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Abstract

Structure-guided molecular generation is pivotal in early-stage drug discovery,
enabling the design of compounds tailored to specific protein targets. However,
despite recent advances in 3D generative modeling, particularly in improving dock-
ing scores, these methods often produce uncommon and intrinsically unreasonable
molecular structures that deviate from drug-like chemical space. To quantify this
issue, we propose a novel metric, the Molecule Reasonable Ratio (MRR), which
measures structural rationality and reveals a critical gap between existing models
and real-world approved drugs. To address this, we introduce the Collaborative
Intelligence Drug Design (CIDD) framework, the first approach to unify the 3D
interaction modeling capabilities of generative models with the general knowledge
and reasoning power of large language models (LLMs). By leveraging LLM-
based Chain-of-Thought reasoning, CIDD generates molecules that are not only
compatible with protein pockets but also exhibit favorable drug-likeness, struc-
tural rationality, and synthetic accessibility. On the CrossDocked2020 benchmark,
CIDD consistently improves drug-likeness metrics, including QED, SA, and MRR,
across different base generative models, while maintaining competitive binding
affinity. Notably, it raises the combined success rate (balancing drug-likeness and
binding) from 15.72% to 34.59%, more than doubling previous results. These
findings demonstrate the value of integrating knowledge reasoning with geometric
generation to advance AI-driven drug design.3

1 Introduction

Structure-based drug design (SBDD) enables the direct generation of compounds tailored to protein
binding sites, making it a powerful tool in drug discovery. Recent 3D generative models—including
autoregressive approaches like AR [24] and Pocket2Mol [25], and diffusion-based methods such as
TargetDiff [12], DecompDiff [13], and MolCRAFT [26]—have advanced rational molecule design.
However, expert evaluation often reveals chemically unreasonable features, such as overly fused
polycyclic systems and partially unsaturated rings (Figure 1a). While these distortions may improve
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docking scores via geometric complementarity, they often compromise intramolecular stability and
result in poor pharmacokinetic properties.

(a) (b)

Figure 1: (a) Common errors in 3D-SBDD outputs. Minor structural changes can cause large
deviations in 3D conformation, highlighting the challenge of correcting chemically uncommon
structures without disrupting valid 3D shapes. (b) MRR comparison. While FDA drugs reach 85.9%
MRR, existing 3D models lag behind. LLM achieves 97.5%, and CIDD closes the gap with 81.7%.

While current models effectively generate molecules that fit target pockets, they often overlook
the physicochemical and pharmacological features common to clinically approved drugs. These
limitations stem from a fundamental mismatch: the narrow focus on binding-site compatibility often
comes at the expense of structural reasonability and drug-likeness, which depend solely on the
chemical structure itself and often conflict with geometric fit. To quantify the gap, we propose the
Molecular Reasonability Ratio (MRR), which measures the proportion of generated molecules
that are structurally valid and chemically reasonable relative to drug-like standards. As shown in
Figure 1b, based on our experiments, existing 3D generative models perform poorly under this
metric (e.g., TargetDiff: 37.8%, MolCRAFT: 58.5%), falling well below the 85.9% observed in
FDA-approved drugs. Some recent methods, such as TAGMol, build on TargetDiff by incorporating
gradient-based guidance to jointly optimize for drug-likeness properties like QED [3]. While this
leads to improvements in QED scores, it does not result in a general enhancement of drug potential,
as evidenced by TAGMol’s similarly low MRR. In contrast, LLMs achieve high MRRs on SBDD
tasks (e.g., GPT-4: 97.5%) thanks to their general chemical and pharmaceutical knowledge, but they
struggle to generate molecules with high binding affinity due to limited spatial reasoning and the
inherent trade-off between potency and drug-likeness.

To bridge this gap, we propose CIDD—a Collaborative Intelligence for Drug Design framework that
combines the interaction modeling capabilities of 3D generative models with the domain knowledge
and instruction following strengths of LLMs. Rather than directly producing final drug candidates,
3D models generate interaction-focused molecular proposals that capture key binding features. These
serve as structured input for an LLM-driven design process that translates spatial intent into chemically
viable drug-like molecules. This division of roles allows CIDD to generate compounds that are
both interaction-competent and structurally plausible. CIDD decomposes the generation task into a
series of specialized modules, each powered by the LLM. The Interaction Analysis Module identifies
fragment-level interactions; the Design Module proposes chemically informed modifications; the
Reflection Module provides analysis; and the Selection Module ranks candidates by interaction quality
and chemical coherence. CIDD follows a structured Chain-of-Thought (CoT) prompting strategy
guided by domain knowledge guided prompts, enabling interpretable, stepwise molecular design.
This modular, CoT-guided architecture mirrors real-world medicinal chemistry workflows and
enables the generation of pharmaceutically relevant, structurally sound compounds.

Evaluated on the CrossDocked2020 dataset [9], CIDD significantly outperforms state-of-the-art
baselines, boosting the overall success ratio from 15.72% to 34.59%. It consistently improves key
drug-likeness metrics—including Quantitative Estimation of Drug-likeness (QED) [3], synthetic
accessibility (SA), MRR, and the proportion of molecules meeting QikProp [30] thresholds—across
diverse baseline models. Our key contributions are:

(1) Identifying a core limitation in current SBDD models: We introduce the MRR to assess
intrinsic structural rationality, revealing that pocket-based 3D generative models often produce
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intrinsically irrational and rare molecules that deviate from drug-like chemical space despite favorable
docking scores.

(2) A unified framework for rational molecule generation: We propose CIDD, the first framework
to combine the spatial modeling of 3D generative models with the chemical reasoning capabilities
of LLMs. By leveraging their complementary strengths, CIDD uses Chain-of-Thought guidance to
overcome the common trade-off between binding affinity and drug-likeness.

(3) Validated performance and broader implications: CIDD achieves state-of-the-art results on
CrossDocked2020, significantly improving drug-likeness metrics (QED, SA, MRR) while preserving
binding affinity. This demonstrates its effectiveness and highlights the advantage of combining LLMs
with geometric modeling for AI-driven drug design.

2 Preliminaries

2.1 Structure-Based Drug Design

The goal of SBDD is to generate a molecule x that binds to a given protein pocket P . Recent work
has explored a variety of deep generative approaches. LiGAN [27] uses a conditional variational
autoencoder (CVAE) to generate 3D point clouds of ligands conditioned on pocket geometry. Autore-
gressive models such as AR [24] and Pocket2Mol [25] sequentially construct molecules in 3D space.
Diffusion-based methods like TargetDiff [12], IPDiff [15], and DecompDiff [13] iteratively refine 3D
structures or molecular graphs, while TAGMol [7] further applies gradient-based optimization during
generation. Other approaches include the fragment-based DrugGPS [37] and MolCRAFT [26], a
Bayesian flow model that learns the distribution of drug-like molecules conditioned on pocket struc-
tures. All these methods generate intermediate 3D point clouds or graphs, which are subsequently
mapped into chemically valid molecules as the final output.

