Inferring Implicit Goals Across Differing Task Models

Silvia Tulli! , Stylianos Loukas Vasileiou?, Mohamed Chetouani' and Sarath Sreedharan*

nstitute of Intelligent Systems and Robotics (ISIR) - CNRS - INSERM - Sorbonne University
2McKelvey School of Engineering at Washington University in St. Louis
3Department of Computer Science at Colorado State University

silvia.tulli@sorbonne-universite.fr, v.stylianos @ wustl.edu, mohamed.chetouani @sorbonne-universite.fr,
sarath.sreedharan @colostate.edu

Abstract

One of the significant challenges to generating value-
aligned behavior is to not only account for the spec-
ified user objectives but also any implicit or un-
specified user requirements. The existence of such
implicit requirements could be particularly common
in settings where the user’s understanding of the
task model may differ from the agent’s estimate of
the model. Under this scenario, the user may incor-
rectly expect some agent behavior to be inevitable or
guaranteed. This paper addresses such expectation
mismatch in the presence of differing models by cap-
turing the possibility of unspecified user subgoal in
the context of a task captured as a Markov Decision
Process (MDP) and querying for it as required. Our
method identifies bottleneck states and uses them as
candidates for potential implicit subgoals. We then
introduce a querying strategy that will generate the
minimal number of queries required to identify a pol-
icy guaranteed to achieve the underlying goal. Our
empirical evaluations demonstrate the effectiveness
of our approach in inferring and achieving unstated
goals across various tasks.

1 Introduction

Humans often omit details they consider obvious, unavoidable,
or not worth mentioning when providing instructions. In the
context of human-Al interaction, such omissions could lead to
implicit goals and unstated preferences that Al systems must
navigate to achieve full alignment with user intent. One poten-
tial source of such unstated subgoals or preferences could be
behaviors that the user may identify as inevitable. The user
would never bother stating anything regarding such behav-
iors, since they believe that they cannot be avoided. Take the
case of visiting bottleneck states in the context of goal-based
Markov Decision Process (MDP). Here, bottleneck states refer
to environment states that the agent must pass through to reach
the stated goal. In many cases, the user may want the agent to
pass through or visit some bottleneck states in addition to the
goal, thus forming a set of intermediate subgoals. However,
the user may never specify them since, as far as the user is
concerned, every path that leads to the goal passes through
all the bottleneck states. This should be all well and good,

provided the human bottleneck states are also bottleneck states
for the agent. Otherwise, the agent must make an effort to
figure out what the user’s underlying subgoals may be.

To see how such problems may arise, consider an agent tasked
with guiding a tourist to a famous art museum. The tourist
simply says, “Get me a plan to get to the art museum,” unaware
of the city’s metro system and expecting an above-ground
route passing certain landmarks. The agent, however, would
use the metro system, as some of the city roads are under
construction. For the metro route, bottlenecks might include
various stations and the transfers. For the tourist’s expected
route, they might include crossing a river and passing through
the city center, which they wanted to visit. An Al system that
blindly generates a goal-reaching policy might end up skipping
all of these intermediate implicit goals. This misalignment
stems from differing world models: the agent’s comprehensive
transit data versus the tourist’s limited knowledge of the city’s
layout and the current state of its roads. The challenge in Al
alignment lies in bridging this gap, identifying and accounting
for implicit aspects of the task that weren’t mentioned.

This paper explores how an agent can learn and achieve the
implicit subgoals of another agent, particularly when their
understanding of the environment differs. We do so by de-
veloping a novel approach that introduces and formalizes the
notion of implicit subgoals within the MDP framework. Our
method will then compute policies that align with implicit
subgoals even when the user’s knowledge about the environ-
ment isn’t completely known. Our planning approach will
simultaneously use two distinct MDPs: the executing agent’s,
i.e., the robot’s' model of the environment, and the user’s,
possibly unknown, beliefs about the environment. We will
use the possible estimates for the human model as a basis for
generating candidate implicit subgoals that the robot will try to
achieve. When potential implicit subgoals cannot be achieved,
we will also make use of minimal querying to refine the agent’s
hypotheses about the human subgoals. Figure 1 provides a vi-
sualization of our proposed method. To evaluate our approach,
we performed empirical evaluations in MDP benchmark do-
mains to determine the computational characteristics of our
proposed method.

