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ABSTRACT

The bird’s-eye view (BEV) representation enables multi-sensor features to be
fused within a unified space, serving as the primary approach for achieving com-
prehensive 3D perception. However, the discrete grid representation of BEV leads
to significant detail loss and limits feature alignment and cross-modal information
interaction in multimodal fusion perception. In this work, we break from the
conventional BEV paradigm and propose a new universal framework for multi-
modal fusion based on 3D Gaussian representation. This approach naturally uni-
fies multi-modal features within a shared and continuous 3D Gaussian space, ef-
fectively preserving edge and fine texture details. To achieve this, we design a
novel forward-projection-based multi-modal Gaussian initialization module and a
shared cross-modal Gaussian encoder that iteratively updates Gaussian properties
based on an attention mechanism. GaussianFusion is inherently a task-agnostic
model, with its unified Gaussian representation naturally supporting various 3D
perception tasks. Extensive experiments demonstrate the generality and robust-
ness of GaussianFusion. On the nuScenes dataset, it outperforms the 3D object
detection baseline BEVFusion by 2.6 NDS. Its variant surpasses GaussFormer on
3D semantic occupancy with 1.55 mIoU improvement while using only 30% of
the Gaussians and achieving a 450% speedup.

1 INTRODUCTION

Fusing complementary signals captured by different sensors is essential for autonomous driving
perception systems. Leveraging the distinct characteristics of each sensor helps reduce prediction
uncertainty, leading to more accurate and robust perception outcomes Liu et al. (2023b); Bai et al.
(2022); Yan et al. (2023). Since different sensors present data in varying formats, such as cameras
providing perspective semantic data and Lidar capturing 3D spatial information, multi-modal fusion
faces significant challenges due to these view discrepancies. To address this, some methods Vora
et al. (2020); Bai et al. (2022); Li et al. (2024); Wang et al. (2024b) achieve multi-modal 3D object
detection through point-level fusion. However, point-level fusion strategies are generally unsuitable
for semantics-oriented 3D perception tasks like 3D semantic occupancy prediction. Consequently,
recent approaches aim to construct unified representations for multi-modal feature fusion.

Table 1: Impact of BEV size on model performance
Method BEV size Grid size Memory→ NDS↑

BEVFusion
100!100 1.008m 3228 M 70.5
200!200 0.504m 5140 M 71.4
400!400 0.252m 20560 M 72.7

GaussianFusion
100!100 1.008m 3576 M 73.1
200!200 0.504m 5418 M 74.0
400!400 0.252m 6151 M 74.4

Recently, the shared Bird’s Eye View
(BEV) space has emerged as a promis-
ing direction for fusing cross-modal
features to enable task-agnostic learn-
ing. Several existing fusion methods
Liu et al. (2023b); Wang et al. (2023a),
such as BEVFusion Liu et al. (2023b),
integrate multimodal information via
CNNs and feature concatenation, while
MetaBEV Ge et al. (2023) mitigates
cross-modal feature misalignment by in-
troducing meta-BEV queries. However, despite its widespread adoption in multimodal 3D percep-
tion, the BEV representation inherently suffers from limitations in information expression.
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Figure 1: Comparison of the discrete BEV repre-
sentation fusion paradigm Liu et al. (2023b) and
our proposed continuous Gaussian representation
fusion paradigm. B, G, C, L, and F denote BEV,
Gaussian, Camera, Lidar, and Fusion.

BEV directly discretizes and quantizes data,
leading to inevitable information loss. Dur-
ing feature extraction, perception data are pro-
jected onto a fixed-resolution BEV grid, which
compresses spatial information. This issue be-
comes particularly severe when the BEV res-
olution is low, as it directly impacts model
performance by failing to adequately preserve
fine-grained scene structures. While increas-
ing the BEV resolution will bring unacceptable
computational overhead, as shown in Table 1.
Additionally, BEV fusion strategies often rely
on simple feature concatenation or weighted
summation, which are insufficient for effective
cross-modal feature interaction and alignment,
ultimately leading to suboptimal fusion perfor-
mance, as illustrated in Fig. 1(a).

To address these challenges, we introduce a fu-
sion approach based on 3D Gaussian Splatting
(3DGS) Kerbl et al. (2023) to achieve more
fine-grained information modeling and more
natural multimodal alignment. As shown in
Fig. 1(b), 3DGS employs continuous Gaus-
sian distributions to represent the scene, pre-
serving rich geometric and semantic informa-
tion in the Gaussian stage and preventing the
early quantization-induced information loss seen in BEV-based methods. Unlike direct BEV quan-
tization, 3DGS aggregates information before its final projection onto the BEV grid, allowing cross-
modal features to interact at a higher-dimensional level and capturing finer spatial structures prior to
quantization, Table 1 shows the effectiveness of this strategy. Moreover, the covariance matrices of
Gaussians enable adaptive modeling of uncertainty, enhancing the representation of object shapes
and boundaries.

