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Abstract

Air pollution is a pressing global issue affecting both human health and environmental
sustainability. The high financial burden of conventional Air Quality (AQ) monitoring sta-
tions and their sparse spatial distribution necessitate advanced inferencing techniques for
effective regulation and public health policies. We introduce a comprehensive framework
employing Variational Multi-Output Gaussian Processes (VMOGP) with a Spectral Mix-
ture (SM) kernel designed to model and predict multiple AQ indicators, particularly PM2.5

and Carbon Monoxide (CO). Our method unifies the strengths of Multi-Output Gaussian
Processes (MOGPs) and Variational Multi-Task Gaussian Processes (VMTGP) to cap-
ture intricate spatio-temporal correlations among air pollutants, thus delivering enhanced
robustness and accuracy over Single-Output Gaussian Processes (SOGPs) and state-of-the-
art neural attention-based methods. Importantly, by analyzing the variational distribution
of auxiliary inducing points, we identify high-information geographical locales for optimized
AQ monitoring frameworks. Through extensive empirical evaluations, we demonstrate su-
perior performance in both accuracy and uncertainty quantification. Our methodology
promises significant implications for urban planning, adaptive station placement, and pub-
lic health policy formulation.
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1. Introduction

Air pollution poses a significant global health risk, making accurate and robust Air Quality
(AQ) monitoring essential for public health policy formulation, environmental conservation,
and effective mitigation strategies [12, 14, 15, 18]. The sparse distribution of existing AQ
monitoring stations, coupled with the limitations of traditional interpolation techniques and
physics-based models, constrains our ability to precisely capture the complex and interde-
pendent dynamics of air pollutants [2, 7, 12]. Particularly concerning are fine particulate
matter (PM2.5) and Carbon Monoxide (CO), which are primary indicators of air quality and
have severe health implications [1, 21]. Their spatiotemporal dynamics in urban settings
present a challenging prediction problem.
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Multi-Output Gaussian Processes: Single-Output Gaussian Processes (SOGPs) have
gained traction for their probabilistic predictions and uncertainty management [17, 20].
However, these models often ignore the potential temporal and spatial correlations among
different pollutants. In contrast, Multi-Output Gaussian Processes (MOGPs) offer an ad-
vanced framework to model these correlations, thus enhancing the robustness and accuracy
of AQ predictions [8]. MOGPs allow for a shared representation of the input space, enabling
the model to exploit the inherent correlations between tasks like predicting PM2.5 and CO
concentrations concurrently.

Variational Distribution: Another innovative aspect of our approach involves the an-
alytical investigation of the variational distribution of auxiliary inducing points [19]. These
inducing points are critical for the scalability and accuracy of Gaussian Process (GP) mod-
els. Our empirical results indicate a marked clustering of inducing points around specific
monitoring stations, suggesting these locations contain higher informational content. Fur-
ther validation confirms that these information-rich stations yield lower Root Mean Square
Error (RMSE) when used individually for predictive tasks, thereby guiding optimized sensor
deployment.

This paper aims to provide a comprehensive approach to AQ monitoring by synergis-
tically combining the predictive power of MOGPs with the analytical rigor of variational
inference, addressing both the challenges of accurate pollutant prediction and optimized
sensor deployment.

2. Exploiting Spatio-Temporal Correlations:

The examination of the correlation between PM2.5 and CO [22], [16] levels clearly fore-
shadow the enhancement in predictive accuracy when incorporated as inputs in the model,
thereby highlighting a temporal linkage. Further, the scrutiny of spatial and temporal cor-
relation through varying the number of monitoring stations revealed a decline in error rates
with the utilization of multi-output Gaussian Processes (MOGPs) [13] alongside data from
three stations as opposed to employing a single station with Gaussian Processes (GPs) or
Random Forests (RFs)

Temporal Correlations and Mechanisms in Multi-Task Learning The correlations
between PM2.5 and CO serve as a critical focal point in our model, confirming that incorpo-
rating these temporal relationships enhances predictive accuracy [16, 22]. Particularly, data
from three monitoring stations demonstrated marked improvements in error rates when em-
ploying MOGPs over traditional models like SOGPs or Random Forests (RFs) [13]. These
observed correlations between CO and PM2.5 are complex and possibly arise from mul-
tiple sources such as industrial activities, vehicle emissions, and natural phenomena [11,
23]. The data supports the notion that CO may even act as a precursor to PM2.5 in some
atmospheric chemical reactions [9, 24]. This multi-faceted relationship serves as a strong
justification for adopting a multi-task learning approach, offering a richer perspective for
AQ monitoring.

