
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2025

A HYPOTHESIS ON BLACK SWAN IN UNCHANGING ENVI-
RONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Black swan events are statistically rare occurrences that carry extremely high risks. A stan-
dard view of black swans assumes that they originate from an unpredictable and changing
environment; however, the community lacks a comprehensive definition of black swan
events. To this end, this paper challenges that the standard view is incomplete and claims
that high-risk, statistically rare events can also occur in unchanging environments due to
human misperception of events’ values and likelihoods, which we refer to as S-BLACK
SWAN . We first carefully categorize black swan events, focusing on S-BLACK SWAN , and
mathematically formalize the definition of black swan events. We hope these definitions
can pave the way for the development of algorithms to prevent such events by rationally
correcting limitations in perception.

1 INTRODUCTION

To successfully deploy machine learning (ML) systems in open-ended environments, these systems must
exhibit robustness against rare and high-risk events, often referred to as black swans (Taleb, 2010). Achiev-
ing this robustness requires a deep and precise understanding of the origins of such events, which has been
increasingly recognized as a critical factor for enabling ML algorithms to attain full control and make op-
timal decisions (Chollet, 2019; Silva & Najafirad, 2020; He et al., 2021; Li et al., 2023; Yang et al., 2024).
Nevertheless, many contemporary ML systems remain vulnerable to black swans in real-world scenarios, as
evidenced by automated trading systems that overreact to market anomalies (Kirilenko et al., 2017; Phillips,
2021; Stafford, 2022), unexpected bankruptcies (Wiggins et al., 2014; Akhtaruzzaman et al., 2023), the
Covid pandemic (Antipova, 2020), and autonomous vehicles encountering unforeseen road or weather con-
ditions (Tesla, 2021; Witman et al., 2023; Nordhoff et al., 2023).

In this paper, we argue that ML systems remain susceptible to black swan events, regardless of an algorithm’s
representation capacity or scalability, due to an AI community’s incomplete understanding of the origins of
these events. The prevailing belief in most algorithmic approaches to preventing black swan events (Prest-
wich, 2019; Artemenko et al., 2020; Devarajan et al., 2021; Wabartha et al., 2021; Bhanja & Das, 2024;
Jin, 2024) is that such events primarily arise from dynamic, time-varying environments. We contend, how-
ever, that black swans can also emerge from static, stationary environments. To this end, we propose a new
hypothesis on their origins:

Hypothesis 1. Black swans can originate from misperceptions of an event’s reward and likelihood,
even within static environments.

To warmly introduce our new hypothesis, consider the bankruptcy of Lehman Brothers, widely recognized
as the most significant black swan event in the financial industry (Wiggins et al., 2014). A strong explanation
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points to the investors making rational decisions on the false market perception which appeared rational at the
time but proved irrational by correcting their perception in hindsight . The firm declared bankruptcy within 72
hours without any precursor (McDonald & Robinson, 2009), and the only factor that changed during those
three days was investors’ perception of the company (Housel, 2023; Mawutor, 2014; Fleming & Sarkar,
2014) 1. Investors made optimal decisions based on this perception, which turned out to be suboptimal once
the perception was revealed to be false during those 72 hours.

Contribution. We refer to black swan events in stationary environments as S-BLACK SWAN and define
them in the context of a Markov Decision Process (MDP) as follows:

(Informal) An S-BLACK SWAN event is a state-action pair where humans misperceive both its like-
lihood and reward. It is perceived as impossible, despite occurring with small probability, while its
reward is overestimated relative to its true value in a stationary environment.

Our work begins with a case study on how S-BLACK SWAN emerge and cause suboptimality gaps in various
MDP settings, such as bandit (Theorem 1), small state spaces (Theorem 2), and large state spaces (Theorem
3). We introduced three MDPs to define S-BLACK SWAN : the ground truth MDP (GMDP), the Human MDP
(HMDP), and the Human-Estimation MDP (HEMDP). The GMDP represents the real world, while the
HMDP reflects humans’ biased perceptions (Definitions 1 and 2). S-BLACK SWAN (Definitions 4 and 5) are
state-action pairs perceived as impossible in the HMDP but occur with small probability and higher rewards
in the GMDP. Our main finding (Theorem 4) shows that while the HEMDP value function asymptotically
converges to that of the HMDP over longer horizons, the gap between HMDP and GMDP has a lower
bound, influenced by reward distortion, the size of the S-BLACK SWAN set, and their minimum probability of
occurrence. Finally, Theorem 5 examines S-BLACK SWAN hitting time, showing that larger reward distortion
and higher S-BLACK SWAN probability necessitate more frequent updates to human perception functions.

