RepoL.C: Repository-Level Code Completion with Light Compressor

Anonymous ACL submission

Abstract

Current approaches commonly integrate
repository-level code completion with retrieval-
augmented generation. Specifically, private
code repositories are utilized as retrieval
databases, which aim to supply relevant code
chunks to a large language model (LLM).
However, incorporating multiple retrieved
code chunks into an LLM will increase the
cost of inference. This not only decreases the
efficiency of the LLM but also impairs the
user experience. To address this, we introduce
RepoLC, which uses a Light module to
Compress the retrieved code, thereby reducing
the inference cost of LLMs. We insert a
Semantic Compressor Encoder (SCE) between
the retriever and the generator. Specifically,
SCE compresses the retrieved code chunks
into fewer high-level tokens and then projects
them to the semantic space of the LLM.
We propose a two-stage training scheme to
train the overall pipeline through semantic
alignment and task alignment. Experimental
results demonstrate that our approach achieves
significant improvements on multiple datasets.
Compared to other methods, our approach
incurs in minimal loss and achieves an
inference time that is almost as efficient as that
of in-file processing.

1 Introduction

In modern software development, the repository-
level code completion (Zhang et al., 2023; Li et al.,
2017a; Liu et al., 2020; Guan et al., 2024; Wu
et al., 2024) is crucial for enhancing programmer
productivity and streamlining the coding process.
Despite the remarkable advancements and applica-
tions of large language models (LLMs) (Touvron
et al., 2023; Brown et al., 2020; Guo et al., 2025;
Dubey et al., 2024) in code understanding and gen-
eration (Roziere et al., 2023; Guo et al., 2024; Gong
et al., 2024), notable performance bottlenecks still
persist in tasks that require cross-file context and
specialized task scenarios.

. 768 tokens 2 Q
Do°
N . RAG
— |

N 96 tokens

) - sce — IS
code repository R

RepolLC
cross-file code chunks

Figure 1: The shows differences between RepoL.C and
RAG. The retrieved cross-file code chunks, with 768
tokens, can be compressed to 96 via SCE, cutting model
inference cost and accelerating the entire process.

For repository-level code completion, many stud-
ies have introduced retrieval-augmented generation
(RAG) (Gao et al., 2023a; Fan et al., 2024; Cheng
et al., 2024c; Zeng et al., 2024) to provide LLMs
with additional context and enhance their genera-
tion capabilities. However, the direct concatenation
of multiple retrieved code chunks into LLM results
in a substantial increase in context length. This
augmentation can adversely impact the model’s
inference speed, thereby significantly diminishing
user experience and efficiency. Furthermore, it may
lead to the "lost in middle" phenomenon within the
LLM (Liu et al., 2024b; Yoran et al., 2023; Chen
and Shu, 2024; Yu et al., 2023a). Presently, as
the demand for private code repositories surges,
accelerating this process has become imperative.

Our work focuses on how to enable LLM to
achieve better results with shorter contexts. In-
spired by relevant methods in NLP (Cheng et al.,
2024d; Rau et al., 2024; Chevalier et al., 2023; Zou
et al., 2024) , we envision achieving this goal by
introducing compression for repository-level code
completion. We attempted to utilize some plug-
and-play framework (Pan et al., 2024; Jiang et al.,
2023b; Ge et al.) for the task. However, the ex-
perimental results are not satisfactory. Given that
code represents a distinct form of text sequence,



compressing it from the hard-prompt perspective
poses challenges in determining the optimal degree
of compression for code chunks. We show some
compression case in Table 8. For soft-prompt com-
pression methods, alignment is crucial. Directly
using pooling to compress the matrix may lead to
potential semantic loss or alteration. When soft-
prompts lack alignment, it becomes difficult for
the LLM to understand the compressed informa-
tion, making it challenging to achieve satisfactory
performance in repository-level code completion.
In addition, using an LLM for compression incurs
additional time costs.

Based on these challenges, we introduced Re-
poLC and for the first time attempted to adopt soft-
prompt for compression in repository-level code
completion. The difference between RepoL.C and
RAG is shown in Figure 1. We inserted the Seman-
tic Compressor Encoder (SCE) module between
the retriever and the generator. This module can ex-
tract high-level semantic tokens from the retrieved
code chunks, and subsequently the generator will
complete the code completion task based on the
compressed tokens.

Specifically, our SCE module consists of a light-
weight encoder and a projector. The light encoder
is utilized to encode code blocks into high-level
semantic features. Subsequently, through a pooling
operation, the semantic features matrix is mapped
to compressed tokens with a specific size. The
light-weight encoder and simple operations further
reduce the time cost of compression. Subsequently,
via a projector, compressed tokens are aligned to
the semantic space of the LLM.

To enable the SCE to serve LLMs effectively, we
propose a two-stage training scheme. In the first
phase, we aim to enable the LLM to understand the
output of the SCE. We train the SCE by leveraging
the semantic loss of the raw code chunks restored
from the compressed ones using the LLM, aiming
to align their semantic spaces. After obtaining fa-
vorable representations from SCE, we perform task
alignment between the SCE and the LLM within
the RAG. The SCE compresses the retrieved code
chunks respectively, and we train the LLM to com-
plete the code based on the compressed context.

We conduct experiments on multiple datasets,
and the results demonstrate the excellent perfor-
mance of RepoLC. Although we train on Python
corpora, RepoL.C still exhibits great generalization
ability across other programming languages. Ad-
ditionally, in the ablation experiments, we explore

more training combinations. We find that for the
entire RepoLLC, merely fine-tuning the SCE while
keeping the LLM frozen can still yield satisfactory
results.

Our contributions are as follows:

* We introduce a novel RAG framework called
RepoLC. We utilize a light module to com-
press the retrieved chunks for LLMs.

* We design a two-stage training scheme that in-
cludes semantic alignment and task alignment
to enable SCE to serve LLMs.

* Through extensive experiments, we verify the
effectiveness of our method. Our approach
optimizes the efficiency of RAG to approach
in-file and compared with other methods, it
does not sacrifice excessive accuracy.

