
Zero-shot Learning for Grapheme to Phoneme Conversion with Language
Ensemble

Anonymous ACL submission

Abstract

Grapheme-to-Phoneme (G2P) has many appli-001
cations in NLP and speech fields. Most exist-002
ing work focuses heavily on languages with003
abundant training datasets, which limit the004
scope of target languages to less than 100 lan-005
guages. This work attempts to apply zero-shot006
learning to propose G2P models for all low-007
resource and endangered languages in Glot-008
tolog (about 8k languages). For any unseen009
target language, we first build the phylogenetic010
tree (i.e. language family tree) to identify top-011
k nearest languages for which we have training012
sets. Then we run models of those languages013
to obtain a hypothesis set, which we combine014
into a confusion network to propose a most015
likely hypothesis as an approximation to the016
target language. We test our approach on over017
600 unseen languages and demonstrate it sig-018
nificantly outperforms baselines.019

1 Introduction020

Grapheme-to-Phoneme (G2P) plays a crucial role021

in many NLP tasks. In particular, it is used heav-022

ily in many speech-related tasks such as speech023

recognition and speech synthesis (Arık et al., 2017;024

Miao et al., 2015). Even in the latest end-to-end025

systems, it still has a strong impact on the speech026

performance (Hayashi et al., 2021). Typically, the027

G2P task is language-dependent—many language-028

specific factors affect the G2P process such as029

the general characteristics of scripts (Ager, 2008),030

phonotactic constraints (Hayes and Wilson, 2008)031

and other orthography factors (Frost and Katz,032

1992). Therefore, to develop a G2P model, we033

need either to create a training set for the target034

language, like (CMU, 2000), or to ask linguists to035

explicitly define a set of orthographic rules to map036

from graphemes to phonemes (Mortensen et al.,037

2018). Both approaches have achieved success038

for high-resource languages; however, they can039

only account for a small number of the world’s040

languages. The majority still do not have access to 041

G2P due to limited training resources. 042

In this work, we attempt to solve this problem 043

by proposing zero-shot learning for G2P using the 044

language ensemble approach. Our approach allows 045

us to cover all languages present in the GlottoLog 046

database: around 8000 of them (Nordhoff and Ham- 047

marström, 2011). The main insight of our approach 048

is that we can approximate the G2P model of an 049

unseen language using those of related languages 050

because languages related to the target language 051

should have similar orthographic rules (of both 052

the context-free and context-dependent type). For 053

example, a native speaker of Italian (a Romance 054

language) is likely to make accurate guesses about 055

how a text in Catalan (another Romance language) 056

would be pronounced. We define the similarity be- 057

tween languages as the shortest distance between 058

two languages in the phylogenetic tree (i.e. lan- 059

guage family tree). We first build models for the 060

subset of languages (training languages) where we 061

have a large enough training set (e.g., Italian, Span- 062

ish, etc.). Then, for each unseen language (e.g., 063

Catalan), we first find the top-k nearest training 064

languages (like Italian, Spanish, etc.) and use those 065

languages’ G2P models to generate k hypotheses. 066

Finally, we ensemble the G2P outputs by building a 067

confusion network and discover the most-likely se- 068

quence as an approximation to the target language. 069

In our experiments, we build a large dataset from 070

Wiktionary in which we use 260 languages as the 071

training languages and test our approach on 600 072

unseen languages. We apply our approach to 3 073

different architectures: a joint-sequence n-gram 074

model (Novak et al., 2016), an LSTM sequence- 075

to-sequence model (Rao et al., 2015), and a trans- 076

former sequence-to-sequence model (Peters et al., 077

2017). Using any of the architectures, our approach 078

outperforms all baseline by more than 5% PER. 079

The main contributions of this work are as fol- 080

lows: 081
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1. A novel approach to approximate target lan-082

