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ABSTRACT

In recent years, there have been a growing number of works studying the gener-
alization properties of pairwise stochastic gradient descent (SGD) from the per-
spective of algorithmic stability. However, few of them devote to simultaneously
studying the generalization and optimization for the non-convex setting, especially
the ones with heavy-tailed sub-Weibull gradient noise. This paper establishes the
stability-based learning guarantees for non-convex, sub-Weibull pairwise SGD by
investigating its generalization and optimization jointly. Firstly, we bound the gen-
eralization error of pairwise SGD in the general non-convex setting, after bridging
the quantitative relationships between ℓ1 on-average model stability and gener-
alization error. Secondly, a refined generalization bound is established for non-
convex pairwise SGD by introducing the sub-Weibull gradient noise to remove
the bounded gradient assumption. Finally, the sharper error bounds for general-
ization and optimization are provided under the gradient dominance condition. In
addition, we extend our analysis to the corresponding pairwise minibatch SGD
and derive the first stability-based near-optimal generalization and optimization
bounds which are consistent with many empirical observations. These theoretical
results fill the learning theory gap for non-convex pairwise SGD with the sub-
Weibull tails.

1 INTRODUCTION

Pairwise learning has attracted much attention in machine learning literature, where its prediction
performance is measured by pairwise loss function. Typical paradigms of pairwise learning include
metric learning (Xing et al., 2002; Jin et al., 2009; Weinberger & Saul, 2009; Cao et al., 2016), rank-
ing (Clémençon et al., 2008; Agarwal & Niyogi, 2009; Rejchel, 2012), AUC maximization (Cortes
& Mohri, 2003; Gao et al., 2013; Ying et al., 2016; Liu et al., 2018), gradient learning (Mukherjee
& Zhou, 2006), and learning under the minimum error entropy criterion (Prı́ncipe, 2010; Hu et al.,
2015). Despite enjoying the benefits of particular contrastive motivations, pairwise learning often
suffers from a heavy computational burden as its optimization objective involves O

(
n2
)

terms for
the problems with n training samples.

It is well known that stochastic gradient descent (SGD) is ubiquitous and popular for deploying
learning systems due to its low time complexity (Lei et al., 2021b) and high adaptability to big
data (Bottou & Bousquet, 2007; Lei & Ying, 2020). As a natural extension of SGD, minibatch
SGD iteratively updates the model parameter based on several selected samples rather than a single
sample, which can further reduce the variance and accelerate algorithmic convergence (Cotter et al.,
2011; Dekel et al., 2012; Yin et al., 2018). Therefore, it is natural to employ SGD and minibatch
SGD to formulate the computing procedure of pairwise learning. Along with the wide applications
of SGD and minibatch SGD in pairwise learning, there are some theoretical progresses focusing on
their generalization guarantees recently (Lei et al., 2021b; 2020; Shen et al., 2019; Yang et al., 2021).
However, most of the existing theoretical results are limited to convex losses, which can not cover
typical pairwise learning algorithms with non-convex losses, e.g., neural networks-based pairwise
learning (Huang et al., 2017; Köppel et al., 2019; Li et al., 2022).

Moreover, most of the previous theoretical works of pairwise SGD and its variants require the
bounded variance condition (Zhou et al., 2022) and the sub-Gaussian tail assumption limiting the tail
performance of the gradient noise (Simsekli et al., 2019a;b). However, these assumptions may be too
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idealistic in practice. Indeed, SGD may involve the extremely large variance but the bounded p-th
moment for some p ∈ (1, 2] (Cutkosky & Mehta, 2021), and it often shows the heavier-tailed gra-
dient noise in many learning problems (Gorbunov et al., 2020; Madden et al., 2020; Gürbüzbalaban
et al., 2021; Lei & Tang, 2021; Li & Liu, 2022). For example, Simsekli et al. (2019b) studied the
statistical characteristics of gradient noise of SGD and stated that the gradient noise expresses a
heavy-tailed behavior under an isotropic model (also see Zhou et al. (2020); Zhang et al. (2020b)).
The heavy-tailed gradient noise may degrade the generalization performance of SGD methods sig-
nificantly (Nguyen et al., 2019; Hodgkinson & Mahoney, 2021). However, Raj et al. (2023a;b)
found that heavy tails of gradient noise can help with generalization in pointwise SGD. Therefore,
it is crucial to investigate the theoretical guarantees of non-convex pairwise SGD with heavy tails.
As far as we know, this issue has been rarely touched for pairwise SGD.

Bottou & Bousquet (2007) demonstrated that the model performance depends on the joint influ-
ence of generalization error and optimization error. The generalization error is used to evaluate the
performance of a trained model to some unseen inputs (Vapnik, 1998) and the optimization error
concerns the gap between the actual empirical risk and the optimal empirical risk (Li & Liu, 2022).
Hence, it is necessary to investigate both generalization error and optimization error for a better
understanding of the learning guarantees of SGD. Following this line, some error analysis of SGD
can be found in Lei et al. (2020; 2021a). Compared with uniform convergence analysis for SGD
methods (Lei et al., 2021b; Lei & Tang, 2021; Li & Liu, 2022; Foster et al., 2018), algorithmic
stability analysis often enjoys promising properties on adaptability (Agarwal & Niyogi, 2009; Hardt
et al., 2016; Xing et al., 2021) and flexibility (Lei et al., 2021b; Lei & Ying, 2020). In particular,
the stability-based theory analysis is suitable for wide application scenarios and independent of the
capacity of hypothesis function space (Zhou et al., 2022; Hardt et al., 2016; Bousquet & Elisseeff,
2002; Shalev-Shwartz et al., 2010).

At present, stability and generalization have been well characterized for the non-convex pointwise
SGD (Zhou et al., 2022; Hardt et al., 2016). This paper develops the previous analysis techniques
(Lei et al., 2021b; Lei & Ying, 2020; Madden et al., 2020; Li & Liu, 2022) to the sub-Weibull
pairwise cases by considering the generalization and optimization errors simultaneously. The main
contributions of this paper are summarized as follows:

• Generalization bounds of non-convex pairwise SGD. After bridging the ℓ1 on-average
model stability and generalization error, we establish the stability-based generalization
bounds for non-convex pairwise SGD. Even under the general non-convex setting, our
derived result is comparable with previous works for convex pairwise SGD (Lei et al.,
2021b; 2020; Yang et al., 2021). Moreover, the refined bounds are stated by introducing
the sub-Weibull gradient noise assumption, where the standard requirement of the bounded
gradient is removed.

• Learning guarantees of non-convex pairwise SGD with gradient dominance condition.
Sharper bounds for generalization error and excess risk are provided for the non-convex
pairwise SGD under an additional gradient dominance condition. The current analysis ex-
tends the previous analysis for pointwise SGD with sub-Weibull tails (Li & Liu, 2022) to
the complicated pairwise setting, and shows the competitive learning rates. Finally, we
develop our analysis to the corresponding minibatch case and give the first-ever-known
stability-based learning guarantees.

2 RELATED WORK

Analysis of pairwise SGD via algorithmic stability. Algorithmic stability has gained much atten-
tion in statistical learning theory due to its attractive properties, i.e., the independence to hypothesis
function space and wide applicability (Lei & Ying, 2020; Hardt et al., 2016). This analysis technique
is applied to investigate theoretical foundations of pairwise SGD (Lei et al., 2021b; 2020; Shen et al.,
2019; Yang et al., 2021). For the convex pairwise SGD, Shen et al. (2019) established the bounds of
the expected optimization error and excess risk after illustrating the trade-off between the stability
and optimization error. Moreover, some systematic studies are provided in Lei et al. (2021b; 2020);
Yang et al. (2021) to cover more general cases (i.e., without the bounded loss assumption or smooth-
ness assumption). For the non-convex pairwise SGD, Lei et al. (2021b) investigated the stability and
generalization of pairwise SGD under the gradient dominance condition, while the derived bounds
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are not tight enough. Therefore, it is necessary to further explore learning guarantees of non-convex
pairwise SGD from the perspective of algorithmic stability. Please see Appendix D for the outlines
of algorithmic stability.

Analysis of SGD with heavy-tailed gradient noise. The heavy-tailed performance of SGD has
been studied extensively, see e.g., Simsekli et al. (2019a;b); Nguyen et al. (2019); Hodgkinson
& Mahoney (2021); Panigrahi et al. (2019). In a seminal paper, Vladimirova et al. (2019) found
that the Bayesian neural network presents a heavier-tailed unit distribution than Gaussian prior
(de G. Matthews et al., 2018; Lee et al., 2018) while deepening the model. After that, several
works (Simsekli et al., 2019a;b; Panigrahi et al., 2019) verified that SGD also has heavier-tailed per-
formance than sub-Gaussian distribution. It is demonstrated in Nguyen et al. (2019); Hodgkinson
& Mahoney (2021) that the generalization ability of SGD may suffer from the heavy-tailed gradi-
ent noise. Based on uniform convergence analysis, the high probability guarantees for non-convex
pointwise SGD are stated in Madden et al. (2020); Li & Liu (2022) under heavy-tailed gradient
noise assumption. However, as far as we know, there are no stability-based learning guarantees for
pairwise SGD with heavy tails. In this paper, we aim to make an effort to fill this theoretical gap.

3 PRELIMINARIES

This section provides the essential notations, definitions and assumptions, which lay the foundations
for the subsequent analysis. Detail descriptions of notations are summarized in Appendix A.

3.1 NOTATIONS

For a sample space Z , we assume that it contains an input space X and an output space Y , i.e.,
Z = X × Y . According to an unknown probability measure ρ defined on Z , we draw each sample
zi(1 ≤ i ≤ n) independently and get the training set S := {z1, ..., zn} ∈ Zn. The goal of pairwise
learning is to find a data-driven predictor such that the population risk

F (w) := Ez,z̃[f(w; z, z̃)] (1)

is as small as possible, where f(w; z, z̃) : W × Z × Z → R is a loss function, w is the model
parameter belonging to the hypothesis space W , and Ez,z̃ denotes the conditional expectation with
respect to (w.r.t.) samples z and z̃. Due to the inaccessibility of F (w), we often formulate pairwise
learning algorithms by minimizing the empirical risk

FS(w) :=
1

n(n− 1)

∑
i,j∈[n],i̸=j

f(w; zi, zj), [n] := {1, ..., n}. (2)

For feasibility, let A(S) be the model parameter trained by algorithm A : Zn → W on dataset S,
and let

w(S) ∈ arg min
w∈W

FS(w), w∗ ∈ arg min
w∈W

F (w), (3)

where F (w), FS(w) are defined in (1) and (2), respectively. Since |ES [FS(w(S))] − F (w∗)| = 0,
the excess risk of A(S) can be decomposed by

|ES [F (A(S))− F (w∗)]| ≤ |ES [F (A(S))− FS(A(S))]|+ |ES [FS(A(S))− FS(w(S))]| , (4)

where E [·] denotes the expectation w.r.t. all randomness and w(S), w∗ are defined in (3). Usually,
we call the first term |E [F (A(S))− FS(A(S))] | as the generalization error and the second term
|E [FS(A(S))− FS(w(S))]| as the optimization error. This paper focuses on the generalization and
optimization error estimates of the pairwise SGD with non-convex losses.

3.2 DEFINITIONS

We now introduce the definitions of SGD, minibatch SGD, on-average model stability and sub-
Weibull random variable.
Definition 3.1. (SGD for Pairwise Learning) For t ∈ N, let {wt} be an update sequence of model
parameters with the initial state w1 = 0 and let {ηt} be a stepsize sequence. Denote ∇f(wt; zit , zjt)
as the gradient of the loss function f(wt; zit , zjt) w.r.t. the first argument wt, where (zit , zjt) is a
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sample pair selected to update model parameters in the t-th iteration, and (it, jt) is independently
drawn from {(i, j) : i, j ∈ [n], i ̸= j}. Then, the pairwise SGD is updated by

wt+1 = wt − ηt∇f(wt; zit , zjt). (5)
Remark 3.2. Different from the pointwise SGD (Lei & Ying, 2020; Hardt et al., 2016), Definition
3.1 involves dependent O

(
n2
)

terms, which results in the additional barrier for stability analysis.
To circumvent this barrier, a new concept of pairwise ℓ1 on-average model stability is proposed in
Definition 3.5.
Definition 3.3. (Minibatch SGD for Pairwise Learning) For {wt}, {ηt} described in Defini-
tion 3.1 and the batch size b, denote ∇f(wt; zit,m , zjt,m) as the gradient of the loss function
f(wt; zit,m , zjt,m) w.r.t. the first argument wt, where m ∈ [b], (zit,m , zjt,m) is the m-th sample
pair selected to update model parameters in the t-th iteration, and (it,m, jt,m) is independently
drawn from {(i, j) : i, j ∈ [n], i ̸= j}. Then, the pairwise minibatch SGD updates {wt} by

wt+1 = wt −
ηt
b

b∑
m=1

∇f(wt; zit,m , zjt,m). (6)

Remark 3.4. The pairwise minibatch SGD in Definition 3.3 reduces to the pairwise SGD in Def-
inition 3.1 as b = 1. Note that, when b = n(n − 1), Definition 3.3 is inconsistent with the
full-batch SGD for the reason that (zit,m , zjt,m) is independently selected from all sample pairs
{(zi, zj) : zi, zj ∈ S, zi ̸= zj}, which means that some certain sample pair can be selected more
than once at each itration.
Definition 3.5. Let S = {zi}ni=1, S

′ = {z′i}ni=1 be drawn independently from ρ. Define
Si,j = {z1, ..., zi−1, z

′
i, zi+1, ..., zj−1, z

′
j , zj+1, ..., zn}, ∀i, j ∈ [n], i ̸= j.