2 Related Work

2.1 Repository-level Code Completion

Traditional code completion techniques primarily
focus on code suggestions at the level of individual
files or projects (Li et al., 2017a; Tang et al., 2023;
Liu et al., 2020) , whereas repository-level code
completion extends the scope to the entire code
repository (Shrivastava et al., 2023; Cheng et al.,
2024a; Liu et al., 2024a; Phan et al., 2024) , aiming
to provide more comprehensive and accurate sug-
gestions. RepoCoder (Zhang et al., 2023) enhances
the quality of retrieved code chunks by introducing
iterative retrieval , while RLCoder (Wang et al.,
2024) trains the retriever based on feedback sig-
nals from downstream tasks via a generator, elim-
inating the need for new datasets. DraCo (Cheng
et al., 2024b) constructs a graph representation of
the entire repository to facilitate information re-
trieval through structural insights. REPOFUSE (Li
et al., 2017b) introduces two types of contextual
information to further refine the relevance between
retrieved code and incomplete code. These ap-
proaches optimize retrieval performance, but Repo-
former (Di Wu, 2024) suggests that retrieved code
is not always useful. Consequently, Repoformer
trains LLM to autonomously determine whether
to retrieve code, further improving effectiveness.
This investigation, to a certain degree, improves the
efficiency of the task and bolsters the performance
of LLMs.



s )

Human Instruct

éThe semantic embedding is < compressed token>...

The text content of the embedding is:

def check_equilateral

2

if(a==bandb==c):
print("The triangle is equilateral.") :

elif (a==borb==cora==c): : <>
print("The triangle is isosceles.") |

else:
print("The triangle is scalene.")

CrossEntropyLoss

A Tuned
I

Frozen

Stage1:Semantic Alignment

ﬁ {(i)%

Retriever

Unfinished Code

. OOOO0Od
. =  ==sas |
o o |

def predict_start_from_noise(self, x_t, t, noise):
log_snr = self.log_snr(t)

log_snr = right_pad_dims_to(x_t, log_snr)

alpha, sigma = log_snr_to_alpha_sigma(log_snr)
return (x_t - sigma * noise) / alpha.clamp()

i # norms and residuals
i class LayerNorm(nn.Module):
. def _init__(self, feats, stable = False, dim =-1):

£ 1
@& .................... Completed code

i super().__init__()

: self.input_dim = input_dim
self.g = nn.Parameter(
torch.ones(feat

i super().__init__()
self.stable = stable
self.dim = dim
self.g = nn.Parameter(

Stage2:Task alignment CrossEntropyLoss

Figure 2: The training strategy of RepoLC

2.2 Retrieval-augmented Generation

To address issues such as hallucinations and knowl-
edge updates in LLM, the RAG was proposed
(Lewis et al., 2020) . Equipping LLMs with an
external knowledge base has led to improved per-
formance on various NLP tasks (Wang et al., 2023;
Han et al., 2024; Gao et al., 2023b) . In the NLP do-
main, numerous works have optimized components
such as retrieval source (Yan et al., 2024; Li et al.),
retriever (Asai et al., 2023; Jiang et al., 2023c; He
etal., 2024) , query optimization (Dhuliawala et al.;
Zhou et al.), context curation (Yu et al., 2023b; Ma
et al.; Cui et al., 2023; Chevalier et al., 2023) and
so on. Long context is a common issue in NLP
tasks, and many approaches focus on context com-
pression (Rau et al., 2024; Jiang et al., 2023b; Pan
et al., 2024; Cheng et al., 2024d) or noise reduction
(Zhang et al., 2024; Chen and Shu, 2024; Yu et al.,
2023a; Xu et al., 2024) to improve performance.

However, code is a special text sequence, and
many code tokens have no meaning in NLP. Many
compression methods cannot retain the information
required for the LLM to complete a certain piece
of code. At the same time, many large-scale com-
pressors incur additional time costs. This paper
explores how to use lightweight models to com-
press code for LLMs.

3 Methodology
3.1 Definition of RAG

In repository-level code completion, we refer to the
standard RepoCoder (Zhang et al., 2023) workflow
and followed the main steps of chunking, indexing,

retrieval, and generation. The naive RAG pipeline
consists of the following three core components:

Retrieval database. In repository-level code
completion, the external database is composed of
code files from private code repositories. Following
the RepoCoder (Zhang et al., 2023), we divided the
code files in the repository into chunks of fixed
granularity (e.g., every 10 lines of code). These
chunks are then embedded into a vector space and
stored in a database.

Retriever. The retriever’s task is to search the
database to identify code chunks most similar to the
current unfinished code. To ensure that the query
(unfinished code) and the code chunks stored in the
retrieval database are in the same semantic space,
the same encoder is applied to encode the query.
Subsequently, by computing the cosine similarity
of their embeddings, the top-k code chunks with
the highest similarity to the query are retrieved.

Generator. The generator is typically a LLM.
In RAG pipeline, the generator’s inputs are the
retrieved code chunks and the code context to be
completed. The generator performs the code com-
pletion task in an autoregressive manner.

Input = [Cg] <pad>[Recode) <pad> [Cr)]

where C'g is the context code in right, Re_code
is retrieved code chunks, C7, is the context code in
left .

3.2 Design of Semantic Compressor Encoder

Our objective is to enhance code completion effi-
ciency by shortening the context while maintain-

! <compressed token> <compressed token> <compressed token> !

e Ground truth



ing superior performance. To attain this objective,
we put forward RepoL.C. It utilizes a lightweight
module to serve the LLM, which is responsible
for compressing the retrieved code chunks. The
component we inserted is called the SCE, and it
comprises two primary components:

* Encoder: This component initially transforms
code chunks into high-level features, captur-
ing their semantics. Subsequently, average
pooling is applied to convert these features
into configurable fixed-length tokens.

* Projector: It is a multi-layer linear neural net-
work, used to align the output of the encoder
with the semantic space of the LLM.

To enable SCE to operate within the RAG, we
have devised a two-stage training strategy: seman-
tic alignment and task alignment. The training
strategy is shown in Figure 2. During the semantic
alignment phase, the output of SCE is harmonized
with the semantic space of the LLM. Subsequently,
in the task alignment stage, SCE is integrated into
the RAG pipeline. This integration allows the LLM
to adapt to code completion based on compressed
tokens. This configuration ensures that the tokens
extracted by SCE preserves vital information for
the LLM, thus improving the LLM’s performance
in code completion.

3.3 Semantic Alignment

We integrate two models, distinct in training cor-
pus and model architecture, into a single pipeline,
where the output of one model serves as the input
for the other. Hence, this approach inevitably intro-
duces various discrepancies, particularly semantic
gaps. Specifically, an LLM may fail to accurately
comprehend the high-level semantic information
extracted by the other model. Additionally, signif-
icant details are often lost during the process of
information compression. This semantic mismatch
and information loss directly impair the overall sys-
tem performance. Therefore, our core objective is
to preserve the original information to the greatest
extent possible.

