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Abstract
Probabilistic diffusion models have shown great
success in conditional image synthesis. In this
work, we develop a high-resolution 3D diffusion
model to reconstruct the dark matter density field
from a galaxy distribution. We train a pixel space
diffusion model at different resolutions on the
CAMELS simulation and achieve good agreement
in visual quality and summary statistics. However,
we identify some challenges in scaling up the res-
olution. We then analyze the model’s ability to
capture variations in simulation parameters and
conclude that the model indeed captures the right
change in the field when changing Ωm. Next, we
train our model on a more realistic dataset where
the input conditioning consists of mass thresh-
olded galaxy catalogs from CAMELS and find
excellent adaptation of diffusion models to low
galaxy density inputs. Finally, we show a prelim-
inary application to a real galaxy catalog. Our
results suggest that diffusion models are a power-
ful method to reconstruct the 3D dark matter field
from galaxies.

1. Introduction
ΛCDM, the standard model of cosmology, postulates that
85% of the total matter of the universe consists of dark mat-
ter. Naturally, the nature of dark matter and the validity of
the ΛCDM model are one of the most important questions
in modern astrophysics. While dark matter is not directly
observable yet by any means, cosmological N-body and
hydrodynamic simulations allow us to calculate its hypothet-
ical distribution given a model (Springel et al., 2005; Nelson
et al., 2015; Garrison et al., 2019; Villaescusa-Navarro et al.,
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2020). Some of these simulations also generate synthetic
galaxy catalogs which can be connected to real galaxy sur-
veys such as DESI (DESI Collaboration et al., 2016), Eu-
clid (Laureijs et al., 2011), Roman (Spergel et al., 2015), or
Rubin (LSST Science Collaboration et al., 2009). However,
since these simulations are initialized with random initial
conditions, their final states can only match our observable
universe in a statistical sense, thus posing an inverse prob-
lem of finding the dark matter distribution compatible with
our current universe.

The goal of reconstructing the underlying dark matter field
in our universe has been addressed at different scales with
different methods. At the largest scales, BORG (Jasche &
Lavaux, 2019) uses a Bayesian method to reconstruct ini-
tial matter density fields. At smaller scales ∼ 50 Mpc/h,
(Hong et al., 2021) used deterministic convolutional neural
networks and (Pfeifer et al., 2023) used constrained simu-
lations to reconstruct the dark matter densities around the
Milky Way.

Over the past decade, the machine learning (ML) commu-
nity has developed probabilistic generative models such as
variational autoencoders (Kingma & Welling, 2013), nor-
malizing flows (Papamakarios et al., 2021) and diffusion
models (Sohl-Dickstein et al., 2015), that model the data
likelihood and enable sampling from the learned distribu-
tion. Diffusion generative models, in particular, (Ho et al.,
2020; Kingma et al., 2021) have excelled at text-to-image
synthesis tasks (Ramesh et al., 2021; Saharia et al., 2022;
Rombach et al., 2022). Diffusion models involve learning
a mapping between the standard normal distribution and
the target distribution. In the noising direction, incremen-
tal amounts of noise are added to samples from the target
distribution, constituting a discretization of a stochastic dif-
ferential equation (SDE). The reverse SDE that transforms
samples from the noise distribution to those from the target,
can be derived by learning the score of the noised proba-
bility distributions (Anderson, 1982; Song et al., 2021). A
neural network is used to parameterize the score model.

Recent works apply these advances in high dimensional
inference to the dark matter reconstruction problem. Le-
gin et al. (2024) used score based diffusion models to re-
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Figure 1. Generation Results of the Diffusion Model depending on Resolution All panels show a 2D projection integrating a 12.5 Mpc
h−1 thick slice of the density field. First Column: The input Stellar Mass map. Second Column: The ground truth(GT) dark matter
density field. Third Column: A random sample from the reconstructed dark matter density field. Fourth column: The posterior mean
over 128 generated samples of the dark matter density field. Fifth column: The signed Z-Score of the ground truth dark matter density
field with respect to the posterior distribution from the diffusion model.

construct initial conditions given current dark matter fields
while Park et al. (2023b); Ono et al. (2024) uses a condi-
tional diffusion model to reconstruct the 2D dark matter
density fields from stellar mass fields.

