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Abstract

Large foundation models face deployment challenges in resource-constrained
environments. While width pruning typically outperforms depth pruning, we
introduce LayerMerge, a simple modality-agnostic depth pruning technique that
closes the performance gap with width pruning while providing linear reductions in
inference time and memory. Extensive benchmarks show LayerMerge preserves
emergent abilities under aggressive compression, maintaining most of the original
performance while reducing model depth by up to 90%.

1 Introduction

The increasing size of Large Language Models (LLMs) makes deployment computationally pro-
hibitive in resource-constrained environments. While various pruning methods exist, they often
require extensive retraining or complex optimization. Existing depth pruning approaches are rarely
evaluated beyond 50% compression, limiting understanding of their potential under extreme sparsity.

We introduce LayerMerge, a simple depth pruning approach that preserves model capabilities through
strategic layer merging rather than elimination. LayerMerge analyzes contextual similarity through
activation patterns, identifying representations that can be efficiently combined without semantic
loss. Unlike approaches that remove layers entirely, LayerMerge preserves learned knowledge by
combining compatible layer blocks using Principal Component Analysis, using only forward passes.
LayerMerge offers distinct advantages: linear reductions in inference time and memory, hardware-
agnostic acceleration, and simplified architectures maintaining dense operations without specialized
sparse kernels. We evaluate LayerMerge on Llama-2 and Llama-3.1, demonstrating improved
performance compared to other depth pruning methods with aggressive compression up to 90%.
We also evaluate LayerMerge on MOMENT[1]], a recent time series foundation model, to verify the
modality-agnostic compression capability. Our contributions are: 1. simple yet effective layer merging
with superior computational benefits; 2. systematic evaluation of emergent abilities under extreme
compression; and 3. modality-agnostic validation establishing broader applicability. We open-source
our code in https://anonymous.4open.science/r/SimpleDepthPruning-45EE/.

2 Related Work

Model pruning offers a practical strategy for scaling LLMs down for deployment. Early attempts
focus on width pruning, which sparsifies LLMs by removing weights within layers. For example,
Wanda[2] removes weights with smallest magnitudes multiplied by corresponding input activations.
SparseGPT[3] prunes LLMs one-shot, treating pruning as large-scale sparse regression. More
recently, depth pruning provides an alternative by removing entire layers, offering more uniform and
hardware-agnostic acceleration. ShortGPT[4] selects layers based on importance scores measuring
similarity between each layer’s input and output. Shortened Llama[5] removes layers based on
their influence on model output perplexity using calibration examples. LaCo [6] merges multiple
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Figure 1: Overview of our LayerMergeAct approach.

subsequent layers into a single preceding layer, adding parameter differences iteratively guided by
output similarity. However, these methods use different benchmark sets, hindering direct comparison.
Limited comparisons show width pruning’s performance advantages and depth pruning’s efficiency
advantages [7]. Our work proposes simple depth pruning approaches that retain depth pruning
benefits without significant performance drops compared to width pruning.

3 Methodology

We present simple depth pruning techniques for efficient LLM compression. Our approach targets
transformer decoder layers while preserving auxiliary components (embedding, normalization layers)
to maintain architectural integrity. Let {L1, Lo, - - - , L, } denote the original decoder sequence. Our
objective is constructing a compressed model with layers {L;, Lo, -+, L, } where n < m. We
investigate aggressive pruning where n. < %, enabling substantial parameter reduction.

Our framework supports selective pruning within any contiguous subset {Ly, Lat1,--+, Lp}
where [a,b] C [1,m]. The architecture preserves boundary layers {Li,---,L,—1} and
{Lp+1, -, Ly} when non-empty, ensuring compatibility with existing architectures. Our
methods operate on module-specific parameter tensors within each transformer layer. We
define module type set T =[self_attn.k_proj, self_attn.v_proj, self_attn.q_proj,
self_attn.o_proj, mlp.gate_proj, mlp.up_proj, mlp.down_proj, input_layernorm,
post_attention_layernorm], encompassing all learnable components. For module type ¢t € T in
layer L;, we denote parameters as W/.

LayerCluster: K-Medoids Clustering We formulate layer selection as clustering in pa-
rameter space. Given target range [a,b] and module type t, we apply k-medoids cluster-
ing to [WE WL, W[], yielding k cluster centers at indices {j1,---,jx} € {a,a +
1,---,b}, representing the most representative layers. The compressed architecture retains
{Lla"' 7La—1aLj17"' 7ijaLb+17"' aL’m}

LayerMerge: PCA-Based Merging We propose dimensionality reduction that synthesizes new
layers from existing parameter distributions. For each module type ¢ within [a,b], we stack
(Wi W, -, W] and perform PCA. We retain the first £ components to generate k synthetic lay-

ers L; ,---, Ly, substituting the original set, where IN/jT, parameters C(zrrespond to the r-th component

across all module types. The architecture becomes {L+,--- ,Lq—1,Lj,, -+, Lj., Ly+1, -+, Lm }.