guage G2P models using the nearest lan-083

guages in a phylogenetic tree084

2. An approach to ensemble predictions from085

multiple outputs using confusion networks.086

3. A demonstration that our approach achieves087

significantly better performance than base-088

lines when testing on 600 unseen languages.089

2 Related Work090

Traditionally, a G2P component is built using rule-091

based models. For example, the phonological con-092

straints can be incorporated into context-sensitive093

grammars and implemented using finite-state trans-094

ducers (Kaplan and Kay, 1994). However, design-095

ing the rules requires many hours from linguists096

and can be prohibitive for low-resource languages097

if they have deep orthographies1.098

Statistical models overcome this problem by099

learning the rules automatically. Typically, there100

are two steps in building such a model: first, the101

sequence of phonemes and graphemes are aligned102

to each other, then another prediction model is built103

on top of the alignment. The alignment model is104

typically done using Expectation and Maximiza-105

tion (Ristad and Yianilos, 1998; Jiampojamarn and106

Kondrak, 2010). The prediction model can be done107

using neural networks (Sejnowski and Rosenberg,108

1987), decision trees (Black et al., 1998; Daele-109

mans and Van den Bosch, 1997), joint-sequence110

models (Bisani and Ney, 2008) and WFST-based111

n-gram models (Novak et al., 2016). More recently,112

deep neural networks have been applied to the G2P113

task. Various architectures have been explored, for114

example, RNNs (Rao et al., 2015; Yao and Zweig,115

2015; Lee et al., 2020), CNNs (Yolchuyeva et al.,116

2019) and Transformers (Yolchuyeva et al., 2020).117

Traditionally, each G2P model was typically118

built for one high-resource language. Recently,119

many researchers have started to focus on low-120

resource G2P models. One related work adapts121

high-resource language models to low-resource122

language models by measuring similarity between123

languages and phonemes (Deri and Knight, 2016).124

This previous work creates a new training set for125

every low-resource language by adapting the train-126

ing set from the top-3 nearest languages. However,127

1Orthographies in which the relationship between
graphemes and phonemes has been obscured by history or
is otherwise complicated.

there are several issues with this approach. First, 128

it has to prepare separate training sets and n-gram 129

models for every testing language, which is quite 130

computationally expensive. It also suffers from 131

the limited training set problem even after merging 132

top-3 languages because most training languages 133

have less than 100 vocabularies, which is insuffi- 134

cient to train any stable neural models. In contrast, 135

we only prepare one unified training set and one 136

unified model in our neural approach, which cir- 137

cumvents these problems. Additionally, the test- 138

ing languages and training languages are mixed 139

in this work, therefore the performance on unseen 140

languages is not clear. Only a limited number of 141

papers so far focus on developing G2P models for 142

unseen languages. The most common strategy is to 143

drop the target language information and make pre- 144

dictions using a shared multilingual model (Peters 145

et al., 2017; Bleyan et al., 2019). This is one of our 146

baseline (the global language model) in this work. 147

3 Approach 148

In this section, we describe our zero-shot learning 149

approach. We first introduce three G2P models to 150

be used for supervised learning and covering high- 151

resource languages. Next, we define the language 152

similarity and language families. Finally, we ex- 153

plain how to ensemble nearest languages models 154

to predict G2P for an unseen language. 155

3.1 Monolingual Model 156

In this section, we introduce our monolingual G2P 157

models: a joint n-gram model based on WFSTs, 158

two neural models based on sequence-to-sequence 159

LSTMs, and transformer models. We select those 160

models as they are the three baseline models used 161

in the SIGMORPHON Multilingual G2P task (Gor- 162

man et al., 2020). These models are trained for 163

every training language and then used as building 164

blocks to approximate G2P models for unseen test- 165

ing languages. 166

The joint n-gram model is a standard monolin- 167

gual G2P model (Novak et al., 2016). For each 168

training language, the dataset is first aligned using 169

Expectation Maximization, then an n-gram model 170

is built using a WFST2. The neural model is a 171

standard sequence to sequence model. We tried 172

two common architectures: bidirectional LSTM 173

and transformer. Unlike the n-gram model, the 174

2https://github.com/AdolfVonKleist/
Phonetisaurus
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Figure 1: Illustraction of a partial phylogenetic tree (i.e. language family tree). The subtree has Proto-Indo-
European as the root of the family (there also exists many other root language families). The Germanic branch and
Italic branch can be derived (not directly though) from the Proto-Indo-European, they are further divided into the
modern languages we are using today. This information can help us compute the similarity between languages.