2 PRELIMINARY

Notations. The sets of natural, real, nonnegative, and nonpositive real numbers are denoted by N, R, R≥0,
and R≤0 respectively. For a finite set Z, the notation ∣Z ∣ represents its cardinality, and ∆(Z) denotes the
probability simplex on Z. Given X,Y ∈ N with X < Y , we define [X] ∶= {1,2, . . . ,X}, the closed interval
[X,Y ] ∶= {X,X + 1, . . . , Y }. For x ∈ R≥0, the floor function ⌊x⌋ is defined as max{n ∈ N ∪ {0} ∣ n ≤ x}2.

Markov Decision Process. We consider a finite-horizon MDP denoted asM = ⟨S,A, P,R, γ, T ⟩, where
P = {Pt}Tt=0 and R = {Rt}Tt=0 for t ∈ N. Here, S represents the state space, A denotes the action space,
Pt ∶ S ×A → ∆(S) is the transition probability function at time t, Rt ∶ S ×A → R is the reward function
at time t, γ is the discount factor, and T ∈ N is the horizon length. We define M as a stationary MDP
if Pt(s′ ∣ s, a) = Pt+1(s′ ∣ s, a) and Rt(s, a) = Rt+1(s, a) for all (s′, s, a) ∈ S × S × A and for all
t ∈ [T − 1]. Otherwise, we defineM as a non-stationary MDP. In the stationary case, we denote P and R
as the single transition probability function and reward function, respectively. A policy is denoted as π ∈ Π,
where Π ∶ S → ∆(A) is the set of policies. We denote a T -length trajectory from M under policy π as
{s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, sT }, where st ∼ Pt(⋅ ∣ st−1, at−1) and rt = Rt(st, at). Assume that
all rewards are bounded, i.e., rt ∈ [−Rmax,Rmax] for all t. The agent’s goal is to compute the optimal
policy π⋆ ∈ Π that maximizes the value function: V π

M(s) ∶= Eπ[∑T
t=0 γ

tRt(st, at) ∣P, s0 = s]. We further
define the normalized visitation probability as Pπ(s, a) ∶= 1−γT

1−γ ∑
T−1
t=0 γtP((st, at) = (s, a)∣s0, π,P ), where

1The bank’s loss endurance, evaluated at 11.7% by the U.S. government, stayed stationary over the 72 hours.
2For clarity and readability, all notations used throughout the entire paper are elaborated in Appendix A
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P(s, a∣s0, π,P ) is the probability of visiting (s, a) at time t under policy π and transition probability P
starting from s0 .

The following three theorems, drawn from existing work, lay the groundwork for mathematically formulat-
ing misperception of the Hypothesis 1.

Expected Utility Theory. Given an outcome spaceO = {o1, . . . , oK}, we define a utility function g ∶ O →
R that quantifies the gain or loss associated with each outcome oi. An individual agent is faced with choices,
where each choice represents a scenario in which the outcomes oi occur with given probabilities pi, summing
to one. The set of all choices is denoted by C. Each choice c ∈ C returnsO with a probability distribution pc =
(p(c)1 , . . . , p

(c)
K ). Under a given choice c, Expected Utility Theory (EUT) evaluates the riskiness of that choice

as V (c) = ∑K
i=1 g(oi)p

(c)
i (von Neumann, 1944; Rabin, 2013). To illustrate, consider a stock market invest-

ment scenario where O = {Economic Boom (EB),Economic Recession (ER)}. Here, g(EB) represents a
gain, while g(ER) represents a loss. The set of choices C = {invest in stocks, invest in bonds,keep cash}
corresponds to different probability distributions pc = (p

(c)
1 , p

(c)
2 ) of outcomes.

Prospect Theory. However, Expected Utility Theory (EUT) fails to account for empirical observations
from psychological experiments (Drakopoulos & Theodossiou, 2016; Pandit et al., 2019; Wahlberg &
Sjoberg, 2000; Vasterman et al., 2005; van der Meer et al., 2022) and economic cases (Rogers, 1998; Wheeler
& Wheeler, 2007; BetterUp, 2022) that demonstrate human irrationality. Specifically, humans tend to ex-
hibit internal distortions when perceiving event probabilities pc and evaluating outcome values g(O) for
any choice c (Opaluch & Segerson, 1989). To address these discrepancies, Prospect Theory (PT) introduces
a probability distortion function w ∶ [0,1]→ [0,1] and a value distortion function u ∶ R→ R, which modify
the expected utility calculation to V (c) = ∑K

i=1 u(g(oi))w(p
(c)
i ) (Kahneman & Tversky, 2013; Fennema

& Wakker, 1997). The motivation for introducing PT is not only to acknowledge human irrationality but
also to provide a more accurate mathematical framework for how people actually perceive probabilities and
outcomes. PT describes the characteristics of the functions u and w based on empirical case studies. The
function u represents value distortion, capturing how individuals assess gains and losses (x-axis of Figure 1a
represents the true value, and the y-axis represents the perceived value). The function w represents probabil-
ity distortion, reflecting how individuals tend to overestimate the likelihood of rare events and underestimate
the likelihood of more probable events. (x-axis of Figure 1b represents the true probability, and the y-axis
represents the perceived probability.)