LayerMergeAct: Activation-Guided Adaptive Merging Unlike parameter-only approaches,
LayerMergeAct incorporates activation patterns using calibration data D of 128 random C4 sam-
ples [8]. We execute forward passes for each « € D, capturing activations {27, 23,--- , 2% }. We
calculate cosine similarity between pairs (z{, z7) creating similarity matrix S(z). The aggregated
matrix is S = ﬁ > zep S(x). Using threshold -y, we iteratively identify diagonal blocks in S where:
(1) all values exceed v, and (ii) minimum value is maximized among qualifying blocks. Details are in
Algorithm 1] After extracting indices Z = {(s1, €1), (s2,€2), - , (s, €,)}, we apply LayerMerge
to each block with modification: global hyperparameter A retains components preserving A% variance
instead of fixed count. Parameters v and A jointly control sparsity.

4 Experimentation and Results

We evaluate LayerMerge on multiple architectures and modalities to demonstrate its generalizability.



To evaluate how depth scal-
ing affects key emergent
abilities, we utilize the
Open LLM Leaderboard
v2 (implemented in Lan-
guage Model Evaluation
Harness [9], MIT license),
which evaluates reasoning
across mathematics and
logic, multistep soft rea-
soning, natural language
understanding, and gradu-
ate level domain knowledge.

We compare our simple
pruning methods with
state-of-the-art width
pruning (Wanda (21,
SparseGPT [3) and
depth  pruning  meth-
ods (ShortGPT [41,
Shortened Llama 1151,
LaCo 6D using
llama-2-7b-hf and
llama-3.1-8b on a
single NVIDIA Tesla
V100-SXM2-32GB GPU.

Accuracy Sparsity 0.5 0.53 0.5625 0.625 0.7188  0.7813  0.8438  0.9062
Method k=16 k=15 k=14 k=12 k=9 k=7 k=5 k=3

Wanda 0.3126  0.3098  0.3101 0.3091 0.3173 0.3121 0.2751  0.3088
SparseGPT ‘ 0.3195 0.3205 0.3155 0.3036 0.2974  0.2907 0.3019 0.3101
ShortGPT 0.2920 0.3029 0.3118 0.3088 0.3064 0.2922  0.2949  0.2999
Shortened Llama 0.2967 0.2994 0.2915 0.3014 0.2793  0.2915 0.3105  0.2999
LaCo 0.2900  0.3061  0.3108  0.2997  0.3004 0.2850  0.2888  0.2798
LayerCluster 0.2793  0.2907  0.2689  0.2843  0.2870  0.2728  0.2822  0.2711
LayerMerge 0.2768  0.2793  0.2810  0.2885  0.2987 0.3073 0.3113  0.2967
LayerMergeAct 0.2897 0.3091 0.2987 0.3014 0.2999  0.2924  0.2987 0.3062

Table 1: Performance of pruning methods on Leaderboard-Lite at
different sparsity levels using 11ama-2-7b-hf (accuracy 0.3152). “k”
denotes decoder layers in depth-pruned models. For each sparsity, bold
marks best depth pruning method, underlined marks second-best depth
pruning, and bold marks best width pruning method.
For rapid evaluation, we curate Leaderboard-Lite, a subset of 15 Open LLM Leaderboard v2
challenges (Table [5)) with highest performance variance when running LayerMergeAct under 4
configurations yielding 50% sparsity (half original depth) on 11ama-2-7b-hf.

Accuracy Sparsity 0.5 0.53 0.5625 0.625 0.7188  0.7813  0.8438  0.9062
Method k=16 k=15 k=14 k=12 k=9 k=7 k=5 k=3

Wanda 0.3158  0.3168 0.3203 0.3185 0.3029 0.3021 0.3143 0.2843
SparseGPT ‘ 0.3277 0.3230 0.3061 0.3106 0.3051 0.2964 0.2987 0.3131
ShortGPT 0.2838  0.2992 0.2982 0.3091 0.2934 0.3049 0.2894 0.3004
Shortened Llama 0.2927  0.2937  0.2885  0.2758  0.2920 0.2833  0.2919 0.3004
LaCo 0.3041  0.2982 0.3071 0.3021  0.2969  0.2967  0.2885  0.2862
LayerCluster 0.2880 0.2994 0.2867  0.2880  0.2751  0.2860  0.2537  0.2602
LayerMerge 0.2835 0.2820 0.2817  0.2830  0.2872  0.2865  0.2897  0.2984
LayerMergeAct 0.3071 0.2574  0.2897 0.2731 0.3054 0.2922 0.2974 0.2825

