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Abstract
Current approaches commonly integrate001
repository-level code completion with retrieval-002
augmented generation. Specifically, private003
code repositories are utilized as retrieval004
databases, which aim to supply relevant code005
chunks to a large language model (LLM).006
However, incorporating multiple retrieved007
code chunks into an LLM will increase the008
cost of inference. This not only decreases the009
efficiency of the LLM but also impairs the010
user experience. To address this, we introduce011
RepoLC, which uses a Light module to012
Compress the retrieved code, thereby reducing013
the inference cost of LLMs. We insert a014
Semantic Compressor Encoder (SCE) between015
the retriever and the generator. Specifically,016
SCE compresses the retrieved code chunks017
into fewer high-level tokens and then projects018
them to the semantic space of the LLM.019
We propose a two-stage training scheme to020
train the overall pipeline through semantic021
alignment and task alignment. Experimental022
results demonstrate that our approach achieves023
significant improvements on multiple datasets.024
Compared to other methods, our approach025
incurs in minimal loss and achieves an026
inference time that is almost as efficient as that027
of in-file processing.028

1 Introduction029

In modern software development, the repository-030

level code completion (Zhang et al., 2023; Li et al.,031

2017a; Liu et al., 2020; Guan et al., 2024; Wu032

et al., 2024) is crucial for enhancing programmer033

productivity and streamlining the coding process.034

Despite the remarkable advancements and applica-035

tions of large language models (LLMs) (Touvron036

et al., 2023; Brown et al., 2020; Guo et al., 2025;037

Dubey et al., 2024) in code understanding and gen-038

eration (Roziere et al., 2023; Guo et al., 2024; Gong039

et al., 2024), notable performance bottlenecks still040

persist in tasks that require cross-file context and041

specialized task scenarios.042

code repository

768 tokens

SCE

96 tokens

cross-file code chunks

RAG

RepoLC

Figure 1: The shows differences between RepoLC and
RAG. The retrieved cross-file code chunks, with 768
tokens, can be compressed to 96 via SCE, cutting model
inference cost and accelerating the entire process.

For repository-level code completion, many stud- 043

ies have introduced retrieval-augmented generation 044

(RAG) (Gao et al., 2023a; Fan et al., 2024; Cheng 045

et al., 2024c; Zeng et al., 2024) to provide LLMs 046

with additional context and enhance their genera- 047

tion capabilities. However, the direct concatenation 048

of multiple retrieved code chunks into LLM results 049

in a substantial increase in context length. This 050

augmentation can adversely impact the model’s 051

inference speed, thereby significantly diminishing 052

user experience and efficiency. Furthermore, it may 053

lead to the "lost in middle" phenomenon within the 054

LLM (Liu et al., 2024b; Yoran et al., 2023; Chen 055

and Shu, 2024; Yu et al., 2023a). Presently, as 056

the demand for private code repositories surges, 057

accelerating this process has become imperative. 058

Our work focuses on how to enable LLM to 059

achieve better results with shorter contexts. In- 060

spired by relevant methods in NLP (Cheng et al., 061

2024d; Rau et al., 2024; Chevalier et al., 2023; Zou 062

et al., 2024) , we envision achieving this goal by 063

introducing compression for repository-level code 064

completion. We attempted to utilize some plug- 065

and-play framework (Pan et al., 2024; Jiang et al., 066

2023b; Ge et al.) for the task. However, the ex- 067

perimental results are not satisfactory. Given that 068

code represents a distinct form of text sequence, 069
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compressing it from the hard-prompt perspective070