Specifically, inspired by Philion & Fidler (2020), we propose a forward projection Gaussian initial-
ization strategy to better initialize camera Gaussian representations in 3D space rather than using
random initialization H et al. (2024). To further achieve continuous alignment and cross-modal fea-
ture enhancement, we construct a shared Gaussian encoder. The shared Gaussian encoder supports
cross-feature learning of 3D Gaussian features from different modalities, where the covariance ma-
trix of each 3D Gaussian adaptively captures feature differences between modalities and iteratively
updates the Gaussian parameters. Camera and LiDAR Gaussians are naturally fused via a Gaussian
mixture model, and a high-performance Gaussian-to-voxel fusion module aggregates surrounding
Gaussians to generate voxel features, enabling task-agnostic 3D perception. We conduct extensive
experiments on BEV object detection and 3D occupancy prediction tasks to validate the generality
of the GaussianFusion. Main contributions are as follows:

• We propose the first unified 3D Gaussian representation multi-modal fusion framework,
where cross-view and cross-modal Gaussian representations are naturally aggregated
through the Gaussian mixture model.

• A progressive update strategy is designed to optimize the multi-modal 3D Gaussian prop-
erties iteratively.

• The shared 3D Gaussian encoder enables alignment and complementary enhancement of
cross-modal features, allowing Gaussian representations from both modalities to achieve
consistent uncertainty within a unified space.

• Our GaussianFusion achieves state-of-the-art benchmarks in task-agnostic methods on var-
ious 3D perception tasks within the nuScenes dataset.
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2 RELATED WORK

2.1 MULTIMODAL 3D PERCEPTION

We categorize current multimodal fusion methods into object-centric methods and dense BEV meth-
ods. Object-centric methods Vora et al. (2020); Chen et al. (2023); Zhou & T (2023); Yin et al.
(2024); Li et al. (2024); Wang et al. (2024b) are specifically designed for tasks such as 3D object
detection or tracking. Advanced object-centric Li et al. (2024); Wang et al. (2024b) methods typi-
cally use 2D detection results on camera to enhance multi-modal fusion 3D detection. Additionally,
some works Yang et al. (2022); Yan et al. (2023) use query-based 3D detection decoders to learn
features from perspective images and Lidar BEV features directly. However, these object-centric
methods cannot easily generalize to dense semantic tasks such as BEV map segmentation and 3D
occupancy prediction. Dense BEV methods Li et al. (2022a); Liu et al. (2023b); Liang et al. (2022);
Chen et al. (2022); Zhao et al. (2024b); Ge et al. (2023); Jiao et al. (2023); Wang et al. (2023a)
naturally adapt to various tasks. Both BEVFusion Liu et al. (2023b) and UniTRWang et al. (2023a)
achieve multi-modal BEV fusion perception through CNN and feature concatenation in the BEV
space. In addition, MetaBEV Ge et al. (2023) proposed a learnable cross-attention mechanism to
generate unified BEV features. BEV or 3D voxel also provides a unified representation for 3D occu-
pancy prediction. Some methods design fusion modules Pan et al. (2024); Wang et al. (2023c); Ming
et al. (2024) based on voxel, such as adaptive fusion Wang et al. (2023c), etc. for multi-modal 3D
occupancy prediction. There are also many camera-only methods Zhao et al. (2024a); Wang et al.
(2024a); Li et al. (2023); Lu et al. (2023); Tian et al. (2024); Li et al. (2025a); Ma et al. (2024b);
Cao et al. (2024); Liu et al. (2024); Ma et al. (2024a) for 3D semantic occupancy prediction based
on voxel representation. However, discrete voxel representations may result in significant detail loss
and hinder effective multimodal complementary fusion.

2.2 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) Kerbl et al. (2023) combines the advantages of implicit neural ra-
diance fields Mildenhall et al. (2021) and voxel-based explicit radiance fields Fridovich-Keil et al.
(2022); Müller et al. (2022) and is widely applied in 3D reconstruction of 2D image. 3DGS uses a set
of Gaussian functions to capture the geometric shapes and semantic of different objects or regions
within a scene, effectively representing the scene. Based on this, some works Ye et al. (2025); Hu
et al. (2024) leverage 3DGS’s multi-view synthesis capabilities to achieve 3D scene segmentation.

Recent studies Gan et al. (2024); Chabot et al. (2024); H et al. (2024); Zuo et al. (2024); Liu et al.
(2025) have applied 3DGS to vision-only 3D semantic occupancy prediction, BEV segmentation,
and end-to-end autonomous driving. However, these methods rely on randomly initialized Gaus-
sians. For example, GaussianFormer H et al. (2024) randomly initializes and re-predicts Gaussian
parameters in each iteration, making fine-tuning difficult and limiting accurate scene representation.
Moreover, these methods do not fully exploit the advantages of Gaussian Mixture Models (GMM)
for seamless multimodal Gaussian fusion. In contrast, we propose a forward-projection-based 3DGS
parameter initialization and a shared optimization model, leveraging GMM to fuse multi-view cam-
era and LiDAR features within a shared space, ultimately enabling dense semantic understanding
and object-centric multitask perception.