To achieve this goal, we design a method in
which SCE compresses code chunks into tokens
that the LLM can understand. We concatenate the
instruction, the compressed tokens, and the raw
code chunk and input this concatenated data into
the LLM. The precise prompt is detailed in Ta-
ble 7. Our training objective is to make the LLM

restore the original code chunks as accurately as
possible based on the tokens compressed by SCE.
Accordingly, we directly use the cross-entropy loss
to maximize the similarity between the generation
result of the LLM and the original code snippet.
The calculation formula is

Liccon = —Epnp Y _log Puim(zs | 2<t, SCE(chunks))
t

where z; is the token at time step ¢ given previ-
ous tokens z.; and the projected compressed em-
bedding of the original retrieved chunks.

During the training process, we freeze the pa-
rameters of the LLM to keep the semantic space of
the LLM frozen, and only optimize the parameters
of SCE.

3.4 Task Alignment

After completing the semantic alignment phase,
the LLM has the capability to generate original text
using compressed high-level semantic representa-
tions. However, at this stage, the model’s gener-
ative capacity is confined to restorative tasks and
has not been aligned with specific repository-level
code completion. Therefore, further task-alignment
training is required to enable the LLM to integrate
contextual information and the compressed tokens
thereby more accurately accomplishing code com-
pletion tasks.

Due to the powerful in-context learning ability of
LLMs, providing them with some relevant knowl-
edge can significantly enhance their performance.
However, in RepoLC, the form of input to the LLM
has changed remarkably. It has shifted from di-
rectly inputting the raw code chunks to inputting
a combination of compressed semantic representa-
tions and context. This change may be inconsistent
with the original input form of the LLM, potentially
leading to performance degradation.

To mitigate this contradiction, we train the SCE
in the actual pipeline of RAG. In the first stage, we
have obtained relatively ideal compressed repre-
sentations. Therefore, we freeze the parameters of
SCE. Leveraging low rank adaptation (LoRA), we
opt to fine-tune only a few of the LLM’s parame-
ters. By doing so, we fine-tune the LLM to adapt
it to soft-prompt based tasks while preventing the
model from losing its generalization ability.

Given the provided code, we use a retriever to
fetch the top-k similar code chunks from the re-
trieval database. These code chunks are respec-



tively compressed using the SCE to obtain mul-
tiple representations. Next, these compressed to-
kens are sorted according to their similarity before
compression, thus forming the compressed exter-
nal information. After that, we concatenate the
right-context of the code, the compressed external
information, the left-context, and the ground truth,
input the concatenated content into the LLM, and
train the LLM to complete the ground truth. In this
stage, we still adopt the cross-entropy loss, and its
formula is:

N
ELLM(H) = - Z log P(yi|context, Ecomp; 9)

i=1

where the context is the unfinished code and
Ecomp 1s the compressed retrieved information.

4 Experiment Setup

4.1 Datasets

For the experiment, we utilized three datasets:
CrossCodeEval (Ding et al., 2024), RepoEval
(Zhang et al., 2023), and CrossCodeLongEval
(Di Wu, 2024). These datasets were selected due to
their coverage of multiple programming languages
and their focus on complex cross-file code comple-
tion tasks, providing a comprehensive benchmark
to evaluate model performance across diverse pro-
gramming scenarios. Specifically, for the semantic
alignment stage, we used the top-10 retrieved code
chunks from CrossCodeEval and RepoEval to train
SCE. For task alignment, we trained at the func-
tion and chunk level on CrossCodel.ongEval and
validated the models on both CrossCodeEval and
RepoEval.

4.2 Setup

In SCE, the encoder employs two small-parameter
models: Bert (Devlin, 2018) and CodeBert (Feng
et al., 2020). Bert is the foundational encoder
model in NLP, while CodeBert is based on the
more advanced RoBerTa (Liu, 2019) architecture
and fine-tuned on code corpus. We used the base
versions of both models. In fact, any encoder model
can also be implemented within our framework.
The reason for choosing these two models is that
they are the most representative ones.

For the generator, we utilized various models
with different pre-training methods and parameter
sizes. The latest models likes Llama3.2-3B base

(Dubey et al., 2024), while the traditional mod-
els include CodeGEN-Mono (2B, 6B) (Nijkamp
et al., 2022) , Deepseek-Coder-6.7B-base (Guo
et al., 2024), and CodeLlama-7B-hf (Roziere et al.,
2023).

For the retriever, we directly relied on the re-
trieval results from previous works. RepoCoder
uses a sparse bag-of-words model with the Jaccard
index to calculate relevance, while CrossCodeE-
val employs UniXcoder as its retrieval model and
measures relevance using cosine similarity.

For details of other parameter settings, versions,
baseline descriptions, etc., they are shown in the
Appendix A.

4.3 Evaluation Metrics

Consistent with established methodologies in code
completion research, we assess our line and API
completion datasets using two metrics: Exact
Match (EM) and Edit Similarity (ES). The EM
score, a binary indicator, assigns a value of 1 when
the predicted code matches the ground truth code
exactly, and O otherwise. In contrast, the ES score
is computed as 1 minus the ratio of the edit distance
to the maximum length of the two strings, yielding
a value between 0 and 1, where 1 indicates a per-
fect match and values closer to O indicate greater
dissimilarity.

5 Experimental Results and Analysis

5.1 Main Results

The comparative results of performance are pre-
sented in Table 1. In the performance evaluation
conducted on the RepoEval and CrossCodeEval-
python datasets, our results indicate that the inclu-
sion of relevant code chunks from the repository
significantly enhances the model’s performance.
Furthermore, SCE improves the representation pro-
vided to the LLMs, thereby augmenting the per-
formance of the RAG model. This indicates that
RepoL.C can be applied to a wide range of LLM.

However, when evaluated on the CrossCodeE-
val dataset, the RepoL.C fails to yield further im-
provements for the Deepseek-Coder and CodeL.-
lama. Instead, it leads to adverse impacts on their
performance. This observation suggests that de-
spite the ineffectiveness of SCE in enhancing the
performance of certain models, the information
retrieved remains a critical factor influencing the
overall performance of the models.



