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1Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
*Corresponding author (db804@cam.ac.uk)

2Molecular AI, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
3Data Science & Advanced Analytics, Data Science & AI, R&D, AstraZeneca, Cambridge, UK

4Centre for AI, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

Abstract

We investigate the potential of graph neural networks for transfer learning and improving molecular
property prediction on sparse and expensive to acquire high-fidelity data by leveraging low-fidelity
measurements as an inexpensive proxy for a targeted property of interest. This problem arises in
discovery processes that rely on screening funnels for trading off the overall costs against throughput
and accuracy. Typically, individual stages in these processes are loosely connected and each one
generates data at different scale and fidelity. We consider this setup holistically and demonstrate
empirically that existing transfer learning techniques for graph neural networks are generally unable
to harness the information from multi-fidelity cascades. Here, we propose several effective transfer
learning strategies and study them in transductive and inductive settings. Our analysis involves
a novel collection of more than 28 million unique experimental protein-ligand interactions across 37
targets from drug discovery by high-throughput screening and 12 quantum properties from the dataset
QMugs. The results indicate that transfer learning can improve the performance on sparse tasks by
up to eight times while using an order of magnitude less high-fidelity training data. Moreover, the
proposed methods consistently outperform existing transfer learning strategies for graph-structured
data on drug discovery and quantum mechanics datasets.

1 Introduction

We investigate the potential of graph neural networks (GNNs) for transfer learning and improved molec-
ular property prediction in the context of funnels or screening cascades characteristic of drug discovery
and/or molecular design. GNNs have emerged as a powerful and widely used class of algorithms for molec-
ular property prediction thanks to their natural ability to learn from molecular structures represented as
atoms and bonds [1–3], as well as in the life sciences in general [4–6]. However, their potential for transfer
learning is yet to be established. The screening cascade refers to a multi-stage approach where one starts
with cheap and relatively noisy methods (high-throughput screening, molecular mechanics calculations,
etc.) that allow for screening a large number of molecules. This is followed by increasingly accurate and
more expensive evaluations that come with much lower throughput, up to the experimental characterisa-
tion of compounds. Individual stages or tiers in the screening funnel are, thus, used to make a reduction
of the search space and focus the evaluation of more expensive properties on the promising regions. In
this way, the funnel maintains a careful trade-off between the scale, cost, and accuracy. The progression
from one tier to another is typically done manually by selecting subsets of molecules from the library
screened at the previous stage or via a surrogate model that focuses the screening budget of the next step
on the part of the chemical space around the potential hits. Such surrogate models are typically built us-
ing the data originating from a single tier and, thus, without leveraging measurements of different fidelity.

For efficient use of experimental resources, it is beneficial to have good predictive models operating
on sparse datasets and guiding the high-fidelity evaluations relative to properties of interest. The latter
is the most expensive part of the funnel and to efficiently support it, we consider it in a transfer learning
setting designed to leverage low-fidelity observations to improve the effectiveness of predictive models on
sparse and high-fidelity experimental data. In drug discovery applications of this setup, low-fidelity mea-
surements can be seen as ground truth values that have been corrupted by noise, experimental or reading
artefacts, or are simply performed using less precise but cheaper experiments. For quantum mechanics
simulations, low-fidelity data typically corresponds to approximations or truncations of more complex
and computationally-expensive calculations, such that the low- and high-fidelity labels are closely re-
lated. Thus, it is natural to expect that incorporating low-fidelity measurements as an input feature into
a high-fidelity model typically improves the performance on sparse tasks relative to predictors learnt us-
ing the high-fidelity data alone. Despite its apparent simplicity, even in the transductive learning setting
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(i.e. low-fidelity and high-fidelity labels are available for all data points), it is not trivial to define an
adequate workflow that jointly uses both low- and high-fidelity labels. For instance, devising an end-
to-end training scheme with low- and high-fidelity labels as part of the same model can be challenging
for drug discovery applications, where the disparity between the numbers of respective observations is
larger than two orders of magnitude (e.g. the number of high-fidelity observations can be over 500 times
lower than that of the low-fidelity ones). Previous work has successfully applied multi-fidelity learning on
several problems [7], but as we show in Results (Section 2.5) that approach is unfortunately not effective
in drug discovery. While successfully exploiting multi-fidelity data in the transductive setting is valuable
on its own, virtually all high-throughput screening steps in drug discovery are followed by experiments
generating high-fidelity measurements for molecules that were not part of the original screening cascade,
i.e. lacking low-fidelity labels. Devising an in silico model of the low-fidelity portion of the screening
cascade is thus highly desirable, as it enables the generation of low-fidelity representations (e.g. labels)
for arbitrary molecules that were not part of the original funnel. This inductive learning capability is
crucial, as drug discovery requires making predictions about molecules that have not been made yet, and
therefore models that rely on transductive information (i.e. measured low fidelity labels) are generally
inapplicable. Even the highest throughput assays require that the molecules of interest must be synthe-
sised first.

The main motivation for our transfer learning approach is the desire to leverage representations learnt
from low-fidelity data to improve the predictive performance on sparse high-fidelity tasks. To support
this goal, we incorporate modern deep learning architectures, more specifically graph neural networks,
in our workflow. We consider two modes of transferring that knowledge into the high-fidelity models: i)
learning models for each fidelity independently, with the caveat that the high-fidelity molecular repre-
sentation includes the feature(s) generated, as outputs, by the low-fidelity model(s), and ii) pre-training
a graph neural network on the low-fidelity data and then devising an effective fine-tuning strategy for
the high-fidelity data. Both approaches naturally support transductive and inductive learning settings.
While both modes of information propagation between different levels of fidelity are applicable to vanilla
graph neural network architectures, it is not necessarily the case that representation transfer will yield
performance improvements. More specifically, we have observed that transfer learning with graph neural
networks has been underutilised and have therefore performed a detailed empirical study to assess the
capabilities of existing graph neural network architectures for transfer learning between observations as-
sociated with different levels of fidelity. Our empirical results indicate a critical shortcoming in standard
architectures that severely limits their transfer learning potential on several learning tasks, namely the
readout function responsible for aggregating embeddings of individual atoms into molecule-level repre-
sentations. The design of the readout functions is a fundamental aspect of geometric deep learning, and
a transition to neural network-based operators, also called adaptive readouts or neural readouts, over
simple and fixed functions such as sum or mean has only recently been studied extensively [8]. More
specifically, we leverage the famous attention mechanism [9], which is increasingly used in the life sciences
in different forms [10–13]. However, adaptive readouts and their fine-tuning have not been characterised
in relation to their transfer learning potential, which we address as part of this study. The transfer
learning capabilities enabled by adaptive readouts are further supported with a supervised variational
graph autoencoder designed to learn a structured and expressive chemical latent space that can be used
for downstream sparse high-fidelity tasks.

The proposed framework has been evaluated on a heterogeneous collection of transfer learning tasks,
including a novel drug discovery collection of 37 different protein targets (more than 28 million unique
experimental protein-ligand interactions in total) and 12 quantum properties from the dataset QMugs
(around 650K drug-like molecules). The analysis involves several different baselines, ranging from graph
neural networks to random forests and support vector machines. Our empirical results highlight the
importance of transfer learning in low-data regimes, which are encountered in drug discovery projects
relying on high throughput screening and are not uncommon in quantum simulations. More specifically,
we vary the size of the training set on high-fidelity data and show that transfer learning can improve the
accuracy of predictive models by up to eight times while using an order of magnitude less high-fidelity
training data. In the transductive setting, we notice that the inclusion of the actual low-fidelity label
typically amounts to performance improvements between 20% and 60%, and severalfold in the best cases.
However, out of the total of 51 transductive experiments, transfer learning via label augmentation was
the best performing method in only 10 instances, with the novel graph neural network schemes proving
as the most effective 80% of the time (Table 1). For the more challenging inductive learning setup,
we notice substantial improvements in performance due to latter methods, typically between 20% and
40% in the mean absolute error and up to 100% in R2. These performance improvements are mainly
due to alleviating the shortcomings of non-adaptive readouts in classical graph neural networks. While
on quantum mechanics problems standard graph neural networks are competitive, particularly if they
are extensive and non-local (which agrees with the existing literature), they are still outperformed by
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Figure 1. An overview of transfer learning approaches that leverage low-fidelity data to improve
predictions on sparse high-fidelity tasks. The illustration depicts a typical drug discovery scenario where
a large dataset of noisy observations is followed by a sparse, high-fidelity set of measurements obtained via
expensive and time-consuming assays. The workflow (steps 1, 2, 3) is general and can be applied to other settings,
e.g. quantum mechanics. (Top panel) A traditional HTS (high-throughput screening) experiment generates a
massive but noisy set of low-fidelity measurements (primary screening, measuring the activity of molecules at
a single concentration, indicated using the format ‘@ concentration’). An orders-of-magnitude smaller set of
molecules is selected for a high-fidelity experiment, such as a confirmatory screen. (Middle panel, bottom) Our
proposed transfer learning framework illustrated with three high-level steps in a drug discovery context. Firstly,
the corresponding low-fidelity single dose (SD) and high-fidelity dose response (DR) data are assembled into a
multi-fidelity dataset. DR values correspond to confirmatory screens measuring a ‘pXC50’ activity value (the
effect X ∈ {I = inhibitory, E = effective, A = activatory}), representing the concentration required for a 50%
effect. DR is only available for a fraction of the entire dataset, hence some compounds are not available (‘N/A’).
Secondly, a graph neural network (GNN) is trained on the large primary screening dataset (low-fidelity or LF),
modelling an extensive and diverse chemical space of interest. Finally, at the third step, the molecular structure,
supplemented with the molecular fingerprint/representation learnt at the second step, is used to train models of
confirmatory activity (high-fidelity or HF), including both deep learning and classical algorithms.