'Note, we use the term robot to denote an autonomous agent. Our
approach does not require the agent to be a physically embodied one.
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Figure 1: Bottleneck states are critical waypoints essential for reaching the goal in a given world model. Given a set of humans’ world models
M, the robot has to compute a policy 7 accounting for humans’ B, as they might be candidates for human implicit subgoals. Whenever the
robot cannot reach a human’s bottleneck due to discrepancies in world models, it queries whether this bottleneck is in fact a human subgoal.

2 Background

The paper studies problems modeled as infinite horizon dis-
counted Markov Decision Processes (MDPs), focusing on
achieving specific goal states.

The algorithms used exploit traditional reward-based MDPs.
An infinite horizon MDP is defined as a tuple M =
(S, A, T, sg,7, R), where S is the state space, A is the ac-
tion space, T : S x A x S — [0, 1] is the transition function
(e.g., T'(si, a;, s') gives the probability of transitioning from
state s to s’ under action a), R : S — R is the reward function,
so € S is the initial state, and y € [0, 1) is the discount factor.
We generally consider models where S and A are finite sets.

In this setting, the solution is a deterministic, stationary policy
7 : S — A mapping states to actions. The value of a policy
m, denoted as V™ : § — R, gives the expected cumulative
discounted reward from following the policy from a given state.
A policy is optimal if no policy with a higher value exists. We
focus on goal-directed problems, where the set of goal states
is S¢ € S. The reward function is sparse, returning a small
positive value for states in S and 0 otherwise. States in Sg
are absorbing, with all transitions out having zero probability.
In such cases, we represent the MDP in goal terms as M =
<Sa A7 T7 50,7, SG>

We leverage the concept of goal-reaching traces. A goal-
reaching trace of a policy from a state s, denoted as 7 ~ g
m(s), where T = (s, 7(s), ..., s¢), is a state-action sequence
with non-zero probability that terminates at a goal state, s, €
S¢. Since reward is only provided by the goal, the policy’s
value in a state is directly proportional to the probability of
reaching the goal state under the given policy. We denote this
as Pg(s|m), given by

Po(slm) =y P(rln),

T MT(S)

where 7 are possible traces ending in a goal state and P(7|7)
is their likelihood under the policy 7.

3 Planning for Implicit Subgoals

Consider a scenario where the robot’s model of the task
ME = (S A, TE sy,7,Sg) differs from the user’s beliefs
MH = (S A, TH s4,v,Sg) in terms of the transition func-
tion. This difference leads the user to overlook specifying
subgoals they believe are inevitable.

We leverage the notion of a bottleneck state, where a state is
a bottleneck if it is reached in every path from the initial state
to the goal. Formally,

Definition 1. For a given MDP model M =
(S, A, T, so,v,Sc), a bottleneck state is a state s € S
that must be in every valid trace starting from sq, for any
policy, with non-zero probability of reaching a state in Sg.
The set of all bottlenecks is denoted as B C S.

Implicit subgoals (Z¢) are a subset of B that the user wants
the robot to achieve en route to the goal. From the user’s
perspective, these subgoals need not be specified since they
are bottleneck states in their model. However, due to model
differences, what is a bottleneck in one model may not be
in the other. Our goal is to find a policy that achieves these
subgoals in the robot’s model. Formally,

Definition 2. For a given robot model MPE =
(S,A, TE s9,7,Sc), a policy © achieves a set of im-
plicit subgoal(s) Zc, i.e., ™ |=pqr Lg, if every goal-reaching
trace from sg, T ~pr T(So), passes through every state
s €lg.