poses challenges in determining the optimal degree071

of compression for code chunks. We show some072

compression case in Table 8. For soft-prompt com-073

pression methods, alignment is crucial. Directly074

using pooling to compress the matrix may lead to075

potential semantic loss or alteration. When soft-076

prompts lack alignment, it becomes difficult for077

the LLM to understand the compressed informa-078

tion, making it challenging to achieve satisfactory079

performance in repository-level code completion.080

In addition, using an LLM for compression incurs081

additional time costs.082

Based on these challenges, we introduced Re-083

poLC and for the first time attempted to adopt soft-084

prompt for compression in repository-level code085

completion. The difference between RepoLC and086

RAG is shown in Figure 1. We inserted the Seman-087

tic Compressor Encoder (SCE) module between088

the retriever and the generator. This module can ex-089

tract high-level semantic tokens from the retrieved090

code chunks, and subsequently the generator will091

complete the code completion task based on the092

compressed tokens.093

Specifically, our SCE module consists of a light-094

weight encoder and a projector. The light encoder095

is utilized to encode code blocks into high-level096

semantic features. Subsequently, through a pooling097

operation, the semantic features matrix is mapped098

to compressed tokens with a specific size. The099

light-weight encoder and simple operations further100

reduce the time cost of compression. Subsequently,101

via a projector, compressed tokens are aligned to102

the semantic space of the LLM.103

To enable the SCE to serve LLMs effectively, we104

propose a two-stage training scheme. In the first105

phase, we aim to enable the LLM to understand the106

output of the SCE. We train the SCE by leveraging107

the semantic loss of the raw code chunks restored108

from the compressed ones using the LLM, aiming109

to align their semantic spaces. After obtaining fa-110

vorable representations from SCE, we perform task111

alignment between the SCE and the LLM within112

the RAG. The SCE compresses the retrieved code113

chunks respectively, and we train the LLM to com-114

plete the code based on the compressed context.115

We conduct experiments on multiple datasets,116

and the results demonstrate the excellent perfor-117

mance of RepoLC. Although we train on Python118

corpora, RepoLC still exhibits great generalization119

ability across other programming languages. Ad-120

ditionally, in the ablation experiments, we explore121

more training combinations. We find that for the 122

entire RepoLC, merely fine-tuning the SCE while 123

keeping the LLM frozen can still yield satisfactory 124

results. 125

Our contributions are as follows: 126

• We introduce a novel RAG framework called 127

RepoLC. We utilize a light module to com- 128

press the retrieved chunks for LLMs. 129

• We design a two-stage training scheme that in- 130

cludes semantic alignment and task alignment 131

to enable SCE to serve LLMs. 132

• Through extensive experiments, we verify the 133

effectiveness of our method. Our approach 134

optimizes the efficiency of RAG to approach 135

in-file and compared with other methods, it 136

does not sacrifice excessive accuracy. 137

2 Related Work 138

2.1 Repository-level Code Completion 139

Traditional code completion techniques primarily 140

focus on code suggestions at the level of individual 141

files or projects (Li et al., 2017a; Tang et al., 2023; 142

Liu et al., 2020) , whereas repository-level code 143

completion extends the scope to the entire code 144

repository (Shrivastava et al., 2023; Cheng et al., 145

2024a; Liu et al., 2024a; Phan et al., 2024) , aiming 146

to provide more comprehensive and accurate sug- 147

gestions. RepoCoder (Zhang et al., 2023) enhances 148

the quality of retrieved code chunks by introducing 149

iterative retrieval , while RLCoder (Wang et al., 150

2024) trains the retriever based on feedback sig- 151

nals from downstream tasks via a generator, elim- 152

inating the need for new datasets. DraCo (Cheng 153

et al., 2024b) constructs a graph representation of 154

the entire repository to facilitate information re- 155

trieval through structural insights. REPOFUSE (Li 156

et al., 2017b) introduces two types of contextual 157

information to further refine the relevance between 158

retrieved code and incomplete code. These ap- 159

proaches optimize retrieval performance, but Repo- 160

former (Di Wu, 2024) suggests that retrieved code 161

is not always useful. Consequently, Repoformer 162

trains LLM to autonomously determine whether 163

to retrieve code, further improving effectiveness. 164

This investigation, to a certain degree, improves the 165

efficiency of the task and bolsters the performance 166

of LLMs. 167
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The semantic  embedding is  < compressed token>...

The text content of the embedding is:

SCEHuman Instruct

Unfinished Code

RetrieverCrossEntropyLoss

Stage2:Task alignment

Frozen

Tuned

    def predict_start_from_noise(self, x_t, t, noise):
        log_snr = self.log_snr(t)
        log_snr = right_pad_dims_to(x_t, log_snr)
        alpha, sigma = log_snr_to_alpha_sigma(log_snr)
        return (x_t - sigma * noise) / alpha.clamp()
<compressed token>  <compressed token>  <compressed token> 
# norms and residuals
class LayerNorm(nn.Module):
    def __init__(self, feats, stable = False, dim = -1):

super().__init__()
        self.input_dim = input_dim
        self.g = nn.Parameter(

torch.ones(feat
......

muti-repo code file

SCE

relevant code

Unfinished Code

Stage1:Semantic Alignment

Completed code

def check_equilateral(a, b, c):
    if (a == b and b == c):
        print("The triangle is equilateral.")
    elif (a == b or b == c or a == c):
        print("The triangle is isosceles.")
    else:
        print("The triangle is scalene.")
........

super().__init__()
        self.stable = stable
        self.dim = dim
        self.g = nn.Parameter(

......

Ground truth

CrossEntropyLoss

Figure 2: The training strategy of RepoLC

2.2 Retrieval-augmented Generation168

To address issues such as hallucinations and knowl-169

edge updates in LLM, the RAG was proposed170

(Lewis et al., 2020) . Equipping LLMs with an171

external knowledge base has led to improved per-172

formance on various NLP tasks (Wang et al., 2023;173

Han et al., 2024; Gao et al., 2023b) . In the NLP do-174

main, numerous works have optimized components175

such as retrieval source (Yan et al., 2024; Li et al.),176

retriever (Asai et al., 2023; Jiang et al., 2023c; He177

et al., 2024) , query optimization (Dhuliawala et al.;178

Zhou et al.), context curation (Yu et al., 2023b; Ma179

et al.; Cui et al., 2023; Chevalier et al., 2023) and180

so on. Long context is a common issue in NLP181

tasks, and many approaches focus on context com-182

pression (Rau et al., 2024; Jiang et al., 2023b; Pan183

et al., 2024; Cheng et al., 2024d) or noise reduction184

(Zhang et al., 2024; Chen and Shu, 2024; Yu et al.,185

2023a; Xu et al., 2024) to improve performance.186

However, code is a special text sequence, and187

many code tokens have no meaning in NLP. Many188

compression methods cannot retain the information189

required for the LLM to complete a certain piece190

of code. At the same time, many large-scale com-191

pressors incur additional time costs. This paper192

explores how to use lightweight models to com-193

press code for LLMs.194

3 Methodology195

3.1 Definition of RAG196

In repository-level code completion, we refer to the197

standard RepoCoder (Zhang et al., 2023) workflow198

and followed the main steps of chunking, indexing,199

retrieval, and generation. The naive RAG pipeline 200

consists of the following three core components: 201

Retrieval database. In repository-level code 202

completion, the external database is composed of 203

code files from private code repositories. Following 204

the RepoCoder (Zhang et al., 2023), we divided the 205

code files in the repository into chunks of fixed 206

granularity (e.g., every 10 lines of code). These 207

chunks are then embedded into a vector space and 208

stored in a database. 209

Retriever. The retriever’s task is to search the 210

database to identify code chunks most similar to the 211

current unfinished code. To ensure that the query 212

(unfinished code) and the code chunks stored in the 213

retrieval database are in the same semantic space, 214

the same encoder is applied to encode the query. 215

Subsequently, by computing the cosine similarity 216

of their embeddings, the top-k code chunks with 217

the highest similarity to the query are retrieved. 218

Generator. The generator is typically a LLM. 219

In RAG pipeline, the generator’s inputs are the 220

retrieved code chunks and the code context to be 221

completed. The generator performs the code com- 222

pletion task in an autoregressive manner. 223

Input = [CR] <pad> [Recode] <pad> [CL] 224

where CR is the context code in right, Re_code 225

is retrieved code chunks, CL is the context code in 226

left . 227

3.2 Design of Semantic Compressor Encoder 228

Our objective is to enhance code completion effi- 229

ciency by shortening the context while maintain- 230
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ing superior performance. To attain this objective,231

