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Abstract Automated experiments increasingly relies on Al yet most active-learning pipelines ignore
the rich procedural structure encoded by laboratory protocols. Existing sequence-based
models capture temporal order but not branching dependencies, limiting deductive reasoning
in complex workflows. We introduce Object-Flow Machine Learning (OFML), a protocol-
aware framework that assigns modular ML models to individual processes and composes
them according to a given protocol, executing experiments on a computer as function
compositions. To quantify decision uncertainty, OFML employs ensemble-based predictive
variance, a simple and scalable alternative to Bayesian neural networks that yields well-
calibrated uncertainty and robust behavior under distribution shift. We demonstrate the
framework on color-mixing protocols, using protocol-level uncertainty to select informative
experiments and to illustrate gains in sample efficiency over random acquisition. OFML
suggests a practical path to model-based active learning that respects experimental structure
while remaining easy to implement and parallelize.

1 Introduction

Recent advances in robotics and Al have increasingly driven the adoption of automation technolo-
gies in scientific research [1]. “Automation in scientific research” differs in key respects from prior
work on “automation in applied domains,” and thus requires novel methods tailored to these unique
characteristics. When combined with robotics, Al-driven research automation can be cast as a
model-based active learning paradigm (Fig. 1a). In this paradigm, Al systems perform induction,
hypothesis generation, and deduction, while robots carry out the physical experiments and feed
data back to the Al
In experimental science, each experiment can be described as a mapping

Input: (Conditions, Protocol) — Output: (Results). (1)

These inputs and outputs are structured by the constraints of the physical world. In particular, the
experimental protocol itself encodes rich procedural information, yet existing methods have not
fully leveraged this structure.

Classical active learning frameworks (e.g., pool-based uncertainty sampling [2, 3]) focus on
data points in a static feature space and cannot incorporate dynamic experimental workflows.
Sequence-based approaches using LSTMs or Transformers capture temporal order but ignore
branching dependencies, leading to hallucinations when applied to real protocols and degraded
performance as complexity increases [4, 5].

To address these gaps, we propose Object-Flow Machine Learning (OFML), a natural active
learning framework for experimental data with explicit protocol structure. OFML assigns a modular
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ML model to each experimental unit process (hereafter, “process”) and composes them according
to the given protocol, faithfully reproducing the experiment in computer (Fig. 1b). By instantiating
multiple such model sets and measuring the variance of their predictions, OFML quantifies uncer-
tainty at the protocol level. Integrating protocol-aware modeling and ensemble-based uncertainty
estimation into a seamless loop, OFML selects the most informative next experiments and realizes
model-based active learning.

Background

Experiments are described in triplet format as shown in

Eq. 1. To realize model-based active learning for such ﬁ
Vodel (Conditions, Protocol)
ode

experiments, we need three components. Model

. . . Prediction Update
Protocol representation. Documentation of experimen-
tal protocols is essential for ensuring reproducibility in
biological research. Traditionally, protocols are described prediction experiment

uncertainty measurement

in a linear, step-by-step manner, as typically seen in sci-
entific papers. While intuitive, this format has limitations
. . . . .. Experiment Experimental
in representing complex workflows involving conditional Planning — Execution

. . rotocols description
steps, loops, or parallel operations. As an alternative,
graph-based representations offer a general framework
for describing complex procedures. In this approach, each

(a) Model-based active learning

experimental process is modeled as a node, while edges Vi b protoco

. Conditions [
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clear and analyzable. This method not only enables par-
allelization but also enhances modularity. Protocols can
be constructed from reusable components, making them (b) Proposed method
easier to maintain, modify, and integrate into automated

systems. As part of this approach, we have developed our »
own graph-based protocol description language, called pﬁcmbidldio
OFPlang. It is an object-flow language that extends the =
dataflow paradigm to include not only data but also phys- (oo ,j
ical entities such as labware. OFPlang allows the uni-

fied description of both experimental manipulations and
computational data processing, and serves as an input (c) Transformer-based method
specification for automated experiments by providing a
precise and executable workflow structure.
Conventional Approaches to Research Automation. Re-
cent lines of work automate experiments from two com-
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Figure 1: (a) Model-based active learning
framework. (b) Proposed method:
assemble modular models per
unit process, and compute re-

plementary directions. First, LLM-driven agents gener- sults accordingly. (c) Transformer-
ate stepwise procedures (Fig. 1c), write control code, and based method: it uses conditions
interface with lab hardware to execute closed-loop exper- and protocol information as fixed
iments (e.g., Coscientist). [6] Second, autonomous labora- length vector.