Cumulative Prospect Theory. To enhance mathematical rigor—specifically, to ensure that distorted prob-
abilities still sum to one—Prospect Theory (PT) was further revised into Cumulative Prospect Theory (CPT).
In CPT, the expected value is defined as V (c) = ∑K

i=1 u(g(oi)) (w (∑i
j=1 p

(c)
j ) −w (∑

i−1
j=1 p

(c)
j )), where the

function w distorts the cumulative probability of an event oi. The following insurance example illustrates
CPT in action.
Example 1 (Insurance policies). Consider an example where the probability of an insured risk is 1%, the
potential loss is 1,000, and the insurance premium is 15. According to CPT, most would opt to pay the 15
premium to avoid the larger loss.

Example 1 shows how a simple decision can be modeled as a two-step Markov Decision Process with states
S = {sbase, spremium, srisk} representing utility value of 0, −15, and −1000, and actions (or choice set C)
A = {ap, anp} for paying or not paying the premium. At t = 0, humans choose between ap (leading to
spremium) and anp, which could result in sbase with 99% probability or srisk with 1% probability. Expected
utility theory suggests anp is optimal since its expected value (V (anp) = −1000 ⋅ 0.01 = −10) is lower than
that of ap (V (ap) = −15 ⋅ 1 = −15), but real-world decisions often favor ap, highlighting a divergence from
theoretical rationality.
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(a) Value distortion (b) Probability distortion
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Figure 1: Value distortion function u and probability distortion function w. The gray line in Figures 1a and
1b represents y = x.

Therefore, we begin by formalizing the key empirical observations from CPT into the following definitions.
Definition 1 (Value Distortion Function). The value distortion function u is defined as:

u(x) = {u
+(x) if x ≥ 0,

u−(x) if x < 0,
where u+ ∶ R≥0 → R≥0 is non-decreasing, concave with limh→0+(u+)′(h) ≤ 1, and u− ∶ R≤0 → R≤0 is
non-decreasing, convex with limh→0−(u−)′(h) > 1.
Definition 2 (Probability Distortion Function). The probability distortion function w is defined as:

w(pi) = {
w+(pi) if g(xi) ≥ 0,
w−(pi) if g(xi) < 0,

where w+,w− ∶ [0,1] → [0,1] satisfy: w+(0) = w−(0) = 0, w+(1) = w−(1) = 1; w+(a) = a and w−(b) = b
for some a, b ∈ (0,1); (w+)′(x) is decreasing on [0, a) and increasing on (a,1]; (w−)′(x) is increasing on
[0, b) and decreasing on (b,1].

The derivative constraints encapsulate the core observations of CPT. Specifically, the conditions on (u−)′
and (u+)′ in Definition 1 formalize the tendency for individuals to value losses more heavily than equivalent
gains (see Figure 1a). The constraints on (w−)′ and (w+)′ in Definition 2 describe the tendency to overweight
(or underweight) the probabilities of rare events and underweight (or overweight) those of average events
where the outcome results in a gain (or a loss) (see Figure 1b).

3 BLACK SWAN IN STATIONARY AND NON-STATIONARY ENVIRONMENTS

Hypothesis 1 concerns the feasibility of black swan events existing in stationary environments. We next
illustrate how black swans can originate from both stationary and non-stationary environments. We begin by
defining the black swan event dimension as follows.
Definition 3 (Black Swan Event Dimension). For a given MDPM, we define the dimension of a black swan
event as the set S ×A × [T ].

Then, we informally refer to (s, a, tbs) ∈ S × A × [T ] as a black swan event if it represents a rare, high-
risk occurrence that significantly deviates from expected outcomes based on prior experience in the real
world M. This could involve an unexpected transition or an anomalous reward signal. We then introduce
a classification rule that distinguishes black swan events based on whether they occur in non-stationary
environments or arise within stationary environments, as follows.
Algorithm 1 (Black Swan Classification: S-BLACK SWAN ). For a given (possibly non-stationary) M,
suppose (s, a, tbs) is a black swan event. If (s, a, t) is a black swan event for ∀t ∈ [T ], then we classify
(s, a, tbs) as a black swan that originates from environment’s stationarity (S-BLACK SWAN ).

4
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Based on Algorithm 1, one can always identify a unit time interval that classifies any black swan event as an
S-BLACK SWAN , as stated in the following proposition.