3 METHODS

3.1 OVERALL ARCHITECTURE

The overall pipeline of GaussianFusion is illustrated in Fig. 2, with the goal of fusing multimodal
features through 3D Gaussian representations, which naturally preserve both geometric and semantic
information. We first initialize separate 3D Gaussian representations for camera and Lidar, denoted
as Gc ↓ Qc and GL ↓ QL, within a unified space. Then, the multimodal Gaussian sets are processed
through a shared Gaussian Encoder, enabling the integration of semantic and geometric information
from both modalities. Finally, the learned 3D Gaussian sets Ĝc ↓ Q̂c and ĜL ↓ Q̂L are fused within
the unified Gaussian space and fed into task-specific heads to perform 3D perception. Fig. 2 shows
the single-task training setup, while multi-task joint training is detailed in the appendix.
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Figure 2: Overview of the GaussianFusion framework. Initial Gaussians are refined by a shared
encoder and fused in Gaussian space, followed by task-specific heads for 3D perception.

3.2 GAUSSIAN INITIALIZATION

BEVFusion Liu et al. (2023b) projects multimodal features into discrete BEV space for fusion.
In contrast, inspired by the Gaussian mixture model paradigm of 3DGS Kerbl et al. (2023) for
modeling scene geometry and semantics, we utilize two Gaussian sets, Gc and GL, within a shared
space to represent surround-view camera and Lidar information, respectively, to achieve a seamless
multimodal fusion.

Camera Gaussian Initialization with Forward Projection. The properties of every single 3D
Gaussian function are defined by a mean µ ↔ R3, scale s ↔ R3, and rotation vectors r ↔ R4.
Given N surround camera view, each camera’s view can be represented by a set of 3D Gaussian
distributions Gc,i ↔ RDg→Dc→Hc→Wc |i = 1, 2, · · · , N , where Dg = µ + s + r, Dc denotes the
number of discrete depths for camera, as shown in Fig. 2(a), a Gaussian function is assigned to
a depth point. It is worth noting that this is completely different from GausianFormer H et al.
(2024), which randomly initializes a set of Gaussians in space, which makes model optimization
more difficult. Specifically, inspired by Huang & Huang (2022b;a); Liu et al. (2023b); Philion &
Fidler (2020), given surround camera input features Fc,i ↔ RC→Hc→Wc , i = 1, 2, · · · , N , where
C, Hc and Wc represent the channel, height, and width of the camera features. Fc,i is fed to LSS
Philion & Fidler (2020) to obtain the depth distribution Di ↔ RDc→Hc→Wc , i = 1, 2, · · · , N , Di

are then used as the initial mean µ of the Gaussian, which is the location of every single Gaussian
center. For s and r, we initialize them randomly. And Gc = {Gc,i},Gc ↔ RN→Dg→Dc→Hc→Wc .

The image features Fc,i are processed through a context network composed of multiple convolu-
tional layers to obtain the semantic features F

↑
c,i

. Next, an inner product is computed between
Di and F

↑
c,i

to derive the features at each depth point in 3D space, denoted as initial query fea-
tures Qc = {Qc,i ↔ RC→Dc→Hc→Wc |i = 1, 2, · · · , N}. Then, Qc are associated with Gaussian
(Gc ↓ Qc). For a given Gaussian set (gc ↓ qc, gc ↔ Gc, qc ↔ Qc), the feature at a point p = (x, y, z)
within its elliptical space are:

gc(p;µ, s, r) = exp
(
↗ 1

2
(p↗ µ)T!↓1(p↗ µ)

)
qc, (1)

where ! = RSSTRT
, S = diag(s), and R = q2r(r). !, diag(·), and q2r(·) represent the

covariance matrix, the function that constructs a diagonal matrix from a vector, and the function that
transforms a quaternion into a rotation matrix, respectively.

Lidar Gaussian initialization. Lidar’s BEV space naturally provides an initialization for the Gaus-
sian mean µ. And, s and r are initialized randomly. The Gaussian initialization for Lidar is for-
mulated as GL ↔ RC→HL→WL . Since directly extracting information from the massive raw lidar
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point clouds to construct 3D Gaussian representations is both difficult and computationally inten-
sive, grid-based representations offer an effective approach to alleviate these challenges. For query,
given the Lidar features BL ↔ RC→HL→WL , where C,HL, and WL represent the channel, height,
and width of the BEV features, respectively. Then, we fed the BEV feature BL into a multilayer
perceptron (MLP) to obtain Lidar query QL, which is associated with the initial query features for
each Gaussian function (GL ↓ QL).