Our paper’s primary contributions can be summarized in two overarching aspects:

• We propose a highly scalable and accurate MOGPs-Variational Inference framework
that specializes in spatio-temporal AQ inference, particularly focusing on PM2.5 and
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Two is Better than One

CO. The model’s efficiency and robustness are enhanced through an analytical treat-
ment of Variational Inference for inducing points [19].

• By inspecting the variational distribution of the auxiliary set of inducing points, we
discover information-rich geographical locales, thereby contributing to the develop-
ment of adaptive AQmonitoring, by targeted deployment of additional AQ monitoring
stations in under-sampled areas.

3. Methodology

Dataset The dataset harnessed in this study encompasses hourly measurements of PM2.5

and CO from 36 monitoring stations scattered across Beijing, supplemented by meteoro-
logical data from the respective district, spanning the period from May 1, 2014, to April
30, 2015. We discuss the dataset in more detail in the appendix.

Our Approach The problem we address is concisely defined as the following,

In our study, we aim to address two key objectives using a set of air quality (AQ)
monitors S, timestamps T , and pertinent features. First, we seek to forecast
PM2.5 and CO levels at new geographic locations S∗ for the same time intervals
T employing Multi-Output Gaussian Processes (MOGPs). Second, we utilize
Variational Inference to optimize the deployment of new AQ monitoring stations
by examining the spatial clustering of auxiliary inducing points in the model.

Traditional GPs model a single output, treating each output (here, pollutant) indepen-
dently, thus overlooking potential correlations between different outputs, which are crucial
for more accurate AQ inference. Our detailed experimentation confirms that our covariates
and outputs exhibit significant spatial and temporal correlation.

Gaussian Process Models We investigate Gaussian Process (GP) methods for multi-
output air pollution prediction, with a particular focus on Multi-Task Gaussian Processes
based on the Linear Model of Coregionalization (LMC) and a non-stationary Spectral Mix-
ture Kernel to capture complex temporal phenomena[4]. To mitigate computational bur-
dens, we employ sparse versions of these models, using variational strategies for the effective
selection of inducing points [10, 19], which we later exploit for adaptive AQ monitoring de-
sign.

Linear Model of Coregionalization (LMC) LMC allows joint analysis of pollutants
via shared latent functions. It can be formally described as gk(x) =

∑D
d=1Bkdfd(x), where

B is a coregionalization matrix.

Spectral Mixture (SM) Kernel and Multitask Kernel The SM kernel captures com-
plex periodicity in AQ data with a Gaussian mixture model, formally given by kSM (x, x′).
We extend this to a multi-task scenario using a Kronecker product with a task covariance
matrix Ktask, yielding k(x, x′, k, k′).
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Figure 1: A comparison of CO prediction for MOGP vs. SOGP; as we can see, the MOGP
does much better at predicting peaks in the data.

4. Experimentation and Evaluation

We conducted a series of experiments to evaluate the performance of our proposed MOGPs
framework in comparison with other established models. The experimentation was done in
the context of predicting PM2.5 and CO concentrations, assessing both spatial and temporal
correlations. The models compared include Multi-Output SGPR (MOSGPR), Random For-
est (RF), K-Nearest Neighbors (KNN), Linear Regression (LR), Extreme Gradient Boosting
(XGB), and Multi-Layer Perceptron (MLP). The empirical evaluations were conducted un-
der diverse settings to explore temporal and spatial correlations between PM2.5 and CO.
The Root Mean Square Error (RMSE) was utilized as the performance metric in each case.