neural model is trained by combining all train-175

ing sets into one large dataset. To distinguish dif-176

ferent languages, a ISO 639-3 language ID is at-177

tached to the input sequence, for example, we at-178

tach the "<eng>" to "hello", so the input sequence179

is "<eng> h e l l o". This approach was explored in180

previous work (Peters et al., 2017). It allows the181

parameters to be shared across different languages.182

Even language with a limited training set could183

benefit from other high-resource languages.184

3.2 Phylogenetic Tree and Nearest Languages185

The model discussed in the previous subsection186

could predict phonemes for any training language,187

however, it cannot deal with any unseen languages.188

Our main contribution in this work is to select the189

highly related languages and then effectively com-190

bine those models to approximate the target lan-191

guage. In this subsection, we introduce the concept192

of the nearest language in terms of the phylogenetic193

tree (i.e. language family tree), then we explain194

how we ensemble nearest languages.195

There are many metrics to measure the dis-196

tance between languages from different perspec-197

tives (Dryer and Haspelmath, 2013; Littell et al.,198

2017). In this work, we only consider the phy-199

logenetic tree (i.e., language family tree) to mea-200

sure the distance between languages. This is be-201

cause the phylogenetic information is available for202

a larger portion of languages than any of the other203

bases of linguistic distance or similarity. Glot-204

tolog provides us with language family information 205

for around 8000 languages (Nordhoff and Ham- 206

marström, 2011). 207

In Figure.1, we write a subtree of the entire phy- 208

logenetic tree, in particular, it illustrates two major 209

branches of the linguistic Stammbaum: the Ger- 210

manic and Italic. Both of them are children of the 211

Proto-Indo-European (PIE) node. The tree also in- 212

dicates that English and Dutch are closely related 213

languages and that Norwegian and Icelandic are 214

closely related languages. To measure the distance 215

between any pair of languages, we can compute 216

the length of the shortest path between the two lan- 217

guages. In our example, the English/Dutch pair 218

has a distance 2, and the English/Norwegian pair 219

has a distance of 4. The shortest path can be com- 220

puted efficiently by using Lowest Common Ances- 221

tor (LCA). 222

d(l1, l2) = H(l1)+H(l2)−H(LCA(l1, l2)) (1) 223

where d(l1, l2) is the distance between language 224

l1 and l2, H compute the height of a node in the 225

tree. This time complexity is O(log(M)) where M 226

is the max height of the phylogenetic tree (Cormen 227

et al., 2009). Suppose the entire language set is 228

L and training languages are T ⊂ L, we could 229

compute the k nearest languages for every language 230

l ∈ L, those languages would allow us to ensemble 231

models. Note that it is not always the case that 232

languages belonging to the same family should 233
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share similar orthography. They are also influenced234