In this work, we scale spatially conditioned diffusion models
to 3 dimensions to solve the inverse problem of generating
the underlying dark matter distribution that resulted in an
observed galaxy distribution. We focus on how the model
performance scales when changing resolutions and sparsity
of the data as well as how the model adapts to astrophysical
parameter changes.

The paper is organized as follows. In Sec. 2, we introduce
the datasets used in this work. In Sec. 3, we briefly summa-
rize the models and metrics we use. In Sec. 4, we discuss our
main results on resolution scaling (Sec. 4.1), cosmological
parameter variation (Sec. 4.2), galaxy sparsity (Sec. 4.3) and
application to real data (Sec. 4.4). Our main contributions
are:

1. We train 3D diffusion models to solve the galaxy to
dark matter inverse problem in cosmology.

2. We evaluate the 3D diffusion model’s statistical quality
at different resolutions. (Sec. 4.1)

3. We evaluate the diffusion model’s ability to properly
capture the effect of modulating simulation parameters,
here Ωm. (Sec. 4.2)

4. We demonstrate the diffusion model’s ability to gen-
erate detailed fields from sparse galaxy catalogs.
(Sec. 4.3)

5. We apply our method to the galaxy catalog
Cosmicflows-3 (Tully et al., 2016) and show prelim-
inary results reconstructing the dark matter density
around the Milky Way. (Sec. 4.4)

2. Data
CAMELS The CAMELS simulation suite(Villaescusa-
Navarro et al., 2021a) is a set of state-of-the-art hydrodynam-
ical simulations built for machine learning applications. The
time evolution of 2563 dark matter particles and 2563 gas
elements are tracked from redshift z = 127 to z = 0, with
different astrophysical/cosmological parameters and initial
conditions. In this work, we use the CAMELS Multifield
Dataset(Villaescusa-Navarro et al., 2021b), which is a col-
lection of 3D density fields generated from the simulations.
Please refer to App. A.1 for more information.
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Cosmicflows-3 Cosmicflows-3(Tully et al., 2016) is a
dataset compiling 17,669 galaxies’ sky coordinates and dis-
tances. Hong et al. (2021) used this dataset to reconstruct
the local dark matter density deterministically. In this work,
we select galaxies near the Milky Way by restricting the
B-band magnitude to MB < −15 and the galactic latitude
to |b| > 10◦, resulting in 6,159 galaxies. Please refer to
App. A.1 for more information.

3. Methods
3.1. Models

Variational Diffusion Models Variational Diffusion Mod-
els, introduced by Kingma et al. (2021) is a continuous
time pixel space diffusion model where the noise schedule
is parametrized by a parametric function γ(t) and can be
optimized jointly with the diffusion process. Variational
Diffusion Models focus on approximating the variational
lower bound(or ELBO) of the generative process with re-
spect to the data. In the forward diffusion process, Gaussian
noise is added to the data at each step until the data is in-
distinguishable to pure Gaussian noise while the backward
process attempts to predict the noise added to generate data
from noise. We use a conditional version of a U-Net (Ron-
neberger et al., 2015) like architecture as the noise prediction
network and use a learned linear noise schedule (please refer
to App.A.2 or Kingma et al. (2021) for further details). The
noise prediction network is conditioned on the input stellar
mass field as well as on the 6 astrophysical/cosmological
parameters.

3.2. Summary Statistics

We evaluate the Power Spectrum (P(k)), the Probability Den-
sity Function (PDF) and the Reduced Wavelet Scattering
Transform (Bruna & Mallat, 2012; Regaldo-Saint Blancard
et al., 2020) as summary statistics to evaluate our genera-
tions.

Power Spectrum The power spectrum is the angular aver-
aged squared amplitude of the Fourier transform of a field.
P (k) can be thus be interpreted as an average power a field
has at wavenumber k, corresponding to a spatial scale of
2π/k. For a homogeneous and isotropic Gaussian random
field, the power spectrum contains all the information de-
scribing the field. For these fields, odd numbered higher
order spectra (e.g. bispectrum) vanish and even numbered
ones (e.g. trispectra) can be expressed as a function of the
power spectrum.

Probability Density Function The Probability Density
Function(PDF), also called the one-point function in cos-
mology is simply the pixel values histogram of the field. We
use a logarithmic density bins to compute the PDF.