fine-tuning strategies involving adaptive readouts. In drug discovery tasks, on the other hand, the stan-
dard/vanilla graph neural networks significantly underperform the baselines. For completeness, we also
provide comparisons with state-of-the-art strategies for multi-fidelity learning and transfer learning with
graph-structured data, in the form of the multi-fidelity state embedding (MFSE) algorithm proposed
in [7] and a variation of pre-training and fine-tuning devised by [14]. Unfortunately, neither of the two
approaches performs particularly well on drug discovery tasks, further justifying our approach to trans-
fer learning with graph neural networks. We take several steps towards ensuring that our framework is
general by firstly extending to a scenario with real-world data that has more than two levels of fidelity.
Furthermore, for this setting we also evaluate a model operating directly on 3D molecular structures (the
SchNet architecture [15, 16]) in place of a typical graph neural network, thus validating transfer learning
with adaptive readouts on this family of widely-used and state-of-the-art models as well.

1.1 Related work

Introducing a funnel of increasingly expensive and accurate measurements is a common feature in molec-
ular design. In drug discovery, this is exemplified by high-throughput screening (HTS) and follow up
assays, while in quantum mechanics (QM) there are different levels of theory. In all cases, practitioners
are most interested in results from the most accurate level, both in transductive and inductive settings.
High-throughput screening is one of the core methods for identifying starting points in drug development
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and it is responsible for approximately one third of newly discovered drug candidates [17–19]. During
HTS, the activity of millions of compounds against a target is evaluated using a multi-stage/tier approach,
generating large data collections with different levels of fidelity [20]. The first stage corresponds to pri-
mary screening and consists of low-fidelity measurements for up to two million diverse compounds [21].
Primary screening traditionally acts only as a filter for identifying the most likely candidates for the more
expensive and precise second stage, a confirmatory screening. The confirmatory step typically provides
high-fidelity measurements for no more than 10, 000 carefully-selected compounds, acting as another filter
prior to lead optimisation. The confirmatory screening is typically done sequentially via multiple batches,
whereas the primary screening is performed only once and it is impractical to run additional experiments
at this scale as subsequent designs are typically synthesised in small batches. Another example where the
funnel approach is relevant is the prediction of molecular properties by computational chemistry, typically
with quantum mechanics simulations. In these cases, the accuracy of the simulations is tuned by using
different levels of theory with different computational costs. Currently, QM simulations at the scale of mil-
lions of molecular geometries are possible at the density-functional levels of theory (DFT) or less accurate
semi-empirical methods [22–24], and through approximations of the gold standard CCSD(T) method [25].
Due to extreme computational costs, the use of accurate methods such as G4MP2, CCSD(T), or CCSDT
is only feasible for a few thousand molecular conformations with typically less than a dozen atoms [22, 26].

In quantum chemistry, a family of established methods is given by the so called ∆-predictors [14, 23, 27,
28], which are designed for the transductive setting and focus on learning additive corrections of the low-
fidelity measurements when estimating the properties of interest. These approaches are defined only for
quantum properties and thus on a chemical space of limited diversity (e.g. only 3, 114 unique molecules for
ANI-1x/ANI-1cxx, with the heaviest atom being oxygen). Furthermore, not many high-quality datasets
exists to support multi-fidelity data modelling, with the very recently introduced QMugs dataset [23]
and our own MF-PCBA collection [29] being notable exceptions. As such, the standard choice for data,
techniques, and model architectures remains single-fidelity, even for recent quantum machine learning
efforts (e.g. Alchemy [30], QM7-X [31], nablaDFT [24]). Thus, the benefits of obtaining and holistically
modelling molecular data produced at different fidelity levels remains insufficiently explored. In drug
discovery, for instance, the benefits of leveraging millions of experimentally-derived molecular measure-
ments at different fidelity levels is particularly understudied. As recent large-scale drug discovery efforts
focus mainly on increased automation, reproducibility, and cost-effectiveness [21], the burden of making
sense of the immense collections of molecular interactions falls onto computational methods. Integrative
modelling of multi-fidelity data and improved molecule-level predictions could lead to cost-savings by
reducing or avoiding some of the expensive wet-lab experiments, the identification of new, promising
compounds, more informed experiments for ongoing projects, and hybrid wet-lab and in silico workflows.
However, existing studies of real-world drug discovery data are built on a single-fidelity paradigm, even
more so than in the case of quantum mechanics funnels [32–37].

Screening cascades with multi-fidelity outputs have a long-standing history in materials chemistry as
well. For instance, Yang et al. [38] have recently proposed a two-step approach to improve the predic-
tions of the short circuit density and fill-factor by leveraging data from low-fidelity simulators. The first
step in that approach relies on an unsupervised autoencoder to extract a compressed representation of
microstructure images. The second step then leverages the learnt latent space embedding augmented with
a low-fidelity label to train a surrogate model on the high-fidelity dataset. In contrast to our approach,
transfer learning is done on images and not on graph-structured data, and the latent space embedding
is learnt without supervision done via low-fidelity data points. Furthermore, a completely unsupervised
approach is unlikely to translate to molecules, as such representations are difficult to use for property-
based downstream prediction tasks [39]. Another interesting approach to multi-fidelity learning is the
composite neural network by Meng and Karniadakis [40] that aims to learn the parameters of inverse
PDE (partial differential equation) problems with non-linearities. However, the approach is designed
for problems where the correlation between low- and high-fidelity data is unknown, a case that is not
generally encountered in drug discovery or quantum simulations. It has been applied in the context of
PDEs with shallow and small neural networks and has only been evaluated on relatively small datasets
(between 30, 000 and 45, 000 samples) with mainly uni-dimensional functions.

Multi-fidelity learning also has applications in active learning and Bayesian optimisation, where one
aims to iteratively optimise a black-box function using a fixed budget of high-fidelity evaluations. The
main motivation for this setup is the desire to leverage low-fidelity simulations to eliminate regions with
low function values using an inexpensive proxy for a targeted property of interest. The expensive high-
fidelity evaluations are then used in small but promising regions to quickly find the optima. Fare et
al. [41] have used a multi-task Gaussian process in this setting for materials design and screening of
molecules. While Gaussian processes have the advantage of being able to perform uncertainty quantifi-
cation, the computational complexity (cubic) can be a challenge for large scale low-fidelity datasets. The
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Figure 2. The proposed supervised variational graph autoencoder (VGAE) presented schemat-
ically in a typical drug discovery scenario with a large and low-fidelity (LF) high-throughput
screening dataset, and a sparse and high-fidelity (HF) confirmatory screening dataset. Graph con-
volutions are used to propagate and learn atom-wise representations according to the connectivity imposed by
the bonds, which are then aggregated into a single molecule-level representation or embedding (a fixed-dimension
vector). The readouts are standard pooling functions, e.g. sum, mean, max, or neural networks (adaptive aggre-
gators). The symbol ∥ denotes concatenation, µ(x) and σ(x) denote the mean and standard deviation learnt by
the VGAE, and ‘Dense NN’ is a multi-layer perceptron. The four workflows presented in this figure are listed
in the top right and correspond to the first four experiments presented in Results. A low-fidelity model is first
trained with supervised information to produce latent space embeddings z∗ (E1). A separate model with the
same architecture can then be trained to predict high-fidelity values, by concatenation with either the actual
labels (E2) or embeddings/predictions generated by the LF model (E3). A novel strategy unique to adaptive
readouts in graph neural networks is that of pre-training a model on LF data as in (E1) and then fine-tuning
exclusively the adaptive readouts with the VGAE layers being frozen (E4). We also emphasise that the learnt
low-fidelity embeddings/predictions can be integrated into any machine learning algorithm (e.g. support vector
machines, random forests, etc.).