Table 2: Performance of pruning methods on Leaderboard-Lite at
different sparsity levels using 11ama-3.1-8b (accuracy 0.3850). “k”
denotes decoder layers in depth-pruned models. For each sparsity, bold
marks best depth pruning method, underlined marks second-best depth
pruning, and bold marks best width pruning method.

| FLOPs* Memory
LayerMerge | 18.47 TFLOPs 3.92 GB
SoTA 62.94 TFLOPs 12.68 GB

Table 3: Computational efficiency
comparison between LayerMerge and
state-of-the-art width pruning methods
(Wanda, SparseGPT) on 11ama-2-7b
at 50% sparsity. *Computed using a

single C4 sample.

We examine how emergent abilities are affected
when aggressively scaling model depth to 3 lay-
ers. Pruning strategies affect emergent abilities
differently (Figure [3): While both width prun-
ing methods outperform depth pruning meth-
ods and the base model on multistep soft rea-
soning, Wanda excels in graduate level domain
knowledge and SparseGPT leads in mathemat-
ics and logic. For depth pruning, layer selec-
tion methods (ShortGPT, Shortened Llama)

As shown in Tables[I] [2]and [3] our simpler pruning meth-
ods achieve comparable or superior Leaderboard-Lite
performance to baselines while providing significant compu-
tational advantages, reducing FLOPs by 70% and memory
usage by 69% compared to width pruning methods. For
1llama-2-7b-hf, our methods rank first among depth prun-
ing methods at the three highest sparsities (k =3, 5, 7) and
achieve performance comparable to the base model. How-
ever, depth pruning methods generally lag slightly behind
width pruning methods for both base models.

Average Performance (Accuracy)

slightly outperform the base model in mathemat-

ics and logic.

Our LayerMergeAct, achieving best overall
Leaderboard-Lite performance among depth
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Figure 2: Emergent abilities of LayerMergeAct-

pruned models with different depth (using
llama-2-7b-hf).

pruning methods (Table[I)), most successfully retains graduate level domain knowledge and multistep
soft reasoning abilities. While all methods show noticeable drops in natural language understanding,
with largest loss in ‘disambiguation qa’, LayerMergeAct best retains this ability.
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Figure 3: Performance of pruning methods on Leaderboard-Lite (1lama-2-7b-hf) at highest
sparsity (k=3). (a) shows task-wise performance while (b) aggregates by emergent ability category.
ShortGPT and Shortened Llama produced identical models.

We find no significant trend between depth and emergent ability retention (Figure 2). For
LayerMergeAct, 3 layers achieves superior or comparable performance to deeper configurations,
suggesting aggressive depth scaling can meet both resource and performance requirements.

To validate modality-agnostic efficacy, we evaluate LayerMerge for time series forecasting using
MOMENT [[1]] across four ETT datasets and four prediction horizons {96, 192, 336, 720 time steps}.

Table ] shows averaged MAE performance across all horizons. LayerMerge achieves competitive
results, with pruned 3-layer models best on ETTh2 and pruned 12-layer models best on ETTm?2.
Pruned models consistently outperform shallow baselines trained from scratch, demonstrating effec-
tive preservation of learned representations. Results show minimal performance differences (typically
<0.01 MAE) between pruned and original models, confirming LayerMerge achieves substantial
parameter reduction with negligible accuracy loss across modalities.

5 Discussion

In this paper, we presented three sim-

4 3 Dataset Average MAE
ple and direct pruning methods that Shallow (3) Pruned (3) Shallow (12) Pruned (12) Original (24)
: ETThI 0.446 0.439 0.443 0437 0.436
reduce LLM complexity for deploy-  frpps | g4n, 0.389 0.406 0394 0.395
ment. We conducted a unified, system- ~ ETTm1 | 0380 0382 0.385 0382 0379
ETTm2 | 0321 0317 0324 0316 0318

atic evaluation of state-of-the-art prun-
ing methods. Our evaluation showed
that our methods, while aggressively
shrinking model size, can effectively
retain key emergent abilities that em-
power LLMs, suggesting a practical
pathway for managing LLM deploy-
ment and their evolving lifecycle. Our validation on MOMENT for time series forecasting further
confirms the modality-agnostic efficacy of LayerMerge, with pruned models outperforming shallow
baselines while achieving minimal performance loss. LayerMerge also provides substantial computa-
tional advantages, reducing FLOPs by 70% and memory usage by 69% compared to state-of-the-art
width pruning methods, enabling efficient deployment in resource-constrained environments.

