based. (4) We can set different beam number k in our proposed path selection
method, we compare k = 2/3/4 here, denoted as multi-beam-based.

We present the corresponding results with the above methods in Table 3, we can find that: (1) The
performance declines as the nnew increases, indicating that setting nnew = 1 to keep consistent
with AR models, in which the model predicting one token in each decoding step, is important to
achieve competitive performance. (2) With the multi-step-based method, more decoding steps lead
to better performance, which also verifies the above observation, i.e., the length of targets is less
than the decoding steps in several tasks, such as Sciq and SIQA, where the model will also predict
one token in each decoding step. Conversely, the performance on these tasks which contain the
relatively long targets such as PIQA and ARC still falls behind the left-to-right baseline. (3) Based
on different orders, the easy-to-hard order which we adopt in the path selection method perform best,
while several other orders will lead to significant performance declines such as right-to-left order.
(4) Adopting different beams in our path selection method performs differently for various tasks but
achieve a comparable score on average, and all outperforms the left-to-right baseline, indicating the
effectiveness of the path selection method.

5.2 COMPARISON WITH TOKENS-AWARE BEAM SEARCH

Table 4: Results of different beam search algorithms.

Method Rouge-1 Rouge-2 Rouge-L

GeMLM 40.32 16.90 32.54
w/ Token Beam 40.17 16.88 32.50
w/ Position Beam 40.52 17.11 32.71

w/ Path Selection* 40.78 17.30 33.01
w/ Token Beam 40.58 17.19 32.90
w/ Position Beam 40.92 17.39 33.08

The path selection method sampling
several position beams to achieve mul-
tiple candidate outputs is similar to
the token-aware beam search algorithm,
which has been widely used in AR mod-
els (Meister et al., 2020). The token-
aware beam search algorithm selects
more candidate tokens during inference
rather than always the one with the high-
est prediction probability, which can
significantly improve the performance.
We also extend this into BERT-family to permit more optional tokens in each decoding step. Specif-
ically, we randomly select one token in the unmasked parts in target sequence and replace it with
one whose prediction probability is below the first one in the overall probability distribution. Com-
pared with our proposed path selection method, the position beams select candidates with different
positions based on specific tokens while the token-aware beam search algorithm selects candidates
with different prediction tokens based on specific positions. We adopt GeBERT-124M to conduct
analytic experiments on XSUM, where the results are presented in Table 4. We can find that the
path selection method can achieve consistent performance improvements, but the token-aware beam
search algorithm does not work in this scenario. We attribute the failure of token-aware beam search
to the different modeling paradigm of BERT-family compared to AR models.

5.3 ABLATION STUDY OF PATH SELECTION*

Table 5: Result of different λ1 and λ2.

Hyperparameter Rouge-1 Rouge-2 Rouge-L

λ1 = 0.0, λ2 = 0 40.32 16.90 32.54

λ1 = 0.5, λ2 = 0 39.85 16.88 32.52
λ1 = 0.5, λ2 = 1 40.76 17.25 32.96
λ1 = 0.5, λ2 = 5 40.78 17.30 33.01
λ1 = 0.5, λ2 = 10 40.70 17.24 32.97

λ1 = 0.0, λ2 = 5 40.22 16.90 32.52
λ1 = 0.1, λ2 = 5 40.74 17.20 32.92
λ1 = 0.5, λ2 = 5 40.78 17.30 33.01
λ1 = 1.0, λ2 = 5 40.78 17.28 33.05

In this section, we conduct an ablation
study to explore the effects on different
λ1 and λ2 in our final training loss as
mentioned in Section 3.2. We report the
performance of λ1 in {0.0, 0.1, 0.5, 1},
λ2 in {0, 1, 5, 10} without adopting po-
sition beams. Compared with the base-
line model (i.e., λ1 = 0.0, λ2 = 0),
we can find that (1) LDPO and LPEN
are both necessary for performance im-
provements. With λ1 = 0.5 and λ2 = 0,
the performance even declines, indicat-
ing the failure cases as mentioned in
Section 3.2. (2) In other cases, the per-
formances are close to each other with only around 0.1 gaps on all metrics, indicating that we need
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not spend lots of effort to tune the λ1 and λ2. Our DPO training objective is easy to achieve the
corresponding performance improvements.