3.3 GAUSSIAN ENCODER

The 3D Gaussian distribution effectively represents the scene, and we have designed a Gaussian
encoder to optimize both the properties and query features. This encoder includes a deformable
attention with Gaussian module and a Gaussian Updating module. The Gaussian encoder is stacked
multiple times to update the Gaussian properties in an iterative refinement paradigm. Additionally,
to better fuse multi-modal information, we employ a shared Gaussian encoder to simultaneously pro-
cess the Gaussian distributions Gc and GL, as the two modalities are ultimately intended to converge
towards similar Gaussian distributions. Specifically, we merge Gc and GL into the batch dimension.

Deformable Attention with Gaussian. As shown in Fig. 2(b), after obtaining the Gaussian distri-
bution sets and corresponding query features (Gc ↓ Qc,GL ↓ QL, we first encode Gi ↓ Qi, i = c, L,
into a new query Q̂. Specifically, to capture the position and geometric information of the Gaussian
functions within the feature maps, we employ an MLP to encode the Gaussian properties. The new
query Q̂ is then obtained by adding the encoded properties Pq to the original query Qi:

Q̂i = MLP(G) +Qi, i = c, L, (2)

where the MLP as the position embedding (PE) transforms the dimensions from RDg to RC . We
obtain sets Gi ↓ Q̂i.

Projection

Mean ! 
Offset points

(a) Deformable Attention w. Gaussian (b) Vanilla Deformable Attention

Figure 3: Comparison of the vanilla deformable attention
Zhu et al. (2020) and our proposed deformable attention
with Gaussian.

Furthermore, we adopt deformable
attention with Gaussian Zhu et al.
(2020); H et al. (2024) to extract fea-
tures, as shown in Fig.3. Vanilla de-
formable attention (Fig.3(b)) initial-
izes sampling locations with an ap-
proximately ”square/kernel-like” re-
gion and learns offsets to cover the re-
gions of interest. However, this initial
distribution lacks inherent geometric
priors about object shape. In con-
trast, our deformable attention with
Gaussian (Fig.3(a)) directly inherits
and leverages the shape properties
of Gaussians: by projecting the 3D
Gaussian distributions onto the BEV
feature map (projection in Figure 2b),
we obtain a prior sampling distribu-
tion that encodes orientation, scale,
and covariance structure. In other
words, the initial sampling points are
not uniformly spaced on a grid, but
instead follow a Gaussian distribution aligned with the underlying object geometry—such as aspect
ratio, orientation, and spatial uncertainty. This Gaussian prior enables better alignment of cross-
modal features to the ”likely object extent,” thereby enhancing fusion effectiveness—a capability
absent in conventional square-shaped initialization.

Evidently, the properties of the Gaussian functions effectively describe the shape of the potential
objects or regions. For each Gaussian function g, we calculate a set of offsets !µ = (!x,!y,!z)
based on the covariance matrix. These offsets, combined with the mean µ, yield the corresponding
reference points µ+!µ. We then project the 3D reference points onto the BEV feature map, where
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each Gaussian query qi ↔ Qi is updated through deformable attention, expressed as:

DeformAtt(qi, Bi) =
K∑

k=1

Ak ·WkBi(µ+!µ), (3)

where Bi is the camera BEV feature Bc or Lidar BEV feature BL, Wk is the weights obtained
by linear layer, Ak is the attention weights and Ak ↔ [0, 1], K is the number of sampling points,
B(µ+!µ) are the sampled features.

Gaussian Updating. To update the Gaussian properties, we propose an iterative optimization strat-
egy of predicting offsets instead of predicting a set of new Gaussian distributions as adopted in
GaussianFormer H et al. (2024). In Lidar and camera fusion perception, incrementally updating the
Gaussian parameters allows for better handling of the discrepancies caused by different modalities
when perceiving the same object. This approach is particularly effective in handling fusion uncer-
tainties caused by such as signal attenuation, depth prediction uncertainties, or multi-modal signal
discrepancies, as demonstrated by the ablation experiments. Incremental updates across layers allow
the model to gradually reduce the disparity between modalities, improving fusion accuracy. Specif-
ically, by predicting the offsets !µ, !s, and !r for the Gaussian mean µ, scale s, and rotation r
using an MLP, we refine the Gaussian distribution without having to predict a completely new set of
properties. The updated Gaussian Ĝi as follows:

Ĝi = MLP(Q̂) + Gi = (!µ+ µ,!s + s,!r + r). (4)

3.4 MULTI-SENSOR FUSION

By the Gaussian Encoder model, we obtain the multimodal 3D Gaussian representations Ĝc and ĜL

within the shared 3D space, respectively. We merge Ĝc and ĜL into a unified set Ĝ, and we can easily
fuse them. Although the 3D Gaussian distributions can effectively represent the scene, to handle the
irregular distribution of Gaussian points, we need to voxelize these Gaussian distributions to achieve
task-independent 3D perception.