The main challenge is finding a policy that achieves all implicit
subgoals without knowing them or the exact user model. To
address this, we assume: (1) a set of potential user models M
with different transition functions, and (2) the ability to query
the user about potential implicit subgoals. This is represented
by an oracle function Oz, : S — {0, 1}, where

lifs € Ig
0 otherwise

0. = {
Note that the first assumption is a rather weak one, as the
set M could be infinite, and contain all possible models
that can be expressed in the current set of states. The second
assumption holds as long as the user is truthful, wants to
achieve the implicit subgoals, and can recognize the ones they
want to achieve when queried about them. We set the cost
of querying the user extremely high, aiming to minimize the
expected query cost.
Definition 3. For a given robot model MF%, a set of possi-
ble user models M, and an oracle Oz, for an unknown
implicit subgoal set Lg, the problem of query identification
Sor implicit subgoals is to choose states to query the oracle to
identify a policy m that achieves the implicit subgoal Lq, or
determine that no such policy exists.

We focus on minimizing the expected query cost, where each
query has a cost, and querying ends once the agent can deter-
mine if a policy exists that satisfies all implicit subgoals and
the original goal. The optimal query minimizes the expected
value.

Definition 4. For a given identification problem, with a set of
remaining bottlenecks B and known implicit sub-goals K7 C
T, where the existence of the policy that achieves all implicit
sub-goals cannot be determined, a state query s, is said to
be optimal if it minimizes the expected query cost for the
bottleneck states and known sub-goals, i.e.,

4 Query Identification for Implicit Subgoals
Set

We now explore algorithms to identify queries for implicit
subgoals. Our approach involves finding a set of potential
implicit subgoals and querying the user to narrow it down to
an achievable set.

Implicit subgoals are a subset of bottleneck states in the hu-
man model. Although we may have an infinite set of potential
human models, bottleneck states are preserved through de-
terminization Keller and Eyerich [2011]. Determinization
converts stochastic transitions into deterministic actions.
Definition 5. For a given MDP model M = (S, A, s0, T, Sc),
a determinized model (M) is given as 6(M) =
(S, A", s0, T, Sq), such that for every non-zero transition
T(si,a4,8") in M, there exists a new action o} € A’, such
that T(s;,al,s') = 1.

Proposition 1. Given a model M and its determinization
§(M), a state s is a bottleneck state for M if and only if it is
a bottleneck state in 6(M).

Note that the number of possible unique determinized models
for finite state and action sets is finite. Thus, the set of all
determinized models 6 (M) is finite and |§(MH)| < |M¥|.

To identify bottleneck states in a determinized model, we
create a modified MDP where passing through the queried
state is penalized. If the state under test is not a bottleneck, the
optimal policy avoids it, resulting in a positive value for sg.
Proposition 2. For a determinized model 6(M) =
(S, A, T, sg,7v,Sc), and for a target state s;, we create a
new MDP M?* = (S, A, T, so,v, Rg..), such that

n when s = s;
R(s) = { pwhen s € Sg

0 otherwise

where n. < 0, p > 0 and |n| > p. Here s; is not a bottleneck
state if and only if V*(so) > 0 under the optimal policy for

Q((B,Kx1),5) = C(s) + (P(s € Ig) * V(B \ {s}, Kz U {s}))+ M.
P(s ¢ Zg) * V((B\ {s},Kz))), The validity of the proposition follows from the fact that if

where Q() is the total expected query cost, P(s €) and
P(s ¢) are the probabilities of the state being an implicit
goal, C(s) is the specific cost of querying about s, V() is
the minimal expected cost associated with a set of bottleneck
states and known implicit subgoals. Here, V((B',r')) = 0
if k' is unachievable or if the set B' U k' is achievable, else

V((B',k')) = ming Q((B, k'), s).

Note that here, we are making an implicit assumption that
responses to all queries are deterministic, and the user is al-
ways able to answer correctly. We believe this is a reasonable
assumption to make given that this is the first work to deal
with this problem. Additionally, we expect a user to be capable
of correctly identifying whether a given state is an implicit
subgoal or not in most simple scenarios.

