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Abstract

In spite of the plethora of success stories with graph neural networks (GNNs) on modelling
graph-structured data, they are notoriously vulnerable to tasks which necessitate mixing
of information between distant pairs of nodes, especially in the presence of bottlenecks in
the graph. For this reason, a significant body of research has dedicated itself to discover-
ing or pre-computing graph structures which ameliorate such bottlenecks. Bottleneck-free
graphs are well-known in the mathematical community as expander graphs, with prior
work—Expander Graph Propagation (EGP)—proposing the use of a well-known expander
graph family—the Cayley graphs of the SL(2,Zn) special linear group—as a computational
template for GNNs. However, despite its solid theoretical grounding, the actual compu-
tational graphs used by EGP are truncated Cayley graphs, which causes them to lose
expansion properties. In this work, we propose to use the full Cayley graph within EGP,
recovering significant improvements on datasets from the Open Graph Benchmark (OGB).
Our empirical evidence suggests that the retention of the nodes in the expander graph can
provide benefit for graph representation learning, which may provide valuable insight for
future models.

Keywords: graph neural networks, graph representation learning, graph machine learning,
oversquashing, bottlenecks, expander graphs, cayley graphs

1. Introduction

Graph neural networks (GNNs) depend on propagating information between neighbour-
ing nodes in the graph (Bronstein et al., 2021) where the message passing (Gilmer et al.,
2017a) paradigm serves as an architecture for facilitating this information. This paradigm
involves iterative exchange of messages, with nodes aggregating and updating their repre-
sentations based on received information from neighbours. However, a phenomenon known
as oversquashing (Alon and Yahav, 2020) can limit the effectiveness of this message pass-
ing process. Oversquashing occurs when a large volume of messages are aggregated into
fixed-size vectors, which hinder the expressive power of GNNs, especially when dealing with
long-range node interactions (Di Giovanni et al., 2023).

The Expander Graph Propagation (EGP) paper (Deac et al., 2022) identified four de-
sirable criteria to mitigate oversquashing and effectively handle global context in graph rep-
resentation learning: global information propagation, no bottlenecks, subquadratic time and
space complexity and no dedicated preprocessing. The authors surveyed prior approaches,
including traditional GNNs, master-node methods (Gilmer et al., 2017b; Battaglia et al.,
2018) and fully connected graphs (Alon and Yahav, 2020), ultimately recognising the effi-
cacy of expander graphs for bottleneck-free information propagation.
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Figure 1: Both Cayley graphs represent SL(2,Z3) with |V | = 24 using the same construc-
tion. Left A truncated Cayley graph (spectral gap: 0.0751, diameter : 10) aligned
to a given input graph. Right: The full Cayley graph (spectral gap: 1.2679, di-
ameter : 4) structure indicating the additional virtual nodes (in green).

In the EGP paper, a family of expander graphs have been constructed leveraging the
well-known theoretical results of special linear groups, SL(2,Zn), for which a family of
corresponding Cayley graphs, Cay(SL(2,Zn);Sn), can be derived. Here, Sn (Deac et al.
(2022), Definition 8) denotes a particular generating set for SL(2,Zn). For appropriate
choices of Sn, the corresponding Cayley graphs are guaranteed to have expansion properties.

Importantly, although Cayley graphs are scalable, achieving a specific number of nodes
is not always feasible; for instance, the node count of Cay(SL(2,Zn);Sn) is known to
be in O(n3). The challenge of determining the right order n of the set Zn such that
|V (Cay(SL(2,Zn);Sn))| takes a particular value, |V |, has been recognised in the EGP pa-
per. This consideration is addressed within the paper by identifying the smallest n for which
|V (Cay(SL(2,Zn);Sn))| ≥ |V |, and then truncating the Cayley graph to use only the first
|V | nodes in breadth-first order. However, while Deac et al. (2022) showcased the utility
for this particular construction, there is no guarantee that this is the optimal way to offer
a Cayley graph as a computational template for a GNN. In Figure 1 (left) we demonstrate
how a truncated Cayley graph of SL(2,Zn) may lose its coveted expansion properties by
drastically increasing its diameter and decreasing its spectral gap; see Appendix A for a
more detailed analysis. This reintroduces long-range interactions and leaves the GNN over
such a graph vulnerable to oversquashing.