we put forward RepoLC. It utilizes a lightweight232

module to serve the LLM, which is responsible233

for compressing the retrieved code chunks. The234

component we inserted is called the SCE, and it235

comprises two primary components:236

• Encoder: This component initially transforms237

code chunks into high-level features, captur-238

ing their semantics. Subsequently, average239

pooling is applied to convert these features240

into configurable fixed-length tokens.241

• Projector: It is a multi-layer linear neural net-242

work, used to align the output of the encoder243

with the semantic space of the LLM.244

To enable SCE to operate within the RAG, we245

have devised a two-stage training strategy: seman-246

tic alignment and task alignment. The training247

strategy is shown in Figure 2. During the semantic248

alignment phase, the output of SCE is harmonized249

with the semantic space of the LLM. Subsequently,250

in the task alignment stage, SCE is integrated into251

the RAG pipeline. This integration allows the LLM252

to adapt to code completion based on compressed253

tokens. This configuration ensures that the tokens254

extracted by SCE preserves vital information for255

the LLM, thus improving the LLM’s performance256

in code completion.257

3.3 Semantic Alignment258

We integrate two models, distinct in training cor-259

pus and model architecture, into a single pipeline,260

where the output of one model serves as the input261

for the other. Hence, this approach inevitably intro-262

duces various discrepancies, particularly semantic263

gaps. Specifically, an LLM may fail to accurately264

comprehend the high-level semantic information265

extracted by the other model. Additionally, signif-266

icant details are often lost during the process of267

information compression. This semantic mismatch268

and information loss directly impair the overall sys-269

tem performance. Therefore, our core objective is270

to preserve the original information to the greatest271

extent possible.272

To achieve this goal, we design a method in273

which SCE compresses code chunks into tokens274

that the LLM can understand. We concatenate the275

instruction, the compressed tokens, and the raw276

code chunk and input this concatenated data into277

the LLM. The precise prompt is detailed in Ta-278

ble 7. Our training objective is to make the LLM279

restore the original code chunks as accurately as 280

possible based on the tokens compressed by SCE. 281

Accordingly, we directly use the cross-entropy loss 282

to maximize the similarity between the generation 283

result of the LLM and the original code snippet. 284

The calculation formula is 285

Lrecon = −Ex∼D
∑
t

logPLLM(xt | z<t, SCE(chunks)) 286

where xt is the token at time step t given previ- 287

ous tokens z<t and the projected compressed em- 288

bedding of the original retrieved chunks. 289

During the training process, we freeze the pa- 290

rameters of the LLM to keep the semantic space of 291

the LLM frozen, and only optimize the parameters 292

of SCE. 293

3.4 Task Alignment 294

After completing the semantic alignment phase, 295

the LLM has the capability to generate original text 296

using compressed high-level semantic representa- 297

tions. However, at this stage, the model’s gener- 298

ative capacity is confined to restorative tasks and 299

has not been aligned with specific repository-level 300

code completion. Therefore, further task-alignment 301

training is required to enable the LLM to integrate 302

contextual information and the compressed tokens 303

thereby more accurately accomplishing code com- 304

pletion tasks. 305

Due to the powerful in-context learning ability of 306

LLMs, providing them with some relevant knowl- 307

edge can significantly enhance their performance. 308

However, in RepoLC, the form of input to the LLM 309

has changed remarkably. It has shifted from di- 310

rectly inputting the raw code chunks to inputting 311

a combination of compressed semantic representa- 312

tions and context. This change may be inconsistent 313

with the original input form of the LLM, potentially 314

leading to performance degradation. 315

To mitigate this contradiction, we train the SCE 316

in the actual pipeline of RAG. In the first stage, we 317

have obtained relatively ideal compressed repre- 318

sentations. Therefore, we freeze the parameters of 319

SCE. Leveraging low rank adaptation (LoRA), we 320

opt to fine-tune only a few of the LLM’s parame- 321

ters. By doing so, we fine-tune the LLM to adapt 322

it to soft-prompt based tasks while preventing the 323

model from losing its generalization ability. 324

Given the provided code, we use a retriever to 325

fetch the top-k similar code chunks from the re- 326

trieval database. These code chunks are respec- 327
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tively compressed using the SCE to obtain mul-328