Denote ∥·∥ as the Euclidean norm. A pairwise learning algorithm A is ℓ1 on-average model ϵ-stable
if

ES,S′,A

 1

n(n− 1)

∑
i,j∈[n],i̸=j

∥A(Si,j)−A(S)∥

 ≤ ϵ.

The pointwise ℓ1 on-average model stability, proposed by Lei & Ying (2020), has shown the pow-
erful ability for generalization analysis (Lei et al., 2021b; 2020), which is milder than the uniform
model (argument) stability (Liu et al., 2017). Motivated by the on-average stability of Lei et al.
(2020), Definition 3.5 nails down the pairwise ℓ1 on-average model stability. Note that, Lei et al.
(2020) mainly considers ℓ2 on-average model stability instead of ℓ1 on-average model stability.

Indeed, the on-average model stability is used to measure the model parameter sensitivity to a small
perturbation of S, which is different from the ones concerning the sensitivity of loss function value,
e.g., the uniform stability (Hardt et al., 2016; Bousquet & Elisseeff, 2002; Shalev-Shwartz et al.,
2010) and the on-average stability (Lei et al., 2020; Kuzborskij & Lampert, 2018; Lei & Ying,
2021).
Definition 3.6. (Vladimirova et al., 2020) We say X is a sub-Weibull random variable if the moment
generating function (MGF) E

[
exp

(
(|X|/K)

1
θ

)]
≤ 2 for some positive parameters K and θ ≥

1/2, and denote it as X ∼ subW (θ,K).

The sub-Weibull random variable X becomes the sub-Gaussian as θ = 1/2 (Vershynin, 2018) or
the sub-Exponential distribution as θ = 1 (Vladimirova et al., 2020). We concern the pairwise SGD
with heavy tails and let θ > 1/2 in the rest of this paper. For ease of understanding, some necessary
preliminaries of sub-Weibull distribution are provided in Appendix B.

3.3 ASSUMPTIONS

We first describe two common assumptions, namely Lipschitz continuity and smoothness.
Assumption 3.7. (a) For any z, z̃ ∈ Z , w,w′ ∈ W and L > 0, a differentiable loss function
f(w; z, z′) is L-Lipschitz continuous w.r.t the first argument w if ∥∇f(w; z, z̃)∥ ≤ L, which means
that |f(w; z, z̃)− f(w′; z, z̃)| ≤ L∥w − w′∥.

(b) For any z, z̃ ∈ Z , w,w′ ∈ W and β > 0, a differentiable loss function f(w; z, z′) is β-smooth
w.r.t the first argument w if ∥∇f(w; z, z̃)−∇f(w′; z, z̃)∥ ≤ β∥w − w′∥.
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Some previous work assumed the gradient and the loss function itself are both Lipschitz (Hardt et al.,
2016; Lei & Ying, 2020). However, the Lipschitz continuity assumption may be fragile since the
parameter L may be very large or even infinite for some learning environments (Lei & Ying, 2020).
In these cases, many stability-based generalization bounds under this assumption don’t match the
algorithmic deployment in real applications. Hence, we introduce the assumption of the heavy-tailed
gradient noise below (Assumption 3.8) to remove the bounded gradient assumption in our analysis.
As for smoothness, it is assumed throughout the whole paper.
Assumption 3.8. (Sub-Weibull Gradient Noise) For the t-th iteration of (5), we assume
∇f(wt; zit , zjt)−∇FS(wt) ∼ subW (θ,K) with θ > 1/2,K > 0, i.e.,

Eit,jt

[
exp

((
∥∇f(wt; zit , zjt)−∇FS(wt)∥

K

) 1
θ

)]
≤ 2.

Recently, rich works have shown that SGD and its variants exhibit heavier noise than sub-Gaussian
(Simsekli et al., 2019a;b; Madden et al., 2020; Panigrahi et al., 2019; Zhang et al., 2020a; Wang
et al., 2021). Hence, it is natural to consider Assumption 3.8 here for the pairwise SGD in Definition
3.1 with heavy tails. In our analysis, the gradient noise assumption provides some refined bounds of
gradient noise (Lemma C.3 in Appendix C.1) which are key to bridging the connection between ℓ1
on-average model stability and generalization error (Theorem 4.1 (b)) and stating stability bounds
(Theorems 4.4, 4.6, 4.9) without the bounded gradient assumption.
Assumption 3.9. (Polyak-Lojasiewicz (PL) condition) For any w ∈ W and S ∈ Zn, the empirical
risk FS(w) (2) satisfies the PL condition with parameter µ > 0 if

∥∇FS(w)∥2 ≥ 2µ (FS(w)− FS(w(S))) .

The PL condition, also called gradient dominance condition (Lei et al., 2021b; Zhou et al., 2022;
Foster et al., 2018; Reddi et al., 2016), can be viewed as a mild control over the curvature of loss
function and has been employed for the non-convex generalization analysis (Lei & Tang, 2021; Li
& Liu, 2022; Lei & Ying, 2021). This condition demonstrates that the lower bound of the quadratic
of objective gradient is 2µ (FS(w)− FS(w(S)) and will increase as the model parameter w is far
away from the empirically optimal parameter w(S) (Karimi et al., 2016). Note that, the PL condition
assures that any w satisfying ∥∇FS(w)∥ = 0 is a global minimizer (Charles & Papailiopoulos,
2018).

4 MAIN RESULTS

This section builds the quantitative relationships between ℓ1 on-average model stability and gen-
eralization error firstly, which is the basis of our theoretical analysis. Then, we present the error
bound for the general non-convex pairwise SGD in Section 4.1 and its refined version in Section
4.2. Section 4.3 further considers the approximation performance of SGD (5) under the PL condi-
tion (Assumption 3.9) and Section 4.4 extends the related results to the case of pairwise minibatch
SGD. We provide the proof sketch of our results in Appendix C and summarize the comparisons of
related results in Tables 1, 2, and 4 (Appendix C.7). All detailed proofs are provided in Appendix C.
Note that, all bounds in the main text are in expectation. They can be developed to establish high
probability bounds which are provided in Appendix C.8.
Theorem 4.1. Let S, S′ and Si,j be constructed as Definition 3.5.

(a) Assume that pairwise learning algorithm A, associated with L-Lipschitz continuous loss func-
tion, is ℓ1 on-average model ϵ-stable. Then,

|E[FS(A(S))− F (A(S))]| ≤ Lϵ.

(b) Assume that pairwise SGD A, associated with loss function whose gradient noise obeys
subW (θ,K), is ℓ1 on-average model ϵ-stable. Then,

|E[F (A(S))− FS(A(S))]| ≤ 2E[FS(A(S))] + (4θ)θKϵ.

Theorem 4.1(a) shows the generalization error in expectation can be controlled by the ℓ1 on-average
model stability bound even for the general non-convex pairwise SGD. Theorem 4.1 (b) verifies the
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generalization bound via ℓ1 on-average model stability enjoys some attractive properties, e.g., inde-
pendence of the Lipschitz continuity assumption. Additionally, we can easily find the generalization
error monotonically increasing with the expected empirical risk E[FS(A(S))]. This means the opti-
mizer minimizing FS(A(S)) contributes to the improvement of generalization ability (Lei & Ying,
2020). The common choices E[FS(A(S))] = O

(
n−1

)
can be made to obtain some satisfactory

bounds as shown in Corollaries 4.5, 4.7 and 4.10.

Theorem 4.1 (a) is consistent with the related results of stability and generalization for pointwise
learning (Theorem 2 in Lei & Ying (2020)) and pairwise learning (Theorem 1 in Lei et al. (2021b)),
where the slight difference is induced by the divergence among stability definitions. However, the
Lipschitz continuity condition is necessary for our proof framework under the case without heavy-
tailed gradient noise. Theorem 4.1 (b) is a novel quantitative relationship between ℓ1 on-average
model stability and generalization error under heavy-tailed gradient noise assumption.

Table 1: Summary of stability bounds for pairwise SGD with non-convex loss functions (
√

-has such
a property; ×-hasn’t such a property; L, β, µ, θ-the parameters of Lipschitz continuity, smoothness,
PL condition and sub-Weibull distribution; c-a non-negative constant; b′ = b

2n(n−1)(1+ b−1
n(n−1) )

). See

Appendix D for details of stability tools.

Reference
Assumptions Stability

Tool Stability Bound
L µ θ

Shen et al. (2019)
(Thm. 3.5)

√
× × Uniform

stability O
(
(βn)−1L

2
βc+1T

βc
βc+1

)
Lei et al. (2021b)

(Thm. 15)
√ √

× Uniform
stability O

(
(βn)−1L2T

βc
βc+1

)
Ours (Thm. 4.2)

√
× × On-average

model stability O
(
(βn)−1LT

1
2 log T

)
Ours (Thm. 4.4) × ×

√ On-average
model stability O

(
(βn)−1(Γ(2θ + 1))

1
2T

1
2 (log T )

3
2

)
Ours (Thm. 4.6) ×

√ √ On-average
model stability O

(
(βn)−1(Γ(2θ + 1))

1
2T

1
4 (log T )

3
2

)
Ours (Thm. 4.9) ×

√ √ On-average
model stability O

(
(βn)−1(Γ(2θ + 1))

1
2T b′(log T )

3
2

)

4.1 GENERAL NON-CONVEX PAIRWISE SGD

Now we state the quantitative characterization of on-average model stability for the general non-
convex pairwise SGD.
Theorem 4.2. Given S, S′ and Si,j in Definition 3.5, let {wt} and {w′

t} be produced by (5) on
S and Si,j respectively, where ηt = η1t

−1, η1 ≤ (2β)−1, and let the parameters A(S) = wT

and A(Si,j) = w′
T after T iterations. Assume that the loss function f(w; z, z′) is L-Lipschitz and

β-smooth w.r.t. the first argument w. Then, there holds
1

n(n− 1)

∑
i,j∈[n],i̸=j

E [∥wT − w′
T ∥] ≤ O

(
(βn)−1LT

1
2 log T

)
.

Theorem 4.2 illustrates ℓ1 on-average model stability bound O
(
(βn)−1LT

1
2 log T

)
for non-convex

pairwise SGD when the loss function is Lipschitz continuous and smooth. Shen et al. (2019) pro-
vided a uniform stability bound O

(
(βn)−1L

2
βc+1T

βc
βc+1

)
, where the constant c > 0. Thus, the

bound of Theorem 4.2 is tighter than it when 0 < c ≤
(
1/ logL2T−1(LT−1/2 log T )− 1

)
/β. Lei

et al. (2021b) provided a uniform stability bound O
(
(βn)−1L2T

βc
βc+1

)
, where the constant c = 1/µ

(µ is the parameter of PL condition). In general, µ is typically a very small value (Examples 1 and 2
in Lei & Ying (2021)) which leads to a large value of c. Thus, T

βc
βc+1 is closer to T than (T 1/2 log T )

in our bound. In other words, our bound is tighter than Lei et al. (2021b).
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Combining Theorem 4.1 (a) and Theorem 4.2 yields the following generalization bound.
Corollary 4.3. Under Assumptions 3.7 (a) and 3.7 (b), for the pairwise SGD (5) with T iterations,

|E[F (wT )− FS(wT )]| ≤ O
(
(βn)−1L2T

1
2 log T

)
.

In terms of uniform stability analysis, Shen et al. (2019) provided the generalization error bound
O
(
(βn)−1L

2
βc+1T

βc
βc+1

)
for non-convex pairwise SGD. When log T ≤ L

−2βc
βc+1 T

βc−1
2βc+2 , the derived

result in Corollary 4.3 is better than Shen et al. (2019).