2.2 Large Language Models

LLMs are advanced neural networks trained on vast corpora of textual data, enabling them to
understand, generate, and reason with human-like language. Notable examples include GPT-4 [2],
LLaMA [33], ChatGLM [11], and DeepSeek [21], which have demonstrated impressive capabilities
in tasks such as natural language understanding, code generation, mathematical problem solving,
and logical reasoning. Their versatility and ability to capture complex patterns have made them
increasingly relevant in domains beyond traditional natural language processing, including drug
discovery [4]. Recent work has explored the use of LLMs to generate or modify molecules with
desired properties. For example, ChatDrug [22] employs conversational LLMs for generating and
editing molecules with desired properties. However, the application of LLMs to pocket-based
molecular design remains largely unexplored. This is primarily due to the challenge of capturing
essential three-dimensional structural information, which is critical for modeling protein-ligand
interactions. Unlike textual or sequence-based data, protein binding pockets and small molecules
interact through spatially complex, non-linear, and chemically rich environments that cannot be
directly encoded in natural language.

3 Methods

3.1 Evaluating the Gap Between Generated Molecules and Real Drugs

Drug-likeness is an inherently multidimensional attribute that dictates the probability p(drug) that a
molecule will reach its biological target—an assessment that precedes, and is distinct from, estimating
binding affinity. Widely used machine-learning surrogates, most notably QED [3] and Lipinski’s
Rule of Five [20], are inadequate for two principal reasons: (i) Legacy bias: These metrics were
calibrated on historical chemical space and fail to recognize the unconventional scaffolds produced
by modern generative models. Consequently, structurally implausible or pharmacologically irrelevant
molecules can still achieve high "drug-like" scores. (ii) Oversimplification: QED relies on only
seven physicochemical descriptors, and its average value for DrugBank [17] molecules is below 0.5,
illustrating its limited discriminative power.
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To close this gap, we introduce a broader evaluation framework comprising two complementary tiers.
Structural reasonability screens for fundamental medicinal-chemistry principles such as aromaticity,
ring-system stability, and hybridization consistency, while physicochemical and pharmacokinetic
suitability evaluates absorption, distribution, metabolism, excretion, and toxicity (ADME/T) prop-
erties using established descriptors. Together, these tiers ensure that generated molecules are both
chemically plausible and therapeutically relevant, providing a more reliable benchmark for modern
AI-driven molecular design.

Molecular Reasonability Ratio. To address the lack of metrics capable of identifying the structural
gap between generated molecules and rationally designed drugs, we introduce MRR as a targeted
solution. MRR is a rule-based, empirically motivated metric designed to flag structures that are
uncommon in medicinal chemistry practice. Its design is informed by expert analyses of SBDD
outputs, which consistently reveal a predominant failure mode: the improper use of ring conjuga-
tion—particularly aromaticity—that often deviates from patterns observed in clinically validated
drugs.

MRR operates by analyzing the hybridization states of atoms within a molecule. It sequentially
excludes fully aromatic or fully saturated rings and focuses on the remaining atoms within each ring
system. After removing peripheral substituents, if the hybridization states of the residual ring atoms
are neither all sp² nor all sp³, the structure is classified as chemically unreasonable. For example,
structures such as cyclohexene and cyclohexa-1,3-diene are flagged, as they likely result from the
model’s failure to correctly generate either fully aromatic or fully saturated systems. Although not
intended as an exhaustive classifier, MRR provides an interpretable, medicinal-chemistry-guided
screen that complements basic valence checks and ADME filters, thereby reducing the incidence of
structurally implausible candidates generated by models. The full algorithm for MRR is shown in
Appendix D.

QikProp Multiple Property Requirements. To further evaluate the physicochemical and pharma-
cokinetic properties of the generated molecules, we employ QikProp [30], a tool recognized for its
robust performance in predicting molecular drug-likeness properties [16]. The assessed properties
include aqueous solubility, lipophilicity, polar surface area (PSA), the number of metabolizable sites,
and oral absorption. Detailed requirements for each property are provided in Appendix E.

A molecule is considered to have passed the evaluation if it satisfies all N predefined property
requirements: P1, P2, . . . , PN . If any of the properties fall outside the acceptable range, the molecule
is classified as failing.

QikProp =

{
1 if P1 ∧ P2 ∧ · · · ∧ PN are satisfied,
0 otherwise.

3.2 Bridging the Gap with CIDD framework

We propose the Collaborative Intelligence Drug Design (CIDD) framework (Figure 2), a modular
system for target-specific molecule generation that combines 3D interaction modeling with LLM-
enhanced molecular design. It consists of two components: the Structure-Based Interaction
Generator (SBIG) and the LLM-Enhanced Drug Designer (LEDD).

SBIG uses 3D generative models to produce interaction-oriented molecular structures—intermediates
that fit the protein pocket but might be chemically incomplete.

LEDD then refines these raw proposals into drug-like molecules using LLMs. The whole process is
formalized as:

x0 = SBIG(Target), x = LEDD(x0,Target)

Here, x0 encodes the intended spatial interactions, and LEDD completes it into a chemically valid, syn-
thetically accessible compound x. A key limitation of prior approaches is the absence of ground-truth
mappings from interaction scaffolds to drug-like molecules, making supervised training infeasible.
Traditional generative models—based on direct optimization or limited heuristics—struggle to bridge
this gap. In contrast, LEDD leverages the implicit drug-relevant knowledge embedded in large-
scale pretrained LLMs. With strong instruction-following, reasoning, and coordination abilities,
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Figure 2: Overview of the CIDD framework. Top: end-to-end pipeline integrating SBIG and
LEDD. Bottom: detailed view of LEDD’s LLM-based design process, which designs and generates
molecules through interaction analysis, reflection, and Chain-of-Thought-driven reasoning.

the LLM enables design decisions that generate molecules without incurring the typical trade-offs
between potency and drug-likeness in drug design.

The CIDD framework is inspired by the real-world workflow of medicinal chemists, who begin by
identifying key interaction patterns between a ligand and its target, and then construct molecules
that retain these interactions while satisfying broader drug development constraints. CIDD for-
malizes this reasoning process: SBIG captures spatial interaction intent, while LEDD—powered
by LLMs—assumes the role of a virtual chemist to transform raw scaffolds into viable drug-like
molecules. By leveraging the LLM’s instruction-following and general knowledge, CIDD effectively
substitutes human expertise in the molecule design process.