tiple representations. Next, these compressed to-329

kens are sorted according to their similarity before330

compression, thus forming the compressed exter-331

nal information. After that, we concatenate the332

right-context of the code, the compressed external333

information, the left-context, and the ground truth,334

input the concatenated content into the LLM, and335

train the LLM to complete the ground truth. In this336

stage, we still adopt the cross-entropy loss, and its337

formula is:338

LLLM(θ) = −
N∑
i=1

logP (yi|context,Ecomp; θ)339

where the context is the unfinished code and340

Ecomp is the compressed retrieved information.341

4 Experiment Setup342

4.1 Datasets343

For the experiment, we utilized three datasets:344

CrossCodeEval (Ding et al., 2024), RepoEval345

(Zhang et al., 2023), and CrossCodeLongEval346

(Di Wu, 2024). These datasets were selected due to347

their coverage of multiple programming languages348

and their focus on complex cross-file code comple-349

tion tasks, providing a comprehensive benchmark350

to evaluate model performance across diverse pro-351

gramming scenarios. Specifically, for the semantic352

alignment stage, we used the top-10 retrieved code353

chunks from CrossCodeEval and RepoEval to train354

SCE. For task alignment, we trained at the func-355

tion and chunk level on CrossCodeLongEval and356

validated the models on both CrossCodeEval and357

RepoEval.358

4.2 Setup359

In SCE, the encoder employs two small-parameter360

models: Bert (Devlin, 2018) and CodeBert (Feng361

et al., 2020). Bert is the foundational encoder362

model in NLP, while CodeBert is based on the363

more advanced RoBerTa (Liu, 2019) architecture364

and fine-tuned on code corpus. We used the base365

versions of both models. In fact, any encoder model366

can also be implemented within our framework.367

The reason for choosing these two models is that368

they are the most representative ones.369

For the generator, we utilized various models370

with different pre-training methods and parameter371

sizes. The latest models likes Llama3.2-3B base372

(Dubey et al., 2024), while the traditional mod- 373

els include CodeGEN-Mono (2B, 6B) (Nijkamp 374

et al., 2022) , Deepseek-Coder-6.7B-base (Guo 375

et al., 2024), and CodeLlama-7B-hf (Roziere et al., 376

2023). 377

For the retriever, we directly relied on the re- 378

trieval results from previous works. RepoCoder 379

uses a sparse bag-of-words model with the Jaccard 380

index to calculate relevance, while CrossCodeE- 381

val employs UniXcoder as its retrieval model and 382

measures relevance using cosine similarity. 383

For details of other parameter settings, versions, 384

baseline descriptions, etc., they are shown in the 385

Appendix A. 386

4.3 Evaluation Metrics 387

Consistent with established methodologies in code 388

completion research, we assess our line and API 389

completion datasets using two metrics: Exact 390

Match (EM) and Edit Similarity (ES). The EM 391

score, a binary indicator, assigns a value of 1 when 392

the predicted code matches the ground truth code 393

exactly, and 0 otherwise. In contrast, the ES score 394

is computed as 1 minus the ratio of the edit distance 395

to the maximum length of the two strings, yielding 396

a value between 0 and 1, where 1 indicates a per- 397

fect match and values closer to 0 indicate greater 398

dissimilarity. 399

5 Experimental Results and Analysis 400

5.1 Main Results 401

The comparative results of performance are pre- 402

sented in Table 1. In the performance evaluation 403

conducted on the RepoEval and CrossCodeEval- 404

python datasets, our results indicate that the inclu- 405

sion of relevant code chunks from the repository 406

significantly enhances the model’s performance. 407

Furthermore, SCE improves the representation pro- 408

vided to the LLMs, thereby augmenting the per- 409

formance of the RAG model. This indicates that 410

RepoLC can be applied to a wide range of LLM. 411

However, when evaluated on the CrossCodeE- 412

val dataset, the RepoLC fails to yield further im- 413

provements for the Deepseek-Coder and CodeL- 414

lama. Instead, it leads to adverse impacts on their 415

performance. This observation suggests that de- 416

spite the ineffectiveness of SCE in enhancing the 417

performance of certain models, the information 418

retrieved remains a critical factor influencing the 419

overall performance of the models. 420
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Model Policy
RepoEval-Api RepoEval-Line CrossCodeEval-Python
EM ES EM ES EM ES

Deepseek-Coder-6.7B
In-File 22.93 57.22 33.50 62.65 29.41 70.41
RAG 27.13 58.24 37.68 63.32 33.47 73.14

RepoLC 45.10 74.45 53.68 77.01 33.47 74.32

CodeGEN-2B
In-File 22.31 58.91 33.06 65.21 7.27 55.75
RAG 33.56 65.11 44.81 72.83 13.13 61.51

RepoLC 35.93 68.35 44.38 74.77 23.44 66.39

CodeGEN-6B
In-File 23.12 59.32 34.56 66.49 11.14 58.23
RAG 35.12 65.91 46.18 72.86 18.01 64.16

RepoLC 37.52 70.32 47.81 77.08 24.00 66.82

CodeLlama-7B
In-File 26.56 61.38 36.06 65.93 26.56 61.38
RAG 32.68 71.45 44.06 68.86 32.68 63.95

RepoLC 51.23 82.04 59.18 85.02 30.99 72.65

Llama3.2-3B-base
In-File 12.53 39.79 30.31 57.33 6.94 52.36
RAG 14.81 39.93 36.37 60.32 8.10 53.76

RepoLC 27.56 58.60 38.50 65.93 11.30 55.37

Table 1: Overall performance of 5 models across 3 methods on RepoEval and CrossCodeEval