Proposition 1. If (s, a, tbs) is a black swan event, then there exists a time interval [t1, t2] ⊆ [T ] such that
for every t ∈ [t1, t2], the (s, a, t) is classified as S-BLACK SWAN .

We provide an intuitive interpretation of Proposition 1 through the following example.

Example 2. Suppose (s, a, tbs) is a black swan event.

Case 1. ConsiderM as a non-stationary MDP where Pt and Rt change at each time step, i.e., Pt ≠
Pt+1 and Rt ≠ Rt+1. If t1 = t2 = tbs, then (s, a, tbs) is classified as an S-BLACK SWAN .
However, if t1 ≠ t2 and tbs ∈ [t1, t2], then (s, a, tbs) cannot be definitively classified as an
S-BLACK SWAN .

Case 2. ConsiderM as a piecewise non-stationary MDP where Pt and Rt change every ⌊T /k⌋ time
steps, i.e., Pt = Pt+1 and Rt = Rt+1 for t ∈ [kj, kj + (k − 1)] where j = 0,1, . . . , ⌊T /k⌋. If
t1 = kjbs and t2 = kjbs + (k − 1), then (s, a, tbs) is classified as an S-BLACK SWAN where
jbs satisfies tbs ∈ [kjbs, kjbs + (k − 1)].

Case 3. ConsiderM as a stationary MDP where Pt = Pt+1 and Rt = Rt+1 for all t ∈ [T − 1]. In this
case, (s, a, tbs) is always classified as an S-BLACK SWAN , regardless of the interval [t1, t2].

We then present Case 3 of Example 2 as the following main remark:

Remark 1. IfM is stationary, then any black swan event (s, a, t) is classified as an S-BLACK SWAN . In
this case, we omit t and denote the S-BLACK SWAN simply as (s, a).

Our main goal for the remainder of the paper is to explore Remark 1, with a focus on mathematically
defining S-BLACK SWAN within a stationary MDPM. We will retain the notation for stationary transition
probabilities and reward functions as P and R, respectively, omitting the subscript t.

4 THE EMERGENCE OF S-BLACK SWAN IN SEQUENTIAL DECISION MAKING

We next present a case study to substantiate Hypothesis 1 before formally defining S-BLACK SWAN . We
begin by examining how S-BLACK SWANS emerge in sequential decision-making within a stationary envi-
ronment, starting with the bandit case. For a given (s, a) ∈ S ×A, let us assume that the function u distorts
the reward R(s, a), and the function w distorts the transition probabilities {P (s′∣s, a)}∀s′∈S where s′ is
the next state. In this Section, we refer to the MDP distorted by functions u and w as the distorted MDP
Md ∶= ⟨S,A,w(P ), u(R), γ⟩, with this notation being used exclusively within this section.

4.1 CASE 1. CONTEXTUAL BANDIT (T = 1)

We begin with a simple case where the horizon length is T = 1, commonly referred to as a contextual
bandit (Lattimore & Szepesvári, 2020). Surprisingly, in this setting, the optimal policy of a distorted world
coincides with the real world optimal policy as a following Theorem.

Theorem 1 (One-Step Optimality Deviation). If T = 1, then the optimal policy in the MDPM is identical
to the optimal policy in the distorted MDPMd.

Theorem 1 may seem counterintuitive, as Example 1 illustrates that human decision-making often exhibits
irrationality. In single-step decision-making, distortions in perception do not significantly affect the opti-
mal policy. For clarification, as shown in Example 1, the perceived reward order remains u−(r(sloss)) <
u−(r(spremium)) < u−(r(sbase)) because u− is a non-decreasing convex function. This further implies that
a short decision horizon may reduce the influence of human irrationality.

5
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4.2 CASE 2. ∣S ∣ = 2 WHEN T > 1

Now, let us consider the simplest case where T > 1 and ∣S ∣ = 2. Surprisingly, the result that optimality does
not deviate still holds similarly to Theorem 1.
Theorem 2 (Multi-step Optimality Deviation with ∣S ∣ = 2). If ∣S ∣ = 2, then the optimal policy from the MDP
M is also identical to the optimal policy of the distorted MDPMd for all t ∈ [T ].

Theorem 2 may initially seem counterintuitive, given that model errors propagate through distorted transition
probabilities and rewards as time t progresses (Janner et al., 2019). However, a straightforward explanation is
that for any state-action pair (s, a) ∈ S×A, the function w preserves the order of probabilities. Specifically, if
P (s1∣s, a) > P (s2∣s, a), then w(P (s1∣s, a)) > w(P (s2∣s, a)) still holds, where S = {s1, s2}. This suggests
that when the state space ∣S ∣ is small, the informational complexity required to determine the real-world
optimal action remains relatively low.