3.2.1 Pipeline Overview

CIDD decomposes the complex task of drug-oriented molecule generation into a structured pipeline
of modular reasoning steps. It begins with SBIG, which generates interaction-focused intermediate
structures conditioned on the target pocket. These intermediates are passed to the Interaction
Analysis Module, which extracts fragment-level binding profiles using docking, fragmentation, and
rule-based NCI detection. The Design Module then interprets these profiles to generate chemically
plausible molecules that maintain critical interaction motifs. Each design is re-evaluated, and its
updated interaction profile is processed by the Reflection Module, which compares successive design
states and produces feedback for new designs. After generating N new candidates, the Selection
Module ranks all candidates based on their interaction quality and chemical viability, selecting the
final molecule for downstream use. This modular pipeline mirrors expert workflows and enables
interpretable, multi-stage control over both structural interaction and chemical relevance.

3.2.2 Interaction Analysis Module

This module evaluates the molecular interaction between a candidate molecule xi and a target protein
pocket P . The process begins by re-docking xi into the binding site of P to generate a protein–ligand
complex conformation. The molecule xi is then decomposed into chemically meaningful fragments
via the BRICS algorithm [6], enabling fragment-level attribution of interaction features.

Next, non-covalent interactions (NCIs), such as hydrogen bonding, π–π stacking, salt bridges, and
hydrophobic contacts, are identified from the docked complex based on geometric and chemical
features. The resulting interaction map—capturing both atomic contacts and fragment-level organiza-
tion—is then analyzed by an interaction-specialized large language model, LLMI . Conditioned on
spatial interaction cues and chemical context, LLMI synthesizes this information into a structured
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interaction profile Ii, which semantically links molecular fragments to their respective roles in target
engagement.

Formally, the process can be represented as:

LLMI(xi, P ) → Ii

The resulting profile Ii provides fragment-level interpretation of binding contributions and serves as
the basis for chemically informed design in subsequent modules.

3.2.3 Design Module

Given a raw molecule x0, its interaction report I0, and prior feedback from the reflection module
R = {R1, R2, . . . , Ri−1}, the Design Module leverages an LLM with a Design role (LLMD) to
produce a refinement plan Di and an updated molecule xi.

LLMD(x0, I0, R) → (Di, xi)

Here, Di is a structured and interpretable set of design decisions grounded in medicinal chemistry,
and xi is the generated compound for further evaluation.

To emulate real-world drug design workflows, we implement a Chain-of-Thought prompting strategy
that guides the LLM through a domain-informed reasoning pipeline with four sequential stages. (1)
Interaction-Critical Fragment Identification: the model analyzes x0 and highlights fragments
forming key non-covalent interactions with the target, based on I0. (2) Detection of Unfavorable
or Atypical Substructures: chemically undesirable fragments—such as synthetically inaccessible
motifs, strained rings, or poor physicochemical regions—are flagged for replacement. (3) Strategic
Design Planning: the model proposes modifications that improve chemical viability while preserving
interaction and topology, often substituting problematic regions with pharmaceutically preferred
alternatives. (4) Candidate Molecule Generation: a new structure xi is generated based on the
design plan, ensuring both target interaction and drug-like properties.

By encoding expert priors into the prompt structure, the Design Module reframes molecule generation
as a chemically grounded reasoning task. The LLM is able to coordinate multiple design objectives
within a unified framework. This enables the CIDD to effectively mitigate the trade-offs between
affinity and drug-likeness that commonly arise in drug design. It bridges raw interaction scaffolds to
viable candidate molecules in a transparent and interpretable manner.

3.2.4 Reflection and Selection Modules

The Reflection Module evaluates whether each candidate design xi achieves design goals by compar-
ing it to the initial raw molecule x0 and their respective interaction profiles:

LLMR(x0, I0, Di, xi, Ii) → Ri

The Selection Module evaluate all the designed molecules {x1, x2, . . . , xN} and their interaction
reports to identify the most promising candidate:

LLMS ({(x1, I1), . . . , (xN , IN )}) → xbest

Here, xbest balances interaction quality and chemical viability. Full prompt examples for each module
are in Appendix C.

4 Experiments

4.1 Experiment Settings

Dataset. We follow prior 3D-SBDD settings and use the CrossDocked2020 dataset [9], adopting the
same train/test split as TargetDiff [12], resulting in 100 protein pockets for test.

Metrics. We evaluate models using standard metrics: Vina docking score [34] for binding affinity,
QED [3] for drug-likeness, SA score [8] for synthetic accessibility, and molecular diversity (computed
as 1−ECFP4 similarity [29]) for structural variety. As we do not directly generate 3D conformations,
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Vina Score/Min is excluded. Beyond conventional metrics, we emphasize the evaluation of drug
potential via two additional metrics: MRR (Molecular Rule-based Reasonability), which captures
domain-informed structural plausibility, and QikProp pass ratio, which assesses a wide range of
physicochemical and pharmacokinetic properties. Together with QED and SA, these offer a more
holistic assessment of molecular viability. We also report the success ratio, defined as the percentage
of molecules that satisfy all of the following criteria: Vina < −8.18, QED > 0.25, and SA > 0.59,
following [23]. In addition, we introduce molecular reasonability as an extra constraint for defining
success. We also evaluate the proportion of molecules that pass all QikProp filters.

Baseline Models. We compare CIDD against a diverse set of 3D-SBDD baselines spanning mul-
tiple generative paradigms: the VAE-based LiGAN [27]; autoregressive models AR [24] and
Pocket2Mol [25]; and diffusion-based approaches including TargetDiff [12], IPDiff [15], De-
compDiff [13], and TAGMol [7]. IPDiff uses interaction-guided sampling, while DecompDiff
leverages interaction-aware priors; TAGMol adds gradient-based optimization for drug-likeness. We
also evaluate DrugGPS [37], a fragment-based method, and MolCRAFT [26], a Bayesian flow
network shown to be state-of-the-art in recent benchmarks [19, 10].

CIDD Settings. We use MolCRAFT in the SBIG step. All modules in the LEDD step are powered
by GPT-4o. The Design Module generates 5 candidates per round, and the Selection Module selects
the final molecule. For each protein pocket, we generate 10 molecules. All SBIG models are trained
on CrossDocked2020 with their released weights.