Additionally, we observed that for the Code-421

GEN series models, the performance enhancement422

brought about by RepoLC on the RepoEval dataset423

is relatively modest, while the improvement on424

CrossCodeEval is notably more pronounced. In425

contrast, for the Llama series models, the transition426

from Infile to RAG and subsequently to RepoLC427

results in substantial performance gains on RepoE-428

val, whereas the improvements on CrossCodeEval429

are more marginal. These discrepancies may stem430

from the distinct knowledge acquired by different431

models during their pretraining phases, suggesting432

that the introduction of higher-quality contextual433

information does not always guarantee enhanced434

performance.435

5.2 Efficiency Evaluation436

We employed the torch profiler to evaluate the437

CUDA Time (ms) and GFLOPs of three methods:438

In-File, RAG, and RepoLC across two datasets.439

The experiments were conducted on identical hard-440

ware, utilizing an NVIDIA H20 GPU and an In-441

tel® Xeon® Platinum 8469C CPU. In these evalu-442

ations, CodeGEN-2B, operating in bfloat16 infer-443

ence mode, served as the base LLM. The experi-444

mental results are presented in Table 2.445

Although SCE introduces additional compres-446

sion time, it reduces the context length of LLM447

inputs. When compared with the inference cost of448

the LLM, the cost of the small models used in SCE449

is negligible. Experimental results demonstrate 450

that RepoLC accelerates the RAG inference pro- 451

cess by reducing both CUDA time and GFLOPs. In 452

fact, RepoLC even approaches the inference time 453

of Infile, showcasing its efficiency. 454

Furthermore, while the improvements from Re- 455

poLC in API completion are limited, it exhibits 456

significant efficiency advantages in line-level com- 457

pletion tasks, where inference is based on an au- 458

toregressive model. It is evident that, as the number 459

of tokens to be generated increases, the enhance- 460

ment brought about by RepoLC becomes more 461

pronounced. 462

5.3 Compare with Other RAG Method 463

We experiment with RepoLC and other RAG meth- 464

ods on CodeGEN and CodeLlama. The results are 465

in Table 3. Other methods include using the LLM 466

itself for soft-prompt compression, the LLMLin- 467

gua series for hard-prompt compression, as well as 468

RepoLC and RAG + FT. The experimental results 469

show that RepoLC significantly outperforms other 470

compression methods, demonstrating the necessity 471

of our training scheme. 472

In addition, when compare with RAG + FT, we 473

find that by directly compressing code chunks to 474

32 tokens, even when reducing the context length, 475

RepoLC does not lose much accuracy compared 476

with other methods. This verifies the applicability 477

of RepoLC in repository-level code completion. 478
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CUDA Time (ms) GFLOPS
In-File RAG RepoLC In-File RAG RepoLC

RepoEval-Api 5913 6035 5987 8741 11993 10190
RepoEval-Line 3543 4400 3729 6090 9229 7386

CrossCodeEval-Python 3879 5022 4124 6545 9726 8101

Table 2: A Comparative Analysis of CUDA Time and GFLOPS across Different Settings. The generator is based on
CodeGEN-2B. The SCE is based on CodeBert.

RepoEval-Api RepoEval-Line CrossCodeEval-Python
EM ES EM ES EM ES

CodeGEN-2B

RAG + FT 37.03 68.70 52.12 78.64 22.92 67.46
RAG 33.56 65.11 44.81 72.83 13.13 61.51

Self-Softprompt 14.13 51.56 21.13 56.39 2.44 46.94
LLMLingua 33.44 67.37 42.18 71.58 21.05 64.95
LLMLingua2 32.50 66.21 41.06 70.94 20.67 64.54

RepoLC 35.93 68.35 44.38 74.77 23.44 66.39

CodeLlama-7B

RAG + FT 52.43 82.91 63.56 86.37 31.90 74.11
RAG 32.68 71.45 44.06 68.86 32.68 63.95

Self-Softprompt 18.31 53.33 23.56 55.69 8.56 57.38
LLMLingua 34.56 64.88 39.13 66.39 26.86 69.26
LLMLingua2 34.43 65.23 40.18 68.10 27.31 69.32

RepoLC 51.15 82.04 59.18 85.02 30.99 72.65

Table 3: Comparison of SCE and other RAG methods

The other soft-prompt method is pre-trained on479

other corpus and is also not a plug-and-play method480

to serve any LLM. Due to resource limitations, we481

are unable to reproduce their method on different482

code models. However, we also attempt their base483

generator, and the results are shown in the Ap-484

pendix C.485

5.4 Ablation Study486

In Table 4, we analyze the impact of different train-487

ing steps on the overall RepoLC and the different488

combinations of training objects. The results show489

that if stage 1 is skipped and the parameters of490

the LLM are directly adjusted, poor results will491

be obtained. This indicates that due to the limited492

benefits of fine-tuning LLMs, great results cannot493

be achieved based on poor SCE representations. If494

stage 2 is omitted, the LLM only performs code495

completion based on the model aligned in the first496

stage, which significantly degrades the model’s per-497

formance. This occurs because the LLM is unaware498

of how to utilize soft-prompt for downstream tasks.499

However, we also discover a more lightweight500

approach: adjusting only the SCE without tuning501

the LLM still leads to performance improvement. 502

This suggests that modifying the SCE module alone 503

can bring substantial improvements, without the 504

need for additional LLM training. 505

Finally, even after completing the semantic align- 506

ment in the first stage, further adjustments to both 507

the SCE and LLM in downstream tasks do not 508

result in additional performance gains. This is be- 509

cause, after the first stage of semantic alignment, 510

the vector representation output by the SCE module 511

has already reached a near optimal state. Continu- 512

ing to adjust the SCE parameters would cause the 513

model to lose its optimal solution. 514

5.5 Different Encoder Models 515

We conduct experiments using CodeBert and Bert 516

as the base models for encoders, observing the per- 517

formance of different generators. The percentage 518

difference are shown in Figure 4, while the vali- 519

dation loss during the semantic alignment phase 520

for CodeGEN-2B and CodeLlama is presented in 521

Figure 3. The validation loss refers to the cross- 522

entropy loss of the LLM calculated based on the 523

first 500 samples of the entire aligned dataset. 524
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Model Policy
RepoEval-Api RepoEval-Line CrossCodeEval-Python
EM ES EM ES EM ES

CodeGEN-2B

RepoLC 35.93 68.35 44.37 74.77 23.44 66.39
W/o stage1 30.53 63.89 39.68 69.98 19.91 62.01
W/o stage2 25.68 60.63 33.06 64.73 25.63 54.45
Tuning SCE 33.06 66.56 40.31 70.39 22.12 65.82

Tuning -SCE&LLM 34.31 68.21 43.12 73.98 22.46 65.53

Table 4: Ablation study and exploration of the SCE training strategy
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Figure 3: The figure shows the loss variations of diverse
models during the first stage when distinct encoders
are employed for semantic alignment. In fact, on most
models, the alignment effect of CodeBert is better than
that of Bert.