Independent Forecasting of PM2.5 and CO A secondary line of investigation focused
on the models’ performance when incorporating the other pollutant as an input feature.
The models were re-evaluated and the Mean Test Errors are summarized in Table ?? for
CO and PM2.5.

(a) CO Forecasting with PM2.5 Input

Model w/o PM2.5 w/ PM2.5

Exact SOGP 0.55 0.41
RF 0.53 0.43
KNN 0.54 0.56
XGB 0.56 0.43

(b) PM2.5 Forecasting with CO Input

Model w/o CO w CO

Exact SOGP 24.78 20.32
RF 27.19 22.63
KNN 28.22 36.61
XGB 27.69 21.78

Table 1: RMSE on Independent forecasting of PM2.5 and CO with each other in the input.

Multi-Task Forecasting of PM2.5 and CO Initially, the models were employed to
predict PM2.5 and CO separately. The enlisted models include Multi-Output and Single-
Output Exact Gaussian Process Regression (MOEGPR), Multi-Output and Single-Output
Sparse Gaussian Process Regression (MOSGPR), as well as a baseline with [3], [5], Multi-
Layer Perceptrons (MLP) both in multitask and single task settings. The obtained RMSE
for PM2.5 and CO are illustrated in Table 2.

The use of multiple monitoring stations, even without explicit location data, leads to
lower RMSEs, confirming the value of spatial correlation. Lastly, our MOGP model with
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Model PM2.5 (RMSE) CO (RMSE)

Exact MOGP 25.11 0.42
Exact SOGP 26.67 0.63

Sparse MOGP (500 IP1) 45.76 0.71
Sparse SOGP (500 IP1) 47.27 0.81

KNN 38.64 0.65
LR 57.38 0.72
XGB 27.90 0.54
MLP 79.56 0.74

Table 2: RMSE on for multi-task forecasting based on five inputs – (latitude, longitude,
temperature, humidity, wind speed). Best result is in bold, second-best is in italics.

LMC and SM Kernel outperforms both state-of-the-art SOGPs and neural-attention base-
lines, particularly when variational strategies for inducing points are employed.

Analysis of Variational Distribution and Locations By analyzing the inducing
points sampled from the variational distribution, we can better understand the model’s
focus on certain air quality monitoring stations. We use the Haversine distance formula to
account for the Earth’s curvature when comparing locations. We find that some monitoring
stations attract more inducing points, indicating these areas provide more useful informa-
tion for the model. This helps in both improving the model’s accuracy and in deciding
where to best place additional sensors.

Figure 2: Left : The latitude/longitude indices of the inducing points sampled from the
variational distribution plotted with the location of the AQ monitors. Right : A Kernel
Distribution Estimation (KDE) plot of the inducing points, as an approximation of the
variational distribution

5. Discussion

Our study on the variational distribution of auxiliary inducing points in the context of
Variational Spectral Multi-Task Gaussian Processes has identified key geographical areas
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Figure 3: Left : The inducing point sampling for an untrained Gaussian Process. Right :
KDE plot when the Gaussian process has been only trained on one station – the distribution
peaks at that station.

that are high in information content. These areas are predominantly around specific air
quality monitoring stations and serve as reliable sources for our model to acquire data and
make accurate air quality predictions. On the flip side, this analysis also highlights areas
that are currently under-sampled, providing lower informational value to the model.

To address this information imbalance, targeted deployment of additional AQ monitor-
ing stations in these under-sampled areas could be a strategic move. This would not only
improve the information density of our monitoring network but also enhance the model’s
ability to capture the complexities and variances in air pollution levels across different
regions.

6. Conclusion

In this paper, we presented a comprehensive framework for air quality (AQ) monitoring
that synergistically combines Multi-Output Gaussian Processes (MOGPs) with variational
inference. Our methodology significantly advances the state-of-the-art in AQ monitoring
by leveraging the temporal and spatial correlations among pollutants like PM2.5 and CO.
The MOGPs model allows for shared representations of the input space, making it supe-
rior to existing Single-Output Gaussian Process (SOGP) models and traditional tree-based
methods in both prediction accuracy and uncertainty quantification.