Specifically, given the unified Gaussian sets Ĝ ↓ Q̂, we divide the Gaussian space into a voxel grid
H↘W . For a non-empty voxel V that contains M Gaussian means µ, the Gaussian set for that voxel
is V = {(ĝ1, ĝ2, · · · , ĝM ) ↓ (q̂1, q̂2, · · · , q̂M )}. To ensure real-time performance and the receptive
field of the voxel, we use MeanVFE Zhou & Tuzel (2018) to downsample the Gaussian within
the voxel, as illustrated in Fig. 2(c). After Gaussian pooling, each voxel contains one Gaussian
distribution (ĝ ↓ q̂):

ĝ =
1

M
[
∑

µm,

∑
sm,

∑
rm], q̂ =

1

M

∑
q̂m. (5)

Furthermore, the Gaussian mixture model Kerbl et al. (2023) can naturally aggregate multiple Gaus-
sian distributions into a finer-grained distribution, unifying multi-modal Gaussian representations
and elegantly capturing the complexity of autonomous driving scenes. Thus, if the total number
of Gaussian distributions covering point p in the entire scene is J , the feature f(p) at point p is
composed of the cumulative contributions of each individual Gaussian:

f(p) =
J∑

i=1

ĝi(p;µ, s, r)q̂i. (6)

Since each voxel may be associated with multiple 3D Gaussian distributions, following the strategy
in H et al. (2024), we calculate the neighborhood radius based on the scale property of each Gaus-
sian. The indices of the Gaussians and the voxels within their neighborhood are paired as tuples
and appended to a list. This list is then sorted by voxel indices, determining which 3D Gaussians
each voxel should focus on. Furthermore, for each voxel using 6, we can get the fused feature BF.
Finally, a simple convolutional network is used to further optimize BF.

3.5 PERCEPTION TASK SETUP

Without loss of generality, we follow BEVFusion Liu et al. (2023b), GaussianFusion can be applied
to most 3D perception tasks based on BF. We evaluate the performance of GaussianFusion on 3D
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Table 2: Comparisons with state-of-the-art 3D object detection methods on nuScenes dataset. C
denote Camera, L denote Lidar. All methods construct BEV-based feature maps instead of object-
centric fusion based on proposals, which means these methods can also be naturally used for seman-
tic tasks. UniTR uses a unified backbone for both the camera and Lidar.

Methods Modality Resolution Backbone validation set test set

Camera Lidar NDS mAP NDS mAP

BEVFormer Li et al. (2022b) C 1600↘900 ResNet-101 - 51.7 41.6 56.9 48.1
PETRv2 Liu et al. (2023a) C 1600↘640 VoV-99 - - - 59.1 50.8
FB-BEV Li et al. (2023) C 1600↘640 VoV-99 - - - 62.4 53.7

AutoAlignV2 Chen et al. (2022) C+L 1600↘640 CSPNet VoxelNet 71.2 67.1 72.4 68.4
BEVFusion(M) Liu et al. (2023b) C+L 704↘256 Swin-T VoxelNet 71.4 68.5 72.9 70.2
MetaBEV Ge et al. (2023) C+L 704↘256 Swin-T VoxelNet 71.5 68.0 - -
MSMDFusion Jiao et al. (2023) C+L 800↘448 ResNet-50 VoxelNet 72.1 69.3 74.0 71.5
FusionFormer-S Hu et al. (2023a) C+L 1600↘640 VoV-99 VoxelNet 73.2 70.0 - -
EA-LSS Hu et al. (2023b) C+L 704↘256 Swin-T VoxelNet 73.1 71.2 74.4 72.2
UniTR Wang et al. (2023a) C+L 704↘256 - - 73.3 70.5 74.5 70.9

GaussianFusion(Ours) C+L 704↘256 Swin-T VoxelNet 74.0 71.7 74.9 72.4

object detection and 3D semantic occupancy prediction tasks. We adopt the same Transformer-
based detection head as BEVFusion Bai et al. (2022); Liu et al. (2023b) and the occupancy head
consistent with BEVDet Huang & Huang (2022a). We also constructed a camera-only version,
GaussianFusion-C, containing only the camera branch shown in Fig. 2.

4 EXPERIMENTS

4.1 DATASET

The nuScenes dataset Caesar et al. (2020) provides annotation data for tasks such as semantic seg-
mentation, object detection, and 3D occupancy (Occ) prediction. It is a large-scale multimodal
dataset officially split into 700/150/150 scenes for training, validation, and testing, respectively.
Each scene includes annotated Lidar point cloud data captured by a 32-beam scanner, along with
6 perspective camera views, offering comprehensive 360-degree coverage at each timestamp. We
evaluate our method on the 3D object detection and Occ. In our task, we down-sample the input
camera images to 704 ↘ 256 and voxelize the point cloud to 0.075m for detection, following BEV-
Fusion Liu et al. (2023b) and UniTR Wang et al. (2023a). For 3D object detection, the perception
range of the point cloud is set to [↗51.2m, 51.2m] along the X and Y axes, and [↗5m, 3m] along
the Z axis. For 3D Occ, we evaluate within the region of [↗50m, 50m]↘ [↗50m, 50m] around the
ego vehicle, following Liu et al. (2023b); Wang et al. (2023a); Wei et al. (2023).