‘We map the problem into finding an optimal policy in an MDP,
introducing a query MDP in Section 4.

state s; is not a bottleneck state, then there should exist a path
from sq to the goal that doesn’t pass through s;, which should
result in a positive value for sg. The requirement |n| > p
is required to ensure that any path that does pass through s;
doesn’t result in a positive value.

We collect all bottleneck states for each determinized model
in 6(M*) to form our initial hypotheses set for implicit goals
(HY). Our objective is to identify the set of maximal subsets
of H2 for which the robot can generate achievable policies.
However, before we discuss the search procedure to find max-
imal subsets, we need a procedure that can identify policies
that achieve subgoal when one exists. We will again convert it
to that planning over MDPs. In this case, this will involve plan-
ning over two different planning problems. Firstly, one that
will only count goal achievement if the trace passes through
all the subgoals.

For an MDP M = (S, A, T, s0,7, S¢) and a subgoal set S,



we create a new MDP M? to identify policies that achieve
the subgoals. The new MDP tracks subgoal visits and rewards
only traces passing through all subgoals.

Proposition 3. For an MDP M = (S, A, T, so,7,Sa),
and a subgoal set 5’, we create a new MDP M*° =
(8%, A, T?, 50,7, RY), where S° tracks subgoal visits, T°

updates features for visited subgoals, and RS rewards only
traces passing through all subgoals. If there exists a policy ™
for M that achieves the subgoal set, then there exists a policy

7t for M, such that all goal reaching trace for  exits at the
goal state copies where all the features for subgoals are true.

This proposition is true since any trace that ends in a goal state
without passing through all the subgoal states will provide a
negative reward. However, one might not be able to tell if the
identified policy corresponds to such a policy. One can only

do so by running a test over the determinized version of MS ,
similar to the one described in Proposition 2. One difference
is that the actions in each state are limited to the one listed by

7. Here the test is run for each potential state in S.

We search for maximally achievable subsets over the union
of all bottleneck states across potential human models using
a recursive depth-first approach with pruning. The algorithm
systematically explores combinations of bottleneck states, con-
firming maximality by checking if adding any remaining el-
ement makes the subset unachievable. Algorithm 1, gives
a pseudo-code for the overall procedure. GenerateAndTest-
Subsets function represents the recursive procedure that goes
over each possible subsets by dropping one bottleneck state
at a time. The procedure stops when the current subset is
achievable (i.e., there exists a policy 7 such that 7) or if the
bottleneck set passed is an empty one.

With the identification of I, we convert the querying strategy
problem into an MDP planning problem.

Definition 6. For a set of potentially achievable subgoals 1,
selected from a bottleneck set BB, the query MDP is defined as
M@ = (SS9 AR T?, 5(?,7, R®), where each component is
defined as follows:

» S9: Each state consists of known implicit subgoals and
those known not to be, i.e., S? = 28 x 2B,

» A®: One action to query each element in B.

o T Transition function replicating potential oracle out-
comes and determining absorber states.

. SOQ.' Start state where nothing is known.

e R®: Reward function returning a heavy penalty for
queries and positive values for achievable states.

* ~: High discount factor to consider future query costs.
Proposition 4. The optimal policy identified for the MDP
ME, corresponds to an optimal query strategy described in
Definition 4.

This follows from the structure of the MDP. The cost and tran-
sition function, here, are selected so the Bellman equations
for the MDP replicate the optimality equations referred to in

Algorithm 1 Find the set of maximally achievable subsets of
the set of all possible human bottleneck states.

1: Input: M” B

2: Output: Set of maximal achievable subsets I

function FINDMAXIMALACHIEVABLESUBSETS(M T,
B)

W

4: return GenerateAndTestSubsets(3, M)
5: end function A
6: function GENERATEANDTESTSUBSETS(53, M™)
7. if CheckAchievability(53, M%) then
8: return {53}
9: end if
10: if |B| == 0 then
11: return ()
12: end if
13: I=1{}
14: for s; € B do .
15: current_subset < B\ {s;}
16: max_subsets «<—GenerateSubsets(current_subset, ./\/lR)
17: for S €max_subsets do
18: I=1uUsS
19: end for
20: end for_
21: return I