We introduced an analytical treatment of variational inference to identify the optimal
positioning of auxiliary inducing points, thereby enhancing the model’s scalability and per-
formance. Our empirical results demonstrated that certain air quality monitoring stations
possess higher informational value, revealing key regions where the variational distribution
peaks. This, in turn, has substantial implications for the strategic deployment of AQ mon-
itoring stations, particularly in regions that are currently under-sampled and offer lower
information richness.
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rithms to forecast air quality: a survey”. In: Artificial Intelligence Review (2023),
pp. 1–36.

[16] Gabriel Parra and Felipe Tobar. “Spectral mixture kernels for multi-output Gaussian
processes”. In: Advances in Neural Information Processing Systems 30 (2017).

[17] Zeel B Patel et al. “Accurate and scalable gaussian processes for fine-grained air
quality inference”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 36. 11. 2022, pp. 12080–12088.

[18] Zongbo Shi et al. “Introduction to the special issue “In-depth study of air pollution
sources and processes within Beijing and its surrounding region (APHH-Beijing)””.
In: Atmospheric Chemistry and Physics 19.11 (2019), pp. 7519–7546.

[19] Michalis Titsias. “Variational learning of inducing variables in sparse Gaussian pro-
cesses”. In: Artificial intelligence and statistics. PMLR. 2009, pp. 567–574.

[20] Peng Wang et al. “A Gaussian process method with uncertainty quantification for air
quality monitoring”. In: Atmosphere 12.10 (2021), p. 1344.

[21] Jiansheng Wu et al. “Estimation of the PM 2.5 health effects in China during 2000–
2011”. In: Environmental Science and Pollution Research 24 (2017), pp. 10695–10707.

[22] Yangyang Xie et al. “Spatiotemporal variations of PM2. 5 and PM10 concentrations
between 31 Chinese cities and their relationships with SO2, NO2, CO and O3”. In:
Particuology 20 (2015), pp. 141–149.

[23] Yang Yu et al. “Dynamics and origin of PM 2.5 during a three-year sampling period in
Beijing, China”. In: Journal of Environmental Monitoring 13.2 (2011), pp. 334–346.

[24] Ying Zhou et al. “Temporal and spatial characteristics of ambient air quality in Bei-
jing, China”. In: Aerosol and Air Quality Research 15.5 (2015), pp. 1868–1880.

8



Two is Better than One

Appendix A. Variational Multi-Task Gaussian Processes

In this appendix, we delve deeper into the rationale behind our choice of employing Varia-
tional Multi-Task Gaussian Processes (VMTGPs) for the inference of air-quality indicators.
The unique characteristics of urban air quality data, encompassing spatial and temporal
correlations between pollutants, demand a sophisticated modeling approach capable of cap-
turing these intricacies. Our choice of VMTGP hinges on several compelling facets which
render it particularly suited for air-quality inference.

A.1 Modeling Spatial and Temporal Correlations

The core essence of a Multi-Task Gaussian Process (MTGP) model lies in its ability to
model correlations across different tasks, in our case, the prediction of PM2.5 and CO
concentrations. The temporal and spatial dependencies between these pollutants are crucial
for accurate predictive modeling.

Multi-Task Gaussian Processes (MTGPs) Multi-Task Gaussian Processes extend
traditional Gaussian Processes to multiple correlated tasks. Given T tasks and N observa-
tions, the covariance matrix of a MTGP is expressed as a Kronecker product of the task
and input covariance matrices:

K = Ktask ⊗Kinput. (1)

Here, Ktask is a T × T matrix describing the correlations between tasks, and Kinput is a
N ×N matrix representing the input covariance.