4.2 IMPLEMENTATION DETAILS

We adopt VoxelNet Zhou & Tuzel (2018) and Swin-T Liu et al. (2021) as the Lidar and camera
backbone to extract the multimodal features following BEVFusion Liu et al. (2023b). The dimen-
sions of Lidar features, image features, and 3D Gaussian query features are all set to 128. Depth of
image Dc=41. Image feature Fc,i dimensions: 8↘22↘6. We set Gaussian Encoder blocks to 4, see
the Appendix for experiments. The BEV size H ↘W is set to 200↘ 200.

During training, we follow BEVFusion to adapt the aligned multimodal data augmentation strategy
and the class-balanced sampling strategy from CBGS Zhu et al. (2019). GaussianFusion is trained
on 8 NVIDIA A800 GPUs. We use AdamW Loshchilov & Hutter (2017) optimizer with a weight
decay 0.01. We adopt the one-cycle learning rate policy Smith (2017) with a maximum learning
rate of 2e↓4. Both BEV object detection and 3D semantic occupancy prediction are trained for 20
epochs, following the same settings as BEVFusion and GaussianFormer H et al. (2024), respectively.

4.3 3D OBJECT DETECTION

Setting. We utilize the official evaluation metric nuScenes Detection Score (NDS) and mean Aver-
age Precision (mAP) for 3D detection.
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Results. To highlight the effect of Gaussian representation, we only compare the BEV-based
method. As shown in Table 2, GaussianFusion achieves SOTA results compared to previous dis-
crete BEV representation multimodal fusion methodsLiu et al. (2023b); Ge et al. (2023); Wang et al.
(2023a); Hu et al. (2023b) on nuScenes dataset, achieving 74.0 NDS and 71.7 mAP on the val split.
Specifically, compared with BEVFusion Liu et al. (2023b), our GaussianFusion achieves +2.6 NDS
and +3.2 mAP on val split by exploring a more natural continuous Gaussian cross-modal comple-
mentary fusion. In addition, compared with recent SOTA fusion works, such as UniTR Wang et al.
(2023a), EA-LSS Hu et al. (2023b), and FusionFormer-S Hu et al. (2023a), GaussianFusion shows
superior performance, outperforming them by 1.2, 0.5, and 1.7 respectively in mAP.

Table 3: Latency and performance on nuScenes val. set.
Method Latency → Memory → NDS ↑ mAP ↑
BEVFusion 156 ms 5140 M 71.4 68.5
GaussianFusion 132 ms 4271 M 74.0 71.7

Additionally, we provide a comparison
with other open-source state-of-the-art
(SOTA) methods in inference latency
and performance accuracy in Table 3.
Benefiting from the unified architecture,
it achieves an excellent performance of
71.7 mAP while maintaining lower in-
ference latency (132 ms) and memory consumption (4271 MB) compared to BEVFusion.

Table 4: Comparison with temporal methods.
Method NDS ↑ mAP ↑
BEVFusion4D Liu et al. (2023b) 73.5 72.0
FusionFormer Hu et al. (2023a) 74.1 71.4
SparseLIF-T Zhang et al. (2024a) 77.5 74.7
GaussianFusion-T 77.6 75.0

Here, we design a simple temporal
extension, termed GaussianFusion-T:
historical Gaussian representations are
warped to the current timestamp and
then fused via Equations (5) and (6). In
Equation (5), the mean µm, scale sm,
rotation rm, and query q

m encompass
not only the multi-modal (image and Li-
DAR) Gaussians and queries, but also
those from history frames. Experimen-
tal results show that, compared to BEV-
Fusion4D Liu et al. (2023b), our temporal variant GaussianFusion-T achieves significant improve-
ments. Moreover, even without sophisticated temporal modeling, GaussianFusion-T achieves com-
petitive NDS against advanced temporal fusion methods such as SparseLIF-T Zhang et al. (2024a).

Table 5: Expansion experiment of query-based detection head.
Method Head NDS ↑ mAP ↑
SparseFusion Zhou & T (2023) Query-based 73.1 71.0
GaussianFusion(ours) Heatmap-based 74.0 71.7
IS-FUSION Yin et al. (2024) Query-based 74.0 72.8
SparseLIF Zhang et al. (2024a) Query-based 74.6 71.2
Mv2dfusion Wang et al. (2024b) Query-based 74.7 72.8
GaussianFusion(ours) Query-based 74.5 72.9

Advanced Detection Head Ex-
periment. For a fair comparison,
we initially adopt the same de-
tection head as BEVFusion Liu
et al. (2023b) and UniTR to high-
light the advantages of Gaussian
representation. However, Gaus-
sianFusion can seamlessly adopt
advanced query-based detection
heads Bai et al. (2022); Yan et al.
(2023), which bring additional
performance gains and enable it to achieve detection metrics comparable to state-of-the-art sparse
detection specialists. Specifically, query-based head Yan et al. (2023) treats image Gaussians and
LiDAR Gaussians as Key (K) and Value (V). The position encoding is consistent with the PE men-
tioned in this paper. The queries then interact with the K and V through a Transformer decoder
structure, followed by a feed-forward-network to predict the final 3D bounding boxes.