22: end function

Definition 4 (with min replaced with max to reflect the switch
from costs to rewards). One point of departure here from
the earlier definition is the allocation of positive rewards to
absorber states where the reward is proportional to its value

associated in the model M?®. Given the role played by dis-
count factor, this means that a higher value is associated with
bottleneck subsets where the goals and subgoals are achieved
over shorter traces. This means that the problem of finding
subgoal sets that are easier to achieve becomes a secondary
objective for the MDP. However, please note that the larger
penalty for the query cost means that this secondary objective
will never be pursued at the cost of a potentially larger number
of queries.

Now, even though there are efficient MDP solvers, solving the
above MDP could be computationally expensive if there exists
a large number of possible bottleneck states. However, it is
possible to show that we can actually build a smaller MDP
that first filters out all the bottleneck states that cannot be
achieved in the robot model and create a new query MDP only
containing the remaining states. We will refer to the resulting
MDP as the pruned query MDP (and represent it as M),
Now, we will create a meta query policy that will first query
about all non-achievable bottlenecks before switching over to
the optimal policy for the pruned query MDP (7#?). We will
refer to this new modified query as II%, and it is defined as

s; if |B \ (KI U Kﬁz)| > 0,
where s; € B\ (K7 U K_71)
#9((Kz \ B, K-z \ B)) Otherwise,

where B is the set non-achievable bottleneck states. Even

N°((Kz,K-1)) =



though such a pruning method could result in an exponential
reduction in the state space of the MDP problem to be solved,
we can show that this new policy is, in fact, optimal for the
original query model. Or more formally,

Proposition 5. The meta policy II? is an optimal policy for
the query MDP M®.

Proof Sketch. The primary proof for the above statement re-
lies on establishing the fact that in a non-absorbing state for
MZE, the cost of querying a non-achievable bottleneck state is
always going to cheaper than or equal to the cost of a query
about a state that is part of some achievable subset of bot-
tlenecks. This can be shown by the fact that any query not
involving a non-achievable state must involve at least one out-
come, with at least one future query guaranteed to be required.
This guarantee follows from two facts. For such a query, at
least one of the outcomes must contain a potentially achiev-
able subset. Without such an outcome, the original query state
would be unachievable and thus an absorbing state. As for
the at least one guaranteed future query comes from the fact
that since this query skipped over a non-achievable bottleneck,
the achievability of the outcome can only be established after
resolving whether or not the non-achievable bottleneck is part
of the human implicit subgoal.

Now, on the other hand, there can, at most, be one outcome
where further querying is possibly required. In this case, fu-
ture querying is also not guaranteed because, after the removal
of the unachievable state, it could just result in a query state
that corresponds to an absorber state for an achievable subset.
In other words, the query about a non-achievable bottleneck
is always guaranteed to remove a future query from all out-
comes. But for bottleneck states that can be achieved under
some policy, we are guaranteed that we need to query about
the non-achievable bottleneck at some point in the future. Fi-
nally, there order in which the non-achievable states need to be
queried doesn’t matter as its not part of any achievable subsets
and thus the order doesn’t affect how any of the potentially
achievable subsets can be queried. Finally, the secondary ob-
jective doesn’t really affect this order, as it relates to reducing
the expected number of queries and the secondary objective is
dominated by the cost of the number of queries. U

5 Related Work

Our work intersects with three primary areas: reward mis-
specification, planning with different world models, and query
mechanisms in assistance.

5.1 Reward Misspecification

Aligning Al systems with human values and intentions is a
growing concern, with reward misspecification being a crit-
ical issue. Inverse reward design [Hadfield-Menell er al.,
2017] was a method developed to infer true objectives by
treating reward specifications as observations of the true re-
ward. Building on this, previous work [Majumdar et al., 2017]
has proposed a risk-sensitive inverse reinforcement learning
framework to address reward uncertainties. Authors have
also explored implicit preferences [Shah et al., 2019] in re-
ward functions, and investigated reward hacking [Gleave et

al., 2021]. Works have also looked at formalizing reward
specification in terms of discrepancies between agent and user
expectations [Sreedharan and Mechergui, 2024], proposing
a framework to identify misalignments and consider model
differences. Our work extends these ideas by focusing on
unspecified subgoals arising from differing task models.