During the semantic alignment phase, the major-525

ity of models adhere to a training performance anal-526

ogous to that of CodeGEN-2B. CodeBert demon-527

strates the ability to effectively harmonize the se-528

mantic spaces of the two models. In contrast, Bert529

encounters challenges in achieving this alignment.530

The validation loss of Bert reaches a plateau after531

declining to a relatively elevated level. Neverthe-532

less, during the subsequent task alignments, by cap-533

italizing on its generalizability as a universal model,534

BERT showcases commendable performance. Con-535

sequently, its code completion outcomes are on par536

with those of CodeBert. Intriguingly, the code com-537

pletion efficacy of CodeLlama, which is founded538

on Bert, has witnessed a substantial improvement539

RepoEval-Api RepoEval-Line CrossCodeEval-Python
Evaluation Dataset

10

5

0

5

10

15

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 (%
)

Percentage Difference Between BERT and CodeBERT
CodeGen-2B
CodeLlama
CodeGen-6B
Deepseek-Coder-6.7B

Figure 4: The performance comparison of various mod-
els across different datasets, using different encoders,
shows that CodeLlama performs better when paired
with Bert than with CodeBert. In most cases, however,
Bert and CodeBert exhibit similar performance, and in
some instances, CodeBert outperforms Bert.

in comparison to CodeBert. Significantly, in the 540

initial phase of CodeLlama, the loss incurred when 541

employing Bert is comparable to that of CodeBert, 542

surpassing other models. In the second phase, the 543

more adaptable Bert can be trained to generate su- 544

perior representations, thereby enhancing the code 545

completion performance of CodeLlama. 546

6 Conclusion 547

This paper introduces RepoLC, which utilizes a 548

lightweight compressor for repository-level code 549

completion. To enable the LLM to complete code 550

using fewer tokens compressed by the SCE, a two- 551

phase training strategy has been meticulously for- 552

mulated. The experimental results on the Cross- 553

CodeEval and repoeval datasets have convincingly 554

demonstrated that RepoLC exhibits promising per- 555

formance and remarkable efficiency. Additionally, 556

RepoLC is characterized by its good generalization 557

ability and lightweight, making it a practical and 558

effective solution in the realm of code completion. 559
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7 Limitations560

RepoLC depends on SCE to compress more ad-561

vanced semantic features. Therefore, the perfor-562

mance of RepoLC may rely on the representational563

ability of SCE, which might also be determined564

by the generalization level of the training data. In565

our study, the semantic alignment phase is trained566

within the repository, while the task alignment is567

trained outside the repository. According to our568

experiments, RepoLC has demonstrated cross lan-569

guage generalization. However, for practical appli-570

cations, we suggest making adjustments within a571

private repository to achieve better results.572

SCE does not possess the generalizability to be573

directly transferred between generators. Different574

LLMs have distinct semantic spaces, and there are575

fundamental differences in their hidden dimensions.576

Technically, direct transfer is unfeasible. Never-577

theless, generally speaking, the problem can be578

alleviated by simply retraining a projector to align579

different semantic spaces.580
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A Implementation Details863