RepoEval-Api

RepoEval-Line  CrossCodeEval-Python

Model Policy

EM EM ES EM ES
In-File 2293 57.22 3350 62.65 2941 70.41
Deepseek-Coder-6.7B.  RAG  27.13 5824 37.68 6332 3347 73.14
RepoLC 45.10 7445 53.68 77.01 3347 74.32
In-File 2231 5891 33.06 6521 7.27 55.75
CodeGEN-2B RAG 3356 65.11 4481 72.83 13.13 61.51
RepoLC 3593 6835 4438 7477 2344 66.39
In-File 23.12 59.32 3456 6649 11.14 58.23
CodeGEN-6B RAG 35.12 6591 46.18 72.86 18.01 64.16
RepoLC 3752 70.32 47.81 77.08 24.00 66.82
In-File 26.56 61.38 36.06 6593 26.56 61.38
CodeLlama-7B RAG  32.68 7145 44.06 68.86 32.68 63.95
RepoLC 51.23 82.04 59.18 85.02 30.99 72.65
In-File 12.53 39.79 3031 5733 6.94 52.36
Llama3.2-3B-base RAG 14.81 3993 3637 6032 8.10 53.76
RepoLC 27.56 58.60 3850 6593 11.30 55.37

Table 1: Overall performance of 5 models across 3 methods on RepoEval and CrossCodeEval

Additionally, we observed that for the Code-
GEN series models, the performance enhancement
brought about by RepoL.C on the RepoEval dataset
is relatively modest, while the improvement on
CrossCodeEval is notably more pronounced. In
contrast, for the Llama series models, the transition
from Infile to RAG and subsequently to RepoLLC
results in substantial performance gains on RepoE-
val, whereas the improvements on CrossCodeEval
are more marginal. These discrepancies may stem
from the distinct knowledge acquired by different
models during their pretraining phases, suggesting
that the introduction of higher-quality contextual
information does not always guarantee enhanced
performance.

5.2 Efficiency Evaluation

We employed the torch profiler to evaluate the
CUDA Time (ms) and GFLOPs of three methods:
In-File, RAG, and RepoLC across two datasets.
The experiments were conducted on identical hard-
ware, utilizing an NVIDIA H20 GPU and an In-
tel® Xeon® Platinum 8469C CPU. In these evalu-
ations, CodeGEN-2B, operating in bfloat16 infer-
ence mode, served as the base LLM. The experi-
mental results are presented in Table 2.

Although SCE introduces additional compres-
sion time, it reduces the context length of LLM
inputs. When compared with the inference cost of
the LLM, the cost of the small models used in SCE

is negligible. Experimental results demonstrate
that RepoL.C accelerates the RAG inference pro-
cess by reducing both CUDA time and GFLOPs. In
fact, RepoLC even approaches the inference time
of Infile, showcasing its efficiency.

Furthermore, while the improvements from Re-
poLC in API completion are limited, it exhibits
significant efficiency advantages in line-level com-
pletion tasks, where inference is based on an au-
toregressive model. It is evident that, as the number
of tokens to be generated increases, the enhance-
ment brought about by RepoLC becomes more
pronounced.

5.3 Compare with Other RAG Method

We experiment with RepoL.C and other RAG meth-
ods on CodeGEN and CodeLlama. The results are
in Table 3. Other methods include using the LLM
itself for soft-prompt compression, the LLMLin-
gua series for hard-prompt compression, as well as
RepoL.C and RAG + FT. The experimental results
show that RepoL.C significantly outperforms other
compression methods, demonstrating the necessity
of our training scheme.

In addition, when compare with RAG + FT, we
find that by directly compressing code chunks to
32 tokens, even when reducing the context length,
RepoL.C does not lose much accuracy compared
with other methods. This verifies the applicability
of RepoL.C in repository-level code completion.



CUDA Time (ms) GFLOPS
In-File RAG RepoLC In-File RAG RepoLC
RepoEval-Api 5913 6035 5987 8741 11993 10190
RepoEval-Line 3543 4400 3729 6090 9229 7386
CrossCodeEval-Python 3879 5022 4124 6545 9726 8101

Table 2: A Comparative Analysis of CUDA Time and GFLOPS across Different Settings. The generator is based on

CodeGEN-2B. The SCE is based on CodeBert.

RepoEval-Api

RepoEval-Line  CrossCodeEval-Python

EM ES EM ES EM ES
RAG + FT 37.03 68.70 52.12 78.64 22.92 67.46
RAG 33.56 65.11 4481 72.83 13.13 61.51
CodeGEN-2B Self—SoftPrompt 14.13 51.56 21.13 5639 244 46.94
LLMLingua 3344 6737 42.18 71.58 21.05 64.95
LLMLingua2 3250 66.21 41.06 70.94 20.67 64.54
RepoLC 3593 6835 4438 7477 2344 66.39
RAG + FT 5243 8291 63.56 8637 31.90 74.11
RAG 3268 7145 44.06 68.86 32.68 63.95
CodeLlama-7B Self—SoftPrompt 18.31 53.33 2356 55.69 8.56 57.38
LLMLingua  34.56 64.88 39.13 66.39 26.86 69.26
LLMLingua2 3443 65.23 40.18 68.10 27.31 69.32
RepoL.C 51.15 82.04 59.18 85.02 30.99 72.65

Table 3: Comparison of SCE and other RAG methods

The other soft-prompt method is pre-trained on
other corpus and is also not a plug-and-play method
to serve any LLM. Due to resource limitations, we
are unable to reproduce their method on different
code models. However, we also attempt their base
generator, and the results are shown in the Ap-
pendix C.

5.4 Ablation Study

In Table 4, we analyze the impact of different train-
ing steps on the overall RepoL.C and the different
combinations of training objects. The results show
that if stage 1 is skipped and the parameters of
the LLM are directly adjusted, poor results will
be obtained. This indicates that due to the limited
benefits of fine-tuning LLMs, great results cannot
be achieved based on poor SCE representations. If
stage 2 is omitted, the LLM only performs code
completion based on the model aligned in the first
stage, which significantly degrades the model’s per-
formance. This occurs because the LLM is unaware
of how to utilize soft-prompt for downstream tasks.

However, we also discover a more lightweight
approach: adjusting only the SCE without tuning

the LLM still leads to performance improvement.
This suggests that modifying the SCE module alone
can bring substantial improvements, without the
need for additional LLM training.

Finally, even after completing the semantic align-
ment in the first stage, further adjustments to both
the SCE and LLM in downstream tasks do not
result in additional performance gains. This is be-
cause, after the first stage of semantic alignment,
the vector representation output by the SCE module
has already reached a near optimal state. Continu-
ing to adjust the SCE parameters would cause the
model to lose its optimal solution.

5.5 Different Encoder Models

We conduct experiments using CodeBert and Bert
as the base models for encoders, observing the per-
formance of different generators. The percentage
difference are shown in Figure 4, while the vali-
dation loss during the semantic alignment phase
for CodeGEN-2B and CodeLlama is presented in
Figure 3. The validation loss refers to the cross-
entropy loss of the LLM calculated based on the
first 500 samples of the entire aligned dataset.