4.2 General Results

As shown in Table 1, CIDD demonstrates strong overall performance across key drug-likeness
metrics—including QED, MRR, SA, and QikProp pass ratio—as well as favorable binding affinity.
In comparison, IPDiff, which leverages a trained binding affinity predictor to guide both training
and sampling, achieves some improvement in docking scores over TargetDiff. However, it performs
worse in terms of MRR, highlighting the potential limitations of focusing solely on binding affinity.
Similarly, the gradient-guided method TAGMol aims to enhance multiple properties through predictor
guidance during sampling. While TAGMol shows notable improvements in QED, it brings minimal
gains and still performs badly in metrics such as MRR and SA, performing comparably to the
unguided diffusion model TargetDiff. This suggests that optimization-driven approaches like TAGMol
may overfit individual scoring functions rather than learning to generate molecules with generally
improved drug-like profiles. In contrast, CIDD delivers consistent improvements across all major
drug-likeness dimensions, indicating a more robust and comprehensive molecular design capability.
These results stem from CIDD’s ability to integrate the complementary strengths of distinct modeling

Table 1: Test Results on CrossDocked2020. We benchmark several evaluation metrics, including
Vina docking score, QED, SA, MRR, success ratio, and QikProp pass ratio. We also report the average
molecular weight. Performance ranking per column is color-coded as follows: best , second-best

Category Method Vina ↓ QED ↑ SA ↑ MRR ↑ Success ↑ QikProp ↑ MW

VAE-based LiGAN -6.640 0.394 0.601 59.08% 2.79% 17.37% 286.44
AR-based AR -6.737 0.507 0.635 56.67% 3.28% 18.66% 247.50
AR-based Pocket2Mol -7.246 0.573 0.758 67.88% 14.60% 29.58% 234.30
Diffusion-based TargetDiff -7.452 0.474 0.579 37.81% 3.04% 27.63% 346.24
Diff + Inter-Guide IPDiff -7.745 0.511 0.627 29.83% 5.31% 25.11% 328.34
Diff + Inter-Prior DecompDiff -8.260 0.444 0.609 62.60% 15.72% 29.04% 424.09
Diff + Multi-Guide TAGMol -7.563 0.563 0.583 37.31% 3.23% 32.31% 325.50
Fragment-based DrugGPS -7.396 0.463 0.622 54.80% 7.17% 25.60% 329.88
BFN-based MolCRAFT -7.783 0.503 0.685 58.47% 13.72% 22.37% 325.63
3DSBDD + LLM CIDD -8.496 0.576 0.735 81.74% 34.59% 35.22% 336.70

paradigms—combining the strong binding affinity modeling capability of 3D generative models
with the drug-likeness reasoning and instruction-following power of large language models. Guided
by expert-designed prompts and leveraging the LLM’s embedded chemical knowledge, CIDD
refines molecular structures toward realistic and pharmacologically meaningful candidates. As a
result, it achieves a significantly higher success ratio of 34.59%, compared to 15.72% for the best
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Figure 3: Performance comparison across different metrics indicative of drug potential between
models using only SBIG outputs and those incorporating LEDD outputs, evaluated across various
3D-SBDD models as the SBIG module.

baseline—demonstrating its unique capacity to generate molecules that are not only strong binders,
but also truly drug-like and synthetically feasible. Interestingly, CIDD achieves comparable QED
and SA scores, while significantly outperforming Pocket2Mol in MRR, despite generating molecules
that are approximately 50% larger on average in terms of molecular weight (336.70 vs. 234.30).
Moreover, it achieves a substantially better docking score. This result provides strong evidence that
CIDD is capable of generating larger molecules that are still drug-like, suggesting that its strong
performance on drug-likeness metrics is not simply a result of hacking these metrics by producing
smaller, simpler molecules.

4.3 Improvements with Different Models on Multiple Metrics

CIDD is a flexible framework designed to interface smoothly with a broad spectrum of 3D SBDD
models, significantly enhancing the quality of generated molecules. As illustrated in Figure 3, CIDD
brings substantial and consistent improvements across key drug-likeness metrics—including QED,
SA Score, Reasonable Ratio, and QikProp Pass Ratio—achieving gains of 31.4%, 20.0%, 85.2%, and
102.8%, respectively. These improvements are observed across different base models, demonstrating
CIDD’s strong generalization ability and its capacity to enhance diverse, diverse aspects of drug-
likeness simultaneously. In contrast to optimization-based methods that often overfit individual
metrics, CIDD drives broad and meaningful improvements that reflect a true advancement in the
quality of generated drug candidates.

4.4 Ablation and Analysis

Table 2: Ablation studies on LLM variants and pure LLM-based SBDD.

(a) Different LLM Backends in CIDD
LLM Vina↓ MRR↑ Similarity↑

- -7.78 58.47% -
GPT-4o-mini -8.29 80.02% 0.220

GPT-4o -8.50 81.37% 0.296
DeepSeek-v3 -8.49 76.00% 0.379
DeepSeek-r1 -8.57 79.17% 0.182

(b) LLM-Only vs. CIDD Comparison
Vina↓ MRR↑ Success Ratio↑

LLM-SBDD -6.244 97.45% 5.95%
CIDD-LLM -7.230 90.97% 17.59%

CIDD -8.496 81.74% 35.22%

4.4.1 Impact of Different LLMs

We evaluate GPT-4o, GPT-4o-mini, DeepSeek-v3 [5], and DeepSeek-r1 [14] using MolCRAFT as the
SBIG module (Table 2a). All models improve drug-likeness metrics (MRR, QikProp) and docking
scores. DeepSeek-v3 achieves property gains with minimal edits, while GPT-4o-mini struggles with
similarity, and DeepSeek-r1 makes broader, less controllable changes. GPT-4o and DeepSeek-v3 best
support CIDD’s goal of generating similar yet improved molecules. Smaller models like LLAMA-7B
fail to follow design instructions. CIDD remains plug-and-play, benefiting from future LLM advances.
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Figure 4: (a) A generation case and corresponding interpretable design strategy produced by CIDD,
resulting in a structurally similar yet better compound. (b) CIDD demonstrates the ability to evolve
by leveraging previous design experiences as context, improving generation success rates. (c) CIDD
integrates the strengths of 3D-SBDD models and LLMs to enable practical drug design with both
high potency and drug-likeness.

4.4.2 Using Pure LLM for SBDD

LLMs alone struggle with 3D protein pocket interpretation in structure-based drug design (SBDD).
To test this, we prompted an LLM with PDB-format pocket data and also evaluated CIDD-LLM,
which uses LLM-SBDD within the CIDD framework. As shown in Table 2b, LLM-SBDD generates
chemically reasonable molecules but performs poorly on binding affinty, leading to a lower success
rate than standard CIDD. This highlights the need for combining 3D models’ interaction modeling
with LLMs’ reasoning.