4.2 NON-CONVEX PAIRWISE SGD WITHOUT LIPSCHITZ CONDITION

Now we state the refined bounds of stability and generalization error by leveraging the heavy-tailed
gradient noise assumption to remove the Lipschitz continuity assumption.
Theorem 4.4. Given S, S′ and Si,j described in Definition 3.5, let {wt} and {w′

t} be produced by
(5) on S and Si,j respectively, where ηt = η1t

−1, η1 ≤ (2β)−1, and let the parameters A(S) = wT

and A(Si,j) = w′
T after T iterations. Assume that the loss function f(w; z, z′) is β-smooth. Take

Γ(x) =
∫∞
0

tx−1e−tdt. Under Assumption 3.8, there holds
1

n(n− 1)

∑
i,j∈[n],i̸=j

E [∥wT − w′
T ∥] ≤ O

(
(βn)−1(Γ(2θ + 1))

1
2T

1
2 (log T )

3
2

)
.

Theorem 4.4 assures the upper bound with the order O
(
(βn)−1(Γ(2θ + 1))

1
2T

1
2 (log T )

3
2

)
for ℓ1

on-average model stability, where the heavy-tailed gradient noise assumption is employed to get rid
of the bounded gradient assumption. Observe that, the dependence on T for the bound of Theorem
4.4 is just

√
log T -times larger than Theorem 4.2 and the additional dependence on the heavy tail

parameter θ is often bounded (Vladimirova et al., 2020). Thus, it is better than the dependence on
the Lipschitz parameter L which is likely infinite for some learning environments. Due to the above
reasons, the bound of Theorem 4.4 is tighter than the one of Theorem 4.2.

Theorem 3 in Lei et al. (2021b) provided a ℓ2 on-average model stability bound

O
(
n−1

(
1 + T

n

) T∑
t=1

η2tE[FS(wt)]
)

for pairwise SGD with convex loss functions, which involves

T∑
t=1

η2tE[FS(wt)]. However, it is hard to ensure the summation of empirical risks is small enough.

Therefore, the current result enjoys much adaptivity and flexibility since it is not affected by the qual-
ity of the initial empirical risks and nears optimum under the milder assumptions, i.e., non-convex
loss and heavy-tailed gradient noise.
Corollary 4.5. Under Assumptions 3.7 (b) and 3.8, for the pairwise SGD (5) with T iterations,

|E[F (wT )− FS(wT )]| ≤ O
(
(βn)−1(4θ)θ(Γ(2θ + 1))

1
2T

1
2 (log T )

3
2 + E[FS(wT )]

)
.

The generalization bound in Corollary 4.5 is obtained by combining Theorem 4.1 (b) and Theorem
4.4. If E[FS(wT )] = O

(
n−1

)
, we can derive E[F (wT ) − FS(wT )] = O

(
(βn)−1(4θ)θ(Γ(2θ +

1))
1
2T

1
2 (log T )

3
2

)
, where (4θ)θ is smaller than the bounded dependence Γ(2θ + 1) on heavy-tailed

parameter θ (Li & Liu, 2022).

4.3 NON-CONVEX PAIRWISE SGD WITH PL CONDITION

Inspired from Li & Liu (2022), we further investigate learning guarantees of non-convex pairwise
SGD under the PL condition which assures that the estimator w satisfying ∥∇FS(w)∥ = 0 is a
global minimizer of empirical risk FS(w) (2).
Theorem 4.6. Given S, S′ and Si,j in Definition 3.5 and w(S) in (3), let {wt} and {w′

t} be produced
by (5) on S and Si,j respectively, where ηt = η1t

−1, η1 ≤ (4β)−1, 1 − µη1 ≥ 0. Assume that the
loss function f(w; z, z′) is β-smooth w.r.t. the first argument w. Take a1 = 1 −

∏t
i=1

(
1− 1

2µηi
)
.

Under Assumptions 3.8 and 3.9, there holds

1

n(n− 1)

∑
i,j∈[n],i̸=j

E [∥wT − w′
T ∥] ≤ O

(
1

n
√
β
T

1
4 log T

√
a1E[FS(w(S))] +

Γ(2θ + 1) log T

β

)
.
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Table 2: Summary of excess risk bounds for non-convex SGD via uniform convergence approaches
and stability analysis (♣-uniform convergence; ♠-stability; ▼-pointwise learning; ▲-pairwise learn-
ing; β, µ, θ-the parameters of smoothness, PL condition and sub-Weibull distribution;

√
-has such

a property; ×-hasn’t such a property; d-dimension of hypothesis function space; ∗-high-probability
bound; δ-some probability; b′ = b

2n(n−1)(1+ b−1
n(n−1) )

).

Reference
Assumptions

Excess risk bound
β µ θ

Madden et al. (2020)
♣▼ (Thm. 9)

√ √
× ∗O

(
T−1 log

(
1
δ

))
Lei & Tang (2021)

♣▼ (Thm. 7)
√ √

× ∗O
(
n−1

(
d+ log

(
1
δ

))
log2 n log2

(
1
δ

))
Li & Liu (2022)
♣▼ (Thm. 3.11)

√ √ √
∗O

(
n−1

(
d+ log

(
1
δ

))
log2θ+1

(
1
δ

)
log

3(θ−1)
2

(
n
θ

)
logn

)
Lei et al. (2021b)
♠▲ (Thm. 15)

√ √
× O

(
(βn)−1L2T

β
β+µ + T−1

)
Ours

♠▲ (Thm. 4.8)
√ √ √

O
(

Γ(2θ+1)
βT + (βn)−1T

1
4 (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
Ours

♠▲ (Thm. 4.11)
√ √ √

O
(

Γ(2θ+1)
βT + (βn)−1T b′(4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)

Compared with Theorem 4.4, the stability bound O
(
(βn)−1(Γ(2θ+1))

1
2T

1
4 (log T )

3
2

)
in Theorem

4.6 involves a different term T
1
4 which is better than T

1
2 when E[FS(w(S))] = O

(
n−1

)
.

The following generalization bound is derived by integrating Theorem 4.1 (b) and Theorem 4.6.
Corollary 4.7. Under Assumptions 3.7 (b)-3.9, for the pairwise SGD (5) with T iterations,

|E[F (wT )− FS(wT )]|

≤O
(
E[FS(wT )] + n−1β− 1

2T
1
4 (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

Corollary 4.7 states the generalization bound O((βn)−1(4θ)θ(Γ(2θ + 1))
1
2T

1
4 (log T )

3
2 ) when

E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
. Lei et al. (2021b) have established the first general-

ization bound O
(
(βn)−1L2T β/(β+µ

)
for non-convex pairwise SGD under the gradient dominance

condition. Different from the existing work that relies on uniform stability (Lei et al., 2021b),
Corollary 4.7 provides tighter generalization bound under weaker conditions when (4θ)θ(Γ(2θ +

1))
1
2 (log T )

3
2 ≤ L2T

β
β+µ− 1

4 .
Theorem 4.8. Given w∗ in (3) and {wt} produced by (5) on S, where ηt = η1t

−1, η1 ≤ (4β)−1, 1−
µη1 ≥ 0. Assume that the function f(w; z, z′) is β-smooth. Under Assumptions 3.8 and 3.9, after T
iterations, there hold E[FS(wT )− FS(w(S))] ≤ O

(
T−2 + (βT )−1Γ(2θ + 1)

)
and

|E[F (wT )− F (w∗)]| ≤ O
(
(βT )−1Γ(2θ + 1) + (βn)−1T

1
4 (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.

With the help of the PL condition, we can guarantee that the algorithm can find a global min-
imizer. Therefore, we can use E[FS(wT ) − FS(w(S))] instead of ∥∇FS(wT )∥ to measure the
optimization performance of pairwise SGD in Definition 3.1. For the non-convex pairwise SGD,
Theorem 4.8 provides the optimization error bound O

(
(βT )−1Γ(2θ+1)

)
and the excess risk bound

O
(
(βT )−1Γ(2θ+1)+(βn)−1T

1
4 (4θ)θ(Γ(2θ+1))

1
2 (log T )

3
2

)
by (4). The derived optimization er-

ror bound is comparable with O
(
T−1

)
stated in Lemma D.1 (e) of Appendix D in Lei et al. (2021b).

For excess risk, our bound is O
(
n− 3

4 β−1(4θ)θ(Γ(2θ + 1))
1
2 (log n)

3
2

)
as taking T ≍ n, which is

comparable with the related results (Lei & Tang, 2021; Li & Liu, 2022) for the pointwise SGD and
enjoys nice property, i.e., the independence of the dimension d.

Moreover, the excess risk bound O
(
(βn)−1L2T

β
β+µ + T−1

)
(Lei et al., 2021b) implies the con-

vergence order O
(
n− β/µ+1

2β/µ+1

)
as T ≍ n

β+µ
2β+µ , which is often slower than ours with T ≍ n. As

8
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shown in Table 2, our results fill the theoretical gap of stability-based excess risk analysis for the
non-convex pairwise SGD with heavy tails, and guarantee a satisfactory convergence rate.

4.4 NON-CONVEX MINIBATCH SGD

We further investigate the stability and generalization of non-convex pairwise minibatch SGD. To
our surprise, this issue has not been studied in machine learning literature before.
Theorem 4.9. Given S, S′ and Si,j in Definition 3.5, let {wt} and {w′

t} be produced by the
pairwise minibatch SGD (6) (batchsize b) on S and Si,j respectively, where ηt = η1t

−1, η1 ≤
b

2n(n−1)(1+ b−1
n(n−1) )β

= b′/β, 1 − µη1 ≥ 0, and let the parameters A(S) = wT and A(Si,j) = w′
T

after T iterations. Assume that f(w; z, z′) is β-smooth w.r.t. the first argument w. Under Assump-
tions 3.8, 3.9, there holds

1

n(n− 1)

∑
i,j∈[n],i̸=j

E∥wT − w′
T ∥ ≤ O

(
n−1β− 1

2T b′ log T

√
a1E[FS(w(S))] +

Γ(2θ + 1) log T

β

)
.

The main challenge of proving Theorem 4.9 is to tackle the sampling procedures of minibatch SGD.
This technique barrier is surmounted by introducing the binomial distribution to reformulate (6)
in Appendix C.6. To the best of our knowledge, Theorem 4.9 provides the first near-optimal sta-
bility bound O

(
(βn)−1(Γ(2θ + 1))

1
2T b′(log T )

3
2

)
for the minibatch case when E[FS(w(S))] ≤

O
(
n−1

)
. If b = 1, the order of this upper bound is O

(
(βn)−1(Γ(2θ + 1))

1
2T

1
2n(n−1) (log T )

3
2

)
≤

O
(
(βn)−1(Γ(2θ + 1))

1
2T

1
4 (log T )

3
2

)
, which recovers the result of Theorem 4.6.

Combining the above stability bound with Theorem 4.1 (b), we derive the following generalization
bound for the minibatch SGD in Definition 3.3.
Corollary 4.10. Under Assumptions 3.7 (b)-3.9, for the minibatch SGD (6) with T iterations,

|E[F (wT )− FS(wT )]|

≤O
(
E[FS(wT )] + n−1β− 1

2T b′(4θ)θ log T
√

a1E[FS(w(S))] + β−1Γ(2θ + 1) log T
)
.

The generalization error bound O
(
(βn)−1T b′(4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
is from the analysis of

Theorem 4.9 when E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
.

Theorem 4.11. Let A(S) be produced by the pairwise minibatch SGD (6) on S, where ηt =
η1t

−1, η1 ≤ b′/β, 1 − µη1 ≥ 0. Assume that f(w; z, z′) is β-smooth w.r.t. the first argument
w. Under Assumptions 3.8 and 3.9, after T iterations, there hold E[FS(wT ) − FS(w(S))] ≤
O
(
T−2 + (βT )−1Γ(2θ + 1)

)
and

|E[F (wT )− F (w∗)]| ≤ O
(
(βT )−1Γ(2θ + 1) + (βn)−1T b′(4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.

Theorem 4.11 provides the first stability-based optimal optimization error and excess risk bounds
for non-convex pairwise minibatch SGD with heavy tails and the PL condition. Compared with The-
orem 4.8, the minibatch strategy damages the learning guarantee, which is consistent with previous
empirical observations (Li et al., 2014; Lin et al., 2020). When b → n(n − 1), the rate approx-
imates O

(
(βT )−1Γ(2θ + 1) + (βn)−1T

1
3 (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
. Particularly, the detailed

comparisons of our results are summarized in Table 4 of Appendix C.7.