In this work, the construction of the retriever and864

retrieval library is completely based on the retrieval865

results of Repoformer and RepoCoder. For the gen-866

erator part, the transformers library with version867

4.46.1 is adopted for loading and inference. Given868

the limitations of hardware conditions, data load-869

ing in both the training and inference processes870

is carried out in the BFloat16 format. In the first871

stage, a full-scale tuning of the parameters of SCE872

is performed. Specifically, methods such as aver-873

age pooling and pad (padding) are employed to874

map matrices of any dimension to the specified875

dimension.876

Regarding the generation parameters, the877

most basic settings are adopted, and only the878

max_new_tokens parameter is set to the length of879

the code to be completed plus 10. For the second880

stage, the LoRA is utilized to fine-tune LLMs. The881

PEFT (Parameter Efficient Fine Tuning) library882

with version 0.12.0 is used to load the LoRA con-883

figuration. Among them, the rank of the matrix is884

set to 16, the scaling factor of LoRA is set to 32,885

the LoRA dropout is set to 0.1, and the remaining886

parameters adopt the default settings. The number887

of layers of the projection we set is three.888

In the second phase’s task alignment stage, the889

overall length is set to 2048. In particular, the890

left-context truncation is set to 1024, and the right-891

context is set to 1024 minus the product of the892

compressed length and top-K. In the RAG method,893

the settings are consistent with previous studies.894

Specifically, the right-context truncation is set to895

512, the retrieved code chunks are truncated to 512,896

and the left-context truncation is 1024. The entire897

experiment is conducted in a 2 * H20 hardware898

environment.899

B Robustness in Different Programming900

Languages901

In our approach, both semantic alignment and task902

alignment are based on the Python programming903

language, and therefore, the main experiments are904

conducted using Python. We further investigate905

the effectiveness of models trained in Python when906

applied to other programming languages, with the907

experimental results presented in the Table 5. From908

the results, it is evident that SCE is an effective909

enhancement method with strong cross-language910

generalization capabilities, significantly improving911

the performance of code generation models, par-912

ticularly for languages such as C# and TypeScript. 913

While the introduction of RAG leads to some per- 914

formance improvement, SCE provides superior re- 915

sults when dealing with complex languages and 916

tasks. For the CodeGEN-2B model, although SCE 917

enhances its performance on EM and ES, the over- 918

all improvement remains limited, especially in EM, 919

where the performance increase is still relatively 920

low. This suggests that CodeGEN-2B may not 921

have fully mastered the generation of high-quality 922

code during pretraining, despite the improvements 923

brought by SCE. The characteristics of different 924

languages, such as syntax complexity and standard 925

libraries, may affect the model’s performance. For 926

instance, languages like TypeScript and Java, due to 927

their unique type systems and syntax, may present 928

additional challenges in generating accurate code. 929

C Baseline Method Details 930

The method details are as follows: 931

• LLMlinuga (Jiang et al., 2023b): It utilizes 932

compact and well - trained language models 933

such as GPT2 - small and LLaMA - 7B to 934

identify and remove unnecessary tokens in 935

prompts. This approach enables efficient in- 936

ference using large language models (LLMs), 937

achieving a compression ratio of up to 20 938

times while minimizing performance degrada- 939

tion. 940

• LLMlingua2 (Pan et al., 2024): It is a compact 941

yet powerful and fast compression method. It 942

is trained through data distillation from GPT-4 943

(Achiam et al., 2023) and uses a BERT-level 944

encoder for token classification, demonstrat- 945

ing excellent performance in task-agnostic 946

compression. It outperforms LLMLingua in 947

handling out-of-domain data, with a perfor- 948

mance improvement of 3 to 6 times. 949

• ICAE (Ge et al.) : In-Context Auto-Encoder 950

is pre-trained on a large amount of text data 951

using auto-encoding and language-modeling 952

objectives. This enables it to generate mem- 953

ory slots that can accurately and comprehen- 954

sively represent the original context. Subse- 955

quently, it is fine-tuned based on the instruc- 956

tion data to produce desirable responses to 957

various prompts. The lightweight ICAE intro- 958

duces approximately 1% additional parame- 959

ters, effectively achieving 4× context compres- 960

sion based on Llama. It has the advantages of 961
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CrossCodeEval
C# TypeScript JAVA

EM ES EM ES EM ES

CodeLlama
In-File 20.47 66.69 11.02 66.66 24.82 68.81
RAG 22.11 67.86 12.33 68.29 28.42 69.56
SCE 46.26 84.72 34.11 78.71 35.20 77.43

CodeGEN-2B
In-File 0.96 39.45 1.63 48.40 6.40 55.98
RAG 3.57 50.65 2.03 44.01 9.81 58.61
SCE 11.20 57.21 12.91 53.71 13.97 59.77

Table 5: The effectiveness of migrating frameworks trained on the Python language to other programming languages.

improved latency and reduced GPU memory962

costs during the inference process.963

• Self-Softprompt: This method is intuitively964

designed by us. LLM should be able to di-965

rectly understand their own outputs. LLM966

use the self-attention mechanism for global967

modeling at each layer, while pooling only968

models the nearby semantics. Therefore, we969

explore whether LLMs can pool their own970

hidden states for compression.971

Beyond the descriptions presented in the main972

body of the text, additional experiments have been973

incorporated into the Table 6. Concurrently, the974

experimental results for ICAE are depicted in the975

Figure 5. Owing to resource constraints, the repli-976

cation of their methods across every model was977

unfeasible. As a consequence, our method was978

tested on their base-generator: Mistral-7B (Jiang979

et al., 2023a). Notwithstanding these limitations, it980

can be inferred that RepoLC continues to exhibit981

outstanding competitiveness.982

RepoEval-Api RepoEval-Line CrossCodeEval-Python
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Figure 5: The experimental results are based on the
generator of ICAE and the score is EM. In most dataset,
the performance of RepoLC is leading. Moreover, we
find that the ICAE method is even inferior to the hard-
prompt method.

D Stage 1 Details 983

D.1 Case of Stage 1 984

In the first phase of training for SCE, we focus on 985

the integration of SCE with LLMs to effectively 986

compress and reconstruct code. The goal of this 987

phase is to train the LLM to correctly regenerate 988

the original code snippets from the semantic em- 989

beddings compressed by SCE. The MODEL IN- 990

PUT section describes how the original code is 991

compressed into semantic embeddings using SCE, 992

which are then fed into the LLM to generate code. 993

Specific examples illustrate the input format, which 994

includes semantic embeddings ([<pad>* N]) and 995

corresponding text prompts. However, the actual 996

code represented by these embeddings is not de- 997

scribed in detail. 998

The MODEL ANSWERS section presents two 999

specific code generation results, demonstrating how 1000

the LLM is able to reconstruct detailed code snip- 1001

pets based on the compressed semantic embed- 1002

dings. From this, it becomes evident that when 1003

training with the CodeGEN-2B and BERT com- 1004

bination, this pairing may not fully achieve the 1005

desired training outcomes, particularly in terms of 1006

the accuracy and completeness of the code recon- 1007

struction. In contrast, when using CodeBert as the 1008

encoder and CodeLlama as the generation model, 1009

the code is successfully reconstructed to be fully 1010

consistent with the ground truth. This indicates 1011

that CodeBert and CodeLlama are more effective 1012

in understanding and applying the semantic embed- 1013

dings compressed by SCE, thus more accurately 1014

restoring the original code’s logic and structure. 1015

This disparity can be attributed to differences in 1016

model size and the variations in training data used 1017

during pretraining, which influence the semantic 1018

understanding and the ability to restore compressed 1019

information. These findings underscore the impor- 1020

tance of carefully considering the characteristics 1021
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RepoEval-Api RepoEval-Line CrossCodeEval-Python
EM ES EM ES EM ES