4.3 CASE 3. ∣S∣ = 3 WITH UNBIASED REWARD PERCEPTION

We now consider a general setting with arbitrary S, A, and T , but under the assumption that u(R(s, a)) =
R(s, a) for all (s, a), indicating that humans have an unbiased perception of their rewards.
Theorem 3 (Two-step Optimality Deviation with ∣S ∣ = 3). If ∣S ∣ = 3 and T = 2, there exists a transition
probability function P and a reward function R such that the optimal policy of the MDPM differs from that
of the distorted MDPMd.

The optimality deviation in Theorem 3 now aligns with the empirical observation in model-based rein-
forcement learning; increasing suboptimality is caused by model error propagation (Janner et al., 2019). In
summary, Theorems 1, 2, and 3 demonstrate that the discrepancy between the optimal policy derived from
human perception and the real-world optimal policy increases as the complexity of the environment (S)
grows or as the horizon length (T ) extends, regardless of the w function.

5 AGENT- ENVIRONMENT FRAMEWORK : PERCEPTION AS INTERSECTION

To explore Hypothesis 1, we propose a novel agent-environment framework that treats misperception as
information loss in an agent’s understanding of the real world 3 (See Figure 2). This framework introduces
two stationary MDPs: the Human MDP and the Human-Estimation MDP. We begin by defining the station-
ary ground MDP (GMDP)M as an abstraction of real-world environments without information loss. The
following subsections detail the Human MDP (HMDP) and the Human-Estimation MDP (HEMDP).

5.1 HUMAN MDP

We define the Human MDPM† = ⟨S,A, P †,R†, γ, T ⟩, where the human (agent) misperceives the visita-
tion probability Pπ(s, a) through the function w, denoted as P †,π(s, a), and the reward function R(s, a)
through the function u, denoted as R†(s, a). An internal assumption in the HMDP is that its state and action
spaces are identical to those of the GMDP M, i.e., S† = S and A† = A. Although this assumption may
seem unrealistic, especially given that insufficient exploration in large discrete state and action spaces may
violate it, the following method shows how the human (agent) can approximate S† and A† to S and A, thus
supporting this assumption.
Remark 2. If the human (agent) cannot perceive a state s ∈ S, the state space S† can be updated to
S† ← S† ∪ {s}, then set R†(s, a) = R(s, a) and P †(s′ ∣ s, a) = P (s′ ∣ s, a) while ensuring P (s ∣ s′, a) = 0

3We detail how misperception reflects information loss from the agent’s perspective in Appendix B. .
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for all s ∈ S† and a ∈ A†. As a result, the new state s does not influence decision-making in the HMDP, since
the probability of the trajectory visiting s remains zero.

For discrete S and A, the order statistics of Pπ can be defined over the sequence [∣S ∣∣A∣], with each (s, a)
corresponding to an order index in [∣S ∣∣A∣], enabling the subsequent definition of the cumulative distribution.
For brevity, we denote the cumulative distribution of Pπ(s, a) as ∫ Pπ(s, a) . The distortions are then
defined by the following relationships:

∫ P †,π(s, a) ={w
+(∫ Pπ(s, a)) if R(s, a) ≥ 0

w−(∫ Pπ(s, a)) if R(s, a) < 0 ,∀(s, a) ∈ S ×A (1)

R†(s, a) ={u
+(R(s, a)) if R(s, a) ≥ 0

u−(R(s, a)) if R(s, a) < 0 ,∀(s, a) ∈ S ×A (2)

We introduce the concept of the perception gap: if max(s,a) ∣R(s, a) − R†(s, a)∣ < ϵr, then R†(s, a) is
referred to as an ϵr-perceived reward. Similarly, if max(s,a) ∣Pπ(s, a) − Pπ,†(s, a)∣ < ϵd, then P †,π(s, a)
is called an ϵd-perceived visitation probability, where ϵr, ϵd ∈ R+. The case where ϵr = ϵd = 0 represents
an unbiased perception. Once the agent perceivesM asM†, it executes the policy π inM† and collects a
trajectory. Finally, the value function ofM† is given by V π

M†(s) ∶= Eπ [γtR†(st, at)∣P †, s0 = s].

A key challenge in understandingM† is why distortions occur in visitation probability rather than transition
probability, as discussed in Section 5. This distinction arises because (s, a) is the fundamental event unit
(see Remark 1), and a distortion in transition probability implies a distortion in the state itself. The central
question, then, is how distortions in visitation probability relate directly to data collection. The following
lemma partially addresses this question.
Lemma 1. For a given M, there always exists a function h ∶ S → S such that w (∫ Pπ(s, a)) =
∫ Pπ(h(s), a) holds for any function w.