problem setting in that approach is also significantly different from the one studied here, as their main
focus is to extend Bayesian optimisation for materials design from a single-task sample-efficient setup to
multi-fidelity models capable of leveraging information from different sources. Previously, Patra et al.
[42] have also employed multi-fidelity Gaussian processes to predict polymer band gaps on a small dataset
of 382 polymers. Perhaps the closest to our work is the custom message passing algorithm by Chen et
al. [7], which is the first notable work on multi-fidelity graph neural networks. The algorithm, which we
refer to as multi-fidelity state embedding or MFSE for short, proposes a small modification to the stan-
dard message passing workflow, where in addition to node (atom) and edge (bond) messages and update
functions, a state message is constructed and updated alongside them. The state embedding is a global
attribute of the graph (molecule), and it is updated according to a fidelity encoding that is present for
each data point. In other words, during training each molecule is associated with its structure, regression
label, and a fidelity indicator (e.g. low or high) that is used to propagate fidelity-specific messages. The
approach has two shortcomings: i) as in Fare et al., jointly training on all fidelities can be problematic
when the low-fidelity data outnumbers the high-fidelity samples by more than two orders of magnitude,
as the high-fidelity information can effectively be lost, and it remains to be explored if the state embed-
ding mechanism can account for this (see Results, Section 2.5), and ii) coupling low- and high-fidelity
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training means that to enable high-fidelity inference, the model must be trained on the entirety of the
low-fidelity data, dramatically increasing the training times and resource utilisation. In [43] a general
approach has been proposed for recursively modelling more than two fidelity levels by means of feature
augmentation where a high-fidelity data representation includes a predicted low-fidelity label associated
with the previous screening step. This approach is similar to our baseline for the inductive setup where
a low-fidelity proxy is obtained using a surrogate model.

2 Results

This section provides a comprehensive empirical analysis of all the transfer learning techniques described
in Methods (Section 4.5). We evaluate the effectiveness of different feature augmentations for transfer
learning given by: (1) explicit low-fidelity labels, (2) labels predicted by the low-fidelity models (with
both sum and adaptive readout variants), (3) explicit low-fidelity labels during training and predicted
ones during inference (a hybrid approach), (4) latent space embeddings generated by low-fidelity models
(with both sum and adaptive readout variants) and two fine-tuning strategies tailored for graph neural
networks: (5) pre-training and fine-tuning a standard GNN similarly to Smith et al. [14], and (6) fine-
tuning of the adaptive readout in models that were pre-trained on low-fidelity data, while keeping fixed
the weights in other layers. All the methods are compared relative to baselines trained exclusively on
sparse high-fidelity data as the goal is to improve their predictive ability in that setting. The effectiveness
of different strategies is illustrated on a suite of experiments with the following structure and goals:

1. Learning with standard and adaptive readout-based VGAEs exclusively on the low-fidelity data
(Figure 1, step 2, and Figure 2, bottom) that is available in large, diverse, and heterogeneous
datasets to assert their capacity to learn structured concepts (Section 2.1). This is a foundational
contribution that indicates the potential of adaptive readouts for fitting the data and their ability
to transfer knowledge from latent embeddings to novel tasks via fine-tuning operations.

2. Learning predictive models on sparse high-fidelity data that incorporate the raw low-fidelity labels,
indicating their utility for transfer learning in the transductive setting (Section 2.2).

3. Learning predictive models on sparse high-fidelity data that incorporate representations (e.g. latent
space embeddings or predicted labels) generated by low-fidelity models in transductive (Section 2.2)
and inductive (Section 2.3) settings.

4. Fine-tuning of low-fidelity models on high-fidelity data, highlighting a novel strategy where only
the adaptive readout is retrained on small-sample tasks. Our empirical results demonstrate superb
performance of this strategy and that it outperforms fine-tuning standard GNNs (Section 2.2).

5. Evaluating all the presented strategies while varying the high fidelity training set size, demonstrating
severalfold improvements while using an order of magnitude less training data (Section 2.4).

6. Evaluating the proposed strategies relative to established multi-fidelity and transfer learning tech-
niques on a set of representative datasets. In addition to pre-training and fine-tuning standard
GNNs [14], we also compare to the multi-fidelity state embedding (MFSE) approach of [7] and
show that neither of them offers significant improvements on drug discovery tasks (Section 2.5).

7. Evaluating an extension of transfer learning strategies to more than two fidelities. More specifically,
we demonstrate that multiple lower-level fidelity inputs can be successfully integrated and that they
can work synergistically, improving performance of downstream models when used jointly compared
to individually incorporating them. In this suite of experiments, we use SchNet as the underlying
architecture, further validating the effectiveness of transfer learning strategies across a different and
widely-used family of GNNs (Section 2.6).

We conclude this overview of our empirical study by highlighting two of the main reasons behind our
extensive suite of evaluated augmentations (corresponding to points (1) – (4) above): i) there are multiple
possible ways of transferring knowledge from separately trained low-fidelity models and some might be
more adequate for certain protein targets or quantum properties, dataset sizes, or fidelity correlations;
ii) every time an adaptive (neural) readout is used, we also report the result for the equivalent model
with a sum readout (in an attempt to simulate an approximately similar inductive bias in the feature
extraction part of graph neural networks). The proposed augmentations are agnostic to the underlying
architectures and, thus, the main goal of these baselines is to illustrate the limited potential of standard
GNN readout functions for transfer learning in multi-fidelity settings.
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Figure 3. Systematic evaluation of the ability of models based on different graph readout functions
to learn from large-scale and complex datasets. A. Train MAE for the PubChem low-fidelity models, with
a model predicting the dataset mean for comparison. The MAE values are scaled to the range [0, 1] for each
dataset. B. The same but for the AstraZeneca and QMugs models. C. 3D UMAP latent space visualisations for
a selection of low-fidelity models using sum and neural readouts. Similar effects are observed for other datasets.
The dataset sizes are: 1 581 928 (AZ-SD9), 1 700 745 (AZ-SD-1), 98 472 (AID1949), 311 910 (AID449762), and
657 140 (QMugs). MAE denotes the mean absolute error and UMAP stands for uniform manifold approximation
and projection. Source data are provided as a Source Data file.
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Table 1. A count of the best augmentation strategy for each of the three groups of datasets (AZ, PubChem,
and the QMugs 10K diverse set) in the transductive setting, as ranked by ‘% MAE decrease’. The 10 cases
where the labels are preferable are discussed in detail in Supplementary Notes 15 and Supplementary Table 4.
Bold is used for the table headers.

Neural Sum

Label Emb.
Pred.
label

Hybrid
label

Tune
readout

Emb.
Pred.
label

Hybrid
label

Tune
network

AZ 2 3 1 2 8 0 0 0 0

PubChem 4 2 1 0 15 0 1 0 0

QMugs 4 5 0 0 3 0 0 0 0

Subtotal 10 10 2 2 26 0 1 0 0

Total 10 40 1

2.1 Learning with graph neural networks via standard and adaptive readouts

To assess the potential of adaptive readouts for enabling high capacity hypothesis spaces, we train two
models on low-fidelity data, with identical architectures and hyperparameters but different readouts.
More specifically, we use the sum operator as a representative of the standard readouts (performs similarly
to mean and maximum on bioaffinity tasks [8]) and the Set Transformer as an adaptive (neural) readout
[8]. As a further quality check for the drug discovery tasks, we consider a ‘null hypothesis’ that predicts
the dataset mean for each molecule, which is a relevant baseline because HTS data is biased toward low
activity. We trained supervised VGAEs independently on all of the low-fidelity data for each multi-fidelity
dataset. Our empirical results indicate that the performance of the sum readout models generally closely
matches or even does worse than the null hypothesis (Figures 3A and 3B) for all drug discovery tasks, but
is more competitive on the quantum tasks, particularly for the extensive and global properties such as the
total energy. This agrees with the existing literature and highlights the unique challenge posed by the HTS
data. For drug discovery, the adaptive readout models offer severalfold improvements in the capacity to
learn from the low-fidelity data, as measured by the MAE (Figure 3) and R2 (Supplementary Figure 1),
with smaller but noticeable improvements for QMugs. The uplifts observed here translate to better
downstream performance in both transductive and inductive settings, as can be seen from Section 2.2
onward. At the same time, models using adaptive readouts exhibit a characteristic structuring effect
on the latent space with respect to the low-fidelity domain, as visualised using 3D UMAP (Figure 3C).
For the drug discovery data, we notice a clear and often continuous demarcation of active and inactive
compounds, an effect that is not present when using standard readouts, which generate scattered and
less informative representations. Similar effects can be observed for quantum properties.