by non-linguistic aspects such as political factors235

and cultural factors. Additionally, some languages236

are written in multiple scripts. For example, Uzkek237

is written with a Perso-Arabic, Cyrillic, and Latin238

script. However, information on language families239

provides a reasonable starting point.240

3.3 Model Ensemble241

After obtaining the nearest languages and the mono-242

lingual model for each of the training languages,243

we can use those models to approximate the target244

model. In particular, we are interested in com-245

bining prediction outputs from different models to246

create a single prediction output. If the models247

are one of the local prediction models (i.e: for248

each grapheme, we decide whether to generate249

a phoneme and which phoneme to generate) (Se-250

jnowski and Rosenberg, 1987; Black et al., 1998),251

the ensemble task is simple. As we made one252

phoneme prediction at every grapheme position,253

we can use the voting to decide the most likely254

phoneme.255

[p̂] = argmax[p]
∑
i

1([p] = [p]i) (2)256

However, for the more general sequence-to-257

sequence neural model, it is much complicated.258

Different models would predict outputs with vari-259

able sequences, therefore voting at each position260

would be meaningless. For example, suppose two261

phoneme sequences "/helo/" and "/elo/" are gen-262

erated from "hello" using two different languages.263

It is difficult to average /h/ and /e/ as they are cor-264

responding to different graphemes. To solve this265

problem, we use a robust approach to ensemble266

outputs with variable lengths. Our approach is sim-267

ilar to the ROVER system (Fiscus, 1997), which268

is a commonly used approach to combine multiple269

speech outputs into one output. It has been applied270

to combine phoneme sequence (Schlippe et al.,271

2014), but only under the monolingual scenario272

in which they combine different models to improve273

the performance. This work focus on combining274

multilingual outputs and modifying the standard275

word-based network to consider the phonological276

structure.277

One actual example from our dataset is illus-278

trated in Figure.2. First, we build one confusion279

network (or lattice) per language in our nearest lan-280

guage set. The raw confusion network represents281

a single hypothesis using a directed graph whose282

edge corresponds to a single phoneme from the hy- 283

pothesis3. When we compose multiple confusion 284

networks into one confusion network, there would 285

typically be more than one edge connecting two 286

nodes. The set of edges connecting two contigu- 287

ous nodes is typically referred to as the confusion 288

set (or correspondence set) (Fiscus, 1997; Mangu 289

et al., 2000). For example, the first confusion set 290

from the right network in Figure.2 is {/t/, /s/}. 291

The goal of our ensemble approach is to compose 292

all confusion networks into a single network, and 293

then pick up the best hypothesis from the composed 294

network. 295

Unlike the original work in which hypotheses 296

are composed without any specific order, we it- 297

eratively compose the network using the nearest 298

order: we first compose the nearest and second 299

nearest confusion network into a single network, 300

then further merge the third nearest network into 301

it. In each composition step, we align two net- 302

works by computing the similarity between pairs 303

of confusion sets. While the standard network com- 304

putes the similarity step using the exact matching 305

metric, we relax this exact matching scheme and 306

use a more coarse matching strategy by consider- 307

ing the phonological distance structure. In partic- 308

ular, we use the phonologically-equivalent class, 309

which collapses similar sounds into a small number 310

of classes (Mortensen et al., 2016). This means 311

we could easier match /a/, /o/ (vowel pairs) than 312

/a/, /s/ (vowel, consonant pairs). After compos- 313

ing all confusion networks into one network, the 314

most likely phoneme sequence can be generated 315

from the final network. To generate the sequence, 316

we pick up 1 phoneme per confusion set and con- 317

catenate them together. The phoneme in each 318

confusion set is selected using the voting scheme. 319

When there are multiple candidates with equal 320

votes, we break the tie by selecting the candidate 321

generated from the nearest language. Algorithm 1 322

summarizes the entire steps in our approach. 323

4 Experiments 324

In this section, we show the experiment results 325

on our G2P models. First, we introduce the main 326

datasets we used to build our model, next we de- 327

scribe our baseline models and G2P architectures 328

we use in our experiments. Finally, we demonstrate 329

3We can also generate n-best hypotheses from each model
and build confusion networks, however, we only consider the
top-1 hypothesis in this work for simplicity. N-best hypotheses
might be a future work
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Figure 2: An illustration of an actual ensemble example from our dataset. The input is ’that’ from Old Dutch
(odt), its top-2 nearest language in our training set are Dutch (nld) and Middle Dutch (dum). The left-hand side
denotes two hypotheses generated from those two languages, from which we compose into a confusion network.
The composed confusion network has three confusion sets, which would vote ’/t a t/’ as a final prediction.

Algorithm 1: G2P algorithm
Data: input, lang (Grapheme sequence

and its language)
Result: output (ensembled phoneme

sequence)
klangs← KNearestLanguage(lang)
hyps← []
for klang ∈ klangs do

hyp← G2P (input, klang) ;
/* Generate hypothesis
for every nearest
language */

hyps.append(hyp)
end
x← ConfusionNetwork()
for hyp ∈ hyps do

n← ConfusionNetwork(hyp)
a← align(x, n)
x← composite(x, n, a)

end
output← []
for cs ∈ x do

p← vote(cs) ; /* vote 1
phoneme per confusion set

*/
output.append(p)