In this paper, we instead decide to embrace the full Cayley graph, along with any
additional nodes it offers which cannot be aligned to the input graph—for which we perform
a separate feature initialisation. The full Cayley graph does more than (trivially) preserving
beneficial expansion properties: the additional nodes (and pathways connecting them to the
original graph) may be interpreted as virtual nodes (Pham et al., 2017) which offer increased
“coverage” of the graph compared to the truncated version. It is generally well recognised
that virtual nodes provide shortcuts for message passing between nodes along the graph
edges, as supported by the empirical evidence of Hwang et al. (2022). Additionally, this
work aligns with the principles of JK networks (Xu et al., 2018b), where the full Cayley

2



Cayley Graph Propagation

graph is interwoven with the input graph such that varying neighbourhood ranges are
employed to facilitate improved structure-aware representations.

We refer to our EGP variant as Cayley graph propagation (CGP), to emphasise the fact
we’re using the full Cayley graph structure.

2. Cayley Graph Propagation

The setup for CGP closely aligns with that of EGP in most aspects. We continue to
consider the input to a GNN as a node feature matrix X ∈ R|V |×d and an adjacency matrix
A ∈ R|V |×|V |, which can be fed in an edge-list manner.

Additionally, the construction of the Cayley graph Cay(SL(2,Zn);Sn) is still done by
choosing the smallest n such that |V (Cay(SL(2,Zn);Sn))| ≥ |V |. However, we no longer

truncate the Cayley graph such that a subgraph A
Cay(n)
1:|V |,1:|V | is extracted – instead, we opt for

a different approach of retaining all of the nodes of the Cayley graph, and its corresponding
adjacency matrix ACay(n).

This construction requires us to add new nodes into the graph; hence, we need to modify
the feature matrix into an extended version, XCay(n) ∈ R|V (Cay(n))|×d. To construct this,
we featurise the first |V | nodes using the data from X, and treat any additional nodes as
virtual nodes, initialised in some pre-defined way. Specifically:

X
Cay(n)
1:|V | = X X

Cay(n)
|V |+1:|V (Cay(n)| ∼ InitVirt (1)

where InitVirt is any sampling procedure for initialising d-dimensional feature vectors; for
example, we may choose to sample random features from N (0, 1), or initialise them to zeros.
See Table 2 for a comparison of various feature initialisation approaches.

Because EGP makes advantage of both the input graph (specified by A) and the gener-
ated Cayley graph (specified by ACay(n)), we also need to appropriately extend the original
adjacency matrix, A, to incorporate the new nodes. Since the input graph layers are in-
tended to preserve the input graph topology as much as possible, we construct such a matrix
Ã ∈ R|V (Cay(n)|×|V (Cay(n)| by adding self-edges to the virtual nodes only:

Ã1:|V |,1:|V | = A Ã|V |+1:|V (Cay(n)|,|V |+1:|V (Cay(n)| = I (2)

Ã1:|V |,|V |+1:|V (Cay(n)| = Ã|V |+1:|V (Cay(n)|,1:|V | = 0 (3)

CGP now proceeds in the same manner as EGP: alternating GNN layers, such that every
odd layer operates over the input graph—to preserve the topological information therein—
and every even layer operates over the generated Cayley graph—to support bottleneck-free
global communication. For a two-layer CGP model, this can be depicted as:

H = GNN(GNN(XCay(n), Ã; θ1),A
Cay(n); θ2) (4)

where θ1 and θ2 are the parameters of the first and second GNN layer, respectively. This
implementation works with any choice of base GNN; here we make advantage of the graph
isomorphism network (Xu et al. (2018a), GIN):

hu = ϕ

(
(1 + ϵ)xu +

∑
v∈Nu

xv

)
(5)
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Table 1: Comparative performance evaluation on the two studied datasets.

Model ogbg-molhiv ogbg-molpcba

GIN 0.7542± 0.0084 0.2250± 0.0031
GIN + EGP 0.7681± 0.0128 0.2305± 0.0023
GIN + CGP 0.7903± 0.0172 0.2333± 0.0016

where xu ∈ Rd are the features of node u, ϵ is a learnable scalar, and ϕ is a MLP.