Our perspective is that distortions in the probability distribution, state space, or other factors lead to
distortions in visitation probabilities. With unbiased perception, the agent collects a trajectory τ =
{s0, a0, r0, s1, a1, . . . , sT−1, aT−1, sT }. However, when the agent perceives M as M†, it observes a dis-
torted trajectory τ † = {h(s0), a0, u(r0), h(s1), a1, . . . , h(sT−1), aT−1, h(sT )}, where function h distorts
the states. Lemma 1 demonstrates that visitation probability distortion arises from state distortion via h.

5.2 HUMAN-ESTIMATION MDP

Environment
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M

perception
⇐ÔÔÔ⇒

ϵr,ϵd
M† estimation⇐ÔÔ⇒

κr,κd

M̂†

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Agent

Figure 2: The agent and environ-
ment intersect with perception.

After the agent have perceived world as M†, it estimates the perceived
reward R†(s, a) as R̂†(s, a) and visitation probability P †,π(s, a) as
P̂ †,π(s, a) from its trajectory τ †. We define a Human-Estimation MDP
as M̂† = ⟨S,A, P̂ †, R̂†, γ, T ⟩. Note that this estimation process is
the same as estimation of generative model in model-based reinforce-
ment learning (Gheshlaghi Azar et al., 2013; Sidford et al., 2018; Agar-
wal et al., 2020; Kakade, 2003). We also introduce estimation gap,
that is if max(s,a) ∣R†(s, a) − R̂†(s, a)∣ ≤ κr holds, then R̂†(s, a) is
κr-estimated reward, and if max(s,a) ∣Pπ,†(s, a) − P̂π,†(s, a)∣ ≤ κd

holds, then P̂π,†(s, a) is κd-estimated visitation probability for constant
κr, κd ∈ R+. Finally, the value function of M̂† is given as V π

M̂†(s) ∶=
Eπ [γtR̂†(st, at)∣P̂ †, s0 = s].
We use the perception and estimation gaps to illustrate the novel agent-environment framework in Figure 2.
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6 S-BLACK SWAN

Finally, Section 6 provides a definition of S-BLACK SWAN and presents a theoretical analysis aimed at
guiding the design of safer ML algorithms in the future.

6.1 A DEFINITION OF S-BLACK SWAN

Assume that the rewards for all state-action pairs are ordered as R[1] ≤ ⋅ ⋅ ⋅ ≤ R[l] ≤ 0 ≤ R[l+1] ≤ ⋯ ≤
R[∣S∣∣A∣], and the visitation probabilities are ordered as Pπ

[1] ≤ Pπ
[2] ≤ ⋯ ≤ Pπ

[∣S∣∣A∣]
. We denote the order

index of R(s, a) as Ir(s, a) ∈ [∣S ∣∣A∣] and the order index of Pπ(s, a) as Ip(s, a) ∈ [∣S ∣∣A∣], such that
R[Ir(s,a)] = R(s, a) and Pπ

[Ip(s,a)]
= Pπ(s, a). We first provide the definition of S-BLACK SWAN in case of

discrete state and action space.

Definition 4 (S-BLACK SWAN - Discrete State and Action Space). Given distortion functions u,w and
constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:

1. (High-risk): R[Ir(s,a)] − u−(R[Ir(s,a)]) < −Cbs.

2. (Rare): w− (∑Ip(s,a)
j=1 Pπ

[j]) = w− (∑
Ip(s,a)−1
j=1 Pπ

[j]), yet 0 < Pπ
[Ip(s,a)]

< ϵbs.

then we define (s, a) as S-BLACK SWAN .

Definition 4 finally formalizes the informal concept of black swan events introduced in Section 3. The
first property of Definition 4 identifies a high-risk event through value distortion. Specifically, if the agent
perceives R optimistically, such that R ≪ u−(R) < 0, it is classified as a high-risk event (see Figure 1c).
The second property characterizes a rare event through probability distortion, describing an S-BLACK SWAN

event that occurs with a small probability in the real world (0 < Pπ
[Ip(s,a)]

< ϵbs), but is perceived by the

agent as infeasible (w− (∑Ip(s,a)
j=1 Pπ

[j]) = w− (∑
Ip(s,a)−1
j=1 Pπ

[j])) (See Figure 1d).

The constants Cbs and ϵbs in Definition 4 quantify the extent of distortion in the functions u and w, re-
spectively. Intuitively, Cbs and ϵbs are directly related to the magnitude of the misperception gap between
M andM†, denoted by ϵr and ϵp. This relationship will be further formalized in Theorem 4. We now ex-
tend the definition of S-BLACK SWAN to continuous state and action spaces. Suppose the reward function
R ∶ S ×A→ R is bijective. Then, the probability R−1 ○Pπ ∶ R→ [0,1] denotes the probability of a feasible
reward induced by policy π, denoted as Pr. We then have the following definition.