5 CONCLUSIONS

This paper aims to fill the theoretical gap on the learning guarantees of non-convex pairwise SGD
with heavy tails. We stated the first near-optimal bounds of generalization error and excess risk for
the non-convex pairwise SGD respectively, where the technique of algorithmic stability analysis is
developed to overcome the obstacle induced by the complicated pairwise objective and the minibatch
strategy. As a natural extension of Li & Liu (2022), our results also verify the effect of the heavy-
tailed gradient noise on removing the bounded gradient assumption of the pairwise loss function. In
the future, it is interesting to further investigate the stability and generalization of pairwise minibatch
SGD with other heavy-tailed distributions (such as α-stable distributions (Simsekli et al., 2019b)).
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A NOTATIONS

The main notations of this paper are summarized in Table 3.

Table 3: Summary of main notations involved in this paper.

Notations Descriptions

SGD stochastic gradient descent

Z the compact sample space associated with input space X and output space Y
z the random sample sampling from Z
n the numbers of samples sampling from Z
b the batch size

w,W the model parameter and hypothesis function space, respectively

S the training dataset defined as {z1, ..., zn} ∈ Zn

d the dimension of hypothesis function space

f(w) the pairwise loss function defined as f(w; z, z̃)

∇f the gradient of f(w; z, z̃) to the first argument w

F (w), FS(w) the population risk and empirical risk based on training dataset S, respectively

T the number of iterative steps for SGD

wT the model parameter derived by SGD after T -th update

w(S) the optimal model based on the empirical risk, w(S) = arg min
w∈W

FS(w)

w∗ the optimal model based on the population risk, w∗ = arg min
w∈W

F (w)

ηT the step size at the T -th update

A,A(S) the given algorithm and its output model parameter based on S respectively

L, β, µ the parameters of Lipschitz continuity, smoothness and PL condition respectively

θ,K the parameters of sub-Weibull distribution

≍ n+ ≍ n− if there exist positive constants c1, c2 such that c1n+ ≤ n− ≤ c2n+

[·] [n] := {1, ..., n}
e the base of the natural logarithm

Γ(x) Γ(x) =
∫∞
0

tx−1e−tdt

∥ · ∥ the Euclidean norm

δ some probability

ϵ the parameters of ℓ1 on-average model stability

ℓ1 the type of on-average model stability

A a pairwise learning algorithm

c a non-negative constant

v2S the parameter of bounded variance assumption

14
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B PRELIMINARIES OF SUB-WEIBULL DISTRIBUTION

The original definition of sub-Weibull distribution (Vladimirova et al., 2020) is the class of distribu-
tions satisfying

P(|X| ≥ x) ≤ a exp−bx1/θ, for all x ≥ 0, for some θ, a, b > 0.

According to the original definition, we present some sub-Weibull survival curves with varying tail
parameters θ in Figure 1 which is inspired by Vladimirova et al. (2020).

Figure 1: Some sub-Weibull survival curves with varying tail parameters θ

Note that, Definition 3.6 in the main paper is just an equivalent definition and the rest equivalent
definitions are listed as follows.
Proposition B.1. (Vladimirova et al., 2020; Li & Liu, 2022) Let X be a random variable. Then the
following properties are equivalent:

• ∃K1 > 0, the tails of X satisfy P(|X ≥ x) ≤ 2 exp−(x/K1)
1/θ for all x ≥ 0.

• ∃K2 > 0, the moments of X satisfy ∥X∥k ≤ K2k
θ for all k ≥ 1.

• ∃K3 > 0, the MGF of |X1/θ| satisfies E
[
exp

(
(λ|X|)1/θ

)]
≤ exp

(
(λK3)

1/θ
)

for all λ
such that 0 < λ ≤ 1/K3,

where the above parameters K1,K2,K3 and the parameter K in Definition 3.6 differ each by a
constant that only depends on θ.

C PROOFS OF MAIN RESULTS

C.1 LEMMAS

In this subsection, we recall some technical lemmas used in our proofs.
Lemma C.1. (Li & Liu, 2022). If the function f is β-smooth (Assumption 3.7 (b)), then we have for
any z, z̃,

f(w; z, z̃)− f(w′; z, z̃) ≤ ⟨w − w′,∇f(w′; z, z̃)⟩+ 1

2
β∥w − w′∥2

15
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Figure 2: The proof sketch for our results in the main text

and

1

2β
∥∇f(w; z, z̃)∥2 ≤ f(w; z, z̃)− inf

w′
f(w′; z, z̃) ≤ f(w; z, z̃).

Lemma C.2. (Li & Liu, 2022). Let e be the base of the natural logarithm. The following inequalities
hold:

(a) if α ∈ (0, 1), then
t∑

k=1

k−α ≤ t1−α/(1− α);

(b) if α = 1, then
t∑

k=1

k−α ≤ log(et);

(c) if α > 1, then
t∑

k=1

k−α ≤ α
α−1 ;

(d)
t∑

k=1

1
k+k0

≤ log(t+ 1), where k0 ≥ 1.

Lemma C.3. (Madden et al., 2020). Assume X is K-sub-Weibull(θ), then

(a) E[|X|p] ≤ 2Γ(θp + 1)Kp, where p > 0,Γ(x) =
∫∞
0

tx−1e−tdt. In particular, E[|X|] ≤
2Γ(θ + 1)K and E[X2] ≤ 2Γ(2θ + 1)K2;

(b) ∥X∥p ≤ (2θ)θKpθ, where p ≥ 1/θ. In particular, ∥X∥2 ≤ (4θ)θK, θ ≥ 1/2.

Lemma C.4. (Vladimirova et al., 2020; Madden et al., 2020; Li & Liu, 2022) Suppose X1, ..., Xn

are sub-Weibull(θ) with respective parameters K1, ...,Kn. Then, for ∀t ≥ 0, with probability 1− δ,
we have

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

−

 t

g(θ)
n∑

i=1

Ki


1/θ
 ,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.
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C.2 PROOF OF THEOREM 4.1

The proof of Theorem 4.1 is similar to Theorem 2 of Lei & Ying (2020) and Theorem 1 of Lei et al.
(2021b). For completeness, we also provide the detailed proof here.

Proof of Theorem 4.1: (a) According to the symmetry, triangular inequality, L-Lipschitz continuity
and ℓ1 on-average model stability, we deduce that

|E[F (A(S))− FS(A(S))]| =

∣∣∣∣∣∣∣∣
1

n(n− 1)

∑
i,j∈[n],
i ̸=j

E[F (A(Si,j))− FS(A(S))]

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1

n(n− 1)

∑
i,j∈[n],
i ̸=j

E[f(A(Si,j); zi, zj)− f(A(S); zi, zj)]

∣∣∣∣∣∣∣∣
≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

E[|f(A(Si,j); zi, zj)− f(A(S); zi, zj)|]

≤ L

n(n− 1)

∑
i,j∈[n],
i ̸=j

E[∥A(Si,j)−A(S)∥] ≤ Lϵ.

This proves Part (a).

(b) Let g(w) = f(w)−FS(w). From Lemma C.3 (b) and Assumption 3.7 (a), it is obvious that, for
any w,w′ ∈ W, w ̸= w′,

∥∇g(w)∥ ≤ (4θ)θK,

which means

|g(w)− g(w′)| ≤ (4θ)θK∥w − w′∥,

that is,

|f(w)− FS(w)− (f(w′)− FS′(w′))| ≤ (4θ)θK∥w − w′∥.

Then,

E[|f(w)− FS(w)− (f(w′)− FS′(w′))|] ≤ (4θ)θKE[∥w − w′∥].

We can derive the following relationship

|E[F (A(S))− FS(A(S))]|

≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

E[|f(A(Si,j); zi, zj)− f(A(S); zi, zj)|]

≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

(
E[|f(A(Si,j); zi, zj)− FSi,j

(A(Si,j))− (f(A(S); zi, zj)− FS(A(S)))|]

+ E
[
|FSi,j (A(Si,j))− FS(A(S))|

] )
≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

(
(4θ)θKE[∥A(Si,j)−A(S)∥]

)
+ 2E[FS(A(S))]

≤(4θ)θKϵ+ 2E[FS(A(S))].

The stated result in Part (b) is proved. □
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C.3 PROOF OF THEOREM 4.2

Proof of Theorem 4.2: We know that the two data sets S and Si,j are only different in two samples.
Thus, without loss of generality, we can let Si,j = Sn−1,n. In the following, we consider two cases
of the sampled indexes it, jt at the t-th iteration of pairwise SGD. In the first case, the sampled
samples from S and Sn−1,n are the same, i.e. it ∈ [n− 2] and jt ∈ [n− 2], it ̸= jt, and we obtain
that

∥wt+1 − w′
t+1∥ = ∥wt − ηt∇f(wt; zit , zjt)− w′

t + ηt∇f(w′
t; z

′
it , z

′
jt)∥

≤ ∥wt − w′
t∥+ ηt∥∇f(wt; zit , zjt)−∇f(w′

t; z
′
it , z

′
jt)∥

= ∥wt − w′
t∥+ ηt∥∇f(wt; zit , zjt)−∇f(w′

t; zit , zjt)∥
≤ ∥wt − w′

t∥+ ηtβ∥wt − w′
t∥ = (1 + ηtβ)∥wt − w′

t∥,

where the last inequality uses the β-smoothness of f .

In the other cases, the sampled samples from S and Si,j are different at least for one pair, i.e.
it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt, and we
can deduce that

∥wt+1 − w′
t+1∥ = ∥wt − ηt∇f(wt; zit , zjt)− w′

t + ηt∇f(w′
t; z

′
it , z

′
jt)∥

≤ ∥wt − w′
t∥+ ηt∥∇f(wt; zit , zjt)−∇f(w′

t; z
′
it , z

′
jt)∥

≤ ∥wt − w′
t∥+ ηt

(
∥∇f(wt; zit , zjt)∥+ ∥∇f(w′

t; z
′
it , z

′
jt)∥

)
≤ ∥wt − w′

t∥+ 2ηtL,

where the last inequality follows from the L-Lipschitz continuity of loss function. Combining the
above recursive inequalities and taking expectation with respect to (w.r.t.) the indexes of the selected
samples it and jt, we derive that

Eit,jt [∥wt+1 − w′
t+1∥]

≤(1 + ηtβ)∥wt − w′
t∥Eit,jt [I[it ∈ [n− 2] and jt ∈ [n− 2], it ̸= jt]] + (∥wt − w′

t∥+ 2ηtL)

Eit,jt [I[it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt]]

≤(1 + ηtβ)∥wt − w′
t∥Prob{it ∈ [n− 2] and jt ∈ [n− 2], it ̸= jt}+ (∥wt − w′

t∥+ 2ηtL)

Prob {it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt}

≤ (n− 2)(n− 3)

n(n− 1)
(1 + ηtβ)∥wt − w′

t∥+
4n− 6

n(n− 1)
(∥wt − w′

t∥+ 2ηtL)

≤(1 + ηtβ)∥wt − w′
t∥+

8n− 12

n(n− 1)
ηtL,

where the first inequality is due to the independence on it and jt for ∥wt − w′
t∥. And then taking

expectation w.r.t. all rest randomness to get that

E[∥wt+1 − w′
t+1∥] ≤ (1 + ηtβ)E[∥wt − w′

t∥] +
8n− 12

n(n− 1)
ηtL. (7)

Similarly, without Assumption 3.7 (a), it is easy to get that

E[∥wt+1 − w′
t+1∥] ≤ (1 + ηtβ)E[∥wt − w′

t∥] +
8n− 12

n(n− 1)
ηtE [∥∇f(wt; zit , zjt)∥] , (8)

where it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt.

For Equation (7), taking summation from t = 1 to T − 1, we can deduce that

E[∥wT − w′
T ∥] ⩽

T−1∑
t=1

(
T−1∏

k=t+1

(1 + ηkβ)

)
8n− 12

n(n− 1)
ηtL

⩽
T−1∑
t=1

exp

(
T−1∑

k=t+1

ηkβ

)
8n− 12

n(n− 1)
ηtL
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⩽
T−1∑
t=1

exp

(
βη1

T−1∑
k=1

k−1

)
8n− 12

n(n− 1)
ηtL

⩽
T−1∑
t=1

exp (βη1 log(e(T − 1)))
8n− 12

n(n− 1)
ηtL

=

T−1∑
t=1

(e(T − 1))βη1
8n− 12

n(n− 1)
ηtL

=
(8n− 12)L(e(T − 1))βη1

∑T−1
t=1 ηt

n(n− 1)

⩽
(8n− 12)η1L(e(T − 1))βη1

n(n− 1)
log(e(T − 1))

≤ O

(
LT

1
2 log T

βn

)
,

where the second inequality uses the fact that 1 + x ≤ exp(x), the third inequality is caused by
ηtβ ≥ 0, and the last two inequalities are due to Lemma C.2 (b). The desired result E[∥wT −w′

T ∥] ≤
O
(
(βn)−1LT

1
2 log T

)
follows since βη1 ≤ 1

2 . □

Proof of Corollary 4.3: Based on Theorem 4.1 (a) and Theorem 4.2, we can get that

|E[F (wT )− FS(wT )]| ≤
L

n(n− 1)

∑
i,j∈[n],
i̸=j

E [∥wT − w′
T ∥]

≤ L

n(n− 1)

∑
i,j∈[n],
i̸=j

(8n− 12)

n(n− 1)
η1L(e(T − 1))βη1 log(e(T − 1))

=
(8n− 12)

n(n− 1)
η1L

2(e(T − 1))βη1 log(e(T − 1))

≤ O

(
L2T

1
2 log T

βn

)
.