The final node embeddings H ∈ R|V (Cay(n)|×k may then be used for downstream node,
graph or graph-level tasks. To avoid direct influence of virtual nodes in these predictions,
we use only the embeddings corresponding to the original graph’s nodes, that is, H1:|V |, in
downstream tasks.

The CGP model upholds the requirements of the four criteria set by Deac et al. (2022)—
arguably, in a more theoretically grounded way than EGP; Figure 1 and Appendix A provide
empirical evidence of this. Specifically, the lower diameter of the graph used in CGP
enhances its ability to eliminate oversquashing and bottlenecks, which is further supported
by having a higher spectral gap. Furthermore, the CGP model may be able to make up for
one of the limitations of the Cayley graph construction: the inability to find the best way to
align it to a given input graph, mitigating the potential for stochastic effects in the process.
The additional virtual nodes act as “bridges” between poorly connected communities in the
Cayley graph, ameliorating any poorly-connected regions caused by misalignment.

3. Empirical Evidence

Our work extends the foundation of the EGP model, advocating the claim that a full Cayley
graph structure better alleviates oversquashing and bottlenecks with empirical evidence.

OGB Datasets The ogbg-molhiv and ogbg-molpcba were chosen to conduct exper-
imentation, which provides emulation for real-world analysis. They are among the largest
molecule property prediction datasets within the scope of the MoleculeNet benchmark (Wu
et al., 2018), and also suitable for our hardware. Significantly, the ogbg-molhiv yielded the
most improvements for the EGP model compared to the baseline GIN (Xu et al., 2018a).

Models In line with the EGP model it uses the baseline model of GIN (Xu et al.,
2018a), using the open-source implementation of OGB (Hu et al., 2020) and their given
hyperparameters. The only modification to the model is using the full Cayley graph as
part of the architecture and how to initialise the virtual nodes. For CGP, zero initialisation
yields the best performance. For fair comparison, the models have been trained using a
NVIDIA V100 with 16 GB of memory where EGP and CGP achieved training speeds akin
to each other. In Appendix B we support the effectiveness of using the full Cayley graph
structure by evaluating other node initialisation strategies.

Results The evaluation results are showcased in Table 1. It is evident that propagating
over a full Cayley graph structure can lead to enhanced performance compared to the
EGP model. EGP is empirically sensitive to the choice of alignment and truncation of
Cayley graph, and for our choice of alignments, the performance on both ogbg-molhiv and
ogbg-molpcba is lower than what is reported in Deac et al. (2022). Conversely CGP does
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not suffer from such issues, this is because it does not truncate the graph; see Appendix
C where we support this claim by exploring different alignment strategies. The results of
the datasets provide empirical evidence that leveraging the full Cayley graph effectively
preserves their expansion properties, thereby improving the alleviation of bottlenecks.
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Learning on Graphs Conference, pages 38–1. PMLR, 2022.

Francesco Di Giovanni, T Konstantin Rusch, Michael M Bronstein, Andreea Deac, Marc
Lackenby, Siddhartha Mishra, and Petar Veličković. How does over-squashing affect the
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Figure 2: Illustrates how truncating the Cayley graph structures influences expansion prop-
erties, with the full Cayley graph node intervals indicated by the dotted red-line.

Appendix A. Expansion properties of truncated Cayley graphs

Figure 2 show the relationship between truncating a Cayley graph and its desired expansion
properties. We provide analysis of the first four graphs from the family of Cayley graphs,
Cay(SL(2,Zn);Sn). Notably, the number of nodes is determined by the following expression:

|V (Cay(SL(2,Zn);Sn))| = n3
∏

prime p|n

(
1− 1

p2

)
(6)

To preserve the EGP (Deac et al., 2022) construction strategy for an input graph’s
alignment to a Cayley graph where only the first |V | nodes are used in breadth-first order;
we truncate in a way so as not to disconnect the graph. For all given graphs you can see a
trend where the more desirable properties are at the given intervals of a full Cayley graph
number of nodes.

Diameter The diameter of a graph influences the effectiveness of traversal between
nodes. A lower diameter facilitates a more efficient graph structure, enabling nodes to reach
each other in a shorter number of hops.