6 DISCUSSIONS

Discussion with other non-monotonic generation models. While BERT-family adopting the
Mask-Predict algorithm can be viewed as a special case for non-monotonic generation, we also
present the discussion with other works that also explore the non-monotonic generation for lan-
guage models (Welleck et al., 2019; Shih et al., 2022; Shen et al., 2023). These models can also
generate output sequences beyond a strict left-to-right order but still differ from the BERT-family.
Specifically, these models only generate one token via one decoding step, rather than adopting the
parallel decoding paradigm allowing generating multiple tokens for BERT-family. Furthermore,
BERT-family adopt the masking language modeling during training, differing from other models
which adopt the variants of autoregressive modeling.

Discussion with other path selection methods. In the realm of NAR translation, prior research
has also delved into enhancing output quality by selecting the optimal result from multiple candidate
generations, such as CTC-decoding (Graves et al., 2006; Shu et al., 2020; Shao & Feng, 2022) and
DA-Transformer (Huang et al., 2022; Shao et al., 2022a; Huang et al., 2023). Nevertheless, these
methods typically adhere to a left-to-right order when sampling various candidates. Conversely,
our proposed path selection method eliminates order constraints, facilitating the candidates with
more diversity. Besides, while some studies have advocated for training models with multiple ref-
erences (Shao et al., 2022b; Huang et al., 2022; Liu et al., 2023), these methods treat all various
references as equally plausible outputs and train with the same weights across them. In contrast,
our path selection* method incorporates positive-negative sample pairs into the training process,
enabling the model to learn preferences among different candidates.

Discussion with other DPO methods for AR models The Direct Preference Optimization (DPO)
algorithm has found widespread application in AR models (Yang et al., 2023; Rafailov et al., 2024;
Pal et al., 2024), facilitating the learning of preferences for various output sequences generated
through different sampling methods, which can significantly enhance the overall generation qual-
ity. Conversely, few explorations have been conducted for BERT-family. In this paper, we propose
path selection* to enable BERT-family to learn the preference between different outputs achieved by
different decoding paths according to the generation character of BERT-family. While AR models
allow different lengths of sampled positive-negative pairs, we recognize that ensuring a consistent
sampling length across different pairs is quite important for our methods for fair comparisons be-
tween different decoding paths. Another difference between our methods and those for AR models
is that there is no significant quality difference between our sampled pairs, which will easily lead to
the failure cases as mentioned in Section 3.2. Consequently, integrating penalty terms to stabilize
the DPO training process emerges as a crucial aspect of our methods.

7 CONCLUSION

In this paper, we pre-train a new version of BERT-family to explore the potential of BERT-family
for good generators. According to the specific generation formats of sequences, we propose path se-
lection and path selection* methods to enhance the generation capabilities of these models. Results
on a range of zero-shot common sense reasoning and reading comprehension tasks demonstrate that
BERT-family can also achieve state-of-the-art performance by adopting our methods compared to
current mainstream AR language models, and the experiments on several task-specific generation
tasks further verify the effectiveness of our methods, outperforming the previous pre-trained lan-
guage models. In overall, our works first pre-train a version of BERT-family fron scratch for fair
comparison with current AR pre-trained models, and further verify the very promising techniques to
unlock the potential of BERT-family for various generation tasks both without and with fine-tuning.
We hope our explorations can expand the applications of BERT-family in AI community. In the fu-
ture, we will further explore larger versions after observing the scaling ability from 124M to 352M
of GeBERT, then adapt GeBERT to more type of tasks, such as code generation and math reasoning.
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A APPENDIX

A.1 DETAILS OF THE MASK-PREDICT ALGORITHM

Figure 3: Presentation of the Masked-
Predict algorithm.

We present an example adopting the Masked-Predict
algorithm to generate the output sequence in Figure
3. Specifically, given the prompt, we first initial the
input as fully masked tokens (i.e., Input 1) and send
it into the model. After the model predict the out-
puts (i.e., Output 1), we will select specific unreli-
able tokens with relatively lower prediction probabil-
ities to mask again (i.e., the yellow parts in outputs).
In the subsequent decoding step, the model will pre-
dict these masked tokens and select several unreliable
tokens again. We obtain the final target sequence un-
til reaching the total number of decoding steps set ad-
vance. This decoding algorithm assume that the target
sequence will be refined better through multiple de-
coding steps.