tories integrate robotics with active/bayesian learning to

plan, run, and analyze experiments at scale (e.g., A-Lab; mobile robotic chemist). [1, 7] Sequence-
based planning, such as neural-network—guided retrosynthesis, produces action sequences but
typically lacks explicit representations of branching, resource routing, and measurement depen-
dencies found in executable protocols. [8] These advances motivate a protocol-aware approach
that preserves procedural structure—beyond flat token sequences—when learning and selecting
experiments.



Ensemble-based uncertainty estimation. A practical committee-based approach is deep ensembles
[10]: train multiple independently initialized networks, aggregate their predictions, and use dis-
agreement (e.g., variance of predictive means or vote entropy) to score candidates—functioning as
a Query-by-Committee strategy that yields well-calibrated uncertainty and strong active-learning
performance. [11, 12]

Object-Flow Machine Learning

OFML is an active-learning framework that leverages protocol information. It operates according
to the following steps.

Model preparation. We prepare machine-learning models for each experimental process. Let N
be the number of distinct processes. For each type of process i = 1,..., N, we construct a model
h; and collect them as H = {hy, ..., hy}. To enable deep-ensemble uncertainty estimation for our
acquisition strategy, we independently initialize E copies of H, denoted Hj, ..., Hg. This setup
allows the experiment to be represented and tracked on a computer as a composition of functions.
Models are broadly categorized into three types according to process characteristics: {encoders,
process modules, measurement modules}.

Model construction. Given a protocol described in a YAML file and conditions in a JSON file, we
compute experimental outcomes in accordance with OFPLang’s execution semantics. Processes are
evaluated as soon as all their inputs become available, so the procedure accommodates protocols of
varying length. In our implementation, the quantities on which the model loss is computed are
mapped directly to the outputs of those processes designated as Output in the protocol’s YAML file.
As the overall computation is a composition of learned functions, stability/error bounds should be
stated in terms of module-wise errors and sensitivity (e.g., Lipschitz constants [13]) of the composed
map (see remarks below).

Active learning with predictive uncertainty. For each process i, we evaluate the corresponding
models from each ensemble H, independently (e = 1,.. ., E). We then compute the variance across
ensemble outputs as a measure of predictive uncertainty for acquisition. This implements a query-
by-committee strategy; under specific conditions (e.g., positive bounded information gain for the
committee), the prediction error can decrease exponentially with the number of queries. [14, 15]
We also discuss the diminishing-returns behavior of information-gain—based policies (see remarks

below).

Experiments

We used color-mixing protocols as brotoco! 1 1color mescure brotocol 2 2-color mix brotoce! 3 3 color mix

a test case for our predictive ex- e oo e Gl Gl oowder Gl Glrt ot
periments because they are simple, T /A R Y S B R I
reproducible, and readily extensi-
ble to other applications. We de-

fined three types of experimental pro-
cesses—serve-plate (provides a 96-

well plate to the liquid-handling sys-

tem), dispense-liquid (dispenses
specified ink to designated wells), and
measure-absorbance (measures ab-
sorbance in each well). The protocols

used in these experiments are illus-
trated in Fig. 2.