2.2 Effectiveness of transfer learning strategies in the transductive setting

In this section, we systematically evaluate the performance of all the proposed low-fidelity augmenta-
tions on our HTS-based drug discovery collection and on QMugs in the transductive setting (i.e. real,
experimentally-derived low-fidelity labels are available for drug discovery, with semi-empirical xTB labels
for QMugs), with a standard train, validation, and test evaluation workflow (Figure 4). The transductive
setting acts not only as an excellent machine learning benchmark, but is also of practical use in drug
discovery as it enables higher quality predictions in the high-fidelity domain for the millions of compounds
that are present in the screening cascade. To this end, we train models on sparse high-fidelity data and
incorporate different representations of low-fidelity information (strategy 1, and strategies 2 – 4 with
both sum and neural readout variations), or fine-tune the low-fidelity models from Section 2.1 (strate-
gies 5 and 6). The number of times each strategy ends up as the best performing one is provided in Table 1.

For the drug discovery tasks, we noticed consistent decreases in MAE between 10% and 40% just by
the inclusion of raw low-fidelity single-dose labels, with only a few exceptions (Supplementary Figures 2
and 7 to 9 for the remaining datasets). Moreover, we notice that augmenting with neural embeddings
can outperform the actual low-fidelity labels by up to 10%. The predictions generated by neural readout
low-fidelity models, either by themselves or in a hybrid setting, are generally slightly worse than the
embeddings but comparable to the raw labels (Figure 4). In contrast, the embeddings and predictions
produced by sum readout low-fidelity models struggle to achieve any decrease in MAE, occasionally even
degrading the performance. The inability of the sum readout low-fidelity models to fully model the data is
particularly emphasised by the hybrid augmentation, where the actual experimentally-derived labels are
used during training and the predicted ones for evaluation. The significant decrease in the effectiveness
observed in this case indicates the disparity between the space covered by the raw labels and the infor-
mation carried by sum readout low-fidelity models, which agrees with previous observations (Section 2.1).
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Figure 4. Systematic evaluation of all drug discovery (AstraZeneca, PubChem) and quantum
mechanics (QMugs) datasets in the transductive setting. The test set performance of high fidelity models
with augmentations based on sum and neural readout-based low-fidelity (‘LF’) models, including fine-tuning
(denoted by ‘Tune’, seeMethods) is presented. ‘Emb.’ corresponds to the incorporation of low-fidelity embeddings,
‘Pred. label’ corresponds to the predicted labels (outputs) of LF models, ‘Hybrid label’ signifies training with raw
labels and evaluating on LF-predicted labels, and ‘readout’ denotes the graph readout function. The AstraZeneca
datasets are named based on the high-fidelity (DR, dose response) and low-fidelity (SD, single dose) datasets.
The abbreviations are: AZ, AstraZeneca; AID, assay identifier; VGAE, variational graph autoencoder; MAE,
mean absolute error; DFT, density functional theory. The remaining results (other datasets) are available in
Supplementary Figures 2 and 7 to 9, with random forest and support vector machine results in Supplementary
Figures 3 to 6 and 10 to 13. Source data are provided as a Source Data file.

In addition, we evaluate fine-tuning strategies for sum and neural readout low-fidelity models. The
former, without a learnable readout function and any frozen components, generally struggles to improve
to the same degree or is even worse compared to other sum-based augmentations. In contrast, pre-training
and fixing the graph layers, followed by fine-tuning of the neural readout generally matches the other
neural-based augmentations and is even preferable by a large margin for datasets such as AZ-DR-R7,
AZ-DR-R13, and AZ-DR-R14 (Figure 4). To mimic the HTS setting on QMugs, we selected a diverse and
challenging set of 10K molecules (Supplementary Notes 5.1). The QM models are of particular interest
as certain quantum properties are naturally additive and non-local, such that the sum readout is theo-
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retically capable of modelling those tasks [44, 45]. While we explore this dynamic in [46], here we report
similar trends as for drug discovery, namely that the adaptive embeddings and fine-tuning the adaptive
readouts outperform the raw labels by a large margin, with the exception of the four dipole properties
which are particularly difficult to learn (see Supplementary Notes 15 for a possible explanation). How-
ever, for a large selection of properties such as the HOMO and LUMO energies and rotational constants,
the low-fidelity xTB labels are completely ineffective, whereas the adaptive readout strategies lead to
improvements between 20% and 80% in MAE, depending on the properties. For additive properties such
as the atomic, formation, and total energies, the sum readout is competitive, as expected, although it is
still outperformed by adaptive readouts. In this transductive setting, for drug discovery and QMugs, we
report a statistically significant relationship between the uplift in performance (‘% MAE decrease’) and
linear correlation (Pearson’s r) between the low and high fidelity measurements (Figure 5A).

2.3 Effectiveness of transfer learning strategies in the inductive setting

We now turn our attention to one of the most challenging scenarios encountered during computationally-
assisted early-stage drug discovery: improving predictions in an inductive setting with possible out-of-
distribution test samples relative to the training data. Here, we used the entire high-fidelity data discussed
in the previous section for training, and used test molecules that were selected later in the drug discovery
campaign (i.e. lacking low-fidelity labels) for evaluation. This set of test molecules is referred to as a
‘no low-fidelity set’. It is possible to encounter multiple such sets within the same project. For brevity,
we focus only on embeddings generated by models with adaptive readouts and the sum counterpart for
comparison.

For all categories of datasets (originating from public or private sources; regression and/or classifica-
tion tasks), we report substantial increases in performance when using adaptive readouts, often between
20% – 40% in MAE and up to 100% in R2 (Figure 5B), with a remarkable uplift for the classification
task AZ-DR-C2, where the MCC increased from 0.69 to its maximal value of 1.0. We are again able to
identify that the embeddings produced by sum readout low-fidelity models lead to performance degrada-
tion compared to the plain non-augmented baseline. While the augmentations given by the sum readout
models carry some low-fidelity information, their effectiveness is further limited by a different problem.
Namely, for AZ-DR-R11 we selected the most active compound in the test set (Figure 5C) and supplied
the high-fidelity models with simulated low-fidelity labels (i.e. Z-Score values ranging from −50 to 50
in 0.5 increments). We leveraged models augmented with predicted labels as we can directly provide
artificial values, unlike for the variation with embeddings. We discover that models that rely on sum
readout-based low-fidelity models fail to learn a meaningful relationship between the provided label and
the target pIC50, as the pIC50 value steeply increases to unlikely quantities even for common Z-scores
in the range of −20 to −30.

2.4 Effectiveness of transfer learning strategies while varying the size of the
training sample in sparse high fidelity tasks

To illustrate the importance of leveraging low-fidelity measurements in small-sample regimes character-
istic of high-fidelity tasks, we evaluate the previously discussed transfer learning strategies while varying
the training set sizes of high-fidelity data and maintaining fixed validation and test sets in the same high-
fidelity domain. We selected the largest drug-discovery dataset (AZ-DR-R2), having slightly under 12, 000
molecules in the high-fidelity domain (confirmatory screen) and assembled random training subsets of
sizes 1K, 2.5K, 5K, and 10K, such that larger training samples contain all the molecules of the smaller
subsets, with fixed validation of test sets of equal sizes from the remaining data outside the 10K training
set. For QMugs, we used the same diverse set of 10K molecules with high-fidelity DFT labels as a starting
point and challenging train, validation, and test splits of size 8K, 1K, and 1K respectively (Supplementary
Notes 5.1). We then generated high-fidelity training subsets of sizes 25K, 50K, 100K, and 300K following
the same strategy as for drug discovery, keeping the validation and test sets of size 1K fixed. We demon-
strate the effects of transfer learning in both transductive (low-fidelity datasets contain the molecules
appearing in the high-fidelity subsets) and inductive settings (adjusted low-fidelity datasets where the
molecules appearing in high-fidelity subsets are removed). For brevity, we illustrate only the transfer by
embeddings strategy, generated by low-fidelity models trained in either transductive or inductive settings.