This completes the proof. □

C.4 PROOF OF THEOREM 4.4

Proof of Theorem 4.4: Without loss of generality, we can let Si,j = Sn−1,n. According to Lemma
C.1 (1), (a + b)2 ≤ 2(a2 + b2),∀a, b ∈ R and βη2t − ηt ≤ −ηt

2 with the assumption ηt ≤ 1
2β , we

have

FS (wt+1)− FS (wt)

⩽ ⟨wt+1 − wt,∇FS (wt)⟩+
1

2
β ∥wt+1 − wt∥2

=− ηt ⟨∇f (wt; zit , zjt)−∇FS (wt) ,∇FS (wt)⟩ − ηt ∥∇FS (wt)∥2 +
1

2
βη2t ∥∇f (wt; zit , zjt)∥

2

⩽− ηt ⟨∇f (wt; zit , zjt)−∇FS (wt) ,∇FS (wt)⟩ −
(
ηt − βη2t

)
∥∇FS (wt)∥2

+ βη2t ∥∇f (wt; zit , zjt)−∇FS (wt)∥2

⩽− ηt ⟨∇f (wt; zit , zjt)−∇FS (wt) ,∇FS (wt)⟩ −
1

2
ηt ∥∇FS (wt)∥2

+ βη2t ∥∇f (wt; zit , zjt)−∇FS (wt)∥2 .
Then, by a summation from t′ = 1 to t and triangular inequality, we get that

FS(wt+1)
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≤FS(w1)−
1

2

t∑
t′=1

ηt′∥∇FS(wt′)∥2 −
t∑

t′=1

ηt′
〈
∇f(wt′ ; zit′ , zjt′ )−∇FS(wt′),∇FS(wt′)

〉
+

t∑
t′=1

βη2t′∥∇f
(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2

≤FS(w1)−
1

2

t∑
t′=1

ηt′∥∇FS(wt′)∥2 +
t∑

t′=1

βη2t′∥∇f
(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2

+

t∑
t′=1

ηt′

(
1

2
∥∇f(wt′ ; zit′ , zjt′ )−∇FS(wt′)∥2 +

1

2
∥∇FS(wt′)∥2

)

=FS(w1) +

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
∥∇f

(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2. (9)

We consider the two parts of the last term
t∑

t′=1

(
1
2ηt′ + βη2t′

)
∥∇f

(
wt′ ; zit′ , zjt′

)
− ∇FS (wt′) ∥2,

respectively. Firstly, for 1
2ηt′∥∇f

(
wt′ ; zit′ , zjt′

)
− ∇FS (wt′) ∥2, since ∇f

(
wt′ ; zit′ , zjt′

)
−

∇FS (wt′) is a sub-Weibull random variable, i.e., ∇f
(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∼ subW (θ,K),

we get

E

exp( 1
2ηt′∥∇f

(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2

1
2ηt′K

2

) 1
2θ

 ≤ 2,

which means that 1
2ηt(∇f (wt; zit , zjt) − ∇FS (wt))

2 ∼ subW
(
2θ, 1

2ηtK
2
)
. Similarly,

βη2t (∇f (wt; zit , zjt)−∇FS (wt))
2 ∼ subW (2θ, βη2tK

2). Based on Lemma C.2 (b), (c), Lemma
C.3 (a) and sub-Weibull noise, we take expectation w.r.t. all randomness to obtain that

E[FS(wt+1)] ≤ E

[
FS(w1) +

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
∥∇f

(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2

]

≤ E[FS(w1)] +

t∑
t′=1

(
Γ(2θ + 1)ηt′K

2 + 2βΓ(2θ + 1)η2t′K
2
)

≤ F (w1) + (2β)−1Γ(2θ + 1)K2 (log(et) + 1) .

According to Lemma C.1 (2), the following inequality holds

E[∥∇f(wt; zit , zjt)∥2] ≤ 2βE[FS(wt)] ≤ 2βF (w1) + Γ(2θ + 1)K2(log(e(t− 1)) + 1).

To simplify the subsequent proof process, we let τ(t) = 2βE[FS(wt)] ≤ 2βF (w1) + Γ(2θ +
1)K2(log(e(t− 1)) + 1). From Equation (8), we know that

E[∥wt+1 − w′
t+1∥] ≤ (1 + ηtβ)E[∥wt − w′

t∥] +
8n− 12

n(n− 1)
ηtE[∥∇f(wt; zit , zjt)∥],

where it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt.
Then,

E[∥wt+1 − w′
t+1∥] ≤ (1 + ηtβ)E[∥wt − w′

t∥] +
8n− 12

n(n− 1)
ηt
√

τ(t).

Similar to the proof of Theorem 4.2, taking summation from t = 1 to T − 1, we have

E[∥wT − w′
T ∥]

≤
T−1∑
t=1

(
T−1∏

k=t+1

(1 + ηkβ)

)
8n− 12

n(n− 1)
ηt
√
τ(t)

≤
T−1∑
t=1

(
T−1∏

k=t+1

(1 + ηkβ)

)
8n− 12

n(n− 1)
ηt
√
τ(T − 1)
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≤
T−1∑
t=1

exp

(
T−1∑

k=t+1

ηkβ

)
8n− 12

n(n− 1)
ηt
√

τ(T − 1)

≤
T−1∑
t=1

exp

(
T−1∑
k=1

ηkβ

)
8n− 12

n(n− 1)
ηt
√
τ(T − 1)

≤
T−1∑
t=1

exp (η1β log(e(T − 1)))
8n− 12

n(n− 1)
ηt
√
τ(T − 1)

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1

√
τ(T − 1)

T−1∑
t=1

ηt

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1η1

√
τ(T − 1) log(e(T − 1))

=
8n− 12

n(n− 1)
η1(e(T − 1))βη1

√
2βF (w1) + Γ(2θ + 1)K2(log(e(T − 1)) + 1) log(e(T − 1))

≤O

(√
Γ(2θ + 1)T

1
2 (log T )

3
2

nβ

)
.

□

Proof of Corollary 4.5: Combining Theorem 4.1 (b) and Theorem 4.4, we have

|E[F (wT )− FS(wT )]|

≤ 1

n(n− 1)

∑
i,j∈[n],
i̸=j

(
(4θ)θKE[∥wT − w′

T ∥]
)
+ 2E[FS(wT ))]

≤ 8n− 12

n(n− 1)
(4θ)θKη1(e(T − 1))βη1

√
2βF (w1) + Γ(2θ + 1)K2(log(e(T − 1)) + 1)

log(e(T − 1)) + 2E[FS(wT )]

≤O

(
(4θ)θ

√
Γ(2θ + 1)T

1
2 (log T )

3
2

nβ
+ E[FS(wT )]

)
.

When E[FS(wT )] = O
(
n−1

)
, we derive

|E[F (wT )− FS(wT )]| ≤ O

(
(4θ)θ

√
Γ(2θ + 1)T

1
2 (log T )

3
2

nβ

)
.

The proof is complete. □

C.5 PROOF OF THEOREMS 4.6 AND 4.8

Proof of Theorem 4.6: Without loss of generality, we can let Si,j = Sn−1,n. According to Lemma
C.1 (1), we have

FS(wt+1)− FS(wt)

≤⟨wt+1 − wt,∇FS(wt)⟩+
1

2
β∥wt+1 − wt∥2

=− ηt⟨∇f(wt; zit , zjt)−∇FS(wt),∇FS(wt)⟩ − ηt∥∇FS(wt)∥2 +
1

2
βη2t ∥∇f(wt; zit , zjt)∥2

≤− ηt⟨∇f(wt; zit , zjt)−∇FS(wt),∇FS(wt)⟩ − (ηt − βη2t )∥∇FS(wt)∥2

+ βη2t ∥∇f(wt; zit , zjt)−∇FS(wt)∥2

≤ηt∥∇f(wt; zit , zjt)−∇FS(wt)∥∥∇FS(wt)∥ − (ηt − βη2t )∥∇FS(wt)∥2

+ βη2t ∥∇f(wt; zit , zjt)−∇FS(wt)∥2
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≤1

2
ηt∥∇f(wt; zit , zjt)−∇FS(wt)∥2 +

1

2
ηt∥∇FS(wt)∥2 − (ηt − βη2t )∥∇FS(wt)∥2

+ βη2t ∥∇f(wt; zit , zjt)−∇FS(wt)∥2

=

(
βη2t −

1

2
ηt

)
∥∇FS(wt)∥2 +

(
βη2t +

1

2
ηt

)
∥∇f(wt; zit , zjt)−∇FS(wt)∥2

≤− 1

4
ηt∥∇FS(wt)∥2 +

(
βη2t +

1

2
ηt

)
∥∇f(wt; zit , zjt)−∇FS(wt)∥2

≤− 1

2
ηtµ (FS(wt)− FS(w(S))) +

(
βη2t +

1

2
ηt

)
∥∇f(wt; zit , zjt)−∇FS(wt)∥2,

where the fourth inequality follows from that ab ≤ 1
2a

2 + 1
2b

2,∀a, b > 0, the fifth inequality is
caused by the fact that ηt ≤ 1

4β , and the last inequality is due to Assumption 3.9. Taking expectation
w.r.t. all randomness, based on Lemma C.3 (a), we obtain that

E[FS(wt+1)− FS(wt)]

≤− 1

2
µηtE [FS(wt)− FS(w(S))] +

(
βη2t +

1

2
ηt

)
E
[
∥∇f(wt; zit , zjt)−∇FS(wt)∥2

]
≤− 1

2
µηtE [FS(wt)− FS(w(S))] + (2βη2t + ηt)Γ(2θ + 1)K2,

which is similar to the proof of Theorem 4.4. Then,

E[FS(wt+1)− FS(w(S))]

≤
(
1− 1

2
µηt

)
E[FS(wt)− FS(w(S))] + (2βη2t + ηt)Γ(2θ + 1)K2

≤
t∏

i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] +

t∑
i=1

(
2βη2i + ηi

)
Γ(2θ + 1)K2

≤
t∏

i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] + Γ(2θ + 1)K2

t∑
i=1

(2βη2i + ηi)

=

t∏
i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] + 2βΓ(2θ + 1)K2η21

t∑
i=1

1

i2
+ Γ(2θ + 1)K2η1

t∑
i=1

1

i

≤
t∏

i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] + 2βΓ(2θ + 1)K2η21 + Γ(2θ + 1)K2η1 log(et),

where the last inequality is due to Lemma C.2 (b), (c). For convenience, we let a1 = 1 −
t∏

i=1

(
1− 1

2µηi
)
. Then, it follows from Lemma C.1 (2) that

E[∥∇f(wt; zit , zjt)∥2]
≤2βE[FS(wt)]

=2β
(
(1− a1)E[FS(w1)] + a1E[FS(w(S))] + 4βΓ(2θ + 1)K2η21 + Γ(2θ + 1)K2η1 log(et)

)
.

To simplify the subsequent proof process, we let

τ̃(t) = 2β
(
(1− a1)E[FS(w1)] + a1E[FS(w(S))] + 4βΓ(2θ + 1)K2η21 + Γ(2θ + 1)K2η1 log(et)

)
.