ML Experiments. To assess predic-

tive accuracy and cross-protocol gen-
eralization, we pre-trained on Protocols 1 and 2 and evaluated on the untrained, more complex

Figure 2: Protocols of one-, two-, three-color mixing



Protocol 3 (Fig. 3a—3c). This setting examines whether models trained on simpler protocols can
nonetheless produce usable predictions on a protocol not seen during training. Our models achieved
high accuracy on the trained one- and two-color protocols and still delivered reasonable predic-
tions on the unseen three-color protocol (Fig.3c, Appendix 2), but—because no comparable studies
reporting cross-protocol generalization were found—we could not perform a direct benchmark.[16?
-18]

Next, we conducted an active-learning study using our ensemble-based acquisition policy.
After 20 active-learning epochs, the test loss decreased from 10.47 to 2.23 (Fig. 3e). These results
emphasize two points: (i) the model yields actionable predictions even on an untrained protocol, and
(ii) active learning systematically reduces error by targeting informative acquisitions, independent
of head-to-head numeric comparisons with alternative sampling schemes.
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Figure 3: Ensemble predictions vs. targets for (a) 1-color measuring. (b) 2-color mixing. (c) 3-color
mixing (untrained). (d) 3-color mixing after 20 data additional learning (e) Comparison of
error reduction: ensemble vs. random sampling.

5 Conclusion and Future Works

We presented Object-Flow Machine Learning (OFML), a protocol-aware framework that composes
modular models per experimental process and quantifies protocol-level uncertainty via ensembles.
By aligning model structure with executable protocols, OFML offers a practical path to model-based
active learning in automated experiments. Our study suggests that protocol-aware composition
and ensemble variance can guide informative experiment selection while remaining simple to
implement and parallelize. Current limitations include: (i) extending OFML to datasets with different
modalities, (e.g., images, molecules), (ii) generalizing the theoretical guarantees to broader classes
of experimental protocols, and (iii) adopting more practical acquisition strategies. Future work
will explore more practical acquisition strategies, integrate with physical-robot platforms more
seamlessly, and evaluate OFML on complex, large-scale protocol libraries.
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Proofs of Theoretical Results

Lipschitz Stability of Composed Modules

Theorem A.1 (Composition of Lipschitz Maps). Let fi, ..., fx be functions on a metric space with
Lipschitz constants Ly, ..., Lg. Then f = fx o --- o fi is Lipschitz with

K
Lip(f) < [ | L.
k=1

Sketch. For K =1 it is trivial. Assume true for K—1 and write g = fx_; o - - - o fi. Then for any x, y,
d(f(x), f() = d(fic(9(x)), fic(9(y))) < Lx d(g(x), 9(y)) < Lic (155" Le) d(x, y). u

Implications for DNNs and our pipeline.. For feedforward networks with 1-Lipschitz nonlinearities
(e.g. ReLU), the global Lipschitz constant is upper-bounded by the product of spectral norms of
linear layers; this quantity also governs margin-based generalization bounds in deep nets. Therefore,
for the composed modules NN3 o NN2 o NN1 used in our experiment, the end-to-end sensitivity is
controlled by the product of the module-wise constants, which can be reduced via spectral/Parseval
constraints. See Bartlett et al. [19] for spectrally-normalized bounds, and Virmaux and Scaman
[20], Cisse et al. [21] for analysis and practice of Lipschitz control in DNNs.!

Error Decay in Query-by-Committee

Theorem A.2 (Exponential Error Reduction under QBC). Let V; be the version space aftert queries.
If each query reduces V; by a constant fraction p < 1 under majority disagreement sampling, then the
generalization error satisfies

e < ple.

Sketch. Classical QBC analysis shows that each informative query eliminates a constant fraction of
inconsistent hypotheses, yielding exponential shrinkage of the error; see Freund et al. [23], Seung
et al. [24]. [

Applicability to deep ensembles.. The strict assumptions (realizability/explicit version space)
need not hold for modern DNNs. In practice, committee disagreement using deep ensembles often
mirrors the same qualitative behavior—faster error decay than random sampling— as we observed
on our task. We thus view QBC-style selection as a well-supported heuristic for deep models
(practically effective though not fully covered by the classical proof).

IStandard background on Lipschitz composition appears in, e.g., Heinonen [22].
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B.2

B.3

C.1

Table 1: Ink—water mixing and dilutions.