Deepseek-Coder-6.7B

In-File 22.93 57.22 33.5 62.65 29.41 70.41
RAG 27.10 58.24 37.68 63.32 33.47 73.14

Self-Softprompt 34.56 62.93 39.88 65.11 31.55 71.71
LLMLingua 35.25 66.83 40.94 67.78 30.24 71.12

LLMLingua2 27.31 55.19 35.93 60.59 30.31 71.13
RepoLC 45.13 74.45 53.68 77.01 33.47 74.32

Llama-3.2B

In-File 12.52 39.79 30.31 57.33 6.94 52.36
RAG 14.81 39.93 36.37 60.32 8.10 53.76

Self-Softprompt 20.75 46.77 30.25 57.17 12.02 53.52
LLMLingua 15.25 37.33 32.36 57.40 11.18 53.11
LLMLingua2 14.25 36.02 30.68 55.22 11.63 53.07

RepoLC 27.56 58.60 38.5 65.93 11.30 55.37

Table 6: Supplementary results of using different compression methods on the performance of other models.

and compatibility of different model combinations1022

when configuring SCE, to ensure that the resulting1023

model is capable of effectively leveraging the com-1024

pressed code information for accurate and efficient1025

code generation.1026

D.2 Supplementary Stage 1 Loss1027
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(a) Deepseek-Coder-6B loss in stage 1
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(b) llama3.2-3B loss in stage 1

Figure 6: Most models exhibit behavior similar to that
of (a), with CodeBert demonstrating better training per-
formance. However, CodeLlama is an exception. In the
case of CodeLlama, the performance of CodeBert and
Bert is very close.

In the main text, we discussed and experimented 1028

on the influence of different encoder models on the 1029

entire pipeline and stage 1. Here, we supplement 1030

with additional loss data of stage 1. It is the loss 1031

performance of Deepseek-Coder-6B and Llama3.2 1032

in the first stage. It can be observed that CodeBert 1033

shows more stability during training, with a faster 1034

loss decline, indicating a better understanding of 1035

code data and more effective semantic compression 1036

and task alignment. In contrast, BERT performs 1037

poorly in stage 1 because of the lack of code fine- 1038

tuning, leading to a slower loss reduction in the 1039

semantic alignment process. 1040
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MODEL INPUT
The semantic embedding are [<pad>* N]. The text content of the embedding is:
MODEL ANSWERS
CodeGEN-2B+Bert
the below code fragment can be found in:
example_chatbot.py
model = ExLlamaChatbot(tokenizer, config)
# print(model)
# print(model.model)
# print(model.tokenizer)
# print(model.config)
# print(model.model.config)
# print(model.model.config.to_dict())
# print(model.model.config.to_json_string())
# print(model.model.config.to_json_file())
# print(model.model.config.to_yaml_string())
# print(model.model.config.to_yaml_file())
# print(model.model.config.to_dict())
CodeLlama+CodeBert & CodeGEN-2B+CodeBert & CodeLlama+Bert
the below code fragment can be found in:
example_chatbot.py
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: Loading zero bias Lora zero ")
# Generator
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings = ExLlamaGenerator.Settings()
generator.settings.temperature = args.temperature
generator.settings.top_k = args.top_k
generator.settings.top_p = args.top_p
generator.settings.min_p = args.min_p
GROUND TRUTH
the below code fragment can be found in:
example_chatbot.py
lora = ExLlamaLora(model, args.lora_config, args.lora)
if lora.bias_ignored:
print(f" !! Warning: Loading zero bias Lora zero ")
# Generator
generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings = ExLlamaGenerator.Settings()
generator.settings.temperature = args.temperature
generator.settings.top_k = args.top_k
generator.settings.top_p = args.top_p
generator.settings.min_p = args.min_p

Table 7: The case for stage1 in different generator.
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Raw code chunks (263 tokens):
the below code fragment can be found in:
alt_generator.py
# stop_conditions: List of strings or integer token IDs that will end the sequence
# settings: ExLlamaAltGeneratorSettings
# encode_special_characters: Set to true to tokenize "</s>" etc.
def begin_stream(self, prompt: str, stop_conditions: list, max_new_tokens: int, gen_settings: Settings,
encode_special_characters = False):
assert isinstance(prompt, str), "ExLlamaAltGenerator does not support batched generation"
# Tokenize prompt and limit length to allow prompt and (max) new tokens within max sequence length
max_input_tokens = self.model.config.max_seq_len - max_new_tokens
self.remaining_tokens = max_new_tokens
input_ids = self.cached_tokenize(prompt, encode_special_characters)
applied_input_ids = input_ids[:, -max_input_tokens:]
LLMlingua1 compressed (140 tokens) :
the below code fragment be in#_#
#___itions: of strings or integer token IDs that will the#: ExLlama#__: Set to toize ">"
def___, prompt:,_,_:acters "ator support # and limit to allow prompt and (max tokens within
max __._ -_tokens self.remaining_tokens = max_new_tokens
input_ids = self.cached_tokenize(prompt, encode_special_characters)
applied_input_ids = input_ids[:, -max_input_tokens:]
LLMlingua2 compressed (102 tokens):
code
alt_generator.py
stop_conditions token IDs sequence
settings ExLlamaAltGeneratorSettings
encode_special_characters tokenize
def begin_stream stop_conditions max_new_tokens_settings encode_special_characters
assert support batched generation
Tokenize prompt limit length tokens sequence length
max_input_tokens
_tokens
input_ids_tokenize
applied_input_ids_tokens

Table 8: The case for LLMlingua-series to compress the retrieved code chunks.
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