A.2 DETAILS OF THE DECODING PATHS FOR
BERT-FAMILY

Lemma 1 Given the total length N of target sequence Y , the total decoding step T , the total number
of optional decoding paths is around 2TN , exactly

∑N
m=0(−1)mCN

m2(N−m)T with the constraint
that all tokens in Y should be predicted.
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Proof 1 During each decoding step, we can select any subset of VY , i.e., the model can generate 1 to
N different tokens at different position candidates. There exist CN

0 + CN
1 + CN

2 + ...+ CN
N = 2N

candidate position sets in each decoding step, then the overall number of the decoding paths existing
in the total T decoding steps is (2N )T = 2TN . With the constraint that all tokens in Y should be
predicted, we should omit the condition that there exist several tokens that are not be predicted
during the whole decoding process from the total condition is 2TN . For the specific conditions that
there are a number of m tokens that are not be predicted, we should select the candidate tokens in
the next N −m tokens, then the number of this condition is 2T (N−m), and we have CN

m to select
these specific m un-predicted tokens. We should consider the condition for each m ∈ {1, 2, ..., N},
and different LŶi

have the repeat decoding paths. Actually, we can solve this problem with the
Inclusion-Exclusion Principle (Andreescu et al., 2004). Thus, the total number of decoding paths is:

2TN − CN
1 2(N−1)T + CN

2 2(N−2)T − CN
3 2(N−3)T + ... =

N∑
m=0

(−1)mCN
m2(N−m)T .

A.3 DETAILS FOR THE SEARCH TIMES OF VANILLA PATH SELECTION METHOD.

Lemma 2 Given the predicted length N of target sequence Y , the total decoding step T , the posi-
tion beam number k, and the number of re-masked tokens in tth decoding step nt, the total times
for vanilla path selection method are k ∗

∑
t∈{1,2,...,T} C

N
nt

, and the search times for the simplified
version are T ∗ k2.

Proof 2 In tth decoding step, for each beam candidate, we select nt tokens from total N tokens
to be re-masked, thus the number of total candidates for single beam is CN

nt
, and k ∗ CN

nt
for total

k beams. Then, we should compute the total prediction probability for all k ∗ CN
nt

candidates and
select the highest k ones for next decoding step. Thus the total search times for T decoding steps
are k ∗

∑
t∈{1,2,...,T} C

N
nt

. In the simplified version, we do not need to compute the total prediction
probability for all k ∗ CN

nt
candidates, we just replace one token to achieve the k candidates for

each single beam, and total k2 for k beams. Then we only need to compare the total prediction
probability for these k2 candidates and keep the highest k ones, the search times are k2, and T ∗ k2
for T decoding steps.

A.4 DETAILS OF GENERATING THE DPO PAIRS

We present the details to generate the DPO pairs as mentioned in section 3.2 here. Given a specific
training instance (X,Y ), where Y is further decomposed into the mask parts Ymask and unmasked
parts Yobs, the reference model πref, we achieve the training pairs as follows:

(1) We enable πref to sample the outputs of Ymask, denoted as Omask, where Omask =
πref(Ymask|Yobs), πref(Ymask|Yobs) denotes sampling the tokens in Ymask based on Yobs, and the
sampling method is to adopt the greedy output based on the prediction probability of πref.

(2) We randomly sample a subset of Omask, denoted as Y ′
mask, and and replace the tokens in Y ′

mask
with the masked token, where the unmasked parts of Omask is denoted as Y ′

obs.

(3) We sample the output of Y ′
mask, denoted as O′

mask, where O′
mask = πref(Y

′
mask|Y ′

obs ∪ Yobs).

(4) We achieve one sampled output of Ymask as Y ′
obs ∪O′

mask, denoted as Y 1
out.

(5) We repeat the above operation to achieve the other sampled output Y 2
out.

After obtaining the pair samples Y 1
out and Y 2

out, we use a score function Score(·) to identify the
positive and negative ones. Notice that we select the tokens with the highest prediction probabilities
as the output when generating Omask and O′

mask, which is consistent with the Mask-Predict algo-
rithm. Besides, we only sample the decoding path with two decoding steps to reduce the overhead
during training, the different ratio to sample Y ′

mask from Omask has adapted the model to various
masking conditions in different decoding steps during inference. In practice, we keep the ratio to
sample the Y ′

mask the same during two sampling processes and determine it from a uniform distri-
bution U(0.2, 0.8). This is because once the ratio is large (e.g., 1.0), all tokens will be re-sampled
again, and there is no difference between two sampling outputs, leading to meaningless pairs. Mean-
while, once the ratio is small (e.g., 0.01), only few tokens will be re-sampled again, there are many
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Figure 4: Presentation of generative masked language modeling.

overlaps between two Y ′
obs, leading the sampling outputs O′

mask lacking of diversity, which is not
suitable for the DPO training.