RepoEval-Api

RepoEval-Line

CrossCodeEval-Python

Model Policy
EM ES EM ES EM ES
RepoLC 3593 6835 4437 7477 2344 66.39
W/o stagel 30.53 63.89 39.68 6998 1991 62.01
CodeGEN-2B W/o stage2 25.68 60.63 33.06 64.73 25.63 54.45
Tuning SCE 33.06 66.56 40.31 70.39 22.12 65.82
Tuning -SCE&LLM 3431 68.21 43.12 7398 22.46 65.53

Table 4: Ablation study and exploration of the SCE training strategy

0 5000 10000 15000 20000 25000 30000 35000
Step

(a) CodeGEN-2B

0 5000 10000 15000 20000 25000 30000 35000
Step

(b) CodeLlama

Figure 3: The figure shows the loss variations of diverse
models during the first stage when distinct encoders
are employed for semantic alignment. In fact, on most
models, the alignment effect of CodeBert is better than
that of Bert.

During the semantic alignment phase, the major-
ity of models adhere to a training performance anal-
ogous to that of CodeGEN-2B. CodeBert demon-
strates the ability to effectively harmonize the se-
mantic spaces of the two models. In contrast, Bert
encounters challenges in achieving this alignment.
The validation loss of Bert reaches a plateau after
declining to a relatively elevated level. Neverthe-
less, during the subsequent task alignments, by cap-
italizing on its generalizability as a universal model,
BERT showcases commendable performance. Con-
sequently, its code completion outcomes are on par
with those of CodeBert. Intriguingly, the code com-
pletion efficacy of CodeLlama, which is founded
on Bert, has witnessed a substantial improvement

Percentage Difference Between BERT and CodeBERT

154

101

Percentage Difference (%)

RepoEval-Line CrossCodeEval-Python

Evaluation Dataset

RepoEval-Api

Figure 4: The performance comparison of various mod-
els across different datasets, using different encoders,
shows that CodeLlama performs better when paired
with Bert than with CodeBert. In most cases, however,
Bert and CodeBert exhibit similar performance, and in
some instances, CodeBert outperforms Bert.

in comparison to CodeBert. Significantly, in the
initial phase of CodeLlama, the loss incurred when
employing Bert is comparable to that of CodeBert,
surpassing other models. In the second phase, the
more adaptable Bert can be trained to generate su-
perior representations, thereby enhancing the code
completion performance of CodelLlama.

6 Conclusion

This paper introduces RepoL.C, which utilizes a
lightweight compressor for repository-level code
completion. To enable the LLM to complete code
using fewer tokens compressed by the SCE, a two-
phase training strategy has been meticulously for-
mulated. The experimental results on the Cross-
CodeEval and repoeval datasets have convincingly
demonstrated that RepoL.C exhibits promising per-
formance and remarkable efficiency. Additionally,
RepoLC is characterized by its good generalization
ability and lightweight, making it a practical and
effective solution in the realm of code completion.



7 Limitations

RepoL.C depends on SCE to compress more ad-
vanced semantic features. Therefore, the perfor-
mance of RepoL.C may rely on the representational
ability of SCE, which might also be determined
by the generalization level of the training data. In
our study, the semantic alignment phase is trained
within the repository, while the task alignment is
trained outside the repository. According to our
experiments, RepoL.C has demonstrated cross lan-
guage generalization. However, for practical appli-
cations, we suggest making adjustments within a
private repository to achieve better results.

SCE does not possess the generalizability to be
directly transferred between generators. Different
LLMs have distinct semantic spaces, and there are
fundamental differences in their hidden dimensions.
Technically, direct transfer is unfeasible. Never-
theless, generally speaking, the problem can be
alleviated by simply retraining a projector to align
different semantic spaces.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Canyu Chen and Kai Shu. 2024. Combating misinfor-
mation in the age of llms: Opportunities and chal-
lenges. AI Magazine, 45(3):354-368.

Wei Cheng, Yuhan Wu, and Wei Hu. 2024a. Dataflow-
guided retrieval augmentation for repository-level
code completion. arXiv preprint arXiv:2405.19782.

Wei Cheng, Yuhan Wu, and Wei Hu. 2024b. Dataflow-
guided retrieval augmentation for repository-level
code completion. arXiv preprint arXiv:2405.19782.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu,
Dongyan Zhao, and Rui Yan. 2024c. Lift yourself
up: Retrieval-augmented text generation with self-
memory. Advances in Neural Information Processing
Systems, 36.

Xin Cheng, Xun Wang, Xingxing Zhang, Tao Ge, Si-
Qing Chen, Furu Wei, Huishuai Zhang, and Dongyan
Zhao. 2024d. xrag: Extreme context compression
for retrieval-augmented generation with one token.
arXiv preprint arXiv:2405.13792.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith,
and Dangi Chen. 2023. Adapting language
models to compress contexts. arXiv preprint
arXiv:2305.14788.

Jiaxi Cui, Zongjian Li, Yang Yan, Bohua Chen, and
Li Yuan. 2023. Chatlaw: Open-source legal large
language model with integrated external knowledge
bases. CoRR.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason E Weston. Chain-of-verification reduces hal-
lucination in large language models. In ICLR 2024
Workshop on Reliable and Responsible Foundation
Models.

Dejiao Zhang Murali Krishna Ramanathan Xiaofei Ma
Di Wu, Wasi Uddin Ahmad. 2024. Repoformer: Se-
lective retrieval for repository-level code completion.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian
Ding, Ming Tan, Nihal Jain, Murali Krishna Ra-
manathan, Ramesh Nallapati, Parminder Bhatia, Dan
Roth, et al. 2024. Crosscodeeval: A diverse and mul-
tilingual benchmark for cross-file code completion.
Advances in Neural Information Processing Systems,
36.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Wengqi Fan, Yujuan Ding, Liangbo Ning, Shijie Wang,
Hengyun Li, Dawei Yin, Tat-Seng Chua, and Qing
Li. 2024. A survey on rag meeting llms: Towards
retrieval-augmented large language models. In Pro-
ceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 6491—
6501.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023a. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.


https://arxiv.org/abs/2403.10059
https://arxiv.org/abs/2403.10059
https://arxiv.org/abs/2403.10059

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023b. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen,
and Furu Wei. In-context autoencoder for context
compression in a large language model. In The
Twelfth International Conference on Learning Repre-
sentations.

Linyuan Gong, Mostafa Elhoushi, and Alvin Che-
ung. 2024. Ast-t5: Structure-aware pretraining for

code generation and understanding. arXiv preprint
arXiv:2401.03003.

