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ABSTRACT

Test-Time Adaptation (TTA) adapts a deployed model during online inference to
mitigate the impact of domain shift. While achieving strong accuracy, most exist-
ing methods rely on backpropagation, which is memory and computation inten-
sive, making them unsuitable for resource-constrained devices. Recent attempts
to reduce this overhead often suffer from high latency or are tied to specific ar-
chitectures such as ViT-only or CNN-only. In this work, we revisit domain shift
from an embedding perspective. Our analysis reveals that domain shift induces
three distinct structural changes in the embedding space: translation (mean shift),
scaling (variance shift), and rotation (covariance shift). Based on this insight, we
propose Progressive Embedding Alignment (PEA), a backpropagation-free and
architecture-agnostic TTA approach. By applying a novel covariance alignment
procedure at each intermediate layer, PEA efficiently corrects the embedding dis-
tortions with only two forward passes. Extensive experiments demonstrate that
PEA achieves state-of-the-art performance in both accuracy and efficiency, while
also proving versatile across different architectures including ViTs and CNNs.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of computer
vision tasks (Pouyanfar et al., 2018). However, their performance often degrades significantly under
distribution shifts between the training data and unseen test data - a challenge that frequently arises in
real-world and real-time applications (Koh et al., 2021; Sun et al., 2022). To address this limitation,
DNNs must be able to adapt effectively to such shifts. Test-time adaptation (TTA) (Liang et al.,
2025) has recently emerged as a promising paradigm, enabling a pretrained model to be fine-tuned
on-the-fly using unlabeled test batches as they arrive during inference. By continually adjusting
to new data distributions, TTA mitigates the performance degradation caused by domain shifts and
enhances the robustness of deployed models.

Most mainstream TTA approaches rely on either pseudo-labeling or entropy minimization. Pseudo-
labeling (Wang et al., 2022; Marsden et al., 2024; Lee & Chang, 2024) is a self-supervised strategy
that assigns provisional labels to the current test batch and updates the model based on these label
estimations. In contrast, entropy minimization (Wang et al., 2020; Niu et al., 2022; 2023) is an
unsupervised method that encourages the model to produce more confident predictions directly from
unlabeled data. Despite their effectiveness, both approaches suffer from a fundamental drawback:
they depend on backpropagation. Specifically, they require backward passes and gradient storage
across multiple layers during adaptation, which introduces substantial computational and memory
overhead. This reliance makes them unsuitable for deployment in resource-constrained settings,
such as edge devices or real-time applications. Recent methods like SPA and CMF cannot deploy
on edge devices due to exceeding 10GB memory requirements (Table 1).

To mitigate the inefficiency of backpropagation, several recent studies have proposed lightweight
alternatives via reducing the overhead of gradient-based updates. For example, MECTA (Hong
et al., 2023) combines model pruning with entropy minimization to reduce gradient computation.
EcoTTA (Song et al., 2023) replaces heavy convolutional blocks with lightweight meta-networks to
lower backpropagation costs. Similarly, L-TTA (Shin & Kim, 2024) observes that shallow layers
contribute most to adaptation and thus restricts updates to the stem layers, simplifying the process.
More recently, some methods attempt to remove backpropagation altogether. FOA (Niu et al., 2024),
for instance, performs derivative-free prompt search for Vision Transformers (ViTs) (Dosovitskiy
et al., 2020), thereby eliminating backward passes and reducing memory usage. However, FOA still
incurs high latency, as achieving competitive accuracy requires a large number of forward passes
(e.g., 27).
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A second major limitation of existing efficient TTA methods lies in their lack of architectural gener-
ality. While full backpropagation-based approaches are broadly applicable to both CNNs (He et al.,
2016) and Transformers (Vaswani et al., 2017), most efficient variants are narrowly tailored. For
instance, FOA is designed exclusively for ViTs via prompt tuning and cannot be applied to CNNs.
Conversely, methods like EcoTTA and MECTA are tailored to ResNet-style CNNs that rely on batch
normalization layers, rendering them ineffective for Transformer architectures.

In this paper, we introduce PEA, a backpropagation-free and architecture-agnostic method for
efficient TTA. Our approach is motivated by a principled analysis of how domain shifts distort inter-
mediate feature representations. Specifically, our analysis reveals that features from shifted domains
consistently diverge from source-domain features through three structural transformations: (i) mean
shift, which displaces global feature centroids, analogous to a translation of the distribution; (ii)
variance shift that modifies the spread of features and inter-class spacing, corresponding to scal-
ing, and (iii) channel-wise covariance shift, which modifies inter-feature correlations, effectively
rotating the feature space and reorienting class relationships.