4.5 Advantages and Impact of the CIDD Framework

Interpretable Molecule Design. Figure 4a illustrates the CIDD generation process. The LLM-
powered modules analyze and refine the raw supporting molecule (green), producing a high-quality
final structure (blue). Problematic fragments—such as an unreasonable diene or an uncommon
fluorinated chain—are automatically identified and replaced (e.g., with a benzene ring), while side
chains are adjusted to preserve key hydrogen bonds with Gln316 on both Chain A and B. These
edits improve docking scores and enhance drug-relevant properties. CIDD performs this refinement
through localized fragment substitutions, maintaining the core structure while improving overall
drug potential. Notably, the process is inherently interpretable: each design step is traceable, with
explicit rationales highlighting structural strengths and weaknesses. This transforms conventional
opaque SBDD into a transparent, expert-assisting workflow. CIDD also enables the automated
creation of molecule pairs that differ in drug-likeness with minimal structural edits. These pairs
effectively capture how small chemical changes influence pharmaceutical viability, offering high-
quality, distributionally aligned data for fine-tuning. Compared to random sampling, they provide
more meaningful supervision and help mitigate data scarcity in 3D-SBDD (see Appendix H).

Evolvement Ability. One key advantage of LLMs is their ability to leverage prior experience,
provided as context, to generate insightful outputs. To illustrate this, we conducted a proof-of-concept
experiment using a relatively lightweight LLM: GPT-4o-mini. The model was given varying numbers
of previous design reports and results (0, 5, 10, and 15) as contextual input and tasked with generating
insights to support the design module of CIDD. As shown in Figure 4b, the success rate improved as
more prior reports were included. These results demonstrate CIDD’s capacity for continual evolution
by incorporating accumulated experience—without requiring model retraining. This mirrors the way
human experts enhance their performance through repeated exposure and practice.
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Generating Small Molecules with Both High Potency and Drug-Likeness. Drug potential hinges
on two key factors: potency and drug-likeness. While most 3D-SBDD models emphasize target fit,
they often produce chemically unreasonable structures. As shown in Figure 4c, our CIDD framework
bridges this gap by combining geometric modeling with LLM-driven reasoning. The LLM not
only corrects unfavorable fragments but also plans coherent molecular edits that balance multiple
objectives. By coordinating spatial and chemical constraints within a unified generation process,
CIDD effectively overcomes the traditional trade-off between interaction strength and drug-likeness.

5 Conclusion

We presented CIDD, a collaborative framework that unifies 3D interaction modeling and LLM-driven
reasoning for structure-based drug design. CIDD addresses a key limitation of current generative
models: the tendency to generate interaction-compatible but chemically unreasonable molecules.
Through a modular, interpretable generation process, CIDD achieves state-of-the-art results on the
CrossDocked2020 benchmark—substantially improving drug-likeness metrics (QED, SA, MRR,
QikProp) while maintaining high binding affinity. By bridging 3D geometric modeling with language-
guided design, our approach sets a foundation for future directions in rational, interpretable, and
generalizable drug generation. We envision such a collaborative paradigm enabling broader tasks
such as target discovery and hit-to-lead optimization in early-stage drug discovery.
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A Discussion on the Pharmaceutical Terminology

In this work, we employ a comprehensive set of evaluation metrics—Vina, QED, SA, our pro-
posed MRR, the Success Ratio, and QikProp—to analyze different facets of molecular generation
performance. Following established practices, we use Vina scores to assess the 3D complementar-
ity between generated molecules and their target binding sites. Meanwhile, we evaluate broader
molecular properties using standard metrics (QED and SA), the domain-informed MRR, and physico-
chemical and pharmacokinetic descriptors from QikProp, which are widely used in computer-aided
drug design (CADD).

To clarify the key concepts underpinning our evaluation framework, we distinguish among drug
potential, drug-likeness, molecular reasonability, and chemical validity.

Previous studies have often focused too narrowly on geometric complementarity, overlooking other
essential requirements a drug-like molecule must fulfill. We introduce the term drug potential to
describe the overall suitability of a molecule as a drug candidate, encompassing not only binding
affinity but also synthetic accessibility, chemical stability, pharmacokinetics (absorption, distribution,
metabolism, and excretion), and safety. These properties are intrinsically determined by molecular
structure and collectively influence whether a molecule can reach its intended biological target and
survive the drug development process.

The term drug-likeness is widely used in medicinal chemistry to reflect the multidimensional suitabil-
ity of a molecule as a drug candidate. Drug discovery and development (DDD), however, are deeply
influenced by human expertise—including implicit preferences for molecular scaffolds and nuanced,
often tacit, domain knowledge that is difficult to formalize or quantify. As a result, even experienced
medicinal chemists struggle to define or approximate the true probability function p(drug), which
represents the likelihood that a molecule will become a viable therapeutic candidate. However, the
machine learning community often oversimplifies drug-likeness to metrics such as QED or Lipinski’s
Rule of Five, which capture only a narrow range of basic physicochemical properties. This simplifi-
cation overlooks critical factors such as oral bioavailability, metabolic stability, and toxicity risks
(e.g., hERG liability).

At a more fundamental level, a molecule must be chemically valid, meaning it adheres to basic
chemical rules such as proper valence and atom types. However, we observe that many model-
generated molecules—while technically valid—contain rare or unstable structural substructures that
would be flagged by human medicinal chemists. These structures are neither common nor practically
accessible and thus fall outside the bounds of what is typically accepted in pharmaceutical research.
Despite the central importance of this distinction, prior work has not proposed an effective metric to
differentiate between chemically plausible structures and those that are formally valid but unrealistic.
To fill this gap, we propose MRR, a rule-based metric that reflects medicinal chemistry heuristics. It
identifies implausible features such as unstable ring systems and uncommon conjugation patterns,
offering an interpretable and practical means of identifying unrealistic model outputs.

By explicitly defining these concepts and introducing MRR, we aim to guide molecular generation
efforts toward pharmaceutically meaningful directions, bridging the gap between computational
outputs and real-world drug development feasibility.

B Limitations

One limitation of CIDD is its dependence on pretrained LLMs, which may occasionally introduce
hallucinations in underexplored chemical regions.

C Detailed Prompts and Responses for LEDD

In this section, we present the detailed workflow of the CIDD framework, including the prompts and
example responses for each module.

Figure 5 illustrates the complete drug design pipeline. The Interaction Module first identifies key
fragments within the supporting molecule that interact with the protein pocket. This information is
then utilized by the Design Module, which devises strategies to replace uncommon or unfavorable
fragments while preserving crucial interactions. Once a new molecule is designed, the Evaluation
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Phase within the Design Module assesses its viability. Finally, the Reflection Module analyzes the
design process and outcomes, highlighting both strengths and areas for improvement.