As shown in Tab. 5, our GaussianFusion (query-based) achieves NDS and mAP on par with the
SOTA Mv2DFusion Wang et al. (2024b), further demonstrating the superiority of Gaussian repre-
sentation over BEV representation for perception tasks.

4.4 3D SEMANTIC OCCUPANCY PREDICTION

Setting. We report the Intersection-over-Union (IoU) of occupied voxels as the evaluation metric
of the class-agnostic scene completion task and the mIoU of all semantic classes for the Occ task
following SurroundOcc Wei et al. (2023).
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Table 6: Semantic scene completion results on nuScenes Wei et al. (2023); Caesar et al. (2020) val
set. † represents trained on nuScenes. For Camera-only and C+L, the top performance is indicated
in bold black and bold blue, respectively.
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BEVFormer Li et al. (2022b) C 30.50 16.75 14.22 6.58 23.46 28.28 8.66 10.77 6.64 4.05 11.20 17.78 37.28 18.00 22.88 22.17 13.80 22.21
TPVFormer H et al. (2023) C 30.86 17.10 15.96 5.31 23.86 27.32 9.79 8.74 7.09 5.20 10.97 19.22 38.87 21.25 24.26 23.15 11.73 20.81
FB-Occ(1f) Li et al. (2023) C 31.55 20.17 20.31 12.29 26.33 31.07 10.78 15.95 13.31 11.14 13.24 22.13 39.56 22.26 25.14 23.59 13.92 21.64
SurroundOcc Wei et al. (2023) C 31.49 20.30 20.59 11.68 28.06 30.86 10.70 15.14 14.09 12.06 14.38 22.26 37.29 23.70 24.49 22.77 14.89 21.86

GaussianFormer H et al. (2024) C 29.83 19.10 19.52 11.26 26.11 29.78 10.47 13.83 12.58 8.67 12.74 21.57 39.63 23.28 24.46 22.99 9.59 19.12
GaussianFusion-C C 32.48 20.65 21.09 10.95 29.01 31.65 10.03 15.64 14.31 12.56 13.82 23.19 40.06 22.49 25.80 23.49 14.36 22.14

BEVFusion† Liu et al. (2023b) C+L 39.11 24.65 23.78 12.29 30.67 34.95 14.62 17.23 20.76 15.75 19.83 26.3 40.01 23.34 25.47 26.41 25.15 37.92
M-CONet Wang et al. (2023c) C+L 39.20 24.70 24.80 13.00 31.60 34.80 14.60 18.00 20.00 14.70 20.00 26.60 39.20 22.80 26.10 26.00 26.00 37.10
CO-Occ Pan et al. (2024) C+L 41.10 27.10 28.10 16.10 34.00 37.20 17.00 21.60 20.80 15.90 21.90 28.70 42.30 25.40 29.10 28.60 28.20 38.00
OccFusion Ming et al. (2024) C+L 43.53 27.55 25.15 19.87 34.75 36.21 20.03 23.11 25.25 17.50 22.70 30.06 39.47 23.26 25.68 27.57 29.54 40.60
GaussianFusion C+L 44.75 28.65 28.92 18.31 34.87 37.43 19.45 23.53 26.71 17.96 23.38 29.89 43.32 25.96 30.51 28.35 30.32 39.67

Table 7: Comprehensive comparison with Gaussian-
Former on nuScenes val set.

Method Num. Gaussians mIoU ↑ Latency →
GaussianFormer 140,000 19.10 475 ms
GaussianFusion-C 43,296 20.65 105 ms

Results. As shown in Table 6, our
GaussianFusion achieves SOTA perfor-
mance at 28.65 mIoU among all single-
frame models. GaussianFusion outper-
forms the multi-modal SOTA method
OccFusion Ming et al. (2024), which is
based on multi-scale voxel fusion, by
+1.11 mIoU and significantly surpasses
camera-only methods H et al. (2023); Wei et al. (2023); Li et al. (2023). More importantly, benefiting
from our proposed Gaussian initialization strategy and iterative update mechanism, GaussianFusion-
C achieves a 1.55 mIoU improvement and nearly 4.5! computational efficiency compared to Gaus-
sianFormer, while using only 30% of the Gaussians, as shown in Table 7. GaussianFormer randomly
initializes a set of Gaussians in 3D space and predicts new Gaussian parameters for these Gaussians
in an update. Extensive experiments demonstrate the effectiveness of our 3D Gaussian representa-
tion across multiple tasks, including both object-centric and dense semantic perception.