Reduced Wavelet Scattering Transform The Wavelet Scat-
tering Transform, introduced by Bruna & Mallat (2012), is
a statistical probe designed to extract non-Gaussian prop-
erties the field. The first order coefficients are computed
by convolving the field with a set of wavelets, extracting
components around a certain wavevector, and integrating
over the field. The second order coefficients are calculated
by applying a non-linear transform (e.g. abs) on the con-
volved field from the first stage then convolving it by the
set of wavelets again. The Reduced Wavelet Scattering
Transform(RWST) (Regaldo-Saint Blancard et al., 2020),
efficiently reduces the number of coefficient by taking the
angular average of these coefficients, which is a very ef-
ficient compression when the field is isotropic. We use 4
spatial scales and 4 angular scales resulting in 78 RWST
coefficients. We use the implementation distributed in Park
et al. (2023a).

4. Results
4.1. Performance at different resolutions

We explore the ability of a 3D pixel-space diffusion model
to generate high resolution samples. We run experiments on
the same density field with the same physical size but sam-
pled at 1283, 1603 and 2563 resolutions. We draw N=128
dark matter fields corresponding to an input stellar mass
field to validate our findings. Fig. 1 illustrates the input
stellar mass field, the ground truth dark matter field, and
the reconstructed dark matter field, all projected in 2 dimen-
sions. One can visually check the quality of the generations.
(We show additional generations in Fig. 10) The posterior
mean is the mean over many diffusion samples, and one
can easily identify which filaments are most robustly re-
produced, and thus are more likely to exist. The Z-score
is evaluated as MGT

CDM−<MGen
CDM>

Std(MGen
CDM )

, and shows which parts
of the field deviate from the posterior mean more or less
than the expected scatter given by the posterior standard
deviation.

Since Park et al. (2023b) and Ono et al. (2024) have shown
that diffusion models can generate 2D dark matter fields at
2562 resolution with a statistically consistent P(k) and PDF,
we project the generated 3D dark matter density fields to 2D
by integrating over 12.5 Mpc h−1 in one direction to make
a comparison to these results. Fig. 2 shows these results.
While the diffusion model can, in all three resolutions, gen-
erate fields with a power spectrum close to the ground truth,
we see a significant lack of power at small scales (high k)
for the 2563 model. This effect is shown more drastically in
the last panel of Fig. 2.

In Fig. 3 we show the PDF of the 2D projections. We find
that despite the disagreement in the power spectrum, the 3D
generations at 2563 reproduce the PDF with good accuracy.
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Figure 2. Power Spectrum of 2D Projections from 3D Generations The power spectrum range is calculated from 12.5 Mpc h−1 2D
projections of 128 generated 3D dark matter density fields at resolutions H = 128, 160 and 256 in the first 3 columns. The last column
depicts the z score of the ground truth dark matter power spectrum relative to the distribution obtained from the diffusion model for each
resolution.

Figure 3. Probability Density Function of 2D Projections from the 3D Generation The probability density function range is calculated
from 12.5 Mpc h−1 2D projections of 128 generated 3D dark matter density fields. The three panels respectively depicts the PDF at a
resolution of H=128, 160 and 256.

Figure 4. The Reduced Wavelet Scattering Transform Statistics of 2D Projections from the 3D Generation The RWST range is
calculated from 12.5 Mpc h−1 2D projections of 128 generated 3D dark matter density fields. Top Row: We show, for resolutions H =
128, 160 and 256, the raw RWST coefficients for the input stellar mass map, the ground truth dark matter map and the diffusion model
generations. Bottom Row: We show in the first three panels the normalized RWST, where we normalize every coefficient by its mean and
standard deviation over the whole CV set, for resolutions H = 128, 160 and 256, and its variations within different ground truth fields. The
last column depicts the z-score of the RWST of the ground truth field relative to the distribution from the diffusion model.
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Figure 5. Generated Dark matter fields depending on Ωm

Top Row: Generated Dark Matter sample with Ωm = 0.22
Bottom Row: Generated Dark Matter sample with Ωm = 0.38

We show additional results on the full 3D power spectrum
and PDF in App. C.1. With these results, our conclusion
remains that while 2563 models approximate the PDF well,
the tend to exhibit a lack of power at small scales.