Ink Dilution (X)
FRAME (Flame Red) 100
SUNNY (Sunny Yellow) 200
AQUA (Aqua Blue) 200

Diminishing Information Gain

Theorem A.3 (Submodularity of Mutual Information). For a Gaussian process model, the mutual
information objective used for selecting a set A of points is (monotone) submodular. Hence, for A C B
and any candidate x ¢ B,

I(yx; f1A) = I(yx; f1B),
i.e. marginal gains diminish, and the greedy policy enjoys a (1 — 1/e) approximation guarantee.
Sketch. This is a standard consequence of the submodularity of mutual information under GPs; see
Krause et al. [25, 26]. See also the general framework of adaptive submodularity [27]. |

From GPs to deep nets.. Infinite-width limits connect DNNs to Gaussian processes (NNGP) and to
the neural tangent kernel (NTK). These links justify GP/MI-based selection as a principled approx-
imation for deep models, explaining the consistent diminishing returns we observe empirically
when adding data.[28, 29]

Takeaway for our composed protocol.. (i) The end-to-end Lipschitz constant of the composed
modules is bounded by the product of per-module constants (directly useful for our MLP chain).
(if) OBC gives exponential error decay under idealized conditions and remains effective with deep
ensembles in practice. (iii) MI-based selection exhibits diminishing returns; greedy acquisition is
theoretically near-optimal under GP assumptions, and NNGP/NTK connections motivate its use
with DNNGs.

Experimental Details

Hardware and Reagents

+ Liquid handler: Tecan Fluent.

« Plate reader:Infinite 200 Pro®.

+ Dyes: Platinum Mixable Ink series (Flame Red, Sunny Yellow, Aqua Blue).

Protocol Outline

1) serve_plate: provides a 96-well plate to the liquid-handling system.
2) dispense_liquid: dispenses specified ink to designated wells

3) measure_absorbance: measures absorbance in each well

Example YAML Snippet
ML Experiments’ Details for Actual Experimental Data

Neural-module I/O Summary

We use the same three neural modules as in the Sigmoid toy experiments. For architectural details
(hidden sizes, activation, dropout), see Table 3.



(a) Frame Red Absorbance

Absorbance vs Yellow Ik

(b) Sunny Yellow Absorbance

(c) Aqua Blue Absorbance

Figure 4: The absorbance of (a) Frame Red (b) Sunny Yellow (c) Aqua Blue
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(a) YAML file

“protocol™:
"file! -/sal

"input":
"volumel": {

“channel1": {
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0,
1,
]
I,
"type": "
}

,
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(b) JSON file

Figure 5: (a) YAML file of 1-color (green) measuring protocol. (b) JSON file of 1-color (green) measuring

protocol.



Table 2: Sample counts by protocol and split (Actual experiment data).

Protocol Train Test AL candidates
Protocol 1 84 %3 — 12x%x3
Protocol 2 84 X9 — 12X 9
Protocol 3 (untrained) — 96X%6 —
Total 1008 576 720

Table 3: Summary of three MLP blocks (shared across Actual/Sigmoid).

Block Input dim Hidden units Dropout Output dim Shapes

NN1 1 120 0.2 105 (bridge) 1 — 120 — 105
NN2 1+34+105=109 140X 4 =560 0.2 105 (bridge) 109 — 560 — 105
NN3 105 170 0.2 3 105 — 170 —» 3

C.2 Train and Test Samples

We consider three protocols on actual experiment data. Protocols 1-2 are split into 84 for training
and 12 for the active learning (AL) candidate pool per protocol, while Protocol 3 is fully held out
for test.

Protocols (96 samples each)..

Protocol1: {R, Y, B}, (2)
Protocol 2 : { R#R, R+Y, R+B, Y«R, Y+Y, Y«B, B«R, BxY, BxB}, (3)
Protocol 3 : { R«Y«+B, R«B«+Y, Y*R«B, Y«BxR, BxRxY, BxY«R}. 4)

Here, “«” denotes sequence concatenation (multi-step dispensing), not multiplication.
C.3 Training Details

« Optimizer: Adam, learning rate 107>,

« Ensemble size E = 5; dropout p = 0.2.