A.5 DETAILS FOR PRE-TRAINING TASK

We denote the pre-trained task of GeBERT as generative masked language modeling, which spe-
cially designed to fit the BERT-family to various generation tasks. This task is modified from the
traditional masked language modeling (MLM) training objective, which makes the model learn to
predict the specific masked tokens and has been widely used in traditional BERT-family models (De-
vlin et al., 2018; Liu et al., 2019). GeMLM aims to build a universal pre-trained BERT-family, which
simultaneously possesses the ability of language understanding and generation. Motivated by the
previous explorations in the NAR translation task (Ghazvininejad et al., 2019; Guo et al., 2020;
Xiao et al., 2023) which extend the traditional MLM into the conditional generation scenery with
the encoder-decoder model structure, and those that explore the potential in encoder-only models
for language generation tasks (Wang & Cho, 2019; Liang et al., 2023b; Xiao et al., 2024), GeMLM
first decomposes each training instance into two parts and assigns different masking strategies to
help the model learn different capabilities. Besides, GeMLM further adopts the specific attention
masking mechanism to enhance the consistency between the training and inference process.

Specifically, as shown in figure 4, given a specific training instance with the max context
length L: C = {c1, c2, ..., cL−1, cL}, GeMLM decomposes C into a tuple (X,Y ), where
X = {c1, c2, ...ci−1, ci} denotes the prefix tokens, and Y = {ci+1, ci+2, ...cL−1, cL} denotes the
suffix tokens. The prefix tokens are used to provide context information and help the model un-
derstand the whole sentence, we randomly sample a small ratio of mask tokens, which is similar to
the traditional MLM in BERT, denoted as (Xmask, Xobs) = RANDOM MASK(X,βX), where Xmask

and Xobs denote the masked and unmasked parts in X , βX denotes the masking ratio. The suffix to-
kens tend to help the model learn the generation capability, we adopt uniform masking as mentioned
in CMLM (Ghazvininejad et al., 2019), denoted as (Ymask, Yobs) = UNIFORM MASK(Y, βY ),
where βY is sampled from a uniform distribution U(0, 1). Then GeMLM predicts the masked
tokens based on different context.

In practice, we adopt an adaptive masking function for the masking ratio βX as mentioned in Xiao
et al. (2023) to replace the fixed masking ratio in the traditional MLM, as βX = 0.3− βY ∗ 0.2. This
operation can achieve more diverse masking conditions in X for the model to learn and is based on
the intuition that once more tokens in Y are masked, X should provide more context information
(i.e., lower βX ). Besides, we prevent the query of each token in X attending the tokens in Y in the
attention module as mentioned in figure 4 during training, which keeps consistent with the inference
process since there is no target sequence in advance. Then, the final training loss of GeMLM can be
computed as:

LGeMLM = −
∑

xt∈Xmask

logP(xt|Xobs; θ) −
∑

yt∈Ymask

logP(yt|Xobs, Yobs; θ). (4)
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A.6 DETAILS FOR PRE-TRAINING

Details of the pre-training models and settings are present in Table A.6.

Parameters GeBERT-124M GeBERT-352M

Num layers 12 24
Hidden size 768 1024
Num attn heads 12 16
Init std 0.02 0.02
Seq length 2048 2048
Batch size 1024 1024
Train iters 153000 153000
Learning rate 6e-4 3e-4
Lr decay style cosine cosine
Clip grad 1.0 1.0
Adam beta (0.9,0.95) (0.9, 0.95)
Weight decay 1e-2 1e-2

Table 6: Details of the pre-training models and setting.

A.7 LIMITATIONS AND BROADER IMPACTS

Our work demonstrates that BERT-family can perform better than AR language models by adopt
our proposed path selection and path selection* methods. However, these models still require multi-
step reasoning during zero-shot tasks to bridge the gap between inference and pre-training. This
reasoning paradigm may affect the inference efficiency, making BERT-family models less effective
than AR models in some contexts. On the other hand, this characteristic becomes an advantage in
generative tasks. BERT-family with non-autoregressive generation paradigm do not need to perform
sentence-length reasoning steps during decoding, leading to faster generation and reduced latency.
This makes BERT-family particularly well-suited for tasks where quick text generation is critical,
such as large-scale text generation.
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