5.2 Planning with Different World Models

Agents and humans often have different world models, a chal-
lenge explored in Al planning and human-robot interaction.
Model reconciliation [Chakraborti et al., 2017] was a frame-
work that was proposed for explainable planning that focuses
on bridging the knowledge gap between the user and the Al
system. Works have also looked at how such notions could
be extended to cases where use models could be captured as
abstractions of the true agent model [Sreedharan ef al., 2018].

Related works have also looked at learning from corrections
with differing feature spaces [Bobu et al., 2018] and address-
ing representation misalignment [Peng ef al., 2024]. Theory
of Mind research also provides insights into planning with dif-
ferent world models. Works have also highlighted the use of
abstract causal models for effective intervention planning [Ho
and Griffiths, 2021]. These insights complement model recon-
ciliation approaches, suggesting that incorporating Theory of
Mind representations could enhance Al planning effectiveness.

5.3 Handling Unspecified User Goals

Query mechanisms enable robots to seek clarification from
humans when facing ambiguous reward signals. Hidden
Goal Markov Decision Processes (HGMDPs) was a decision-
theoretic framework for intelligent assistance, focusing on
reasoning under uncertainty about user objectives [Fern ef al.,
2007]. Assistive games use human reward inference as an
alternative to the user specifying reward functions completely
[Hadfield-Menell et al., 2016]. Query mechanisms have also
been used within hierarchical reinforcement learning. For
example, a POMDP framework to query humans about poten-
tial subgoals in such settings [Nguyen et al., 2021]. Natural
language has also been employed as a means for feedback,
optimizing language abstractions to minimize queries [Zheng
et al., 2023]. Our work leverages potential estimates of human
understanding of the task model to identify more effective
queries.

5.4 Preferences in Planning

Preference-based planning has evolved from simple goal satis-
faction to frameworks that capture user intentions and quality
criteria [Baier and Mcllraith, 2008]. Early work established
formal mechanisms for expressing temporal preferences over
state trajectories, enabling planners to reason about not just
what goals to achieve, but how and when to achieve them
[Gerevini and Long, 2005]. These frameworks introduced
the distinction between hard constraints that must be satisfied
and soft preferences that guide plan quality, creating a founda-
tion for handling incomplete or conflicting user specifications
[Gerevini et al., 2009]. The integration of hierarchical task
networks with preference handling revealed how procedural
knowledge can be combined with user preferences to generate



contextually appropriate plans [Sohrabi ef al., 2009]. This
work highlighted that effective planning requires understand-
ing not just explicit goals, but the implicit assumptions about
how tasks should be decomposed and executed within specific
domains. The challenge of preference elicitation emerged
as a bottleneck, as users often cannot fully articulate their
preferences upfront, leading to frameworks that learn prefer-
ences through limited interaction and generalize across simi-
lar planning contexts [Tabakhi ef al., 2022]. These develop-
ments directly connect to the problem of inferring implicit
goals when operating with different world models. Just as
preference-based planning recognizes that users have unstated
quality criteria and contextual expectations [Pigozzi et al.,
2016], inferring implicit goals requires discovering the under-
lying objectives that drive observed behavior, even when those
objectives are not explicitly communicated.

6 Evaluation

We evaluate our approach on standard Markov Decision Pro-
cess (MDP) benchmarks using value iteration with conver-
gence threshold ¢ = 0.001 and maximum 1000 iterations. For
larger state spaces, we employed sparse matrix implementation
and robust vectorized versions handling edge cases Puterman
[2014].

Experiments were conducted across multiple environment
types with varying grid sizes and obstacle percentages. For
reproducibility, each configuration (world type, grid size, hu-
man models, obstacle percentage) was run 3 times with ran-
dom seeds sampled from [1,10000], controlling robot/human
model generation and stochastic algorithm elements. Policy
extraction used standard or robust methods depending on envi-
ronment complexity and state space size’.