Definition 5 (S-BLACK SWAN - Continuous State and Action Space). Given distortion functions u,w and
constants Cbs ≫ 0 and ϵbs > 0, if (s, a) satisfies:

1. R(s, a) − u−(R(s, a)) < −Cbs.
2. dw−(x)

dx
∣
x=F (R(s,a))

⋅ Pr(r = R(s, a)) = 0, yet 0 < Pr(r = R(s, a)) < ϵbs,

where F (r) ∶= ∫
r
−∞

dPr is the cumulative distribution of Pr, then we define (s, a) as S-BLACK SWAN .

We then define the minimum probability of S-BLACK SWAN as ϵmin
bs , denoted as ϵmin

bs ∶= min(s,a) Pr(r =
R(s, a)). Let B denote the collection of all S-BLACK SWAN . For given constants Cbs and ϵbs, we define
the distortion functions w− and u− that result in B = ∅ as w−⋆ and u−⋆ , respectively. Intuitively, w−⋆ and
u−⋆ represent a safe perception, meaning that if an agent perceives the world through those, then B = ∅.
However, it is important to note that w−⋆ and u−⋆ are not unique functions (see Figure 1d).
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6.2 THEORETICAL ANALYSIS OF S-BLACK SWAN

Subsection 6.2 explores the properties of S-BLACK SWAN , focusing on how their presence establishes a
lower bound on policy performance (Theorem 4) and the timing of their occurrences (Theorem 5), laying
the groundwork for future algorithm design. For further analysis, we assume the following.
Assumption 1 (Relative convexity). Assume u−⋆(r) ≤ u−(r) holds for r < 0.

Assumption 1 ensures that a human (agent) with u− perceives rewards more optimistically than one with u−⋆
across all (s, a) pairs. This concept is well illustrated in Figure 1c, where the function u−(r) = r represents
an unbiased perception, and deviations from this line indicate increasing reward distortion. In conjunction
with Assumption 1, we introduce a proposition regarding S-BLACK SWAN , enabling interpretation within
the reward space [−Rmax,Rmax].
Proposition 2 (S-BLACK SWAN ). Let the intersection of the functions r+Cbs and u−(r) occur at r = −Rbs

(see Figure 1c). Under Assumption 1, if r(s, a) ∈ [−Rmax,−Rbs] satisfies:

1. r − u−(r) < −Cbs,
2. w− (F (r)) = 0, with 0 < F (r) < ϵbs,

then the (s, a) is S-BLACK SWAN .

A key insight from Proposition 2 is that as u−(r) approaches u−⋆(r), the approximation −Rbs → −Rmax

occurs, finally leading to ∣B∣→ 0 since ∣[−Rmax,−Rbs]∣→ 0 (see Figures 1c). In other words, Proposition 2
demonstrates that reducing the perception gap directly correlates with a decrease in ∣B∣.
Now, to provide an guideline for designing safe learning algorithms to prevent S-BLACK SWAN , it is crucial
to quantify how the existence of S-BLACK SWAN leads to an inevitable deviation from the real-world optimal
policy. We address this by analyzing how the misperception gap establishes a lower bound on the value
function gap between the HMDPM† and the GMDPM, as presented in the following theorem.
Theorem 4 (Convergence of value estimation gap but lower bound on value perception gap). Under As-
sumption 1, the asymptotic convergence of the value function estimation holds as follows,

V π
M̂†(s)→ V π

M†(s) a.s. as T →∞, ∀s, π ∈ S ×Π. (3)

However, under specific conditions on ϵbs, ϵ
min
bs ,Rbs, the lower bound of value perception gap as follows.

∣V π
M†(s) − V π

M(s)∣ = Ω
⎛
⎝
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

⎞
⎠

(4)

There are two key consequences of Theorem 4. First, Equation (3) demonstrates that the value estimation
error converges to zero as the agent rolls out longer trajectories. However, Equation (4) reveals that the value
perception gap has a non-zero lower bound, regardless of the horizon length. Equation (4) further indicates
that if u−(x)→ u−⋆(x) and w−(x)→ w−⋆(x), then Rbs → Rmax and ϵbs → 0 (see Figures 1c and 1d), leading
to the convergence of this lower bound to zero. Second, Equation (4) aligns with the intuition that greater
distortion in reward perception (i.e., larger Cbs) and an increased number of S-BLACK SWAN (i.e., larger
(Rmax −Rbs)) coupled with a higher minimum probability of S-BLACK SWAN occurrence (i.e., larger ϵmin

bs )
result in a higher lower bound. Therefore, Theorem 4 concludes that even with zero estimation error, a lower
bound on approximating the true value function remains, and this lower bound increases as Cbs and ϵmin

bs
become more pronounced.