end

that the proposed ensemble approach outperforms330

those baseline models in different architectures.331

4.1 Data332

The main training/testing dataset we used is the333

Wiktionary website. Wiktionary is a large multi-334

lingual website containing lexicon information for335

many languages, including many low-resource lan-336

guages. One previous work has prepared a dataset337

using Wiktionary (Deri and Knight, 2016), but the 338

testing languages and training languages are mixed 339

together in this dataset: many testing languages 340

are also available as training languages. To demon- 341

strate our approach on unseen languages, we create 342

a new dataset using the latest Wiktionary. First, we 343

download a dump file from the website and extract 344

all words with pronunciation information4. We 345

group all words by their languages, which gives us 346

972 languages in total. However, not all languages 347

yield a similar number of training data. Figure.3 348

shows the log-scaled histogram of language counts 349

for different vocabulary sizes: only 1 language: En- 350

glish, has more than 400k vocabulary items. Most 351

of the languages are concentrated in the lowest his- 352

togram bar. In our dataset, we find that the majority 353

of the language have less than 100 items. Therefore, 354

the model needs to be able to handle low-resource 355

training scenarios. 356

Next, most languages from Wiktionary can be 357

assigned an ISO 639-3 ID, which can be identified 358

in our phylogenetic tree. As mentioned in the previ- 359

ous section, our phylogenetic tree is built using the 360

Glottolog database (Nordhoff and Hammarström, 361

2011), which contains phylogenetic information 362

about 7915 languages. We split all languages into 363

training languages or testing languages depending 364

on the vocabulary size: we consider the language 365

to be a training language if the vocabulary size is 366

above a predefined threshold, otherwise, it is clas- 367

sified as a testing language. Typically, there is a 368

trade-off when selecting the threshold: making the 369

threshold lower would increase the number of train- 370

ing languages and make it easier to find the nearest 371

languages, however lower threshold make the train- 372

ing process more difficult due to the number of 373

4https://github.com/tatuylonen/
wiktextract
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Figure 3: Log-scaled histograms of the count of lan-
guages grouped by the number of vocabulary items
available in Wiktionary. The language with over 400k
vocabulary is English, however, most languages are
low-resource languages for which we have less that 100
Wiktionary entries.

Dataset # Languages # Vocabulary

Training set 269 1,672,444
Testing set 605 4,796

All 874 1,677,240

Table 1: Statistics of the Wiktionary dataset we used
in the experiment. 269 languages are used for training
and 605 languages are used for testing.