A.2 Variational Inference

Employing a variational approach for inference in our MTGP model is pivotal for scala-
bility and computational efficiency. Variational inference enables the approximation of the
intractable posterior distribution of the GP with a variational distribution, mitigating the
computational burdens typically associated with exact inference in GP models. This vari-
ational framework, complemented by the use of inducing points, allows for a lower-rank
approximation to the GP prior, thereby rendering the model scalable to large datasets
characteristic of urban air quality monitoring. We note that variational inference aims to
approximate the true posterior distribution p(f |y) with a variational distribution q(f):

KL[q(f)||p(f |y)] =
∫

q(f) log

(
q(f)

p(f |y)

)
df . (2)

Optimizing this KL divergence yields the variational parameters defining q(f).

Inducing Points: Inducing points Z = {zm}Mm=1 facilitate a lower-rank approximation
to the GP prior. The variational distribution over the inducing points q(u) is typically
chosen to be Gaussian:

q(u) = N (u|m,S), (3)

where u = {f(zm)}Mm=1 represents the function values at the inducing points, and m and
S are the mean vector and covariance matrix, respectively. The use of inducing points is a
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cornerstone for achieving scalability in our model. By forming a lower-rank approximation
to the GP prior, inducing points facilitate a computationally efficient inference procedure
without compromising the model’s expressive power. The spatial distribution of inducing
points, optimized during the variational inference procedure, further reflects the spatial
heterogeneity inherent in the air quality data, providing insights into regions of higher
information content.

A.3 Air-Quality Specific Adaptations

The Variational Spectral Multi-Task Gaussian Processes (VSMTGPs) model is formulated
by combining the aforementioned components. The covariance function for VSMTGPs is
given by:

K = (Ktask ⊗Kinput)⊗ kSM (x, x′), (4)

whereKtask⊗Kinput encapsulates the multi-task and input space correlations, and kSM (x, x′)
models the temporal dependencies.

The variational lower bound on the log marginal likelihood is optimized to learn the
model parameters, alongside the variational parameters of the inducing point distribution.
This formulation enables a robust inference mechanism for air-quality modeling, capturing
the spatial, temporal, and task correlations inherent in the data while ensuring computa-
tional scalability and efficiency.

The VSMTGP model is tailored to meet the unique challenges posed by air-quality
inference. The model’s capability to jointly learn the temporal and spatial correlations
between different pollutants, along with its scalability afforded by the variational inference
framework and inducing points, makes it a robust choice for modeling urban air quality
dynamics. The elucidation of the variational distribution of inducing points provides a
window into understanding the spatial distribution of information richness across the urban
landscape, which is invaluable for policy-makers and urban planners aiming to enhance air
quality monitoring and management.

Appendix B. Dataset

The dataset harnessed in this study encompasses hourly measurements of PM2.5 and CO
from 36 monitoring stations scattered across Beijing, supplemented by meteorological data
from the respective district, spanning the period from May 1, 2014, to April 30, 2015.
The meteorological data suite comprises temperature, humidity, pressure, wind speed, wind
direction, and weather conditions, with wind direction and weather being categorized as
categorical variables [6].

A substantial volume of data across varying stations and time intervals is missing, ne-
cessitating rigorous preprocessing. The preprocessing involved imputation techniques to fill
in missing values, ensuring a consistent dataset for analysis. For the sake of comparative
consistency with state-of-the-art neural baselines, the month of March 2015 was chosen due
to its lower incidence of missing data.

Data Preprocessing An elaborate preprocessing routine was employed to address the
issue of missing data, thereby ensuring data integrity for the ensuing analyses. Initial
inspection revealed a significant absence of pressure data across the stations, which led to
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its exclusion from the analysis. Additionally, five stations (IDs: 1009, 1013, 1015, 1020,
1021) were discarded due to insufficient weather data.

The integrity of the remaining dataset was maintained by ensuring a minimum of 85%
data availability for all variables, as detailed in Table 1. The missing data in real-valued
variables (PM2.5, temperature, humidity, and wind speed) were handled through time in-
terpolation, a method chosen following a rigorous cross-validation exercise on non-missing
data.
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