From Equation (8), we know that

E[∥wt+1 − w′
t+1∥] ≤ (1 + ηtβ)E[∥wt − w′

t∥] +
8n− 12

n(n− 1)
ηtE [∥∇f(wt; zit , zjt)∥] ,

where it, jt ∈ {n− 1, n} or it ∈ [n− 2], jt ∈ {n− 1, n} or jt ∈ [n− 2], it ∈ {n− 1, n}, it ̸= jt.
Then, taking summation from t = 1 to T − 1, we get that

E[∥wT − w′
T ∥]
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≤
T−1∑
t=1

(
T−1∏

k=t+1

(1 + ηkβ)

)
8n− 12

n(n− 1)
ηt
√

τ̃(t)

≤
T−1∑
t=1

exp

(
βη1

T−1∑
k=t+1

k−1

)
8n− 12

n(n− 1)
ηt
√
τ̃(T − 1)

≤
T−1∑
t=1

exp

(
βη1

T−1∑
k=1

k−1

)
8n− 12

n(n− 1)
ηt
√

τ̃(T − 1)

≤ (8n− 12)η1
n(n− 1)

(e(T − 1))βη1
√

τ̃(T − 1)

T−1∑
t=1

t−1

≤ (8n− 12)η1
n(n− 1)

(e(T − 1))βη1
√

τ̃(T − 1) log(e(T − 1)),

where the first and second inequalities are similar to Theorem 4.4, and the fourth and fifth inequali-
ties are derived from Lemma C.2 (c), that is,

E[∥wT − w′
T ∥]

≤ (8
√
2n− 12

√
2)
√
βη1

n(n− 1)
(e(T − 1))βη1 log(e(T − 1))√

(1− a1)E[FS(w1)] + a1E[FS(w(S))] + 4βΓ(2θ + 1)K2η21 + Γ(2θ + 1)K2η1 log(e(T − 1))

≤O
(
1

n
β− 1

2T
1
4 log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

When E[FS(w(S))] ≤ O(n−1),

E[∥wT − w′
T ∥] ≤ O

(
(βn)−1T

1
4 (Γ(2θ + 1))

1
2 (log T )

3
2

)
.

□

Proof of Corollary 4.7: By Theorem 4.1 (b) and Theorem 4.6, we can get that

|E[F (wT )− FS(wT )]|

≤2E[FS(wT )] +
(4θ)θK

n(n− 1)

∑
i,j∈[n],
i̸=j

E [∥wT − w′
T ∥]

≤O
(
E[FS(wT )] +

1

n
β− 1

2T
1
4 (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

When E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
,

|E[F (wT )− FS(wT )]| ≤ O
(
(βn)−1T

1
4 (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.

□

Proof of Theorem 4.8: Without loss of generality, we can let Si,j = Sn−1,n and Jt = {it, jt}.
According to Lemma C.1 (1) and taking expectation w.r.t. Jt, we have

EJt
[FS(wt+1)− FS(wt)]

≤EJt

[
⟨wt+1 − wt, ∂FS(wt)⟩+

1

2
β∥wt+1 − wt∥2

]
=EJt

[
−ηt⟨∂f(wt; zit , zjt), ∂FS(wt)⟩+

1

2
βη2t ∥∂f(wt; zit , zjt)∥2

]
≤− ηt∥∂FS(wt)∥2 + βη2tEJt

[
∥∂f(wt; zit , zjt)− ∂FS(wt)∥2

]
+ βη2t ∥∂FS(wt)∥2

≤− 1

2
ηt∥∂FS(wt)∥2 + βη2tEJt

[
∥∂f(wt; zit , zjt)− ∂FS(wt)∥2

]
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≤− µηt (FS(wt)− FS(w(S))) + βη2tEJt

[
∥∂f(wt; zit , zjt)− ∂FS(wt)∥2

]
,

where the second inequality is from EJt
[−ηt⟨∂f(wt; zit , zjt), ∂FS(wt)⟩] = −ηt∥∂FS(wt)∥2 and

(a + b)2 ≤ 2(a2 + b2), the third inequality is caused by the fact that ηt ≤ 1
4β ≤ 1

2β , and the last
inequality is due to Assumption 3.9. Based on Lemma C.3 (a), we obtain that

E[FS(wt+1)− FS(wt)]

≤− µηtE [FS(wt)− FS(w(S))] + βη2tE
[
∥∇f(wt; zit , zjt)−∇FS(wt)∥2

]
≤− µηtE [FS(wt)− FS(w(S))] + 2βη2tΓ(2θ + 1)K2,

which is similar to the proof of Theorem 4.4. Then,

E[FS(wt+1)− FS(w(S))]

≤(1− µηt)E[FS(wt)− FS(w(S))] + 2βη2tΓ(2θ + 1)K2

=
(
1− µη1

t

)
E[FS(wt)− FS(w(S))] + 2βη21Γ(2θ + 1)K2t−2.

We multiply both sides of the above inequality by t
(
t− 1

2µη1
)

and get

t

(
t− 1

2
µη1

)
E[FS(wt+1)− FS(w(S))]

≤
(
t− 1

2
µη1

)
(t− µη1)E[FS(wt)− FS(w(S))] + 2βη21Γ(2θ + 1)K2.

Then, we can take a summation from t = 1 to T − 1 to get

(T − 1)

(
T − 1− 1

2
µη1

)
E[FS(wT )− FS(w(S))]

≤
(
1− 1

2
µη1

)
(1− µη1)E[FS(w1)− FS(w(S))] + 2βη21Γ(2θ + 1)K2(T − 1)

≤
(
1− 1

2
µη1

)
(1− µη1)E[FS(w1)− FS(w(S))] +

1

8β
Γ(2θ + 1)K2(T − 1).

Therefore,

E[FS(wT )− FS(w(S))]

≤
(1− 1

2µη1)(1− µη1)

(T − 1)(T − 1− 1
2µη1)

E[FS(w1)− FS(w(S))] +
Γ(2θ + 1)K2

8β(T − 1− 1
2µη1)

= O
(
Γ(2θ + 1)

βT

)
.

We finish the proof of optimization error bound. Now, we prove the excess risk bound. By Corollary
4.7, we have

|E[F (wT )− FS(wT )]|

≤O
(
E[FS(wT )] +

1

n
β− 1

2T
1
4 (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

Let E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
, then,

|E[F (wT )− F (w∗)]|
≤|E[FS(wT )− FS(w(S))]|+ |E[F (wT )− FS(wT )]|

≤O
(
Γ(2θ + 1)

βT
+ E[FS(wT )] +

1

n
β− 1

2T
1
4 (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
≤O

(
Γ(2θ + 1)

βT
+ (βn)−1T

1
4 (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.

The proof is complete. □
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C.6 PROOF OF THEOREMS 4.9 AND 4.11

Proof of Theorem 4.9: For general SGD, it is necessary to consider whether the disturbed sample
will be drawn to update the model parameter at each iteration. As for minibatch SGD, we draw b
samples per iteration and the disturbed sample can be drawn repetitively. Thus, the new formula of
minibatch SGD is constructed to overcome the barrier of analyzing traditional formulas using our
proof framework.

Without loss of generality, we can let Si,j = Sn−1,n. Define αt,k,k′ = |{m : it,m = k, jt,m =
k′}|,∀t ∈ N, k, k′ ∈ [n], k ̸= k′,m ∈ [b], where | · | denotes the cardinality of a set. That is αt,k,k′

is the number of indices i and j equal to k and k′ in the t-th iteration. Then, the minibatch pairwise
SGD update (6) can be reformulated as

wt+1 = wt −
ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′).

According to Lemma C.1 (1), we have
FS(wt+1)− FS(wt)

≤⟨wt+1 − wt,∇FS(wt)⟩+
1

2
β∥wt+1 − wt∥2

≤− ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′⟨∇f(wt; zk, zk′),∇FS(wt)⟩+
βη2t
2

∥∥∥∥∥∥∥∥
1

b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2

=− ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′⟨∇f(wt; zk, zk′)−∇FS(wt),∇FS(wt)⟩ −
ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∥∇FS(wt)∥2

+
βη2t
2

∥∥∥∥∥∥∥∥
1

b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2

≤ ηt
2b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∥∇f(wt; zk, zk′)−∇FS(wt)∥2 +
ηt
2b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∥∇FS(wt)∥2

− ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∥∇FS(wt)∥2 +
βη2t
2

∥∥∥∥∥∥∥∥
1

b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2

.

Based on the definition of αt,k,k′ , we know that αt,k,k′ is a random variable following from the

binomial distribution B
(
b, 1

n(n−1)

)
with parameters b and 1

n(n−1) , thus, it is easy to know that

E [αt,k,k′ ] = b
n(n−1) and

E[α2
t,k,k′ ] = (E [αt,k,k′ ])

2
+Var (αt,k,k′) =

b

n(n− 1)

(
1 +

b− 1

n(n− 1)

)
≥ (E [αt,k,k′ ])

2
.

For simplicity, we define Jt = {(it,1, jt,1), (it,2, jt,2), ..., (it,b, jt,b)}, t ∈ N. Taking conditional
expectation w.r.t. Jt, we get that

EJt
[FS(wt+1)− FS(wt)]

≤− ηt
2b

∑
k,k′∈[n],
k ̸=k′

EJt
[αt,k,k′ ]∥∇FS(wt)∥2 +

βη2t
2b2

EJt


∥∥∥∥∥∥∥∥
∑

k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2
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+
ηt
2b

∑
k,k′∈[n],
k ̸=k′

EJt
[αt,k,k′ ]∥∇f(wt; zk, zk′)−∇FS(wt)∥2

≤− ηt
2
∥∇FS(wt)∥2 +

βη2t
2b2

EJt

[
α2
t,1,2

] ∥∥∥∥∥∥∥∥
∑

k,k′∈[n],
k ̸=k′

∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2

+
ηt

2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

∥∇f(wt; zk, zk′)−∇FS(wt)∥2

=− ηt
2
∥∇FS(wt)∥2 +

βη2t
2b2

b

n(n− 1)

(
1 +

b− 1

n(n− 1)

)∥∥∥∥∥∥∥∥
∑

k,k′∈[n],
k ̸=k′

∇f(wt; zk, zk′)

∥∥∥∥∥∥∥∥
2

+
ηt

2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

∥∇f(wt; zk, zk′)−∇FS(wt)∥2

=− ηt
2
∥∇FS(wt)∥2 +

n(n− 1)

2b
βη2t

(
1 +

b− 1

n(n− 1)

)
∥∇FS(wt)∥2

+
ηt

2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

∥∇f(wt; zk, zk′)−∇FS(wt)∥2.

Then, taking expectation w.r.t. all randomness, we obtain that

E[FS(wt+1)− FS(wt)]

≤− ηt
2
E[∥∇FS(wt)∥2] +

n(n− 1)

2b
βη2t

(
1 +

b− 1

n(n− 1)

)
E[∥∇FS(wt)∥2]

+
ηt

2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

E[∥∇f(wt; zk, zk′)−∇FS(wt)∥2]

=

(
n(n− 1)

2b
βη2t

(
1 +

b− 1

n(n− 1)

)
− ηt

2

)
E[∥∇FS(wt)∥2]

+
ηt

2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

E[∥∇f(wt; zk, zk′)−∇FS(wt)∥2]

≤− ηt
4
E[∥∇FS(wt)∥2] +

ηt
2n(n− 1)

∑
k,k′∈[n],
k ̸=k′

E[∥∇f(wt; zk, zk′)−∇FS(wt)∥2]

≤− µηt
2

E[FS(wt)− FS(w(S))] + ηtΓ(2θ + 1)K2,

where the second and the third inequalities are caused by ηt ≤ b

2n(n−1)(1+ b−1
n(n−1) )β

, Assumption

3.9 and Lemma C.3 (a). We can easily get

E[FS(wt+1)− FS(w(S))]

≤
(
1− µηt

2

)
E [FS(wt)− FS(w(S))] + Γ(2θ + 1)K2ηt

≤
t∏

i=1

(
1− 1

2
µηi

)
E [FS(w1)− FS(w(S))] +

t∑
i=1

(
Γ(2θ + 1)K2ηi

)
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≤
t∏

i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] + η1Γ(2θ + 1)K2

t∑
i=1

i−1

≤
t∏

i=1

(
1− 1

2
µηi

)
E[FS(w1)− FS(w(S))] + η1Γ(2θ + 1)K2 log(et),

where all inequalities are similar to the proof of Theorem 4.6. Similarly, we let a1 = 1 −
t∏

i=1

(
1− 1

2µηi
)
. With the help of Lemma C.1 (2), we further get

E[∥∇f(wt; zit , zjt)∥2]
≤2βE[FS(wt)]

=2β

(
(1− a1)E[FS(w1)] + a1E[FS(w(S))] + η1Γ(2θ + 1)K2 log(et)

)
.

To simplify the subsequent proof process, we let

τ̂(t) = 2β

(
(1− a1)E[FS(w1)] + a1E[FS(w(S))] + η1Γ(2θ + 1)K2 log(et)

)
.