Grounded in these observations, PEA progressively aligns feature covariances at each model block
during inference, thereby enhancing the quality of final-layer representations and improving pre-
diction reliability. Specifically, PEA implements a two-forward-pass procedure: the first pass iden-
tifies the layer-wise shifts, and then, based on these shifts, assigns weights for each block to im-
plement a covariance alignment across all layers’ embeddings. Unlike prior methods, PEA is both
backpropagation-free and architecture-agnostic, making it applicable to both CNNs and Transform-
ers. This provides a unified and efficient solution to TTA. Our main contributions are as follows:

* Our analysis of intermediate embeddings uncovers the essence of domain shifts, which can be
characterized as translations, scalings, and rotations of the embedding space.

* We propose PEA, an approach that adapts using only two forward passes per batch without back-
propagation, allowing efficient adaptation with minimal memory and compute overhead.

* PEA is the first unified TTA framework that seamlessly generalizes across both CNNs and Trans-
formers using identical procedures. Experiments on CIFAR-C and ImageNet-C demonstrate that
it achieves competitive or superior performance compared to state-of-the-art methods, while main-
taining high efficiency with successful deployment on resource-constrained edge devices.

2 RELATED WORK

Conventional Test-Time Adaptation. TTA has emerged as a practical solution for mitigating do-
main shifts that can severely degrade model reliability in deployment (Wang et al., 2024; Liang
et al., 2025; Xiao & Snoek, 2024). The core idea is to update a pretrained model online using only
the incoming unlabeled test batches, without requiring access to source data or ground-truth labels.

Early TTA studies primarily focused on updating the model’s normalization layers. For example,
simply recalibrating batch normalization (BN) statistics was found to recover some of the accuracy
lost under distribution shifts (Benz et al., 2021). Building on this idea, entropy-based optimization
techniques such as TENT (Wang et al., 2020) and EATA (Niu et al., 2022) update gradients online
under the guidance of prediction entropy, which often combined with sample filtering or dynamic
reweighting to improve stability. These methods established the foundation for unsupervised TTA,
which adapts models based solely on their confidence without relying on external labels.

In parallel, another branch of work leveraged the model’s own predictions as supervision signals.
These self-supervised strategies fine-tune the model with pseudo-labels generated from the current
test batch. Representative examples include mean-teacher adaptation (Wang et al., 2022), meta-
learned initialization for rapid convergence (Bartler et al., 2022), and improved label robustness via
symmetric cross-entropy (Dobler et al., 2023). More recent efforts further stabilized this process
through ensembling (Marsden et al., 2024) and Kalman filter refinement (Lee & Chang, 2024).

Despite their differences, both unsupervised and self-supervised TTA methods share a key limita-
tion: they rely on backpropagation during adaptation. The need to compute gradients and store inter-
mediate activations largely increases memory and computation overhead, limiting their practicality
on resource-constrained devices and motivating the development of more efficient alternatives.

Efficient Test-Time Adaptation. Recent TTA research has increasingly focused on improving ef-
ficiency from various angles. Memory-aware gradient-based methods aim to reduce the footprint of
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Figure 1: Impact of domain shift on intermediate layer embeddings. Feature distributions of three
classes from block 3 of the ViT model are visualized. Each subfigure illustrates a different type of
shift: translation, scaling, and rotation. More experiments can be found in Appendix A.

backpropagation. For example, MECTA (Hong et al., 2023) prunes gradient paths and normalizes
only selected layers to lower activation storage, while EcoTTA (Song et al., 2023) leverages com-
pact meta-networks to minimize backpropagation overhead. L-TTA (Shin & Kim, 2024) enhances
efficiency by restricting adaptation to shallow stem layers in CNNs, and TinyTTA (Jia et al., 2024)
combines early-exit classifiers with ensembling for low-memory adaptation on microcontrollers.

Notably, forward-only approaches eliminate gradient computation entirely.  For example,
LAME (Boudiaf et al., 2022) adjusts classifier decision boundaries post hoc without any gradi-
ent updates, though its limited adaptability can reduce accuracy. FOA (Niu et al., 2024) employs
derivative-free prompt optimization for Vision Transformers, substantially lowering memory usage
but incurring high latency due to the large number of forward passes required.

Overall, existing efficient TTA methods either rely on backpropagation, leading to high memory and
computational costs, or are limited to specific architectures (e.g., CNN-only or ViT-only designs). In
contrast, our method presents a unified forward-only framework that delivers fast, memory-efficient
adaptation while maintaining strong accuracy across both CNNs and Transformers.