Figure 6 presents the prompt and example response for the Interaction Analysis Module.

Figures 7 and 8 display the prompt and example response for the Design Module.

Figures 9, 10, and 11 illustrate the prompt and example responses for the Reflection Module.

Figures 12 and 13 show the prompt and example response for the Selection Module.

Figure 5: Workflow of CIDD framework
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Figure 6: Interaction analysis module
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Figure 7: Design Module
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Figure 8: Design Module
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Figure 9: Reflection Module
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Figure 10: Reflection Module
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Figure 11: Reflection Module
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Figure 12: Selection Module
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Figure 13: Selection Module

23



D Algorithm for MRR and AUR

The complete calculation process for assessing the reasonability of a molecule is outlined in Algo-
rithm 1.

Algorithm 1: Evaluation of Molecular Reasonability
Input: Molecule object (mol)
Output: Molecular Reasonability (MRR) and Atom Unreasonable Ratio (AUR)
Step 1: Detect Carbonyl and Imine Group Carbons
Initialize an empty list for carbonyl/imine carbons.
foreach bond in mol do

if bond is double and one atom is carbon, the other is oxygen or nitrogen then
Record the carbon atom in carbonyl/imine groups.

Step 2: Identification of Ring Systems
Identify all ring structures and their corresponding atom indices within mol.
Calculate the number of atoms in each ring.
foreach ring in the molecule do

if the ring shares one or more atoms with another ring then
Group the connected rings into a single ring system.

Step 3: Evaluation of Molecular Reasonability
Exclude any atoms previously identified as part of carbonyl or imine groups.
Classify the remaining carbon atoms in each ring system as follows:

• sp2 hybridized: Aromatic or unsaturated carbons.
• Non-sp2 hybridized: Saturated carbons.

foreach ring system in the ring systems do
if the ring system contains multiple rings and all carbon atoms are non-sp2 then

Mark the molecule as unreasonable.
Add the atoms to the unreasonable atom list.

foreach ring system in the remaining ring systems do
foreach ring in the ring system do

if all carbon atoms within the ring are consistent in hybridization (either all sp2 or all
non-sp2) then

Mark the ring as reasonable.
else

Add the ring to the remaining ring list.

while the remaining ring list is not empty do
foreach ring in the remaining ring list do

Exclude atoms that have already been classified as reasonable.
if all remaining carbon atoms are consistent in hybridization (either all sp2 or all
non-sp2) then

Mark the ring as reasonable.

if no new reasonable rings are identified then
Mark the molecule as unreasonable.
Add the carbon atoms in the remaining rings to the unreasonable atom list.
Exit the loop.

Calculate AUR as the ratio of unreasonable atom count to the total ring atom count.
Return MRR and AUR.
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E QikProp properties

The full set of properties used for the QikProp pass ratio analysis is presented in Table 3.

The QikProp filter applied in the main text incorporates a comprehensive range of criteria pro-
vided by QikProp, including "#stars", "#amine", "#amidine", "#acid", "#amide", "#rotor", "#rtvFG",
"mol_MW", "dipole", "SASA", "FOSA", "FISA", "PISA", "WPSA", "volume", "donorHB", "ac-
cptHB", "dip2/V ", "ACxDN.5/SA", "glob", "QPpolrz", "QPlogPC16", "QPlogPoct", "QPlogPw",
"QPlogPo/w", "QPlogS", "CIQPlogS", "QPPCaco", "QPlogBB", "QPPMDCK", "QPlogKp",
"IP(eV)", "EA(eV)", "#metab", "QPlogKhsa", "PercentHumanOralAbsorption", "SAFluorine",
"SAamideO", "PSA", "#NandO", and "RuleOfThree".

Table 3: QikProp Properties and Descriptors
Property or Descriptor Description Range or Recommended Values
Molecule name The molecule’s identifier derived from the title line in the input structure file. If no title

is provided, the file name is used.
#stars Count of descriptors or properties falling outside the 95% range for known drugs. A

higher count indicates reduced drug-likeness.
0 – 5

#amine Total non-conjugated amine groups present in the molecule. 0 – 1
#amidine Number of amidine or guanidine functional groups in the structure. 0
#acid Quantity of carboxylic acid groups in the molecule. 0 – 1
#amide Count of non-conjugated amide groups. 0 – 1
#rotor Number of rotatable bonds that are neither trivial nor sterically hindered. 0 – 15
#rtvFG Total reactive functional groups present in the molecule, potentially affecting stability

or toxicity.
0 – 2

mol_MW Molecular weight of the compound. 130.0 – 725.0
Dipole Calculated dipole moment of the molecule in Debye units. 1.0 – 12.5
SASA Solvent-accessible surface area (SASA) in square angstroms, measured with a probe of

1.4 Å radius.
300.0 – 1000.0

FOSA Hydrophobic part of the SASA, representing saturated carbon and attached hydrogen
atoms.

0.0 – 750.0

FISA Hydrophilic fraction of the SASA, encompassing polar atoms like nitrogen and oxygen. 7.0 – 330.0
PISA SASA component attributable to π-systems. 0.0 – 450.0
WPSA Weakly polar component of the SASA, including atoms like halogens, phosphorus, and

sulfur.
0.0 – 175.0

Volume Total solvent-accessible volume in cubic angstroms, determined with a 1.4 Å radius
probe.