limited vocabulary, additionally, it would reduce374

the number of testing languages. In our experiment,375

the threshold is set to 50 by following the previous376

work (Deri and Knight, 2016), and the statistics of377

both training datasets and test datasets are shown in378

Table.1. We have 269 training languages and 605379

testing languages. Most of the training languages380

have a large number of vocabulary items but the381

testing languages have only 8 vocabulary items per382

language. We train both the n-gram model and neu-383

ral models using only the training languages, and384

then test them on the testing languages, which are385

not seen during the training process. The evalua-386

tion is done using the average PER (phoneme error387

rate) across all testing languages.388

4.2 Baselines389

In our experiments, we consider three different390

baseline models: the fixed language model, which391

is a model trained using the English dataset. The392

global language model is a shared model mixing393

all training sets, it ignores the target language id 394

during inference, this was explored in the previous 395

work (Peters et al., 2017). The nearest language 396

model can be seen as a special case of our proposed 397

model: we compute the most similar language to 398

the target language and run inference using that 399

language’s model instead. For each of the baseline 400

models, we investigate three different architectures: 401

N-gram, LSTM, and transformer architecture. We 402

use OpenNMT-py5 for our neural models. The 403

LSTM architecture is using the framework’s default 404

configuration: 2 standard LSTM layers for both en- 405

coder and an attention-based decoder, each layer 406

has 500 hidden size. This model is optimized with 407

1.0 learning rate using SGD optimizer. The trans- 408

former model uses the framework’s WMT sample 409

configuration6: we have 6 layers for both the en- 410

coder and decoder with 500 attention and feedfor- 411

ward size. The mode has a positional encoding 412

layer and is using 8 heads in self-attention. The 413

optimizer is Adam with learning rate 2.0 and 8000 414

steps for warmup. Both neural models are trained 415

with 20k steps. In our ensemble model, we use the 416

top-10 languages (k = 10) in our main experiment. 417

4.3 Results 418

Table.2 shows our experiment results. For each 419

of the G2P architecture (N-gram Model, LSTM 420

Model, Transformer Model), we demonstrate our 421

ensemble model’s results as well as 3 baselines. 422

The leftmost architecture shows the N-gram Model 423

result: the fixed language model performs 76% 424

PER, The global language model get 70%, which 425

is better than the fixed language model. the near- 426

est language model further improves it to 68%. 427

While all those models perform poorly, the reason 428

for their poor performance is different from each 429

other: the fixed language model is only trained 430

with the English dataset, therefore it cannot handle 431

orthography rules in other languages. The global 432

language model suffers from the inconsistency of 433

the training set: the same grapheme might map to 434

different phonemes in different languages, there- 435

fore it cannot learn consistent rules across all lan- 436

guages. Finally, the nearest language model has 437

the problem that the nearest language might be 438

a low-resource language. As we mention in the 439

previous section, most languages have few train- 440

ing vocabularies, even we restrict the training lan- 441

5https://github.com/OpenNMT/OpenNMT-py
6https://opennmt.net/OpenNMT-py/FAQ.

html#how-do-i-use-the-transformer-model
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N-gram Model LSTM Model Transformer Model

PER Add Del Sub PER Add Del Sub PER Add Del Sub

Fixed Model 76.0 4.52 9.39 62.1 78.1 4.53 20.4 53.2 78.5 3.2 19.0 56.2
Global Model 70.4 6.89 9.86 53.6 72.8 3.4 29.0 43.4 74.2 2.9 20.6 50.8
Nearest Model 68.4 4.51 12.4 51.5 43.8 12.1 4.0 27.6 45.4 15.8 3.6 26.1

Ensemble Model 55.0 0.56 23.6 30.9 35.7 10.0 3.4 22.2 39.8 13.9 3.1 22.8

Table 2: Experiment Results of the our approach. It compares our ensemble model with three baselines: Fixed
Model, Global Model and Nearest Model. The comparison is performed under three different architectures: N-
gram model, LSTM model, Transformer Model. In all settings, the proposed model outperforms baselines.