Then, the next natural question is how to decrease that lower bound, specifically, how can an agent can learn
to self-correct toward a safe perception, i.e., u− → u−⋆ and w− → w−⋆ . This question can be further refined to:
What is the probability of encountering S-BLACK SWAN if the agent takes t steps? We address this under the
assumption of non-zero one-step reachability, as follows.

9
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Theorem 5 (S-BLACK SWAN hitting time). Assume Pπ⋆(s′ ∣ s) > 0 for any s, s′ ∈ S, indicating that the
one-step state reachability equipped with optimal policy is non-zero, and consider that one step corresponds
to a unit time. Then, if the agent takes t steps such that t ≥ log ( δ

pmin
) / log(1 − pmax) + 1, where pmin =

Rmax−Rbs

2Rmax
ϵmin
bs and pmax = Rmax−Rbs

2Rmax
ϵbs, it will encounter S-BLACK SWAN with at least probability δ ∈ (0,1].

A key takeaway of Theorem 5 is determining how often a human should correct their internal perception.
A large perception gap (Rmax − Rbs) and frequent occurrence of black swan events (ϵmin

bs ) require more
frequent execution of the self-perception correction algorithm.

7 RELATED WORKS: NECESSITY OF S-BLACK SWAN

This section discusses safe reinforcement learning (RL) algorithms, emphasizing the limitations of existing
approaches in addressing black swan events and highlighting the need for a new perspective4.

Safe RL algorithms are generally classified into three approaches: worst-case criterion, risk-sensitive cri-
terion, and constrained criterion (Garcıa & Fernández, 2015). However, these approaches face significant
limitations when dealing with black swan events. The worst-case criterion, which optimizes policy perfor-
mance under the least favorable scenarios by maximizing the minimum return, becomes overly conservative
when black swan events are considered, as they expand the uncertainty set W , leading to impractical de-
cisions such as avoiding all risky activities or adopting extreme safety measures (Heger, 1994; Coraluppi,
1997; Coraluppi & Marcus, 1999; 2000). Similarly, risk-sensitive algorithms, which incorporate a sensitivity
factor to balance return maximization and risk management (Howard & Matheson, 1972; Chung & Sobel,
1987; Patek, 2001), are inadequate for handling black swan events because return variance, a commonly used
risk measure, fails to account for the fat tails in distributions (Huisman et al., 1998; Bradley & Taqqu, 2003;
Bubeck et al., 2013; Agrawal et al., 2021). Additionally, log-exponential utility functions, often associated
with robust MDPs, do not effectively address the risks posed by black swans (Osogami, 2012; Moldovan &
Abbeel, 2012; Leqi et al., 2019). The constrained criterion, which maximizes expected returns while meeting
multiple utility constraints such as return variance or minimum thresholds (Geibel, 2006; Delage & Mannor,
2010; Ponda et al., 2013; Di Castro et al., 2012), also faces challenges with black swan events. These events
complicate threshold selection, often necessitating more conservative policies, and suggest that constraints
should be redefined to focus on state and action-specific risks rather than overall returns (Bagnell et al.,
2001; Iyengar, 2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013; Xu & Mannor, 2010). Furthermore,
distributional RL is vulnerable to black swans, as extreme outliers in the reward distribution slow the con-
vergence of the Bellman operator and provide a large suboptimality gap due to biased return expectations
(Bellemare et al., 2017).

In summary, traditional risk criteria in RL are insufficient for managing the unique risks associated with
black swan events, highlighting the need for novel approaches.

8 CONCLUSION

In conclusion, this paper redefines black swan events by introducing S-BLACK SWAN , highlighting that
such high-risk, rare events can occur even in unchanging environments due to human misperception. We
categorized and mathematically formalized these events, aiming to guide the development of algorithms
that correct human perception to prevent such occurrences. This work opens the door for future research to
enhance decision-making systems and reduce the impact of black swan events.

4Further details are in Appendix C, along with a discussion of CPT’s application in risk analysis in Appendix D.
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Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathematics of
Operations Research, 38(1):153–183, 2013.

Rosalind Wiggins, Thomas Piontek, and Andrew Metrick. The lehman brothers bankruptcy a: overview.
Yale program on financial stability case study, 2014.

Paul D Witman, Jim Prior, Tracy Nickl, and Scott Mackelprang. Southwest airlines didn’t crash, but it nearly
fell apart. . . . In Proceedings of the ISCAP Conference ISSN, volume 2473, pp. 4901, 2023.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural Infor-
mation Processing Systems, 23, 2010.

15

https://www.youtube.com/watch?v=j0z4FweCy4M


705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2025

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection: A
survey. International Journal of Computer Vision, pp. 1–28, 2024.

Yuanyuan Zhang, Xiang Li, and Sini Guo. Portfolio selection problems with markowitz’s mean–variance
framework: a review of literature. Fuzzy Optimization and Decision Making, 17:125–158, 2018.

16