Zhanming Guan, Junlin Liu, Jierui Liu, Chao Peng,
Dexin Liu, Ningyuan Sun, Bo Jiang, Wenchao Li, Jie
Liu, and Hang Zhu. 2024. Contextmodule: Improv-
ing code completion via repository-level contextual
information. arXiv preprint arXiv:2412.08063.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Rujun Han, Yuhao Zhang, Peng Qi, Yumo Xu, Jenyuan
Wang, Lan Liu, William Yang Wang, Bonan Min,
and Vittorio Castelli. 2024. Rag-qa arena: Eval-
uating domain robustness for long-form retrieval
augmented question answering. arXiv preprint
arXiv:2407.13998.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh V Chawla,
Thomas Laurent, Yann LeCun, Xavier Bresson, and
Bryan Hooi. 2024. G-retriever: Retrieval-augmented
generation for textual graph understanding and ques-
tion answering. arXiv preprint arXiv:2402.07630.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023a. Mistral
7b. arXiv preprint arXiv:2310.06825.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing
Yang, and Lili Qiu. 2023b. LLMLingua: Compress-
ing prompts for accelerated inference of large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13358-13376, Singapore. Association
for Computational Linguistics.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,

10

Jamie Callan, and Graham Neubig. 2023c. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
2017a. Code completion with neural attention and
pointer networks. arXiv preprint arXiv:1711.09573.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
2017b. Code completion with neural attention and
pointer networks. arXiv preprint arXiv:1711.09573.

Xiaogian Li, Ercong Nie, and Sheng Liang. From clas-
sification to generation: Insights into crosslingual
retrieval augmented icl. In NeurIPS 2023 Workshop
on Instruction Tuning and Instruction Following.

Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and
Zhi Jin. 2020. A self-attentional neural architecture
for code completion with multi-task learning. In
Proceedings of the 28th International Conference on
Program Comprehension, pages 37-47.

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng,
and Yiling Lou. 2024a. Stall+: Boosting llm-based
repository-level code completion with static analysis.
arXiv preprint arXiv:2406.10018.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Yubo Ma, Yixin Cao, Yong Ching Hong, and Aixin
Sun. Large language model is not a good few-shot
information extractor, but a good reranker for hard
samples! In The 2023 Conference on Empirical
Methods in Natural Language Processing.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. A conversational paradigm for program
synthesis. arXiv preprint.

Zhuoshi Pan, Qianhui Wu, Huigiang Jiang, Menglin Xia,
Xufang Luo, Jue Zhang, Qingwei Lin, Victor Riihle,
Yuging Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu,
and Dongmei Zhang. 2024. LLMLingua-2: Data dis-
tillation for efficient and faithful task-agnostic prompt
compression. In Findings of the Association for Com-
putational Linguistics: ACL 2024, pages 963-981,
Bangkok, Thailand. Association for Computational
Linguistics.


https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2023.emnlp-main.825
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57
https://doi.org/10.18653/v1/2024.findings-acl.57

Huy N Phan, Hoang N Phan, Tien N Nguyen, and
Nghi DQ Bui. 2024. Repohyper: Better context
retrieval is all you need for repository-level code
completion. arXiv preprint arXiv:2403.06095.

David Rau, Shuai Wang, Hervé Déjean, and Stéphane
Clinchant. 2024. Context embeddings for effi-
cient answer generation in rag. arXiv preprint
arXiv:2407.09252.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Disha Shrivastava, Denis Kocetkov, Harm de Vries,
Dzmitry Bahdanau, and Torsten Scholak. 2023. Re-
pofusion: Training code models to understand your
repository. arXiv preprint arXiv:2306.10998.

Ze Tang, Jidong Ge, Shangqing Liu, Tingwei Zhu, Tong-
tong Xu, Liguo Huang, and Bin Luo. 2023. Do-
main adaptive code completion via language mod-
els and decoupled domain databases. In 2023 38th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 421-433. IEEE.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ante Wang, Linfeng Song, Ge Xu, and Jinsong Su. 2023.
Domain adaptation for conversational query produc-
tion with the rag model feedback. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 9129-9141.

Yanlin Wang, Yanli Wang, Daya Guo, Jiachi Chen,
Ruikai Zhang, Yuchi Ma, and Zibin Zheng. 2024.
Rlcoder: Reinforcement learning for repository-level
code completion. arXiv preprint arXiv:2407.19487.

Qinyun Wu, Chao Peng, Pengfei Gao, Ruida Hu, Haoyu
Gan, Bo Jiang, Jinhe Tang, Zhiwen Deng, Zhanming
Guan, Cuiyun Gao, et al. 2024. Repomastereval:
Evaluating code completion via real-world reposito-
ries. arXiv preprint arXiv:2408.03519.

Shicheng Xu, Liang Pang, Mo Yu, Fandong Meng,
Huawei Shen, Xueqi Cheng, and Jie Zhou. 2024. Un-
supervised information refinement training of large
language models for retrieval-augmented generation.
arXiv e-prints, pages arXiv—2402.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884.

Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan
Berant. 2023. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint
arXiv:2310.01558.

11

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin
Ma, Hongwei Wang, and Dong Yu. 2023a. Chain-of-
note: Enhancing robustness in retrieval-augmented
language models. arXiv preprint arXiv:2311.09210.

Zichun Yu, Chenyan Xiong, Shi Yu, and Zhiyuan Liu.
2023b. Augmentation-adapted retriever improves
generalization of language models as generic plug-in.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2421-2436.

Shenglai Zeng, Jiankun Zhang, Pengfei He, Yue Xing,
Yiding Liu, Han Xu, Jie Ren, Shuaiqiang Wang,
Dawei Yin, Yi Chang, et al. 2024. The good and the
bad: Exploring privacy issues in retrieval-augmented
generation (rag). arXiv preprint arXiv:2402.16893.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration. arXiv preprint arXiv:2303.12570.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng
Shen, Matei Zaharia, Ion Stoica, and Joseph E Gonza-
lez. 2024. Raft: Adapting language model to domain
specific rag. arXiv preprint arXiv:2403.10131.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-
to-most prompting enables complex reasoning in
large language models. In The Eleventh International
Conference on Learning Representations.

Wei Zou, Runpeng Geng, Binghui Wang, and Jinyuan
Jia. 2024. Poisonedrag: Knowledge poisoning at-
tacks to retrieval-augmented generation of large lan-
guage models. arXiv preprint arXiv:2402.07867.