Besides,

∥wt+1 − w′
t+1∥

=

∥∥∥∥∥∥∥∥wt −
ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(wt; zk, zk′)− w′
t +

ηt
b

∑
k,k′∈[n],
k ̸=k′

αt,k,k′∇f(w′
t; z

′
k, z

′
k′)

∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥wt − w′
t −

ηt
b

∑
k,k′∈[n−2],

k ̸=k′

αt,k,k′∇f(wt; zk, zk′) +
ηt
b

∑
k,k′∈[n−2],

k ̸=k′

αt,k,k′∇f(w′
t; zk, zk′)

∥∥∥∥∥∥∥∥
+

ηt
b

∑
k∈{n−1,n},
k′∈[n−2]

αt,k,k′∥∇f(wt; zk, zk′)−∇f(w′
t; z

′
k, z

′
k′)∥

+
ηt
b

∑
k∈[n−2],

k′∈{n−1,n}

αt,k,k′∥∇f(wt; zk, zk′)−∇f(w′
t; z

′
k, z

′
k′)∥

+
ηt
b

∑
k,k′∈{n−1,n},

k ̸=k′

αt,k,k′∥∇f(wt; zk, zk′)−∇f(w′
t; z

′
k, z

′
k′)∥

≤∥wt − w′
t∥+

ηt
b

∑
k,k′∈[n−2],

k ̸=k′

αt,k,k′∥∇f(wt; zk, zk′)−∇f(w′
t; zk, zk′)∥

+

(
4ηt(n− 2)

b
× 2 +

4ηt
b

)
αt,n−1,n∥∇f(wt; zn−1, zn)∥

≤∥wt − w′
t∥+

βηt
b

∑
k,k′∈[n−2],

k ̸=k′

αt,k,k′∥wt − w′
t∥+

4(2n− 3)ηt
b

αt,n−1,n∥∇f(wt; zn−1, zn)∥

=

1 +
βηt
b

∑
k,k′∈[n−2],

k ̸=k′

αt,k,k′

 ∥wt − w′
t∥+

4(2n− 3)ηt
b

αt,n−1,n∥∇f(wt; zn−1, zn)∥,
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Taking expectation w.r.t. Jt, we can get

EJt
[∥wt+1 − w′

t+1∥]

≤
(
1 +

(n− 2)(n− 3)βηt
b

EJt [αt,n−3,n−2]

)
∥wt − w′

t∥

+
4(2n− 3)ηt

b
EJt

[αt,n−1,n] ∥∇f(wt; zn−1, zn)∥

≤ (1 + βηt) ∥wt − w′
t∥+

8ηt
n

∥∇f(wt; zn−1, zn)∥.

We also take expectation w.r.t. all randomness to get

E[∥wt+1 − w′
t+1∥] ≤ (1 + βηt)E[∥wt − w′

t∥] +
8ηt
n

E[∥∇f(wt; zn−1, zn)∥].

We further take summation from t = 1 to T − 1 and use Lemma C.2 (c) to obtain

E[∥wT − w′
T ∥] ≤

T−1∑
t=1

(
T−1∏

k=t+1

(1 + βηt)

)
8ηt
n

√
τ̂(t)

≤
T−1∑
t=1

(
exp

(
β

T−1∑
k=t+1

ηt

))
8ηt
n

√
τ̂(T − 1)

≤ exp

(
β

T−1∑
k=1

ηt

)
8

n

√
τ̂(T − 1)

T−1∑
t=1

ηt

≤ exp (βη1 log(e(T − 1)))
8

n

√
τ̂(T − 1)η1 log(e(T − 1))

≤ (e(T − 1))βη1
8

n

√
τ̂(T − 1)η1 log(e(T − 1))

≤ 8η1
n

(e(T − 1))βη1
√
τ̂(T − 1) log(e(T − 1)),

that is,

E[∥wT − w′
T ∥]

≤O

(
1

n
β− 1

2T

b

2n(n−1)(1+ b−1
n(n−1) ) log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

When E[FS(w(S))] ≤ O(n−1),

E[∥wT − w′
T ∥] ≤ O

(
(βn)−1T

b

2n(n−1)(1+ b−1
n(n−1) ) Γ(2θ + 1)

1
2 (log T )

3
2

)
.

□

Proof of Corollary 4.10: By Theorem 4.1 (b) and Theorem 4.9, we can get that

|E[F (wT )− FS(wT )]|

≤2E[FS(wT )] +
(4θ)θK

n(n− 1)

∑
i,j∈[n],
i̸=j

E [∥wT − w′
T ∥]

≤O

(
E[FS(wT )] +

1

n
β− 1

2T

b

2n(n−1)(1+ b−1
n(n−1) ) (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

When E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
,

|E[F (wT )− FS(wT )]| = O

(
(βn)−1T

b

2n(n−1)(1+ b−1
n(n−1) ) (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.
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□

Proof of Theorem 4.11: Without loss of generality, we can let Si,j = Sn−1,n. and Jt =
{(it,1, jt,1), (it,2, jt,2), ..., (it,b, jt,b)}, t ∈ N. According to Lemma C.1 (1) and taking expectation
w.r.t. Jt, we have

EJt
[FS(wt+1)− FS(wt)]

≤EJt

[
⟨wt+1 − wt,∇FS(wt)⟩+

1

2
β∥wt+1 − wt∥2

]

=EJt

−ηt
b

b∑
m=1

⟨∇f(wt; zit,m , zjt,m),∇FS(wt)⟩+
βη2t
2

∥∥∥∥∥1b
b∑

m=1

∇f(wt; zit,m , zjt,m)

∥∥∥∥∥
2


≤− ηt∥∇FS(wt)∥2 + βη2tEJt

∥∥∥∥∥1b
b∑

m=1

∇f(wt; zit,m , zjt,m)−∇FS(wt)

∥∥∥∥∥
2
+ βη2t ∥∇FS(wt)∥2

≤− 1

2
ηt∥∇FS(wt)∥2 + βη2tEJt

[
∥∇f(wt; zit,1 , zjt,1)−∇FS(wt)∥2

]
≤− µηt (FS(wt)− FS(w(S))) + βη2tEJt

[
∥∇f(wt; zit,1 , zjt,1)−∇FS(wt)∥2

]
,

where the third inequality is due to ηt ≤ b

2n(n−1)(1+ b−1
n(n−1) )β

≤ 1
2β and the following inequality,

i.e.,

EJt

∥∥∥∥∥1b
b∑

m=1

∇f(wt; zit,m , zjt,m)−∇FS(wt)

∥∥∥∥∥
2


≤1

b

b∑
m=1

EJt

[∥∥∇f(wt; zit,m , zjt,m)−∇FS(wt)
∥∥2]

=EJt

[∥∥∇f(wt; zit,1 , zjt,1)−∇FS(wt)
∥∥2] .

Then, taking expectation w.r.t. all randomness, based on Lemma C.3 (a) and for any m ∈ [b], we
obtain that

E[FS(wt+1)− FS(wt)]

≤− µηtE [FS(wt)− FS(w(S))] + βη2tE
[
∥∇f(wt; zit,1 , zjt,1)−∇FS(wt)∥2

]
≤− µηtE [FS(wt)− FS(w(S))] + 2βη2tΓ(2θ + 1)K2,

which is similar to the proof of Theorem 4.4. Therefore,

E[FS(wt+1)− FS(w(S))]

≤(1− µηt)E[FS(wt)− FS(w(S))] + 2βη2tΓ(2θ + 1)K2

=
(
1− µη1

t

)
E[FS(wt)− FS(w(S))] + 2βη21Γ(2θ + 1)K2t−2.

We multiply both sides of the above inequality by t(t− 1
2µη1) and get

t

(
t− 1

2
µη1

)
E[FS(wt+1)− FS(w(S))]

≤
(
t− 1

2
µη1

)
(t− µη1)E[FS(wt)− FS(w(S))] + 2βη21Γ(2θ + 1)K2.

Then, we can take a summation from t = 1 to T − 1 to get

(T − 1)

(
T − 1− 1

2
µη1

)
E[FS(wT )− FS(w(S))]

≤
(
1− 1

2
µη1

)
(1− µη1)E[FS(w1)− FS(w(S))] + 2βη21Γ(2θ + 1)K2(T − 1)
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≤
(
1− 1

2
µη1

)
(1− µη1)E[FS(w1)− FS(w(S))] + 2βη21Γ(2θ + 1)K2(T − 1).

Therefore,

E[FS(wT )− FS(w(S))]

≤
(1− 1

2µη1)(1− µη1)

(T − 1)(T − 1− 1
2µη1)

E[FS(w1)] +
2βη21Γ(2θ + 1)K2

(T − 1− 1
2µη1)

=O
(

1

T 2
+

Γ(2θ + 1)

βT

)
.

We finish the proof of optimization error bound.

Now, we prove excess risk bound. By Corollary 4.10, we get that

|E[F (wT )− FS(wT )]|

≤O

(
E[FS(wT )] +

1

n
β− 1

2T

b

2n(n−1)(1+ b−1
n(n−1) ) (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
.

Then, considering E[FS(w(S))] ≤ E[FS(wT )] = O
(
n−1

)
, we have

|E[F (wT )− F (w∗)]|
≤|E[FS(wT )− FS(w(S))]|+ |E[F (wT )− FS(wT )]|

≤O
(

1

T 2
+

Γ(2θ + 1)

βT
+ E[FS(wT )]

+
1

n
β− 1

2T

b

2n(n−1)(1+ b−1
n(n−1) ) (4θ)θ log T

√
a1E[FS(w(S))] + β−1Γ(2θ + 1) log T

)
≤O

(
Γ(2θ + 1)

βT
+ (βn)−1T

b

2n(n−1)(1+ b−1
n(n−1) ) (4θ)θ(Γ(2θ + 1))

1
2 (log T )

3
2

)
.

The proof is completed. □

C.7 DISCUSSIONS ABOUT OUR RESULTS

Table 4: Comparisons of our results (
√

-the reference has such a property; ×-the reference
hasn’t such a property; Cor.-Corollary; Thm.-Theorem; L-the parameter of Lipschitz continu-
ity; β-the parameter of smoothness; θ-the tail parameter of heavy-tailed gradient noise; b′ =

b

2n(n−1)(1+ b−1
n(n−1) )

). Note that smoothness, as an indispensable assumption for the whole paper,

is not included in this table.

Algorithm
Assumptions

Generalization Optimization
L µ θ

SGD (Cor. 4.3)
√

× × O
(
(βn)−1L2T

1
2 log T

)
—

SGD (Cor. 4.5) × ×
√

O
(
(βn)−1(4θ)θ(Γ(2θ + 1))

1
2T

1
2 (log T )

3
2

)
—

SGD (Cor. 4.7,
Thm. 4.8) ×

√ √
O
(
(βn)−1(4θ)θ(Γ(2θ + 1))

1
2T

1
4 (log T )

3
2

)
O
(

Γ(2θ+1)
βT

)
Minibatch SGD

(Cor. 4.10,
Thm. 4.11)

×
√ √

O
(
(βn)−1(4θ)θ(Γ(2θ + 1))

1
2T b′(log T )

3
2

)
O
(

Γ(2θ+1)
βT

)

Table 4 presents all our generalization and optimization results for four different cases. The first
case considers the general non-convex pairwise SGD involving bounded gradient condition. Its
generalization bound is comparable to or even better than some previous results for pairwise SGD
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with non-convex loss functions (see Table 1). The second case introduces the heavy-tailed gradient
noise condition to remove the Lipschitz continuity assumption. Due to the non-convexity of the loss
function, there is no way to ensure the access to a global minimizer, which is the reason why we
don’t study the optimization error bounds of the first two cases. The third case further considers the
gradient dominance condition, a common condition in non-convex optimization, to get the sharper
bounds for non-convex, heavy-tailed pairwise SGD in terms of ℓ1 on-average model stability tool.
In the fourth case, we extend the analysis of the third case to the minibatch SGD to derive the first
stability-based near-optimal bounds.

C.7.1 DISCUSSIONS ON SOME DEPENDENCIES OF OUR RESULTS

Dependencies on T . From Corollary 4.5 to 4.7, we can find that the dependence on T is improved
from T 1/2 to T 1/4. The key of this transition is the upper bound of step size η1. For Corollary
4.5, we set η1 ≤ 1

2β with the reason that the term ∥∇FS(wt)∥2 can be removed without any cost,
which can be found in the second inequality of Appendix C.4. For Corollary 4.7, the upper bound
of η1 is set to be tighter than Corollary 4.5. In this case, if we directly remove ∥∇FS(wt)∥2, the
bound is equal to Corollary 4.5, which is meaningless. So we introduce the additional assumption,
PL condition, to decompose ∥∇FS(wt)∥2. The bound of Corollary 4.7 demonstrates that the tighter
upper bound of η1 combined with PL condition can lead to the tighter stability bound.