The feature augmentations based on adaptive and sum readout low-fidelity models are compared to
baseline non-augmented models and the raw low-fidelity labels, with test set metrics reported in Fig-
ure 6A. On AZ-DR-R2, we notice a large uplift just by the simple inclusion of low-fidelity labels (from
0.049 to 0.331 in R2 for the 1K split). In contrast, the best performance of non-augmented models is
achieved for the 5K training set size (R2 of 0.220), which is more than 50% lower than the performance
on the 1K set with low-fidelity labels. Adaptive embeddings produced in a transductive setting improve
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Figure 5. Systematic evaluation of drug discovery (AstraZeneca, PubChem) datasets in the
inductive setting and their learnt trends, and an analysis of dataset correlations. A. Scatter plots of
the low-fidelity/high-fidelity correlation measured by Pearson’s r for each dataset (x-axis) and the relative MAE
decrease computed for the neural embeddings-augmented transductive models with regards to the non-augmented
baseline (y-axis), with the regression line for the two variables and 95% confidence intervals for the regression.
B. Systematic evaluation of high-fidelity models using sum and neural embeddings in an inductive setting, where
the previous train, validation, and test splits from Figure 4 are used for training and testing is performed on
compounds that were measured in subsequent HTS stages. We have also observed cases where both sum and
neural based augmentations did not provide uplifts or even decreased performance (Supplementary Figure 14 for
all the remaining datasets). C. Example of a model evaluated in this inductive setting where we supply low-fidelity
labels (Z-Score) ranging from −50 to 50 in 0.5 increments. Models that rely on sum-based low-fidelity predictions
learn nonsensical relationships with linearly increasing pIC50 values. As expected, this is alleviated by the
hybrid augmentation, where training uses the raw labels. In contrast, neural-based predictions are initially more
conservative than the baseline and slowly surpass the non-augmented models in terms of predicted activity. The
multi-fidelity drug discovery datasets are named based on the high-fidelity (DR, dose response) and low-fidelity
(SD, single dose) datasets. The abbreviations are: AZ, AstraZeneca; AID, assay identifier; DFT, density functional
theory; GFN2-xTB, geometry, frequency, noncovalent, eXtended tight binding; pIC50, negative logarithm of the
half maximal inhibitory concentration; MAE, mean absolute error; R2, coefficient of determination; AUROC, area
under the receiver operating characteristic; MCC, Matthews correlation coefficient. Source data are provided as
a Source Data file.

over 8 times over the baseline R2 (0.455), and by 37.39% over the raw labels. The adaptive embeddings
produced in an inductive setting generally match the raw labels, even outperforming them for the 1K
training set size. Both sum embeddings perform similarly, improving upon the baseline but not matching
the raw labels. We notice similar trends for different quantum properties. For example, in a transductive
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setting, MAE is almost halved for LUMO energy, and it is reduced by 4 to 8 times on the total and atomic
energies and the rotation constants for the most relevant 8K training split. Interestingly, for that split
the embeddings learnt in the significantly more challenging inductive setting often outperform the actual
low-fidelity label. Depending on the quantum property, these observations can generalise even to the
splits that use more high-fidelity training data (e.g. for total and atomic energies, rotational constants,
and LUMO and HOMO energies to an extent). Representations learnt by sum readout low-fidelity models
can lead to an improvement compared to the baseline models (no augmentation), however by a much
smaller amount.

2.5 Comparison with the multi-fidelity state embedding algorithm

In this section, we compare the proposed strategies with a recently proposed graph neural network
architecture devised specifically for multi-fidelity learning on molecules, which we refer to as ‘multi-fidelity
state embedding’ or MFSE for short [7]. We evaluate MFSE on a representative selection of 3 public and
3 AstraZeneca drug discovery datasets. The datasets with the largest performance uplift when using low-
fidelity information were chosen to maximise the chance of MFSE being effective. Unfortunately, MFSE
is not competitive with the proposed methods on any of the selected drug discovery datasets, as can be
seen from Figure 6C. As a sanity check for the algorithm, we include an instance where MFSE is trained
only on high-fidelity data (‘HF only’), which performs similarly to our HF-only baseline. However, when
used in the intended way (‘HF + LF’), the performance does not consistently increase and even decreases
in a number of instances. This inability to model both fidelities at the same time highlights the unique
challenge posed by HTS drug discovery and the need for more effective transfer learning methods. At
the same time, the ineffectiveness of MFSE when using both low- and high-fidelity labels shows that it is
not trivial to incorporate low-fidelity information into a model even when multi-fidelity data is available.

2.6 Extending to multiple fidelities

Our empirical analysis so far has assumed that transfer learning occurs between two clearly defined fi-
delity levels — ‘low’ to ‘high’. This is traditionally the case for the majority of drug discovery by HTS
projects and QMugs, the first large-scale multi-fidelity QM dataset, with the majority of the latter being
single-fidelity. However, it is interesting to consider the case where more than two fidelities are present.
Although this is not a common setting, we have selected the well-known QM7b dataset [47–49] which
possesses HOMO and LUMO energy calculations at three different levels of theory: ZINDO, PBE0, and
GW. For QM7b, as for the majority of datasets with more than two levels of fidelity [7] there is an
‘ordering’ of fidelities according to their precision: ZINDO < PBE0 < GW.

The strategies involving the inclusion of the low-fidelity labels or embeddings can be trivially extended
to a setting with more than two fidelities. Concretely, a separate model is trained for each lower fidelity
(here, ZINDO and PBE0), and the corresponding labels or embeddings are added to the high-fidelity
model (here, GW) as usual. We have evaluated the direct inclusion of the low-fidelity labels, as well as
embeddings generated by sum and adaptive readouts, both individually (i.e. only ZINDO or PBE0 at a
time) and jointly (i.e. both labels or embeddings are concatenated to the internal molecular representa-
tion) and we report the results in Figure 6B. Interestingly, the direct inclusion of the labels provides only
small (less than 10% MAE decrease) or no performance uplifts, an observation shared with the outputs
of the sum readout-based low-fidelity models. On the other hand, models leveraging neural embeddings
provide significant improvements for ZINDO and PBE0 individually, despite the relatively low correlation
between ZINDO and GW in particular (Figure 6B). Furthermore, models jointly using ZINDO and PBE0
embeddings perform slightly better than PBE0. This is an interesting result as ZINDO is a relatively
crude approach that is by definition more approximate than PBE0.

3 Discussion

We have investigated the problem of learning an effective model for molecular property prediction on
small-sample datasets typically encountered in the final stages of screening cascades characteristic of
molecular design and drug discovery. Our focus was on showing the utility of transfer learning with graph
neural networks for the multi-fidelity nature of this generative data process. More specifically, we have
mainly focused on knowledge transfer between large-scale low-fidelity measurements that are inexpensive
to obtain and sparse high-fidelity observations that are labour and resource intensive. Typically, the
effectiveness of the whole discovery process hinges on the assumption that one will be able to successfully
select candidates for the final high-fidelity screening step. While prior work in materials chemistry has
studied aspects of learning in multi-fidelity settings [7, 38, 41], our work is the first, to the best of our
knowledge, that tackles novel and heterogeneous drug discovery by HTS tasks and quantum mechanics
simulations through transfer learning with GNNs. We demonstrated a high level of generality through
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Figure 6. Evaluation of models with different training set sizes, multiple fidelities, and a com-
parison with the multi-fidelity state embedding algorithm. A. Test metrics for high-fidelity models with
fixed validation and test sets but varying train set sizes and different strategies, in transductive and inductive
settings. The rest of the quantum properties are available in Supplementary Figure 15. B. Test metrics for QM7b
models leveraging three fidelities corresponding to the ZINDO, PBE0, and GW levels of theory (‘LoT’) and their
correlations. C. Evaluation of the transfer learning strategies in a transductive setting and in the context of the
established multi-fidelity state embedding (MFSE) method. The multi-fidelity drug discovery datasets are named
based on the high-fidelity (DR, dose response) and low-fidelity (SD, single dose) datasets. The abbreviations
are: AZ, AstraZeneca; AID, assay identifier; DFT, density functional theory; HOMO, highest occupied molecular
orbital; LUMO, lowest unoccupied molecular orbital; MAE, mean absolute error, R2, coefficient of determination.
Source data are provided as a Source Data file.
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the successful application to quantum chemistry where we outperform existing methods, through ex-
plicitly evaluating transductive and inductive cases, through consistently strong results not only for our
supervised VGAE architecture but also for 3D-aware networks like SchNet, and through extensions to
more than two fidelities.