500.0 – 2000.0

donorHB Estimated number of hydrogen bonds donated to water in solution. 0.0 – 6.0
accptHB Estimated number of hydrogen bonds accepted from water. 2.0 – 20.0
Dip2/V Dipole moment squared divided by molecular volume, a key factor in solvation energy. 0.0 – 0.13
ACxDN0.5/SA Cohesive interaction index in solids based on molecular properties. 0.0 – 0.05
glob Descriptor measuring how close the shape of a molecule is to a sphere. 0.75 – 0.95
QPpolrz Predicted molecular polarizability in cubic angstroms. 13.0 – 70.0
QPlogPC16 Predicted partition coefficient between hexadecane and gas phases. 4.0 – 18.0
QPlogPoct Predicted partition coefficient between octanol and gas phases. 8.0 – 35.0
QPlogPw Predicted partition coefficient between water and gas phases. 4.0 – 45.0
QPlogPo/w Predicted partition coefficient between octanol and water phases. -2.0 – 6.5
QPlogS Predicted solubility of the molecule in water (log S, in mol/L). -6.5 – 0.5
CIQPlogS Conformation-independent prediction of water solubility (log S). -6.5 – 0.5
QPPCaco Predicted permeability through Caco-2 cells, in nm/s. <25 poor, >500 great
QPlogBB Predicted partition coefficient for brain/blood. -3.0 – 1.2
QPPMDCK Predicted permeability through MDCK cells, in nm/s. <25 poor, >500 great
QPlogKp Predicted skin permeability (log Kp). -8.0 – -1.0
IP(eV) Ionization potential calculated using PM3. 7.9 – 10.5
EA(eV) Electron affinity calculated using PM3. -0.9 – 1.7
#metab Predicted number of possible metabolic reactions. 1 – 8
QPlogKhsa Predicted binding affinity to human serum albumin. -1.5 – 1.5
HumanOralAbsorption Qualitative assessment of oral absorption: 1 (low), 2 (medium), or 3 (high).
PercentHumanOralAbsorption Quantitative prediction of oral absorption percentage. >80% high, <25% poor
SAFluorine Solvent-accessible fluorine surface area. 0.0 – 100.0
SAamideO Solvent-accessible surface area of amide oxygen atoms. 0.0 – 35.0
PSA Polar surface area, calculated for nitrogen, oxygen, and carbonyl groups. 7.0 – 200.0
#NandO Total count of nitrogen and oxygen atoms. 2 – 15
RuleOfFive Number of Lipinski’s Rule of Five violations. Max 4
RuleOfThree Number of Jorgensen’s Rule of Three violations. Max 3
#ringatoms Count of atoms within molecular rings.
#in34 Number of atoms in 3- or 4-membered rings.
#in56 Number of atoms in 5- or 6-membered rings.
#noncon Number of ring atoms unable to form conjugated aromatic systems.
#nonHatm Count of heavy (non-hydrogen) atoms in the structure.
Jm Predicted maximum transdermal transport rate (µg cm−2 hr−1).

F Computing Resource

In this work, we primarily utilize pretrained 3D generative models and large language model (LLM)
APIs to conduct our experiments. The 3D model sampling is performed using a single NVIDIA A100
GPU. For the LLM component, we rely on API-based access provided by the service provider, which
requires no local computational resources.
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G More Experiment Results

Based on the different criteria presented in Table 3, we provide additional pass ratio results in Table 4.

Filter 1 is identical to the QikProp filter used in the main text.

Filter 2 removes some non-essential properties and focuses on well-defined physicochemical proper-
ties, including "#rtvFG", "QPlogS", "QPlogPo/w", "mol_MW", "dipole", "SASA", "FOSA", "FISA",
"IP(eV)", "EA(eV)", "#metab", "PercentHumanOralAbsorption", and "PSA".

Filter 3 assesses molecular compliance with the "RuleOfFive" criterion. However, instead of allowing
up to four violations as typically recommended, this filter adopts a stricter definition, considering
only molecules that fully comply (i.e., setting the maximum allowable violations to zero).

Table 4: QikProp results for different methods with and without CIDD

Method Filter 1 Filter 2 Filter 3

Pocket2Mol
Original 29.58% 51.52% 89.58%
CIDD 56.97% 75.64% 92.24%

TargetDiff
Original 26.32% 48.20% 69.47%
CIDD 53.37% 75.60% 81.85%

DecompDiff
Original 29.04% 53.96% 55.14%
CIDD 37.54% 68.48% 65.64%

MolCRAFT
Original 22.37% 43.52% 66.45%
CIDD 35.22% 63.23% 74.09%
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H More cases

More generated molecules from CIDD are presented below. For each case, we display the initial
supporting molecule derived from 3D-SBDD models alongside the final designed molecules produced
by CIDD.
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I Limitation on Computational Cost and Scalability

We acknowledge that our framework introduces additional computational steps due to the use of LLM-
based modules. Below, we provide a detailed discussion of the computational overhead, empirical
runtime, and justification for its practicality in the context of drug discovery.

Computational Overhead of LLM Pipelines. The runtime and token-related costs associated
with repeated LLM invocations—such as scaffold analysis, molecule generation, self-reflection, and
candidate selection—can introduce non-trivial computational overhead. However, several factors
mitigate this concern:

LLM Inference Efficiency Is Rapidly Improving. Recent advances in model quantization, prompt
batching, and optimized inference are dramatically reducing the cost of multi-step reasoning. For
example, DeepSeek-V3/R1 achieves approximately 2.19M output tokens per dollar, reflecting a
60–70% cost reduction compared to GPT-4 in 2023. Frameworks such as vLLM [18], vTensor [36],
and Splitwiser [1] further improve efficiency: vLLM enables up to 24× throughput; vTensor
achieves 2× speedups with 70% less GPU memory; and Splitwiser reduces latency by 1.7×
through prompt colocation. Hardware accelerators like TensorRT-LLM also support highly scalable
domain-specific pipelines. These trends suggest that the cost of multi-step reasoning is unlikely to
remain a long-term bottleneck.

Empirical Runtime of Our Pipeline. To provide a more quantitative view, we report the empirical
runtime of our full pipeline. Based on our experiments with the MolCraft model (used as the SBIG
module in our method), under the setting of 100 sampling steps, it takes approximately 300 seconds
to generate 100 molecules. For competitive baselines, previous work reports that the autoregressive
method Pocket2Mol requires around 2827 seconds to generate the same number of molecules, and
diffusion-based methods such as TargetDiff and DecompDiff require approximately 3428 seconds
and 6189 seconds, respectively.

As our method builds upon base SBDD models as the SBIG module, we only consider the additional
time introduced by the LEDD module. With parallel LLM API requests, the total time required for
generating 100 molecules is approximately 15 minutes in our experiments. Importantly, this added
cost does not change the order of magnitude of the overall runtime.

The majority of this overhead stems from LLM inference latency, which is common across recent
works that utilize LLMs. Nevertheless, this is unlikely to remain a bottleneck as inference efficiency
continues to improve. For instance, recent advances in Diffusion-LLMs [31] have demonstrated
inference speeds exceeding 2000 tokens per second, suggesting the potential for up to a 20×
acceleration of our pipeline in the near future.

Molecule Design Is Not a Real-Time Task. Unlike latency-sensitive domains such as recommen-
dation systems or autonomous control, molecule design prioritizes quality over speed. Drug discovery
workflows are inherently iterative and require careful validation. While LLM-agent pipelines incur
additional compute, their ability to generate higher-quality candidates with stronger binding plausi-
bility aligns with the broader goal of improving experimental success rates, rather than immediate
response times.
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Relative Cost Compared to Wet-Lab Validation. In the broader context of drug develop-
ment—which routinely spans several years and billions of dollars—LLM-related inference costs are
marginal. The true bottlenecks lie in experimental synthesis, biochemical testing, and preclinical
validation. Even modest improvements in in silico candidate quality can translate to significant down-
stream savings. Thus, the human-effort and resource reductions enabled by automated multi-step
reasoning justify the modest computational overhead.