Now we turn to a more complex statistic, the RWST, which
can capture the non-Gaussian structure of the z = 0 dark
matter density field. Fig. 4 shows the RWST coefficients
of the ground truth dark matter map and the generated dark
matter maps. We find an excellent agreement of nearly all
coefficients at H=128 and 160. Moreover, we find that the
diffusion model correctly captures the per-initial condition
variation of the RWST coefficients as seen in the second row
of Fig. 4. However, as we have seen for the power spectrum,
the agreement, and thus the Z-Score, for the 2563 model is
slightly degraded.

4.2. Astrophysical Conditioning

Another important aspect of a generative model applied to
cosmology is its ability to capture variations in astrophysi-
cal/cosmological parameters. As one can see in Fig. 5, the
variation of a underlying parameter (here Ωm) changes the
structure of the cosmic web and halo structures in our dif-
fusion model, across all resolutions H=[128, 160, 256]. As
intuitively expected a larger Ωm results in a more massive
halo, at least visually.

We verify this finding with summary statistics in Fig. 6. As
we can see in the first two panels in Fig. 6, we find that the
diffusion model is able to approximate the 3D power spectra
ratios P (k)Ωm=0.22

P (k)Ωm=0.3
and P (k)Ωm=0.38

P (k)Ωm=0.3
accurately. Thus, the

model is able to capture the modulation of the 2D power
spectrum for fields corresponding to different parameters.

However, we find that similarly to other statistics, this agree-
ment isn’t as accurate with the 2563 model. We show the
2D power spectrum results in App. C.2, Fig. 14. We find
identical conclusions there.

4.3. Scaling to lower galaxy densities

Now, we attempt to analyze the adaptation of 3D diffusion
models to a more realistic data. We process the halo cata-
logues from CAMELS(Villaescusa-Navarro et al., 2021a)
and extract subhaloes as galaxies and apply a mass thresh-
old of 107, 108, 109 M⊙. We generate galaxy overdensity
fields from these catalogues and train a diffusion model for
each density at 1283 resolution. The results are illustrated in
Fig. 7. We still find samples with good visual quality at very
low galaxy densities. (More samples are shown in App. 11.)
Since some constraining information from low mass galax-
ies are lost, we directly find that the smaller filaments in
the posterior mean of the first row of Fig. 7 are lost in the
posterior mean of the last row, as expected. Another effect
of this change in the posterior distribution is clearly seen in
the Z-Score. We find that as the input field gets sparser, the
Z-Score map grows large valued regions, especially in the
voids.

It is important to check whether sparse galaxy samples can
cause a bias in the power spectrum. As we can see in
Fig. 8, the generated distribution of the power spectrum
agrees well with the ground truth. This can also be seen
in the Z-Score in Fig. 8. We thus conclude that diffusion
models are relatively robust to sparse conditioning samples
and can generate consistent per-sample statistics while not
over/under estimating the posterior mean.

4.4. Application to Cosmicflows-3

Finally, we apply our diffusion model to a real galaxy cata-
log. We apply our model conditioned on synthetic galaxy
catalogs with MGal > 109M⊙ on the Cosmicflows-3 (Tully
et al., 2016) dataset. We bin the 6,159 selected galaxies(See
App. A.1) into a grid with the same physical pixel reso-
lution(Mpc h−1 /npix) as the 1283 model then apply our
model to generate 24 posterior dark matter density fields.
One sample and the posterior mean is shown in Fig. 9, where
we show 2D slices in x, y, z and a 3D projection. We find
many similarities with the dark matter map in Hong et al.
(2021), like the structure of the Virgo cluster or Ursa N/S.
We also find that our posterior mean map looks very similar
to Hong et al. (2021)’s map, which is exactly as expected
for a deterministic CNN.
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Figure 6. Ratio of the 3D Power Spectrum at a modified value of Ωm relative to the fiducial value. We depict the generated power
spectra range and the GT power spectrum in blue when Ωm = 0.22 and in red when Ωm = 0.38 The panels from left to right corresponds
to resolution H= 128, 160 and 256.

Figure 7. Generation Results of the Diffusion Model depending on the galaxy sparsity. First Column: The input Galaxy Overdensity
map. Second Column: The ground truth(GT) dark matter density field. Third Column: A random sample from the reconstructed dark
matter density field. Fourth column: The posterior mean over 128 generated samples of the dark matter density field. Fifth column: The
signed Z-Score of the ground truth dark matter density field with respect to the posterior distribution of diffusion model.