Dependencies on β. For all results (from Theorem 4.2 to Theorem 4.11), the dependencies are β−1,
which are similar and even tighter than Shen et al. (2019); Lei et al. (2021b)

Dependencies on θ. In our work, sub-Weibull gradient noise assumption is introduced to derive
the monotonic dependence of the bound on θ, which is consistent with the papers we mentioned
(Nguyen et al., 2019; Hodgkinson & Mahoney, 2021). However, inspired by Raj et al. (2023b),
our dependence on θ essentially belongs to the dependence of the variance of loss function on θ.
Except for the variance, there are also some dependences of other parameters on θ, such as the
smoothness parameter, which need to be developed. These dependences may be not-monotonic as
Raj et al. (2023a;b). Besides, other heavy-tailed distributions (such as α-stable distributions Raj
et al. (2023a;b)) will be considered in our future work to further explore the relationship between
heavy tails and generalization performance.

Dependencies on µ. For the results from Theorem 4.6 to Theorem 4.11, there is a dependence
1 −

∏t
i=1

(
1− 1

2µηi
)

on the PL parameter µ. Obviously, this dependence is less than 1 and has a
decreasing trend as µ decreases. When E[FS(w(S))] = n−1, this dependence can be omitted.

C.7.2 DETAILED COMPARISONS WITH LEI ET AL. (2021B)

In the main text, we mainly compare our results with (Lei et al., 2021b). It is also necessary to make
detailed comparisons from other aspects, such as tools, assumptions, algorithms.

1)Different stability tools: We uses ℓ1 on-average model stability instead of uniform stability of
Lei et al. (2021b).

2)Different assumption: We make a sub-Weibull gradient noise assumption to remove Lipschitz
condition, which is one of our main contributions. While Lei et al. (2021b) isn’t consider it. Besides,
we compare the bound with PL condition and the one without PL condition to theoretically analyze
the effect of PL condition.

3)Minibatch SGD: Our analysis for SGD is extended to the minibatch case, while Lei et al. (2021b)
isn’t consider it.

4)Better expectation bounds: Lei et al. (2021b) provided a uniform stability bound
O
(
(βn)−1L2T

βc
βc+1

)
, where the constant c = 1

µ (µ is the parameter of PL condition). In gen-
eral, µ is typically a very small value (Examples 1 and 2 in Lei & Ying (2021)) which leads to a
large value of c. Thus, T

βc
βc+1 is closer to T than the dependencies of our bounds on T . In other

words, our bounds are tighter than Lei et al. (2021b).
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5)High probability bound: Our proof can developed to establish high probability bounds which are
provided in Appendix C.8. The orders of these high probability bounds are similar to our previous
bounds in expectation.

C.7.3 COMPARISONS WITH THE RESULTS OF POINTWISE LEARNING

Except for the comparisons with the related bounds for pairwise SGD, it is necessary to make some
comparisons with some current results of pointwise SGD. We find that our results can be directly ex-
tended to the case of pointwise learning. Therefore, we provide the comparisons with some stability
bounds of non-convex pointwise learning (Hardt et al. (2016); Zhou et al. (2022) in Vs. Theorem
4.2) and make a discussion about the non-convex stability-based generalization work with heavy
tails ((Raj et al., 2023a;b) in Vs. Theorems 4.4, 4.6, 4.9).

Vs. Theorem 4.2 Hardt et al. (2016) developed the uniform stability bound
O
(
(βn)−1L

2
βc+1T

βc
βc+1

)
under similar conditions, where the order depends on the smooth-

ness parameter β and a constant c related to step size ηt. If log T ≤ L
2

βc+1−1T
βc

βc+1−
1
2 , the bound

of Theorem 4.2 is tighter than theirs. A stability bound O
(
(nL)−1

√
L+ ES [v2S ] log T

)
(Zhou

et al., 2022) was established in the pointwise setting. Although it is T 1/2-times larger than the
bound of Theorem 4.2, (Zhou et al., 2022) made a more stringent limitation to the step size ηt, i.e.,
ηt = c

(t+2) log(t+2) with 0 < c < 1/L. If we make the same setting, we will get a similar bound
with (Zhou et al., 2022).

Vs. Theorems 4.4, 4.6, 4.9 As far as we know, there is a gap for the non-convex stability-based
generalization work under the sub-Weibull gradient noise setting in the pointwise learning. For other
heavy-tailed distributions, e.g., α-stable distributions, there are a few papers (Raj et al., 2023a;b)
studied the stability-based generalization bounds and made the conclusion that the dependence of
generalization bound on the heavy-tailed parameter is not monotonic. Especially, Raj et al. (2023b)
analyzed the dependencies of several constants on heavy-tailed parameter. Inspired by Raj et al.
(2023b), we will further study the dependencies of other parameters (e.g., smoothness parameter β)
on θ, except for the monotonic dependence of the variance of the gradient for the loss function on θ
in our bounds.

C.8 PROOF OF HIGH PROBABILITY BOUNDS

Theorem C.5. Let S, S′ and Si,j be constructed as Definition 3.5. Assume that pairwise SGD
A, associated with loss function whose gradient noise obeys subW (θ,K), is ℓ1 on-average model
ϵ-stable without expectation. Then, we have

|F (A(S))− FS(A(S))| ≤ (4θ)θKϵ+ 2FS(A(S)).

Proof of Theorem C.7: Similar with the proof of Theorem 4.1 (b), we can get

|F (A(S))− FS(A(S))|

≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

|f(A(Si,j); zi, zj)− f(A(S); zi, zj)|

≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

(
|f(A(Si,j); zi, zj)− FSi,j

(A(Si,j))− (f(A(S); zi, zj)− FS(A(S)))|

+ |FSi,j (A(Si,j))− FS(A(S))|
)

≤ 1

n(n− 1)

∑
i,j∈[n],
i ̸=j

(
(4θ)θK∥A(Si,j)−A(S)∥

)
+ 2FS(A(S))
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≤(4θ)θKϵ+ 2FS(A(S)),

where ϵ denotes the on-average model stability bound without expectation. □

Theorem C.6. Given S, S′ and Si,j described in Definition 3.5, let {wt} and {w′
t} be produced by

(5) on S and Si,j respectively, where ηt = η1t
−1, η1 ≤ (2β)−1, and let the parameters A(S) = wT

and A(Si,j) = w′
T after T iterations. Assume that the loss function f(w; z, z′) is β-smooth. Under

Assumption 3.8, for any δ ∈ (0, 1), the following inequality holds with probability 1− δ

1

n(n− 1)

∑
i,j∈[n],i̸=j

E [∥wT − w′
T ∥]

≤O
(
(βn)−1T

1
2 logθ(1/δ) log T

(
g(θ) + (g(2θ))

1
2 (log T )

1
2

))
,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1.

Proof of Theorem C.8: From Equation (8), the following inequality holds

∥wt+1 − w′
t+1∥

≤(1 + ηtβ)∥wt − w′
t∥+

8n− 12

n(n− 1)
ηt (∥∇f(wt; zit , zjt)−∇FS(wt)∥+ ∥∇FS(wt)∥) ,

We will firstly consider the term ∥∇FS(wt)∥. From Equality (9), we know that

FS(wt+1) ≤ FS(w1) +

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
∥∇f

(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2,

where 1
2ηt(∇f (wt; zit , zjt) − ∇FS (wt))

2 ∼ subW
(
2θ, 1

2ηtK
2
)

and βη2t (∇f (wt; zit , zjt) −
∇FS (wt))

2 ∼ subW (2θ, βη2tK
2). According to Lemma C.4, we get the following inequality

with probability at least 1− δ

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
∥∇f

(
wt′ ; zit′ , zjt′

)
−∇FS (wt′) ∥2

≤K2g(2θ) log2θ(2/δ)

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
,

where g(θ) = (4e)θ for θ ≤ 1 and g(θ) = 2(2eθ)θ for θ ≥ 1. Thus,

FS(wt+1) ≤FS(w1) +K2g(2θ) log2θ(2/δ)

t∑
t′=1

(
1

2
ηt′ + βη2t′

)
≤FS(w1) +K2g(2θ) log2θ(2/δ)

(
1

2
η1 log(et) + βη21

)
,

where the second inequality is due to Lemma C.2(b), (c). Similar with the second inequality of
Lemma C.1, we have

1

2β
∥∇FS(w)∥2 ≤ FS(w)− inf

w′
FS(w

′) ≤ FS(w).

Thus,

∥∇FS(wt)∥

≤
√

2βFS(wt) ≤

√
2β

(
FS(w1) +K2g(2θ) log2θ(2/δ)

(
1

2
η1 log(e(t− 1)) + βη21

))
.

Let τ(θ, t) =
√
2βFS(wt) ≤

√
2β
(
FS(w1) +K2g(2θ) log2θ(2/δ)

(
1
2η1 log(e(t− 1)) + βη21

))
.

Then,

∥wT − w′
T ∥

33



Under review as a conference paper at ICLR 2024

≤(1 + ηT−1β)∥wT−1 − w′
T−1∥+

8n− 12

n(n− 1)
ηT−1

(
∥∇FS(wT−1)∥

+ ∥∇f(wT−1; ziT−1
, zjT−1

)−∇FS(wT−1)∥
)

≤(1 + ηT−1β)∥wT−1 − w′
T−1∥+

8n− 12

n(n− 1)
ηT−1

(
τ(θ, T − 1)

+ ∥∇f(wT−1; ziT−1
, zjT−1

)−∇FS(wT−1)∥
)

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1

T−1∑
t=1

ηt (∥∇f(wt; zit , zjt)−∇FS(wt)∥+ τ(θ, T − 1))

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1

(
T−1∑
t=1

ηt∥∇f(wt; zit , zjt)−∇FS(wt)∥+
T−1∑
t=1

ηtτ(θ, T − 1)

)

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1

(
Kg(θ) logθ(2/δ)

T−1∑
t=1

ηt + τ(θ, T − 1)

T−1∑
t=1

ηt

)

≤ 8n− 12

n(n− 1)
(e(T − 1))βη1η1

(
Kg(θ) logθ(2/δ) log(e(T − 1)) + τ(θ, T − 1) log(e(T − 1))

)
,

where the fifth inequality is derived by ηt(∇f (wt; zit , zjt) − ∇FS (wt)) ∼ subW (θ, ηtK) and
Lemma C.4. Then, the ℓ1 on-average model stability without expectation is proofed completely.
□

Corollary C.7. Under Assumptions 3.7 (b) and 3.8, for the pairwise SGD (5) with T iterations, the
following inequality holds with probability 1− δ, δ ∈ (0, 1)

|F (wT )− FS(wT )| ≤ O
(
(βn)−1(4θ)θT

1
2 logθ(1/δ) log T

(
g(θ) + (g(2θ))

1
2 (log T )

1
2

)
+ FS(wT )

)
.

Proof of Corollary C.9: This corollary can be directly derived by combining the above two theo-
rems, so we omit its proof. □

D OUTLINES OF ALGORITHMIC STABILITY

The concept of algorithmic stability analysis was put forward as early as the end of the 20th century
(Rogers & Wagner, 1978), and has been used for understanding the generalization performance of
learning algorithms (Bousquet & Elisseeff, 2002; Elisseeff et al., 2005; Rakhlin et al., 2005). Bous-
quet & Elisseeff (2002) proposed the hypothesis stability, error stability and uniform stability, and
various variants are designed in the next 20 years (Lei & Ying, 2020; Shalev-Shwartz et al., 2010;
Hardt et al., 2016; Liu et al., 2017; Kuzborskij & Lampert, 2018; Chen et al., 2018; Ramezani-
Kebrya et al., 2018; Foster et al., 2019; Deng et al., 2021). Hardt et al. (2016) built the connection
between the generalization error of a randomized algorithm and its stability, and prove that SGD
is uniformly stable for both convex and non-convex optimization. Shalev-Shwartz et al. (2010) de-
signed the on-average stability for non-trivial learning problems, and Kuzborskij & Lampert (2018)
gave a similar definition of on-average stability, the first data-dependent notion of algorithmic stabil-
ity, which allows us to study generalization performance with the joint consideration of the proper-
ties of the learning algorithm and data-generating distribution. Moreover, some novel definitions are
introduced in to capture the stability of model parameter directly including uniform model stability
(called uniform argument stability (Liu et al., 2017)) and on-average model stability (Lei & Ying,
2020). In addition, Deng et al. (2021) proposed local elastic stability as a new distribution-dependent
stability to get exponential generalization bounds.

Except for the above common stabilities for pointwise learning, they can be extended to the case of
pairwise learning. For example, Shen et al. (2019) and Yang et al. (2021) provided the definitions
of uniform stability (10) and uniform model stability (11) for pairwise learning, respectively, whose
definitions are listed as follows.

sup
z,z̃∈Z

E[|f(A(S); z, z̃)− f(A(Si); z, z̃)|] ≤ ϵ,∀S, S̄ ∈ Zn,∀i ∈ [n] (10)
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E[∥A(S)−A(Si)∥] ≤ ϵ,∀S, S̄ ∈ Zn,∀i ∈ [n] (11)
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