Our main algorithmic contribution lies in identifying and addressing the shortcomings of classical graph
neural networks that are unable to harness the multi-fidelity observations produced by screening funnels.
More specifically, we have proposed two main transfer learning schemes that enable effective knowledge
transfer between fidelities: transfer by embeddings or predictions generated by models trained on low-
fidelity data, and (supervised) pre-training on low-fidelity and fine-tuning on high-fidelity. All approaches
are independent of the convolution operator used for feature extraction within graph neural networks.
While learning molecular properties with architectures involving standard readouts is competitive on a
range of tasks, particularly quantum properties that are extensive and not localised, this is generally
not the case with large-scale and noisy drug discovery datasets. For those tasks, graph neural networks
with adaptive readouts excel and unlock the transfer learning capability of supervised pre-training and
fine-tuning, which is notoriously challenging for GNNs in general and molecular data in particular [50].

Our empirical analysis is extensive and covers several real-world datasets, various different baselines,
and different problem domains and settings. The overall effectiveness and generality of the proposed
approaches augur well for future applications of graph neural networks for transfer learning. More specif-
ically, we envision impactful drug discovery applications in live high-throughput screening projects. The
results in the inductive setting indicate that the massive amount of data collected during these campaigns
can be transferred to predict high-fidelity activity for novel compounds that did not exist during the HTS
screening campaign, without needing to synthesise them first. Furthermore, from a resource and cost
utilisation perspective, such projects operate on tight schedules and a fixed budget of high-fidelity evalu-
ations (e.g. 10,000). Here, we have shown that transfer learning is particularly useful when a low amount
of high-fidelity data is available (Figure 6A). Transfer learning can inform and improve the effectiveness
of these costly steps, resulting in much more diverse and promising active molecules as well as lower
costs to the discovery processes. In hybrid experimental and in silico workflows, as few as 500 to 1,000
high-fidelity evaluations could be performed by traditional selection, with the rest of the budget invested
into recommendations made with the help of transfer learning (operating in the inductive setting).

Ultimately, we hypothesise that multi-fidelity data and architectures are the natural step forward for
a wide variety of molecular tasks specified by small-sample datasets. Transfer learning by embeddings is
particularly interesting due to its high effectiveness and wide applicability. For instance, we have shown
that the embeddings can successfully be used by models such as random forests and support vector ma-
chines, and envision applications to probabilistic methods such as Gaussian processes that can provide
uncertainty estimates. Furthermore, the supervised variational graph autoencoder architecture has the
potential to be useful in a generative setting, allowing a more informed and varied compound generation
protocol since primary screens are designed to be diverse and are between 4 and 8 times larger than the
commonly used ZINC dataset [51]. Another promising direction [32, 52, 53] might be to train low-fidelity
predictors on multiple HTS projects at the same time, including potentially hundreds of protein targets,
and aiming towards a ‘universal’ latent space organised by function or protein-ligand interactions. Ex-
tensions to other drug discovery technologies such as DNA-encoded molecule libraries are also an exciting
direction.

4 Methods

We start with a brief review of transfer learning and a formal description of our problem setting. This
is followed by a section covering the preliminaries of graph neural networks (GNNs), including standard
and adaptive readouts, as well as our supervised variational graph autoencoder architecture. Next, we
formally introduce the considered transfer learning strategies, while also providing a brief overview of
the frequently used approach for transfer learning in deep learning – a two stage learning mechanism
consisting of pre-training and fine-tuning of a part or the whole (typically non-geometric) neural network
[14]. In Results (Section 2), we perform an empirical study validating the effectiveness of the proposed
approaches relative to the latter and state-of-the-art baselines for learning with multi-fidelity data.

4.1 Overview of transfer learning and problem setting

Let X be an instance space and X = {x1, . . . , xn} ⊂ X a sample from some marginal distribution ρX . A
tuple D = (X , ρX ) is called a domain. Given a specific domain D, a task T consists of a label space Y and
an objective predictive function f : X → Y that is unknown and needs to be learnt from training data
given by examples (xi, yi) ∈ X × Y with i = 1, . . . , n. To simplify the presentation, we restrict ourselves
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to the setting where there is a single source domain DS , and a single target domain DT . We also assume
that XT ⊆ XS , and denote with DS = {(xS1

, yS1
), . . . , (xSn

, ySn
)} and DT = {(xT1

, yT1
), . . . , (xTm

, yTm
)},

the observed examples from source and target domains. While the source domain task is associated with
low-fidelity data, the target domain task is considered to be sparse and high-fidelity, i.e. it holds that
m≪ n.

Definition 1 ([54, 55]). Given a source domain DS and a learning task TS, a target domain DT and
learning task TT , transfer learning aims to help improve the learning of the target predictive function fT
in DT using the knowledge in DS and TS, where DS ̸= DT or TS ̸= TT .

The goal in our problem setting is, thus, to learn the objective function fT in the target domain DT by
leveraging the knowledge from low-fidelity domain DS . The main focus is on devising a transfer learning
approach for graph neural networks based on feature representation transfer. We propose extensions for
two different learning settings: transductive and inductive learning. In the transductive transfer learning
setup considered here, the target domain is constrained to the set of instances observed in the source
dataset, i.e. XT ⊆ XS . Thus, the task in the target domain requires us to make predictions only at
points observed in the source task/domain. In the inductive setting, we assume that source and target
domains could differ in the marginal distribution of instances, i.e. ρXS

̸= ρXT
. For both learning settings,

we assume that the source domain dataset is significantly larger as it is associated with low-fidelity
simulations/approximations.

4.2 Graph neural networks

Here, we follow the brief description of GNNs from [8]. A graph G is represented by a tuple G = (V, E),
where V is the set of nodes (or vertices) and E ⊆ V×V is the set of edges. Here, we assume that the nodes
are associated with feature vectors xu of dimension d for all u ∈ V. The graph structure is represented
by A, the adjacency matrix of a graph G such that Auv = 1 if (u, v) ∈ E and Auv = 0 otherwise. For a
node u ∈ V the set of neighbouring nodes is denoted by Nu = {v | (u, v) ∈ E ∨ (v, u) ∈ E}. Assume also
that a collection of graphs with corresponding labels {(Gi, yi)}ni=1 has been sampled independently from
a target probability measure defined over G × Y, where G is the space of graphs and Y ⊂ R is the set of
labels. From now on, we consider that a graph G is represented by a tuple (XG,AG), with XG denoting
the matrix with node features as rows and AG the adjacency matrix. The inputs of graph neural networks
consist of such tuples, outputting predictions over the label space. In general, GNNs learn permutation
invariant hypotheses that have consistent predictions for the same graph when presented with permuted
nodes. This property is achieved through neighbourhood aggregation schemes and readouts that give rise
to permutation invariant hypotheses. Formally, a function f defined over a graph G is called permutation
invariant if there exists a permutation matrix P such that f(PXG,PAGP

⊤) = f(XG,AG). The node
features XG and the graph structure (adjacency matrix) AG are used to first learn representations of
nodes hv, for all v ∈ V. Permutation invariance in the neighbourhood aggregation schemes is enforced
by employing standard pooling functions — sum, mean, or maximum. As succinctly described in [56],
typical neighbourhood aggregation schemes characteristic of GNNs can be described by two steps:

a(k)v = aggregate({h(k−1)
u | u ∈ Nv}) and h(k)

v = combine(h(k−1)
v ,a(k−1)

v ) (1)

where h
(k)
u is a representation of node u ∈ V at the output of the kth iteration.

After k iterations the representation of a node captures the information contained in its k-hop neigh-
bourhood. For graph-level tasks such as molecular prediction, the last iteration is followed by a readout
(also called pooling) function that aggregates the node features hv into a graph representation hG. To
enforce a permutation invariant hypotheses, it is again common to employ the standard pooling functions
as readouts, namely sum, mean, or maximum.