guages to have more than 50 vocabularies, the large442

proportion of languages still have 50 to 100 vocab-443

ularies, which might be insufficient to train a good444

model. Additionally, depending on a single lan-445

guage might have a large variance. The proposed446

ensemble model solves those issues to some extent:447

it relies on more than 1 language when predicting448

for the target language: even 1 language is a low-449

resource language, other languages might be able450

to compensate for that low-resource language. Ad-451

ditionally, introducing more language also reduces452

the variance. The proposed model significantly453

improves the PER to 55.0%.454

Table.2 also demonstrates the performance of455

two neural models: the LSTM model and the trans-456

former model. Interestingly, the neural model’s457

performance does not perform better than the n-458

gram model when using a fixed language, even459

slightly worse than it. It is because the neural460

model further overfits the English dataset and could461

not capture orthography rules in other languages.462

The global model has the same trend, which again463

fails to fit each language. However, the nearest464

language model significantly reduces the error rate465

by almost 30%. Unlike the N-gram architecture,466

whose models of different languages are trained467

using a separate dataset, the neural model uses468

the shared architecture, and only distinguishes dif-469

ferent languages by a language tag. This allows470

efficient parameter sharing between low-resource471

languages. Ensembling the model further reduces472

the error rate by more than 5%. In our experi-473

ment, the LSTM model and the transformer model474

have similar trends in their performance, but the475

LSTM model has a better performance than the476

transformer’s one. The reason might be that there477

are far more hyperparameters to be tuned in the478

transformer model and the default sample config-479

uration provided by the framework might not be 480

optimal. As the main contribution of this work is to 481

propose a general approach to ensemble languages 482

rather than exploring different neural architectures, 483

we only focus on how to ensemble models of dif- 484

ferent languages in this work. 485

4.4 Ensemble Analysis 486

It would be interesting to compare the number of 487

languages when ensembling languages. Figure 4 488

demonstrates the influence of the number of lan- 489

guages from the LSTM model. PER drops quickly 490

when we start ensembling models, it reaches the 491

bottom when the number of nearest languages is 10, 492

then starts to increase very slowly. We observe that 493

there exists a bias-variance trade-off when chang- 494

ing the number of languages. When the number 495

is relatively small, the prediction relies heavily 496

on each language, therefore causing high variance 497

when predicting for the target language. Increas- 498

ing the number of languages could alleviate the 499

variance problem, but using a large number of lan- 500

guages would decrease the accuracy as the selected 501

languages are no longer close to the target language, 502

which introduces more bias to the model. 503

To further understand the behavior of the model, 504

we also show curves of Addition, Deletion, and 505

Substitution in Figure.4. It indicates that after we 506

start ensembling the model (from 2), the addition is 507

increasing while the deletion is decreasing in gen- 508

eral, the substitution decreases first and remains 509

relatively flat later. The opposite trend of addition 510

and deletion can be explained by the ensembling ap- 511

proach: when we introduce a new hypothesis into 512

the model, it is probable some phonemes might not 513

be aligned to the existing confusion set in the con- 514

fusion network, to incorporate these new phonemes 515

into the network, we need to create new confusion 516
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Figure 4: The effect of using different number of nearest languages when ensembling models. It shows that we
reach the best performance when we use the top-10 languages to ensemble outputs.

set, which would lead to more phoneme emissions.517

More phonemes would also contribute to decreas-518

ing the deletion rate as well. Therefore, that curve519

of PER is very similar to the curve of the substi-520

tution error (as the addition and deletion almost521

cancel each other). Not only does the ensemble522

model improve the substitution error quantitatively,523

it also improves the errors qualitatively: Table 3524

shows the most frequent errors made by the nearest525

language model and the top-10 ensemble model. It526

indicates the most frequent substitution errors (/a/,527

/o/) and (/o/, /u/) are replaced by (/a/, /a:/) and (/i/,528

/i:/). We find latter errors are much closer to each529

other (they have phonological distances of 1, while530

the former errors have larger distances), therefore531

they are much better errors than the first two pairs532

qualitatively.533

Errors Most Common Errors

Add /a/, /k/, /u/, /i/, /n/, /o/
Del /a/, /i/, /P/, /e/, /j/, /u/
Sub (/a/, /o/), (/o/, /u/), (/r/, /l/), (/t/, /d/)

Add /a/, /i/, /k/, /u/, /s/, /o/,
Del /a/,/P/, /i/, /e/, /u/ , /j/
Sub (/r/, /l/),(/a:/, /a/), (/i:/, /i/), (/E/, /e/)

Table 3: Most frequent errors in the LSTM model. The
top half shows the errors in the nearest model, the
bottom-half shows the errors when using 10 languages

5 Limitations 534

While we get reasonable performance in our test- 535

ing languages, we acknowledge that there are sev- 536

eral limitations in our approach: first, both of our 537

training languages and testing languages are lim- 538

ited to languages available in Wiktionary. The 539

full Glottolog Phylogenetic Tree has 110 top-level 540

branches in total, however, our dataset only spans 541

40 branches. Therefore if we want to apply our 542

approach to unseen languages in the remaining 543

70 branches, we have to depend on unrelated lan- 544

guages to build our ensemble model, which might 545

lead to worse performance. Second, as our ap- 546

proach heavily depends on Glottolog, if the lan- 547

guage is not available in the Glottolog database, 548

then our approach cannot be applied to it. Finally, 549

many of the 8k languages do not have orthogra- 550

phies, therefore it might be difficult or meaningless 551

to evaluate the G2P performance for them. 552

6 Conclusion 553

In this work, we propose a zero-shot learning ap- 554

proach to build G2P models for 8k languages in the 555

world. We use the phylogenetic tree to measure the 556

distance between languages and combine multilin- 557

gual outputs. We test our approach on 600 unseen 558

languages and demonstrate it significantly outper- 559

forms baselines. We will release our datasets and 560

models for 8k languages to allow more researchers 561

to explore this direction. 562
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