A Implementation Details

In this work, the construction of the retriever and
retrieval library is completely based on the retrieval
results of Repoformer and RepoCoder. For the gen-
erator part, the transformers library with version
4.46.1 is adopted for loading and inference. Given
the limitations of hardware conditions, data load-
ing in both the training and inference processes
is carried out in the BFloat16 format. In the first
stage, a full-scale tuning of the parameters of SCE
is performed. Specifically, methods such as aver-
age pooling and pad (padding) are employed to
map matrices of any dimension to the specified
dimension.

Regarding the generation parameters, the
most basic settings are adopted, and only the
max_new_tokens parameter is set to the length of
the code to be completed plus 10. For the second
stage, the LoRA is utilized to fine-tune LLLMs. The
PEFT (Parameter Efficient Fine Tuning) library
with version 0.12.0 is used to load the LoRA con-
figuration. Among them, the rank of the matrix is
set to 16, the scaling factor of LoRA is set to 32,
the LoRA dropout is set to 0.1, and the remaining
parameters adopt the default settings. The number
of layers of the projection we set is three.

In the second phase’s task alignment stage, the
overall length is set to 2048. In particular, the
left-context truncation is set to 1024, and the right-
context is set to 1024 minus the product of the
compressed length and top-K. In the RAG method,
the settings are consistent with previous studies.
Specifically, the right-context truncation is set to
512, the retrieved code chunks are truncated to 512,
and the left-context truncation is 1024. The entire
experiment is conducted in a 2 * H20 hardware
environment.

B Robustness in Different Programming
Languages

In our approach, both semantic alignment and task
alignment are based on the Python programming
language, and therefore, the main experiments are
conducted using Python. We further investigate
the effectiveness of models trained in Python when
applied to other programming languages, with the
experimental results presented in the Table 5. From
the results, it is evident that SCE is an effective
enhancement method with strong cross-language
generalization capabilities, significantly improving
the performance of code generation models, par-

12

ticularly for languages such as C# and TypeScript.
While the introduction of RAG leads to some per-
formance improvement, SCE provides superior re-
sults when dealing with complex languages and
tasks. For the CodeGEN-2B model, although SCE
enhances its performance on EM and ES, the over-
all improvement remains limited, especially in EM,
where the performance increase is still relatively
low. This suggests that CodeGEN-2B may not
have fully mastered the generation of high-quality
code during pretraining, despite the improvements
brought by SCE. The characteristics of different
languages, such as syntax complexity and standard
libraries, may affect the model’s performance. For
instance, languages like TypeScript and Java, due to
their unique type systems and syntax, may present
additional challenges in generating accurate code.

C Baseline Method Details

The method details are as follows:

* LLMlinuga (Jiang et al., 2023b): It utilizes
compact and well - trained language models
such as GPT2 - small and LLaMA - 7B to
identify and remove unnecessary tokens in
prompts. This approach enables efficient in-
ference using large language models (LLMs),
achieving a compression ratio of up to 20
times while minimizing performance degrada-
tion.

LLMlingua?2 (Pan et al., 2024): It is a compact
yet powerful and fast compression method. It
is trained through data distillation from GPT-4
(Achiam et al., 2023) and uses a BERT-level
encoder for token classification, demonstrat-
ing excellent performance in task-agnostic
compression. It outperforms LLMLingua in
handling out-of-domain data, with a perfor-
mance improvement of 3 to 6 times.

ICAE (Ge et al.) : In-Context Auto-Encoder
is pre-trained on a large amount of text data
using auto-encoding and language-modeling
objectives. This enables it to generate mem-
ory slots that can accurately and comprehen-
sively represent the original context. Subse-
quently, it is fine-tuned based on the instruc-
tion data to produce desirable responses to
various prompts. The lightweight ICAE intro-
duces approximately 1% additional parame-
ters, effectively achieving 4x context compres-
sion based on Llama. It has the advantages of



CrossCodeEval CH TypeScript JAVA

EM ES EM ES EM ES
In-File 2047 66.69 11.02 66.66 24.82 68.81
CodeLlama RAG 2211 67.86 1233 68.29 2842 69.56
SCE 46.26 84.72 34.11 7871 3520 77.43
In-File 096 3945 1.63 4840 640 55098
CodeGEN-2B  RAG 357 50.65 2.03 44.01 981 58.61
SCE 11.20 57.21 1291 5371 13.97 59.77

Table 5: The effectiveness of migrating frameworks trained on the Python language to other programming languages.

improved latency and reduced GPU memory
costs during the inference process.

» Self-Softprompt: This method is intuitively
designed by us. LLM should be able to di-
rectly understand their own outputs. LLM
use the self-attention mechanism for global
modeling at each layer, while pooling only
models the nearby semantics. Therefore, we
explore whether LLMs can pool their own
hidden states for compression.

Beyond the descriptions presented in the main
body of the text, additional experiments have been
incorporated into the Table 6. Concurrently, the
experimental results for ICAE are depicted in the
Figure 5. Owing to resource constraints, the repli-
cation of their methods across every model was
unfeasible. As a consequence, our method was
tested on their base-generator: Mistral-7B (Jiang
et al., 2023a). Notwithstanding these limitations, it
can be inferred that RepoL.C continues to exhibit
outstanding competitiveness.

LLLLLLLLLL
nnnnnn

sssssssssssssssssss
MMMMMM

Figure 5: The experimental results are based on the
generator of ICAE and the score is EM. In most dataset,
the performance of RepoL.C is leading. Moreover, we
find that the ICAE method is even inferior to the hard-
prompt method.

D Stage 1 Details
D.1 Case of Stage 1

In the first phase of training for SCE, we focus on
the integration of SCE with LLMs to effectively
compress and reconstruct code. The goal of this
phase is to train the LLM to correctly regenerate
the original code snippets from the semantic em-
beddings compressed by SCE. The MODEL IN-
PUT section describes how the original code is
compressed into semantic embeddings using SCE,
which are then fed into the LLM to generate code.
Specific examples illustrate the input format, which
includes semantic embeddings ([<pad>* N]) and
corresponding text prompts. However, the actual
code represented by these embeddings is not de-
scribed in detail.

The MODEL ANSWERS section presents two
specific code generation results, demonstrating how
the LLM is able to reconstruct detailed code snip-
pets based on the compressed semantic embed-
dings. From this, it becomes evident that when
training with the CodeGEN-2B and BERT com-
bination, this pairing may not fully achieve the
desired training outcomes, particularly in terms of
the accuracy and completeness of the code recon-
struction. In contrast, when using CodeBert as the
encoder and CodeLlama as the generation model,
the code is successfully reconstructed to be fully
consistent with the ground truth. This indicates
that CodeBert and CodeLlama are more effective
in understanding and applying the semantic embed-
dings compressed by SCE, thus more accurately
restoring the original code’s logic and structure.