6.1 Environments

The base environment is a Maze, a basic setting where agents
navigate a grid with randomly placed obstacles, providing
our baseline scenario with simple navigation challenges and
clear bottleneck states at narrow passages. Building on this,
Four-Rooms extends Maze by dividing it into four quadrants
connected by doorways. The fixed room structure with ran-
domized door placements creates natural bottlenecks, testing
our method’s ability to identify critical transition points. Pud-
dleWorld introduces additional complexity by adding puddles
that incur penalties when traversed. This environment forces
trade-offs between path length and safety, creating interesting
bottleneck scenarios where avoiding puddles competes with
finding shortest paths. Finally, RockWorld features two types
of rocks - valuable rocks that provide rewards when collected
and dangerous rocks that incur penalties. This tests bottle-
neck identification in scenarios with resource management
and risk-reward trade-offs.

6.2 Methodology

Our framework runs multiple independent trials with varying
parameters including grid sizes, obstacle percentages, and

Experiments were executed on a server with 64 cores (AMD
EPYC Milan) and 2048 GB DDR4 memory, running 4 parallel work-
ers processing batches of 10 configurations.

different numbers of human models to test scalability with
varying levels of preference diversity. Each model uses a
unique obstacle seed to ensure statistically independent trials.
We compared the condition in which the robot queries for all
the bottleneck states (Query-All) with the condition in which it
queries strategically, based on the achievable bottleneck states
(Strategic Query). We set a query threshold of 1000°.

6.3 Results

Our analysis reveals significant performance improvements
across environments. For 4x4 grids, Strategic Query showed
particularly strong results in Four Rooms (p < 0.001) and
Rocks (p = 0.012), with query counts reduced from 3.7 — 4.8
(Query-All) to 2.0 — 3.3 queries, achieving reductions of
22 — 41%. Query times remained efficient at 2 — 3 seconds. In
6 x 6 environments, while pruning times increased, efficiency
gains persisted with query counts of 3.2 — 4.3 versus 3.7 — 7.7
for Query-All, yielding 13 — 40% reductions, though with
marginally significant differences (Puddle: p = 0.053, Rocks:
p = 0.073). Analysis across 20 human models with 10%
obstacle density demonstrates consistent performance, partic-
ularly in basic grid environments (35.6% reduction). More
complex environments like Rocks and Puddle maintained sub-
stantial improvements (26 — 33% reduction). The stability
of these improvements across varying model counts suggests
robust scalability. Notably, Four Rooms showed the strongest
statistical significance in 4 x 4 grids (p < 0.001) while main-
taining performance benefits in larger environments, albeit
with reduced statistical significance (p = 0.411 for 66) (Fig-
ure: 2). Query times remained efficient at 2 — 3 seconds. In
6 x 6 environments, while pruning times increased, efficiency
gains persisted with query counts of 3.2 — 4.3 versus 3.7 — 7.7
for Query-All

Scaling to 8 x 8 grids further validates the effectiveness of our
approach. Strategic Query maintained consistent query counts
(3.2 £ 1.6) across environments while Query-All increased to
11.6£2.9 (except Four Rooms: 3.2+1.0), resulting in substan-
tial reductions (71.9 & 10.9%) for Maze, Puddle, and Rocks
environments. While pruning times increased to ~ 308 — 325
seconds, the method achieved consistent speedup (1.05%)
across all environments. Human bottleneck values stabilized
around 5.8 £ 1.5 (Four Rooms: 1.6 & 0.5), demonstrating
reliable preference modeling despite increased environmental
complexity (Figure: 1).