4.3 Graph neural networks with adaptive (neural) readouts

Standard readout functions (i.e. sum, mean, and maximum) in graph neural networks do not have any
parameters and are, thus, not amenable for transfer learning between domains. Motivated by this, we
build on our recent work [8] that proposes a neural network architecture to aggregate learnt node rep-
resentations into graph embeddings. This allows for freezing the part of a GNN architecture responsible
for learning effective node representations and fine-tuning the readout layer in small-sample downstream
tasks. In the remainder of the section, we present a Set Transformer readout that retains the permu-
tation invariance property characteristic of standard pooling functions. Henceforth, suppose that after
completing a pre-specified number of neighbourhood aggregation iterations, the resulting node features
are collected into a matrix H ∈ RM×D, where M is the maximal number of nodes that a graph can
have in the dataset and D is the dimension of the output node embedding. For graphs with less than M
vertices, H is padded with zeros.
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Recently, an attention-based neural architecture for learning on sets has been proposed by Lee et al. [57].
The main difference compared to the classical attention model proposed by Vaswani et al. [9] is the ab-
sence of positional encoding and dropout layers. As graphs can be seen as sets of nodes, we leverage this
architecture as a readout function in graph neural networks. For the sake of brevity, we omit the details
of classical attention models [9] and summarise only the adaptation to sets (and thus graphs). The Set
Transformer (ST) takes as input matrices with set items (in our case, graph nodes) as rows and generates
graph representations by composing encoder and decoder modules implemented using attention:

st(H) =
1

K

K∑
k=1

[decoder (encoder (H))]k (2)

where [·]k refers to a computation specific to head k of a multi-head attention module. The encoder-
decoder modules follow the definition of Lee et al. [57]:

encoder (H) := mabn (H,H) (3)

decoder(Z) := ff (mabm (pma(Z),pma(Z))) (4)

pma(Z) := mab(s, ff(Z)) (5)

mab(X,Y) := A+ ff(A) (6)

A := X+multi-head(X,Y,Y) . (7)

Here, := denotes assignment, H denotes the node features after neighbourhood aggregation and Z is the
encoder output. The encoder is a chain of n classical multi-head attention blocks (mab) without positional
encodings. The decoder component consists of a pooling by multi-head attention block (pma) (which
uses a learnable seed vector s within a multi-head attention block to create an initial readout vector)
that is further processed via a chain of m self-attention modules and a linear projection block (also called
feedforward, ff). In contrast to typical set-based neural architectures that process individual items in
isolation (most notably deep sets [58]), the presented adaptive readouts account for interactions between
all the node representations generated by the neighbourhood aggregation scheme. A particularity of this
architecture is that the dimension of the graph representation can be disentangled from the node output
dimension and the aggregation scheme.

4.4 Supervised variational graph autoencoders

We start with a review of variational graph autoencoders (VGAEs), originally proposed by Kipf and
Welling [59], and then introduce a variation that allows for learning of a predictive model operating in
the latent space of the encoder. More specifically, we propose to jointly train the autoencoder together
with a small predictive model (multi-layer perceptron) operating in its latent space by including an ad-
ditional loss term that accounts for the target labels. Below, we follow the brief description of [6].

A variational graph autoencoder consists of a probabilistic encoder and decoder, with several impor-
tant differences compared to standard architectures operating on vector-valued inputs. The encoder
component is obtained by stacking graph convolutional layers to learn the parameter matrices µ and σ
that specify the Gaussian distribution of a latent space encoding. More formally, we have that

q(Z | X,A) =

N∏
i=1

q(zi | X,A) and q(zi | X,A) = N (zi | µi,diag(σ
2
i )), (8)

with µ = GCNµ,n(X,A) and logσ = GCNσ,n(X,A). Here, GCN·,n is a graph convolutional neural net-
work with n layers, X is a node feature matrix, A is the adjacency matrix of the graph, and N denotes
the Gaussian distribution. Moreover, the model typically assumes the existence of self-loops, i.e. the
diagonal of the adjacency matrix consists of ones.

The decoder reconstructs the entries in the adjacency matrix by passing the inner product between
latent variables through the logistic sigmoid. More formally, we have that

p(A | Z) =
N∏
i=1

N∏
j=1

p(Aij | zi, zj) and p(Aij = 1 | zi, zj) = τ(z⊤i zj), (9)

where Aij are entries in the adjacency matrix A and τ(·) is the logistic sigmoid function. A variational
graph autoencoder is trained by optimising the evidence lower-bound loss function that can be seen as
the combination of a reconstruction and a regularisation term:

L̃(X,A) = Eq(Z|X,A) [log p(A | Z)]︸ ︷︷ ︸
LRECON

−KL [q(Z|X,A) ∥ p(Z)]︸ ︷︷ ︸
LREG

(10)
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where KL[q(·) ∥ p(·)] is the Kullback-Leibler divergence between the variational distribution q(·) and the
prior p(·). The prior is assumed to be a Gaussian distribution given by p(Z) =

∏
i p(zi) =

∏
i N (zi | 0, I).

As the adjacency matrices of graphs are typically sparse, instead of taking all the negative entries when
training one typically performs sub-sampling of entries with Aij = 0.

We extend this neural architecture by adding a feedforward component operating on the latent space
and account for its effectiveness via the mean squared error loss term that is added to the optimisation
objective. More specifically, we optimise the following loss function:

L(X,A,y) = L̃(X,A) +
1

N

N∑
i=1

∥ν(Zi)− yi∥2, (11)

where ν(Z) is the predictive model operating on the latent space embedding Z associated with graph
(X,A), y is the vector with target labels, and N is the number of labelled instances. Figure 2 illustrates
the setting and our approach to transfer learning using supervised variational graph autoencoders.

We note that our supervised variational graph autoencoder resembles the joint property prediction vari-
ational autoencoder (JPP-VAE) proposed by Gómez-Bombarelli et al. [39]. Their approach has been
devised for generative purposes, which we do not consider here. The main difference to our approach,
however, is the fact that JPP-VAE is a sequence model trained directly on the SMILES [60] string rep-
resentation of molecules using recurrent neural networks, a common approach in generative models [61,
62]. The transition from traditional VAEs to geometric deep learning (graph data) in the first place, and
then to molecular structures is not a trivial process for at least two reasons. Firstly, a variational graph
autoencoder only reconstructs the graph connectivity information (i.e. the equivalent of the adjacency
matrix) and not the node (atom) features, according to the original definition by Kipf and Welling. This
is in contrast to traditional VAEs where the latent representation is directly optimised against the actual
input data. The balance between reconstruction functions (for the connectivity, and node features re-
spectively) is thus an open question in geometric deep learning. Secondly, for molecule-level tasks such as
prediction and latent-space representation, the readout function of the variational graph autoencoders is
crucial. As we have previously explored in [8] and further validate in Results, standard readout functions
such as sum, mean, or maximum lead to uninformative representations that are similar to completely
unsupervised training (i.e. not performing well in transfer learning tasks). Thus, the supervised or guided
variational graph autoencoders presented here are also an advancement in terms of graph representation
learning for modelling challenging molecular tasks at the multi-million scale.

4.5 Feature augmentation via low-fidelity simulations

In the context of quantum chemistry and design of molecular materials, the most computationally de-
manding task corresponds to the calculation of energy contribution that constitutes only a minor fraction
of total energy, while the majority of the remaining calculations can be accounted for via efficient proxies
[28]. Motivated by this, Ramakrishnan et al. have proposed an approach known as ∆-machine learn-
ing, where the desired molecular property is approximated by learning an additive correction term for a
low-fidelity proxy. For linear models, an approach along these lines can be seen as feature augmentation
where instead of the constant bias term one appends the low-fidelity approximation as a component to
the original representation of an instance. More specifically, if we represent a molecule in the low-fidelity
domain via x ∈ XS then the representation transfer for DT can be achieved via the feature mapping