5. Discussion
5.1. Limitations

We describe some limitations of our study:

3D Diffusion Models 3D diffusion models are mem-
ory/compute intensive and their generation speeds are some-

what limited on small number of GPUs. We were thus not
able to do a proper hyperparameter grid search or inference
time step adjustment.

Diffusion Loss Since our diffusion model’s generation qual-
ity keeps improving after the loss has saturated, it is rather
ambiguous when to halt the training. In this study we chose
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Figure 8. Power Spectrum of 2D Projections from 3D Generations from models conditioned on galaxy catalogs The power spectrum
is calculated from 12.5 Mpc h−1 2D projections of 128 generated 3D dark matter density fields. The first three panels depict the
power spectrum of the 2D projected fields when the model is conditioned on galaxies of MGal > 107 M⊙, MGal > 108 M⊙ and
MGal > 109 M⊙. The last panel shows the Z-Score of the GT power spectrum with respect to the generated distribution.

Figure 9. 3D Dark Matter Map Generated From Cosmicflows-3
Left: A single 3D sample from the diffusion model conditioned on MGal > 109 M⊙ galaxy catalogs.
Right: The posterior mean 3D dark matter density field from the diffusion model conditioned on MGal > 109 M⊙ galaxy catalogs.

a 320K threshold motivated by both the compute available
and the generation quality, however there might be a more
principled way of tackling this problem.

5.2. Future Studies

We describe some interesting future avenues:

Exploring more efficient 3D networks As our limitation
above states, we expect that a more efficient 3D network will
advance the progress of generative models in this domain.

Adding Vpec Hong et al. (2021) observed a great increase
in quality when adding the peculiar velocity of galaxies in
the model input. This, in principle, is also applicable to our
method and would be an interesting future direction.

Towards Dark Matter Cross Correlation Studies One
advantage to have a field level probabilistic representation
of the dark matter density field is that one can design a cross
correlation study with it. Since the diffusion model can draw
from the posterior dark matter distribution, one might be
able to determine which regions near the Milky Way could

7



3D Dark Matter Reconstuction with Diffusion Models

be potentially good targets for dark matter search.

6. Conclusion
In this study, we explored the potential of 3D diffusion
models to reconstruct the local dark matter density near the
Milky Way. We identified that while the visual quality of
the model is excellent at all resolutions, summary statistics
reveals a degradation of quality at high resolutions. Never-
theless, the diffusion model still captures the correct modula-
tion to the fields from variations in Ωm and adapts extremely
well to sparse galaxy catalogs. Motivated by the above, we
showed a preliminary application to Cosmicflows-3 (Tully
et al., 2016), a real galaxy catalog. Our results suggest that
diffusion models are a powerful method to reconstruct the
3D dark matter density field from galaxies.
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Spencer, A., Walton, D., Blümchen, T., Bonoli, C., Bor-
toletto, F., Cerna, C., Corcione, L., Fabron, C., Jahnke,
K., Ligori, S., Madrid, F., Martin, L., Morgante, G., Pam-
plona, T., Prieto, E., Riva, M., Toledo, R., Trifoglio, M.,
Zerbi, F., Abdalla, F., Douspis, M., Grenet, C., Borgani,

S., Bouwens, R., Courbin, F., Delouis, J. M., Dubath,
P., Fontana, A., Frailis, M., Grazian, A., Koppenhöfer,
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A. Data&Model details
A.1. Data

CAMELS We use the Camels Multifield Dataset (Villaescusa-Navarro et al., 2021b) from the CAMELS Simultation Suite
(Villaescusa-Navarro et al., 2021a). In specific we use 3D density fields generated with PCS(Piecewise Cubic Spline) mass
assignment from the Astrid suite(Ni et al., 2022) ran with the MP-Gadget code. These simulations follow the dynamics of
2563 dark matter particles and 2563 gas resolution elements in a comoving box with side 25 Mpc h−1. We use the 2563

density field generated at the current time, thus at a redshift of z = 0.