Further analysis with varying parameters reveals interesting
trends. With 10 human models and 0.1 obstacle density, bot-
tleneck finding times remained consistent (1.7 — 1.8s) with
total runtimes of 4.1 — 9.2s. Reducing to 5 human models
improved computational efficiency (0.8 — 0.9s bottleneck find-
ing, 2.1 — 4.0s total runtime). However, increasing obstacle
density to 0.15 significantly impacted performance, particu-
larly in environments like Maze and Rocks (27.4s and 13.7s
bottleneck finding respectively), with total runtimes increasing
to 13.1—50.7s and higher human bottleneck values (3.3 —4.2).
This demonstrates the method’s stability with increased human

3For reproducibility, the code and implementation details will be
available on GitHub. The repository includes instructions to replicate
all experiments.



Domain  State Space Size Pruning Pruning Str. Query Query Red. Human
Size Time (s) Speedup Count All (%) Bottlenecks

Maze 64 308.237+6.308  1.05x+0.03  3.2+1.6 11.6+£2.9 71.9£10.9 5.8%+1.5

Four R. 64 324.602+6.013  1.00x£0.01 32+1.0 3.2£1.0 0.040.0 1.64+0.5

Table 1: Performance comparison with 8x8 grid size with the same parameters as above. Maze, Puddle, and Rocks domains showed similar

performance metrics.

models but sensitivity to environmental complexity at higher
obstacle densities.

s Strategic Query
Query-All
7 -
p=0.085 p=0.012*
6 p=0.071
o 51 p<0.001 %
g
= 3
2] 4
1 -
0 T T T T
Maze Four Rooms Puddle Rocks
Domain State Space Size Str. Query Red.
Size Query All (%)
Maze 16 2.6+09 3.9+1.8 22.0+30.1
36 3.8+£1.5 6.8+£3.9 35.6+33.6
Four R. 16 2.0£0.8 3.7+£0.7 0.0+0.0
36 3241.0 3.7£0.7 13.3+22.1
Puddle 16 33+1.6 4.8+1.4 26.7£29.7
36 43433 7.7£4.0 40.7£29.6
Rocks 16 25409 4.8+1.4 41.1+27.1
36 4.1£24 69+3.1 33.7£294

Figure 2: Performance comparison between Strategic Query and
Query-All approaches across four environments with 4x4 grid size.
Results show mean execution times + standard deviation based on
20 human preference models, 10% obstacle density, and 3 runs per
configuration with a query threshold of 1000. The table shows basic
performance metrics including query counts and reduction percent-
ages.

7 Discussion

The paper presents a way a planning system can identify hid-
den subgoals of users, even when the human model may not
be exactly known. We present algorithms to both identify po-
tential candidates and generate an optimal number of queries.
We evaluate the effectiveness of the proposed method on a set
of standard benchmark problems. In terms of future work, one
of the immediate next steps would be to run user studies. We
plan to do them in realistic and everyday scenarios, possibly

a robotic one, with a significant population size. This would
allow us to capture the effectiveness of our method in terms
of the load placed on the humans and also test another related
hypothesis. For example, one could test whether people would
be open to more queries if it significantly improves the agent
efficiency. We assume that the main difference between the
robot’s model and the human’s model of the task is the tran-
sition function and rewards. In particular, the final goal state
remains the same in both cases. However, in a different type of
representation, e.g., in linear temporal logic, where trajectories
of states could be queried, the problem might be able to be
recast as one of goal difference. This paper also focuses on
the exact method that identifies optimal solutions. It would
be interesting to see if we could leverage approximate meth-
ods. It would also be interesting to see if we could use other
knowledge sources like pre-trained large language models, to
get more information about user knowledge and preferences
[Zhou et al., 2024]. In relation to the broader themes of as-
sessment and system compliance, our approach represents a
step toward providing guarantees about the types of plans the
system generates. By actively querying users about hidden
subgoals, the system essentially audits its understanding and
ensures alignment with user intentions, offering a form of
compliance verification that could contribute to more inter-
pretable and trustworthy Al systems. This connection between
interactive planning and system compliance deserves further
exploration, particularly in how such query-based approaches
can provide formal guarantees about plan quality and user
alignment.
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This work focuses on improving human-Al alignment by bet-
ter understanding implicit user goals. The research aims to
make Al systems more helpful and aligned with human inten-
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work.
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