Table 8: Ablation of Gaussian initializa-
tion strategy.

Gaussian Initialization NDS mAP

Random Initialization 71.2 68.3
Backward Projection 72.4 70.0
Lidar Projection 73.6 71.1
Forward Projection 74.0 71.7

Table 9: Ablation of the proposed Gaussian Encoder.
DA.G means Deformable Attention with Gaussian.

Share Separate DA.G PE Offset NDS mAP

↭ ↭ ↭ ↭ 74.0 71.7
↭ ↭ ↭ 73.6 71.1

↭ ↭ ↭ ↭ 73.4 71.0
↭ ↭ ↭ 73.6 71.2
↭ ↭ ↭ 73.2 70.8

4.5 ABLATION STUDIES

Effect of Gaussian Initialization. Table 8 provides a detailed analysis of the performance im-
pact of different Gaussian initialization strategies, including the classic random initialization, our
proposed forward projection strategy, the backward projection BEVFormer-based strategyLi et al.
(2023; 2022b), and the strategy of projecting Lidar points onto the image. The initialization details
and corresponding Gaussian encoder for the latter two projection strategies are in Appendix. The
forward projection and Lidar projection strategies show comparable performance (74.0 NDS v.s

73.6 NDS), both outperforming the backward projection method (72.4 NDS). Notably, the forward
projection strategy brings a significant improvement of +2.8 NDS over random initialization.

Effect of Gaussian Encoder. In Table 9, we first compare the shared and separate Gaussian En-
coders. We find that the shared Gaussian Encoder provides a slight performance improvement of
+0.7 mAP. We attribute this to the unified Gaussian space, which helps the model learn uncertain
cross-modal complementary features. And the sharing strategy makes the model leaner. We then
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conduct an ablation study on the deformable attention module. Results show that deformable at-
tention with Gaussian priors outperforms the vanilla variant by +0.4 NDS, demonstrating that the
shape prior encoded by Gaussians facilitates model convergence and enhances detection accuracy.
For the deformable attention-based query updating module, the results show that encoding the Gaus-
sian properties as PE into the query leads to a gain of +0.5 mAP. For the Gaussian updating module,
predicting the offsets of the properties, rather than the properties themselves, improves multimodal
fusion perception by +0.9 mAP. This validates the multimodal Gaussian Encoder theory proposed
in 3.3 Gaussian Encoder.

4.6 VISUALIZATIONS

As shown in Fig. 4, in BEV object detection, compared to previous BEV-based SOTA methods
like UniTR Wang et al. (2023a) and BEVFusionLiu et al. (2023b), GaussianFusion achieve higher
accuracy for distant or small objects (white marks). Furthermore, UniTR exhibits significant object
yaw errors (yellow marks). For Occ, GaussianFusion-C produces sharper object boundaries (red
marks) and better class separation (yellow marks) compared to GaussianFormer. See Appendix for
more visualizations.

Ground Truth GaussianFusion BEVFusionLidar Scan

GaussianFusion-CGround Truth SurroundOccGaussianFormerMulti-Camera images
driveable surface car bus truck terrain vegetation sidewalk other flat pedestrian

manmade motorcycle barrier construction vehicle trailer traffic conebicycle

UniTR

Figure 4: Qualitative results of GaussianFusion on BEV object detection and 3D semantic occu-
pancy prediction.

4.7 LIMITATIONS

Several approaches—covering both detection Wang et al. (2023b) and Occ Zhang et al.
(2024b)—employ carefully designed temporal fusion modules to enhance performance. While our
method naturally extends to multi-frame settings through simple temporal alignment and already
achieves performance comparable to such multi-frame methods, this is likely suboptimal. A promis-
ing direction for future work is to explore motion-aware Gaussian updates, for instance by predicting
velocity-guided offsets, enabling more coherent 4D scene modeling over time.

5 CONCLUSION

We present GaussianFusion, a novel multi-modal fusion perception framework grounded in a unified
3D Gaussian representation that seamlessly integrates camera and LiDAR features in a continuous
spatial domain, effectively preserving fine-grained scene details. A shared Gaussian encoder is
introduced to facilitate adaptive cross-modal interaction and alignment, with Gaussian properties it-
eratively refined through optimization. To support task-agnostic applications, we design an efficient
Gaussian-to-voxel transformation module incorporating Gaussian pooling and aggregation mecha-
nisms. Extensive experiments across multiple 3D perception tasks on the nuScenes dataset validate
the effectiveness of GaussianFusion, achieving state-of-the-art performance among task-agnostic
baselines. Although it may slightly lag behind certain task-specialized approaches, our work rep-
resents a meaningful step toward generalizable and principled multi-modal fusion. We believe that
the proposed Gaussian representation paradigm offers a promising direction for future research in
multimodal 3D perception.
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