Splits We use the Latin Hypercube (LH) set as our training data, which consists of 1000 simulations with random initial
conditions and random astrophysical/cosmological parameters. The range of the 6 parameters are: 0.1 ≤ Ωm ≤ 0.5,
0.6 ≤ σ8 ≤ 1.0, 0.25 ≤ (ASN1, AAGN1) ≤ 4.00 and 0.5 ≤ (ASN2, AAGN2) ≤ 2.0. In Sec. 4.1, we use the Cosmic
Variance (CV) set for evaluation, which consists of 27 simulations with the same astrophysical/cosmological parameters but
different initial conditions. In Sec. 4.2, we use the One Parameter (1P) set, which consists of 61 simulations where the initial
condition is fixed, and only one astrophysical parameter is varied in each simulation.

Galaxy Overdensity Field We use the Friends-of-Friends Subfind catalog from CAMELS to generate a galaxy overdensity
field. We select all subhalos above a mass threshold of 10[7,8,9] M⊙ for each of the fields in Sec. 4.3. We bin the galaxies
into a grid of 2563 then calculate the overdensity field as δ = f

<f> − 1 where f is the binned galaxy count and < f > is the
average galaxy count over the field. We then downsample (see below) them to a 1283 grid.

Normalization We normalize the MCDM and MStar fields by taking the logarithm of base 10 and standard scale the fields
such that the whole LH set has a mean of zero and a standard deviation of unity. We add unity to the fields before the
logarithm to avoid −∞ values for pixels where the dark matter density or the stellar mass is null. For galaxy overdensity
fields, we divide each overdensity field by its mean and add 2 to the overdensity field since the overdensity field can range
down to −1.

Augmentation We use flip, axis permutation (rotation + mirror) and periodic boundary translation to augment our training
dataset. We did not use any augmentation to change the pixel values since we are interested in associating the pixel values to
a real quantity.

Downsampling The original density fields are given in 2563, we use PyTorch’s(Paszke et al., 2019) trilinear interpolation
function to down sample these grids to 1283 and 1603.

Cosmicflows-3 Cosmicflows-3 (Tully et al., 2016) contains the sky coordinates and distances of 17,669 galaxies up to a
maximum distance of 200 Mpc. In this work, we follow Hong et al. (2021) and use the cuts of MB < −15 and |b| > 10◦ to
select a volume limited catalog. The selected 6,159 galaxies are binned on a 5123 grid and we calculate the overdensity field
on this grid. Since our models are trained using periodic boundary conditions, we take the 2563 central region of the 5123

grid to pass into the network and again only take the 1923 central region to produce the results in Fig. 9.

A.2. Model

Variational Diffusion Model We use variational diffusion models introduced by Kingma et al. (2021). We use an initial
noise schedule of γ(t) = 26.6 t − 13.3, which corresponds to a initial SNR of e13.3 and a terminal SNR of e−13.3. We
optimize the noise schedule jointly with the diffusion process by parametrizing gamma to be a learned linear function of t:

γ(t) = w ∗ t+ b (1)

we initialize w to 26.6 and b to −13.3. For further details, please refer to Kingma et al. (2021).

Network Architecture We use a conditional variant of the U-Net(Ronneberger et al., 2015). We use a network with
[32,64,128,256] channels in each resolution block while we half the number of channels to [16,32,64,128] for the 2563

network due to memory constraints. We use a GELU(Hendrycks & Gimpel, 2023) activationm Group Normalization(Wu
& He, 2018) and residual connections in each block. The diffusion time is embedded with a 64 dimensional sinusoidal
embedding which is then transformed into 256 dimensions via a MLP layer. The astrophysical parameters are also embedded
into 64 dimensions via a 2 layer MLP with GELU activations. The spatial conditioning is simply concatenated to the U-Net
input.

Training We train all models for 320K gradient steps with a batch size of 2. The batch size was limited by the GPU memory.
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We use the AdamW(Loshchilov & Hutter, 2019) optimizer with a learning rate 3× 10−4 and a weight decay of 1× 10−5.
Although the loss saturates very quickly at ∼ 50K gradient steps, the generation quality keeps increasing.

Generation Since our model uses a continuous time formulation, the number of generation steps is simply a inference time
hyperparameter. We choose T = 250 steps based on previous results in (Park et al., 2023b).