ΨLabel(x) = (fS(x),x) (12)

where (·, ·) denotes concatenation in the last tensor dimension and fS is the objective prediction function
associated with the source (low-fidelity) domain DS defined in Section 4.1. We consider this approach
in the context of transfer learning for general methods (including GNNs) and standard baselines that
operate on molecular fingerprints (e.g. support vector machines, random forests, etc.). A limitation of this
approach is that it constrains the high-fidelity domain to the transductive setting and instances that have
been observed in the low-fidelity domain. A related set of methods in the drug discovery literature called
high-throughput fingerprints [34–37] function in effectively the same manner, using a vector of hundreds
of experimental single dose (low-fidelity) measurements and optionally a standard molecular fingerprint
as a general molecular representation (i.e. not formulated specifically for transductive or multi-fidelity
tasks). In these cases, the burden of collecting the low-fidelity representation is substantial, involving
potentially hundreds of experiments (assays) that are often disjoint, resulting in sparse fingerprints and no
practical way to make predictions about compounds that have not been part of the original assays. In drug
discovery in particular it is desirable to extend beyond this setting and enable predictions for arbitrary
molecules, i.e. outside of the low-fidelity domain. Such a model would enable property prediction for
compounds before they are physically synthesised, a paradigm shift compared to existing HTS approaches.
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To overcome the transductive limitation, we consider a feature augmentation approach that leverages low-
fidelity data to learn an approximation of the objective function in that domain. Then, transfer learning
to the high-fidelity domain happens via the augmented feature map

Ψ(Hybrid label)(x) =

{
(fS(x),x) if x ∈ XS ,

(f̃S(x),x) otherwise
(13)

where f̃S is an approximation of the low-fidelity objective function fS . This is a hybrid approach that
allows extending to the inductive setting with a different treatment between instances observed in the
low-fidelity domain and the ones associated with the high-fidelity task exclusively. Another possible
extension that treats all instances in the high-fidelity domain equally is via the map Ψ(Predicted label) that

augments the input feature representation using an approximate low-fidelity objective (f̃S), i.e.

Ψ(Predicted label)(x) = (f̃S(x),x) (14)

Our final feature augmentation amounts to learning a latent representation of molecules in the low-
fidelity domain using a supervised autoencoder (Section 4.4), then jointly training alongside the latent
representation of a model that is being fitted to the high-fidelity data. This approach also lends itself
to the inductive setting. More formally, transfer learning in this case can be achieved via the feature
mapping

ΨEmbeddings(x) = (ψS(x), ψT (x)) (15)

where ψS(x) is the latent embedding obtained by training a supervised autoencoder on low-fidelity data
DS , and ψT (x) represents the latent representation of a model trained on the sparse high-fidelity task.
Note that ψS(x) is fixed (the output of the low-fidelity model which is trained separately), while ψT (x) is
the current embedding of the high-fidelity model that is being learnt alongside ψS(x) and can be updated.

4.6 Pre-training and fine-tuning of graph neural networks

Supervised pre-training and fine-tuning is a transfer learning strategy that has previously proven suc-
cessful for non-graph neural networks in the context of energy prediction for small organic molecules. In
its simplest form, and as previously used by Smith et al. [14], the strategy consists of first training a
model on the low-fidelity data DS (the pre-training step). Afterwards, the model is re-trained on the
high-fidelity data DT , such that it now outputs predictions at the desired fidelity level (the fine-tuning
step). For the fine-tuning step, certain layers of the neural network are typically frozen, which means
that gradient computation is disabled for them. In other words, their weights are fixed to the values
learnt during the pre-training step and are not updated. This technique reduces the number of learnable
parameters, thus helping to avoid over-fitting to a smaller high-fidelity dataset and reducing training
times. Formally, we assume that we have a low-fidelity predictor f̃S (corresponding to pre-training) and
define the steps required to re-train or fine-tune a model f̃T0 into a high-fidelity predictor f̃T

WS = Weights(f̃S) (Extract weights of pre-trained model f̃S) (16)

WS = Freeze(WSgcn , . . .) (Optionally freeze selected components, e.g. gcn layers) (17)

f̃T0
:= WS (Assign weights of f̃S to a blank model f̃T0

in domain T ) (18)

where f̃T0
is fine-tuned into f̃T . As a baseline, we define a simple equivalent to the neural network in

Smith et al., where we pre-train and fine-tune a supervised VGAE model with the sum readout and
without any frozen layers. This is justified by GNNs having a small number of layers to avoid well-known
problems such as oversmoothing. As such, the entire VGAE is fine-tuned and the strategy is termed
Ψ(Tune VGAE):

WS = Freeze(Ø) (No component is frozen) (19)

f̃T0
:= WS (Assign initial weights) (20)

Ψ(Tune VGAE)(x) = f̃T (x) (Final model is given by the fine-tuned predictor f̃T ) (21)

Standard GNN readouts such as the sum operator are fixed functions with no learnable parameters. In
contrast, adaptive readouts are implemented as neural networks, and the overall GNN becomes a modular
architecture composed of (1) the supervised VGAE layers and (2) an adaptive readout. Consequently,
there are three possible ways to freeze components at this level: i) frozen graph convolutional layers
and trainable readout, ii) trainable graph layers and frozen readout, and iii) trainable graph layers and
trainable readout (no freezing). After a preliminary study on a representative collection of datasets, we
decided to follow strategy i) due to empirically strong results and overall originality for transfer learning
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with graph neural networks. More formally, we have that

WS = Freeze(WSgcn
) (Freeze all gcn layers) (22)

f̃T0
:= WS (Assign initial weights) (23)

Ψ(Tune readout)(x) = f̃T (x) (Final model is given by the fine-tuned predictor f̃T ) (24)

4.7 Data selection and filtering

For drug discovery tasks, low-fidelity (LF) data consists of single dose measurements (SD, performed at
a single concentration) for a large collection of compounds. The high-fidelity (HF) data consists of dose
response (DR) measurements corresponding to multiple different concentrations that are available for a
small collection of compounds (see Figure 1, top). In the quantum mechanics experiments, we have opted
for the recently-released QMugs dataset with 657K unique drug-like molecules and 12 quantum proper-
ties. The data originating from semi-empirical GFN2-xTB simulations act as the low-fidelity task, and
the high-fidelity component is obtained via density functional theory (DFT) calculations (ωB97X-D/def2-
SVP). The resulting multi-fidelity datasets are defined as datasets where SMILES-encoded molecules are
associated with two different measurements of different fidelity levels.

As modelling large-scale high throughput screening data and transfer learning in this context are novel
applications, a significant effort was made to carefully select and filter suitable data from public (Pub-
Chem) and proprietary (AstraZeneca) sources, covering a multitude of different settings. To this end,
we have assembled several multi-fidelity drug discovery datasets (Figure 1, top) from PubChem, aiming
to capture the heterogeneity intrinsic to large-scale screening campaigns, particularly in terms of assay
types, screening technologies, concentrations, scoring metrics, protein targets, and scope. This has re-
sulted in 23 novel multi-fidelity datasets (Supplementary Table 1) that are now part of the concurrently
published MF-PCBA collection [29]. We have also curated 16 multi-fidelity datasets based on historical
AstraZeneca (AZ) HTS data (Supplementary Table 2), the emphasis now being put on expanding the
number of compounds in the primary (1 million+) and confirmatory screens (1, 000 to 10, 000). The
search, selection, and filtering steps, along with the naming convention are detailed in Supplementary
Notes 5 and [29]. As the QMugs dataset contains a few erroneous calculations, we apply a filtering
protocol similar to the drug discovery data and remove the values that diverge by more than 5 standard
deviations, which removes just over 1% of the molecules present. The QMugs properties are listed in
Supplementary Table 3. For the transductive setting, we selected a diverse and challenging set of 10K
QMugs molecules (Supplementary Notes 5.1), which resembles the drug discovery setting.

While methods to artificially generate multi-fidelity data with desired fidelity correlations have recently
been proposed [63], we did not pursue this direction as remarkably large collections of real-world multi-
fidelity data are available, covering a large range of fidelity correlations and diverse chemical spaces.
Furthermore, the successful application of such techniques to molecular data is yet to be demonstrated.

5 Data availability

The MF-PCBA, QMugs, and QM7b datasets are publicly available and accessible by following the instruc-
tions presented in their respective papers. We provide additional instructions relevant to our workflow in
our code repository. The proprietary AstraZeneca HTS data collection is not publicly available. For the
purposes of this work, the proprietary data are pre-processed and used within our computational work-
flow following identical steps to MF-PCBA. Source data are provided with this paper (for all Figures and
Supplementary Figures, with the exception of the UMAP plots of Figure 3C). Due to the large size, the
UMAP data is instead hosted on the GitHub repository listed below.

6 Code availability

The source code that enables all experiments to be reproduced and the instructions for accessing the
datasets are hosted on GitHub [64]:
https://github.com/davidbuterez/multi-fidelity-gnns-for-drug-discovery-and-quantum-mechanics.
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