« Loss: mean-squared error on y.

+ Training epochs: 5000.

« Active learning epochs: 96.

D ML Experiments’ Details for Actual Experimental Data

D.1 Neural-module I/O Summary
We summarize the inputs and outputs of the three neural modules used in our ML experiment on
the Sigmoid task. Architectural details are in Table 3.

D.2 Train and Test Samples

Each protocol has 96 samples. Protocols 1-2 are split into 84 (train) and 12 (AL candidates) per
protocol, while Protocol 3 is held out for test.

10



Table 4: Sample counts by protocol and split (Sigmoid toy dataset).

Protocol Train Test AL candidates
Protocol 1 96 X 3 — —
Protocol 2 96 X 9 — —
Protocol 3 (untrained) — 96X%6 —
Total 1152 576 576

Protocols (96 samples each)..

Protocol 1: {R, G, B}, (5)
Protocol 2 : { R«R, R+G, R«B, G*R, G+G, G*B, B«R, BxG, B*B }, (6)
Protocol 3 : { R«G=B, R«B+G, G*RxB, GxB*R, B+R*G, BxG#*R }. (7)

D.3 Sigmoid Toy Dataset

This appendix specifies the synthetic “Sigmoid” dataset. Each example is defined by a color code
c1.n € C™ and non-negative volumes ;. The color code chooses, at each step i, which one-hot vector
e, € {(1,0,0)7,(0,1,0)7,(0,0,1) "} contributes to the RGB totals. We then apply a fixed linear
mixing and an elementwise sigmoid to obtain the final 3-dimensional output.

Notation..

« Color set C = {r, g, b} with one-hot vectors e, = (1,0,0)", e; = (0,1,0) ", e, = (0,0,1)".
« Color code ¢y, = (cq,...,¢n) € C™.

+ Volumes v; > 0 sampled independently under a cap cap > 0.

« RGB totals (R,G,B)" = X v;e,,.

« Centering v=(R-5 G-5 B-5)".

« Coefficient matrix A € R¥*® (columns for R/G/B).

1
« Sigmoid (elementwise): o(x) = m.
1.0 0.8 0.1
A=05 08 0.1]. (8)
0.1 0.2 1.0
v; ~ U(0, cap), i=1,...,n 9)
R n
G =Zvieci, ¥=(R-5 G-5 B-5)T. (10)
B i=1
z=AvV, y = a(z) € (0,1)°. (11)

Remark.. We typically use n € {1,2,3}. The centering by 5 controls saturation before the sigmoid,;
A linearly mixes the centered RGB totals, and ¢ maps them to bounded outputs.
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D.4 Training Details

Optimizer: Adam, learning rate 107>,

Ensemble size E = 5; dropout p = 0.2.

Loss: mean-squared error on y.

Training epochs: 5000.

Active learning epochs: 96.

Predicted vs Target with Uncertainty (Dimension 1) Predicted vs Target with Uncertainty (Dimension 1) Predicted vs Target with Uncertainty (Dimension 1)

y=x y=x y=x
#  Dimension 1 (R) #  Dimension 1 (R) #  Dimension 1 (R)

Predicted M
5o

e
A Y

: / g L

(a) 1-color mixing (b) 2-color mixing (¢) 3-color mixing

Loss vs Additional Data

. Preicted v et with Uncesioty (imesion 1) N —
"3 Dmension 1) — RSloss
25
. 15 /// 2
g ] g 15
| y
os /‘#
10
// 5
-0.5 e
0 0 20 40 . 60 80
(d) 3-color mixing (after active '
learning) (e) Error vs. data size

Figure 6: (Sigmoid) Ensemble predictions vs. targets: (a) 1-color; (b) 2-color; (c) 3-color (untrained); (d)
after 20 additional AL samples; (e) error comparison.
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