Edge Expansion The edge expansion quantifies a graph’s connectivity by evaluating
the ratio of the edge count to the number of nodes, therefore a high edge expansion suggests
a well-connected graph.

Spectral Gap The spectral gap, a fundamental concept in graph theory, provides
valuable insight into the graph’s connectivity and expansion properties. A desirable high
spectral gap signifies strong connectivity and expansion.
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Cheeger Constant The Cheeger constant offers measurement of the narrowest bot-
tleneck in a graph; a higher Cheeger constant provides evidence that a graph is globally
lacking bottlenecks. The exact Cheeger constant h(G) is known to be a computationally
challenging problem. To address this difficulty, we use the Cheeger inequality as per Chung
(1997), given by:

λ

2
≤ h(G) ≤

√
2λ (7)

The inequality establishes a relationship with respect to λ, defining a range for the
Cheeger constant. Given the computational complexity of determining the precise Cheeger
constant, we utilise the lower bound to visualise this information on the graph.

The analysis of truncating a Cayley graph to align with a given input graph supports
our claim that it adversely affects the deseriable expansion properties. It is observed that
the most unfavourable scenario occurs just beyond the range of the proceeding the interval
of a Cayley graph number of nodes.

Appendix B. Virtual node initialisation strategies

The results in Table 2 further support the claim that leveraging a full Cayley Graph is
highly beneficial, influencing both local interactions within their neighbourhood and the
global context of the graph. The pre-defined strategies have all performed better than EGP
(for the provided dataset ogbg-molhiv).

Mean The mean initialisation strategy entails setting all virtual nodes to the average
derived from the collective node features from the input graph.

Random A random node initialisation (RNI) strategy was chosen, due to research
in (Abboud et al., 2020), which provides evidence that supports expressive power of GNNs
with RNI.

Zeros The initialisation of the virtual nodes to zeros. Interestingly, this strategy yields
the best mean performance out of all the tested approaches. However, this is not to state
this is the best node initialisation strategy for CGP. Rather, it serves as a solid foundation
for more refined techniques in the future.

Appendix C. Cayley graph alignment sensitivity

The analysis conducted in Table 3 provides empirical evidence to further support our
claim—CGP is more resilient compared to EGP for the alignment between the input graph
and the expander graph. For each result, the values fall within the range of one standard
deviation as observed in the base CGP model. Figure 1 provides an example of a truncated
Cayley graph that has poor alignment with the input graph. We examine the sensitivity
between the input graph and Cayley graph by implementing a strategy whereby we explore
different alignments. The Cayley graph being constructed in a breadth-first manner means
we can align the input graph in an alternative approach by offsetting the starting node.

In practice, this simple approach results in different edges being aligned with the Cayley
graph, therefore we have to handle the additional nodes accordingly. In accordance with
Cayley graph propagation (CGP) they are still handled as virtual nodes and initialised in
some pre-defined way, thereby alleviating the sensitivity of aligning to the input graph.
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Table 2: Comparative analysis of different strategies to initialise the virtual nodes for full
Cayley graph. The baseline models are GIN (Xu et al., 2018a) and EGP (Deac
et al., 2022) both of which are using a similar implementation of OGB (Hu et al.,
2020). To establish a fair basis, the results have been trained using a NVIDIA
V100 with 16 GB of memory and same number of parameters, which resulted in
a training time within five hours for both the EGP and CGP models.

Model ogbg-molhiv

GIN 0.7542± 0.0084
GIN + EGP 0.7681± 0.0128

GIN + CGPmean 0.7806± 0.0123
GIN + CGPrandom 0.7728± 0.0160
GIN + CGPzeros 0.7903± 0.0172

Table 3: Comparative performance evaluation between the baseline CGP model and dif-
ferent Cayley graph alignment strategies—all of which are still using a similar
implementation of OGB (Hu et al., 2020). The offset method used as per Ap-
pendix C is indicated by the subscript number, i.e. for CGP1 this is offset by 1
compared to the baseline CGP model.

Model ogbg-molhiv

GIN + CGP 0.7903± 0.0172

GIN + CGP1 0.7854± 0.0183
GIN + CGP3 0.7737± 0.0129
GIN + CGP5 0.7797± 0.0068
GIN + CGP7 0.7888± 0.0094
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