This disparity can be attributed to differences in
model size and the variations in training data used
during pretraining, which influence the semantic
understanding and the ability to restore compressed
information. These findings underscore the impor-
tance of carefully considering the characteristics



RepoEval-Api

RepoEval-Line CrossCodeEval-Python

EM ES EM ES EM ES
In-File 2293 5722 335 6265 2941 70.41
RAG 27.10 5824 37.68 6332 3347 73.14
Deepseck-Coder-6.7B Self—SoftPrompt 3456 6293 3988 65.11 31.55 71.71
LLMLingua 3525 66.83 4094 67.78 30.24 71.12
LLMLingua2 2731 55.19 3593 60.59 30.31 71.13
RepoL.C 45.13 7445 53.68 77.01 33.47 74.32
In-File 1252 3979 3031 5733 694 52.36
RAG 1481 3993 3637 6032 8.10 53.76
Llama.3.2B Self—Softprompt 20.75 46.77 30.25 57.17 12.02 53.52
LLMLingua 1525 37.33 3236 5740 11.18 53.11
LLMLingua2 1425 36.02 30.68 5522 11.63 53.07
RepoLC 27.56 58.60 38.5 6593 11.30 55.37

Table 6: Supplementary results of using different compression methods on the performance of other models.

and compatibility of different model combinations
when configuring SCE, to ensure that the resulting
model is capable of effectively leveraging the com-
pressed code information for accurate and efficient
code generation.

D.2 Supplementary Stage 1 Loss

0 5000 10000 15000 20000 25000 30000 35000
Step

(b) llama3.2-3B loss in stage 1

Figure 6: Most models exhibit behavior similar to that
of (a), with CodeBert demonstrating better training per-
formance. However, CodeLlama is an exception. In the
case of CodeLlama, the performance of CodeBert and
Bert is very close.

14

In the main text, we discussed and experimented
on the influence of different encoder models on the
entire pipeline and stage 1. Here, we supplement
with additional loss data of stage 1. It is the loss
performance of Deepseek-Coder-6B and Llama3.2
in the first stage. It can be observed that CodeBert
shows more stability during training, with a faster
loss decline, indicating a better understanding of
code data and more effective semantic compression
and task alignment. In contrast, BERT performs
poorly in stage 1 because of the lack of code fine-
tuning, leading to a slower loss reduction in the
semantic alignment process.



MODEL INPUT

The semantic embedding are [<pad>* N]. The text content of the embedding is:

MODEL ANSWERS

CodeGEN-2B+Bert

the below code fragment can be found in:
example_chatbot.py

model = ExLlamaChatbot(tokenizer, config)
# print(model)

# print(model.model)

# print(model.tokenizer)

# print(model.config)

# print(model.model.config)

# print(model.model.config.to_dict())

# print(model.model.config.to_json_string())
# print(model.model.config.to_json_file())

# print(model.model.config.to_yaml_string())
# print(model.model.config.to_yaml_file())
# print(model.model.config.to_dict())

CodeLlama+CodeBert & CodeGEN-2B+CodeBert & Codel.lama+Bert

the below code fragment can be found in:
example_chatbot.py

lora = ExLlamal.ora(model, args.lora_config, args.lora)
if lora.bias_ignored:

print(f" !! Warning: Loading zero bias Lora zero ")

# Generator

generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings = ExLlamaGenerator.Settings()
generator.settings.temperature = args.temperature
generator.settings.top_k = args.top_k
generator.settings.top_p = args.top_p
generator.settings.min_p = args.min_p

GROUND TRUTH

the below code fragment can be found in:
example_chatbot.py

lora = ExLlamal.ora(model, args.lora_config, args.lora)
if lora.bias_ignored:

print(f" !! Warning: Loading zero bias Lora zero ")

# Generator

generator = ExLlamaGenerator(model, tokenizer, cache)
generator.settings = ExLlamaGenerator.Settings()
generator.settings.temperature = args.temperature
generator.settings.top_k = args.top_k
generator.settings.top_p = args.top_p
generator.settings.min_p = args.min_p

Table 7: The case for stagel in different generator.

15



Raw code chunks (263 tokens):

the below code fragment can be found in:

alt_generator.py

# stop_conditions: List of strings or integer token IDs that will end the sequence

# settings: ExLlamaAltGeneratorSettings

# encode_special_characters: Set to true to tokenize "</s>" etc.

def begin_stream(self, prompt: str, stop_conditions: list, max_new_tokens: int, gen_settings: Settings,
encode_special_characters = False):

assert isinstance(prompt, str), "ExLlamaAltGenerator does not support batched generation"

# Tokenize prompt and limit length to allow prompt and (max) new tokens within max sequence length
max_input_tokens = self.model.config.max_seq_len - max_new_tokens

self.remaining_tokens = max_new_tokens

input_ids = self.cached_tokenize(prompt, encode_special_characters)

applied_input_ids = input_ids[:, -max_input_tokens:]

LLMlingual compressed (140 tokens) :

the below code fragment be in#_#

#___itions: of strings or integer token IDs that will the#: ExLlama#__: Set to toize ">"
def___, prompt:,_,_:acters "ator support # and limit to allow prompt and (max tokens within
max __._ -_tokens self.remaining_tokens = max_new_tokens

input_ids = self.cached_tokenize(prompt, encode_special_characters)

applied_input_ids = input_ids[:, -max_input_tokens:]

LLMlingua2 compressed (102 tokens):

code

alt_generator.py

stop_conditions token IDs sequence

settings ExLlamaAltGeneratorSettings
encode_special_characters tokenize

def begin_stream stop_conditions max_new_tokens_settings encode_special_characters
assert support batched generation

Tokenize prompt limit length tokens sequence length
max_input_tokens

_tokens

input_ids_tokenize

applied_input_ids_tokens

Table 8: The case for LLMlingua-series to compress the retrieved code chunks.

16



	Introduction
	Related Work
	Repository-level Code Completion
	Retrieval-augmented Generation

	Methodology
	Definition of RAG
	Design of Semantic Compressor Encoder
	Semantic Alignment
	Task Alignment

	Experiment Setup
	Datasets
	Setup
	Evaluation Metrics

	Experimental Results and Analysis
	Main Results
	Efficiency Evaluation
	Compare with Other RAG Method
	Ablation Study
	Different Encoder Models

	Conclusion
	Limitations
	Implementation Details
	Robustness in Different Programming Languages
	Baseline Method Details
	Stage 1 Details
	Case of Stage 1 
	Supplementary Stage 1 Loss