In summary, while our method introduces additional computational cost, it remains within a practical
and acceptable range and does not diminish the significance, effectiveness, or applicability of our
contributions. These tradeoffs will continue to improve as inference efficiency advances.

J Results on more targets

we tested CIDD on additional targets: 1sa1, 1t8i and 7rpz, all known for their structural complexity
and variability in ligand scaffolds. For 1sa1, Tubulin presents a challenging drug target because
its binding sites are highly dynamic, involving extensive protein–protein interfaces; furthermore,
the ligand in this complex, podophyllotoxin, is a complex natural product scaffold[28]. For 1t8i,
Human DNA Topoisomerase I presents a challenging drug target because its catalytic mechanism
involves a highly dynamic binding site that accommodates DNA; moreover, the ligand in this initial
complex is camptothecin, a natural product scaffold rather than a traditionally rationally designed
small molecule[32]. For 7rpz, KRASG12D is difficult to inhibit due to its high GDP/GTP affinity and
absence of a nucleophilic residue near the switch II pocket, which hampers covalent strategies and
limits prior chemotypes. The ligand uniquely overcomes these barriers with a pyrido[4,3-d]pyrimidine
scaffold, fully engages the pocket, and achieves picomolar noncovalent inhibition with strong in vivo
efficacy[35].

Table 5: Comparison between MolCRAFT and CIDD on different targets
Target Method Success Ratio ↑ Vina Score ↓ QED ↑ SA ↑ MRR ↑
1sa1 MolCRAFT 27.78% -9.78 0.56 0.66 35.56%
1sa1 CIDD 54.44% -10.47 0.60 0.71 62.22%

1t8i MolCRAFT 9.64% -7.96 0.37 0.57 60.24%
1t8i CIDD 27.71% -8.38 0.39 0.62 68.67%

7rpz MolCRAFT 1.35% -9.71 0.27 0.57 1.35%
7rpz CIDD 14.86% -10.35 0.32 0.61 14.86%

K Ablation Study: Reasoning Design vs. Simple Prompting

To investigate the source of our framework’s effectiveness, we conducted an ablation study comparing
different prompting strategies. Specifically, we replaced our original chain-of-thought (CoT), domain-
informed prompt with a simplified instruction: “Based on the pocket and interaction analysis, modify
the original molecule.”

This experiment isolates the effect of prompt engineering by using the same underlying LLM and
tools, but with varying reasoning structure.

Table 6: Ablation results comparing the impact of prompt complexity on model performance.
Method SA ↑ MRR ↑ Success ↑
MolCRAFT (baseline) 0.685 58.47% 13.72%
CIDD (simple prompt) 0.678 63.69% 19.76%
CIDD (CoT prompt, ours) 0.735 81.74% 34.59%

Despite using the same LLM and external tools, the simplified prompting strategy performs sig-
nificantly worse than our CoT-guided approach, and only marginally better than the MolCRAFT
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baseline. This highlights that the primary gains of our method stem from structured, domain-informed
reasoning embedded in the prompt design, rather than from tool integration alone.

L Extension: Applicability to Hit-to-Lead Optimization

While the CIDD framework was not originally designed for hit-to-lead optimization, it can be readily
adapted to such scenarios. To explore this possibility, we initialized the generation process—and the
input to the LEDD module—using ground-truth ligands from the CrossDocked test set.

Despite these ligands already demonstrating strong synthetic accessibility and structural quality,
CIDD was able to generate new molecules that exhibited further improvements in potency (as
measured by docking score), synthesizability (QED and SA), and overall reasonability (MRR and
success ratio).

Table 7: Evaluation of hit-to-lead potential by initializing CIDD with known binders from the
CrossDocked test set.

Method Vina Score ↓ QED ↑ SA ↑ MRR ↑ Success Ratio ↑
Original Ligands -7.53 0.473 0.738 0.8272 22.22%
CIDD (generated) -8.22 0.528 0.752 0.9136 37.04%

These results demonstrate that, even when starting from already high-quality ligands, our framework
is capable of discovering improved candidates through domain-aware multi-agent reasoning.

We note that fully supporting hit-to-lead tasks would require adapting the pipeline structure, modifying
the chain-of-thought prompts, and refining the integration of design tools to better align with lead
optimization objectives. Nonetheless, the observed performance underscores the broader applicability
of our framework and the potential of structured LLM reasoning in more advanced drug development
stages.

We plan to incorporate support for hit-to-lead optimization more formally in future work.

M Effect of Re-Docking SBIG-Generated Molecules

To ensure molecular stability and structural correctness, our pipeline includes a re-docking step
following initial molecule generation. The rationale behind this design choice is that conformations
directly produced by generative models may suffer from issues such as atomic clashes or physically
unstable geometries, which can negatively affect downstream interaction analysis and overall pipeline
reliability. This concern has also been discussed in recent work [? ]. Re-docking provides a more
stable and physically reasonable starting point for the LEDD module.

To evaluate whether this re-docking step is necessary, we conducted an ablation study comparing
the performance of our pipeline with and without re-docking. Specifically, we initialized the LEDD
module with either (1) re-docked poses or (2) the original generated conformations. All experiments
used DeepSeek-V3 as the LLM.

Table 8: Ablation study evaluating the effect of re-docking versus directly using generated conforma-
tions.

Method Vina Score ↓ QED ↑ SA ↑ MRR ↑ Success Ratio ↑
Re-docking -8.49 0.565 0.714 76.00% 29.66%
Original conformation -8.403 0.575 0.721 76.09% 28.03%

As shown in the table, both variants achieve comparable results, with re-docking offering slight
improvements in docking score and success ratio, while direct usage of the original conformation
shows marginally better QED and SA. Overall, this suggests that our framework is robust to this
design decision.
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While re-docking provides additional geometric stability, the small performance gap indicates that
either choice is acceptable in practice, depending on computational tradeoffs. This flexibility may be
useful in settings where runtime is more constrained. .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are described in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the information in the experiment setting section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Codes will be released once the paper is accepted.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the details in the experiment setting section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The baseline methods do not have error bars reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information in supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed research does not pose any foreseeable societal risks, including
those related to misinformation, bias or fairness, data privacy, or security.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly cite all relevant assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our paper describes the usage of LLMs to do drug design.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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