B. Additional generation results.
We show additional generation results without any cherry picking.

Figure 10. Multiple samples from the 1283 variational diffusion model conditioned on the Stellar Mass Field. Each row is a different
selection of cosmic variance, e.g. initial condition. The first column is the input stellar mass map and the 4 following columns are random
samples from the diffusion model.
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Figure 11. Multiple samples from the 1283 variational diffusion model conditioned on galaxy catalogs with Mgal > 109 M⊙. Each
row is a different selection of cosmic variance, e.g. initial condition. The first column is the input galaxy overdensity map and the 4
following columns are random samples from the diffusion model. By carefully looking into void(low density) regions, one can notice that
the variance is higher than in Fig. 10

C. Additional Analysis
Here, we show additional analysis not included in the main text.

C.1. Resolution Scaling

In Fig. 12, we show the 3D power spectrum of the generated fields and the ground truth field. We find similar conclusions as
in the 2D case, just stronger in magnitude.

Figure 12. The 3D Power Spectrum of the Generated fields. The power spectra calculated from the whole 3D field. The first three
panels respectively depicts the results at resolutions H=128, 160 and 256. The last panel depicts the Z-Score of the ground truth Pk with
respect to the generated distribution.

In Fig. 13, we show the 3D probability density field from the whole field. We find very good agreement on the PDF at 2563
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resolutions. Our conclusions remain consistent with Sec. 4.1.

Figure 13. The 3D probability Density Function of the generated fields The PDF is calculated on the whole 3D field. The three panels
respectively depicts the results at resolutions H=128, 160 and 256.

C.2. Astrophysical Conditioning

In Fig. 14, we show the ratio of the 2D projected power spectrum with Ωm = 0.22 to the one with Ωm = 0.3(fiducial) as
well as the ratio of the Ωm = 0.38 one to the Ωm = 0.3 one. We find the same conclusion as in Sec. 4.2.

Figure 14. Ratio of the 2D Projected Power Spectrum at a modified value of Ωm relative to the fiducial value. We depict in blue the
generated power spectra range and the GT power spectrum when Ωm = 0.22 and in red when Ωm = 0.38 The panels from left to right
corresponds to resolution H= 128, 160 and 256.

C.3. Sparsity Suite

The 2D PDF of the 3 diffusion model generations from the sparsity experiments are in Fig. 15.

The RWST statistics of the 3 diffusion model generations from the sparsity experiments are in Fig. 16. We find similar
results to Fig. 4, the generations agree excellently to the GT field’s RWST.

The 3D power spectrum of the 3 diffusion model generations from the sparsity experiments are in Fig. 17.

The 3D PDF of the 3 diffusion model generations from the sparsity experiments are in Fig. 18.
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Figure 15. Probability Density Function of 2D Projections from the 3D Generation from models conditioned on galaxy catalogs
The probability density function is calculated from 12.5 Mpc h−1 2D projections of 128 generated 3D dark matter density fields. The
three panels depict the power spectrum of the 2D projected fields when the model is conditioned on galaxies of MGal > 107 M⊙,
MGal > 108 M⊙ and MGal > 109 M⊙.

Figure 16. The RWST statistics of 2D Projections from the 3D Generation from models conditioned on galaxy catalogs The RWST
is calculated from 12.5 h Mpc−1 2D projections of 128 generated 3D dark matter density fields. The first three panels in each row depict
the power spectrum of the 2D projected fields when the model is conditioned on galaxies of MGal > 107 M⊙, MGal > 108 M⊙ and
MGal > 109 M⊙.

Figure 17. Power Spectrum of 3D Generations from models conditioned on galaxy catalogs The first three panels depict the
power spectrum of the 2D projected fields when the model is conditioned on galaxies of MGal > 107 M⊙, MGal > 108 M⊙ and
MGal > 109 M⊙.
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Figure 18. Probability Density Function of 3D generations from models conditioned on galaxy catalogs The three panels depict
the power spectrum of the 2D projected fields when the model is conditioned on galaxies of MGal > 107 M⊙, MGal > 108 M⊙ and
MGal > 109 M⊙.
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D. Computational Details
We implement our model in PyTorch(Paszke et al., 2019) and PyTorchLightning(Falcon & The PyTorch Lightning team,
2019). We train our models on a NVIDIA A100 80GB GPU.
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