Table 4: Average MAE performance across all prediction
horizons. Shallow (k) models are k-layer MOMENT models
trained from scratch; Pruned (k) models are original MOMENT
models pruned to k layers using LayerMerge. Complete
results in Appendix [C]

Although our methods achieve comparable or superior performance to baselines, all methods suffer
from larger gaps when using 11lama-3.1-8b (Table [2), while pruned model performance under
the same sparsity does not improve. This suggests 11ama-3.1-8b may be less “prunable” than
1lama-2-7b-hf. As more advanced LLMs are developed, they may paradoxically become harder
to scale down for deployment. Furthermore, while all evaluated methods lack trends between
performance and depth retention beyond 50% pruning (Tables [T|and 2] Figure[2), this phenomenon
may reflect that task-agnostic pruning methods may not retain specific emerging capabilities.

In future work, we will develop targeted, task-specific methods for scaling down LLMs and expect
greater compression with lower performance loss. We will also develop more systematic benchmarks
evaluating emergent abilities at finer resolutions to carefully guide such method development.
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A Algorithm for finding diagonal blocks

Algorithm 1 Recursive Block Finder
Input:
Raw similarity matrix S € R™*"
Binarized matrix M where M;; = 1if S;; > «y and 0 otherwise, for a threshold ~.
Output:
A list of non-overlapping block indices Z = [(s1, €1), (s2,€2), ... ]

1: procedure FINDBLOCKS(.S, M)

2: n < number of rows in M

3 if n = 0 then return ||

4: end if

5: if n = 1 then return [(0, 0)]

6: end if

7 B« ] > List to store potential blocks and their scores
8: for s <~ Oton —1do

9: if M[s,s] =1 then
10: e<—s+1
11: while e < n and submatrix M[s : e, s : €] is all ones do
12: e<e+1
13: end while
14: Smin ¢ min(S[s:e—1,s:e—1])
15: Append ((s,e — 1), Smin) to B
16: end if

17: end for
18: Sort B descending by block size (e — s), then by Syin

19: (s*,e*) + indices of the first block in sorted list B
20: Myefore < M[0:s*—1,0: s* — 1]
21: Magier — Me*+1:n—1e*+1:n—1]

22: Toefore < FindBlOCkS(S s Mbefore)

23: Tatter < FindBlocks (.S, Myer)

24: Shift all indices (is, ¢ ) in Zyper by €* + 1
25: return Ibefore @] [(S*7 e* )] U Iaﬂer

26: end procedure

B Challenges in Leaderboard-Lite

C Complete Results for LayerMerge Applied to MOMENT



Domain Challenge

leaderboard_bbh_boolean_expressions
leaderboard_bbh_temporal_sequences
leaderboard_bbh_penguins_in_a_table
leaderboard_bbh_reasoning_about_colored_objects
leaderboard_bbh_tracking_shuffled_objects_three_objects
leaderboard_bbh_logical_deduction_five_objects

Mathematics and Logic

leaderboard_bbh_disambiguation_qa
Natural Language Understanding leaderboard_bbh_ruin_names
leaderboard_bbh_salient_translation_error_detection

leaderboard_bbh_movie_recommendation
Use of World Knowledge leaderboard_bbh_sports_understanding

Graduate Level Domain Knowledge leaderboard_gpgqa_main

leaderboard_musr_murder_mysteries
Multistep Soft Reasoning leaderboard_musr_object_placements
leaderboard_musr_team_allocation

Table 5: Challenges in Leaderboard-Lite grouped by the measured emergent ability of the LLM.

Dataset Horizon MAE
Shallow (3) Pruned (3) Shallow (12) Pruned (12) Original
96 0.409 0.400 0.412 0.401 0.410
ETThI 192 0.430 0.426 0.434 0.424 0.426
336 0.462 0.446 0.466 0.442 0.437
720 0.483 0.485 0.461 0.480 0.472
96 0.351 0.338 0.350 0.341 0.345
ETTh2 192 0.392 0.380 0.390 0.384 0.386
336 0414 0.405 0.422 0.409 0.408
720 0.452 0.434 0.463 0.441 0.439
96 0.350 0.354 0.351 0.352 0.349
ETTmI 192 0.369 0.370 0.372 0.370 0.368
336 0.386 0.387 0.392 0.388 0.384
720 0416 0.416 0.424 0417 0.416
96 0.262 0.260 0.269 0.258 0.260
ETTm? 192 0.299 0.297 0.306 0.295 0.297
336 0.334 0.329 0.334 0.328 0.328
720 0.390 0.382 0.388 0.383 0.387

Table 6: MAE performance comparison across different datasets and prediction horizons
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