3 MOTIVATION: ANALYSIS OF DOMAIN SHIFT

Although contemporary TTA methods have achieved empirical success, they often treat domain shift
as a black-box problem, focusing on high-level strategies like entropy minimization and prompt tun-
ing without exploring the root cause of performance degradation. This motivates our central ques-
tion: what is the essence of domain shift? We approach this question from the perspective of the
embedding space, hypothesizing that misalignment in intermediate representations is a key driver
of performance drop under domain shift. To test this, we conducted an empirical analysis using
a ViT model trained on CIFAR10 (source) and evaluated on CIFAR10-C with Fog (target). We
applied t-SNE to visualize the intermediate embeddings from ViT block 3, focusing on three repre-
sentative classes for the sake of clarity in illustration. The resulting visualizations consistently reveal
three distinct structural transformations in the embedding space, as shown in Figure 1. We conduct
more similar experiments and observe the same phenomenon, which can be found in Appendix A.

Our analysis reveals that, despite its varied forms, domain shift primarily manifests through three
characteristic geometric changes in the embedding space:

(i) Translation (Mean Shift). As shown in Figure 1(a), the most fundamental effect of domain shift
is a translation of the feature distribution. The global centroid of the target domain’s embeddings is
displaced relative to that of the source domain. As a result, the embedding magnitudes in the target
shifted domain become misaligned with the parameters learned by the source model. While this is
the most common form of shift addressed by conventional TTA methods, it is often only one part of
a more complex problem.

(ii) Scaling (Variance Shift). Beyond a simple translation, domain shift significantly alters the
scaling of the entire feature distribution, corresponding to a variance shift. As depicted in Figure
1(b), the global “cloud” of features changes its overall shape and density. Some layers may exhibit
a more compact feature distribution, where the embeddings are compressed closer to their mean,
while others become more dispersed, expanding outwards. This observation is consistent with the
insight in GALA (Sahoo et al., 2025) and PALM (Maharana et al., 2025). This non-uniform scaling
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across layers cannot be corrected by simple global normalization; instead, it requires a layer-specific
approach to align the variance change in feature space.

(iii) Rotation (Channel-wise Covariance Shift). Our most crucial observation is the presence of
a covariance shift in the feature space. This indicates a systematic change in the correlation among
the embedding dimensions. The shift mainly appears as a coherent geometric transformation of the
feature cloud, resembling rotation and shearing. As visualized in Figure 1(c), this distortion goes be-
yond simple translation and scaling, fundamentally altering the relative orientation and arrangement
of class clusters.

4 PROGRESSIVE EMBEDDING ALIGNMENT

Based on the analysis above, a natural TTA solution is to progressively realign the shifted em-
beddings toward the source distribution across model layers. However, applying such alignment
presents two key challenges: (1) Since intermediate features are automatically learned and propa-
gated through the model layers, even small misalignments at early layers can accumulate and cause
significant degradation in deeper representations. (2) TTA typically operates with small batch sizes
(e.g., 64 or fewer) on the devices, making it difficult to reliably estimate feature statistics.

To address these issues, we propose Progressive Embedding Alignment (PEA), a simple yet effective
method that incrementally refines intermediate representations through robust covariance alignment.
To tackle the challenge of accumulating errors, our method employs a distance-aware weighted
covariance alignment strategy that progressively interpolates between the original and aligned em-
beddings based on their degree of shift, ensuring robustness and preventing over-correction. To
overcome the challenges of small batch sizes, we introduce two techniques: an exponential moving
average (EMA) to accumulate historical estimates of statistics, and lightweight data augmenta-
tion to diversify input samples and enrich the feature distribution observed at test time. Unlike
many prior TTA methods that require updating model parameters to fit the shifted domain, PEA is
entirely backpropagation-free and architecture-agnostic, operating solely on intermediate features.
The complete PEA pipeline is summarized in Algorithm 1 (Appendix B).

4.1 DISTANCE-AWARE WEIGHTED COVARIANCE ALIGNMENT

The key objective of our method is to progressively realign the test-time intermediate features with
the source-domain distribution at each block of the DNN. We achieve this using a Whitening-
Coloring Transform (WCT) (Cho et al., 2019) that geometrically transforms the target-domain fea-
tures to match the structure of the source domain. However, as we mentioned in the first challenge
above, applying covariance alignment too aggressively risks over-correction and misalignment. To
balance this, we introduce a distance-aware weighting mechanism that adaptively combines the orig-
inal and aligned features based on their layer-specific statistical discrepancy. Our method operates
in two stages: an offline stage that extracts source statistics prior to deployment, and an online stage
that performs dynamic alignment at test time through a two-forward-pass procedure.

Offline Stage. Prior to test-time deployment, we compute and store the source feature statistics for
each block ! of the model using the training set. These include the source mean vector pts; and
covariance matrix X ;. These pre-computed statistics serve as the source geometry toward which
we realign the test-time features. This offline process requires only a forward pass through the train-
ing data and does not involve any gradient computation or backpropagation. Once computed, the
statistics require only minimal storage (about 30MB for ViT-Base) and enable deployment without
ongoing source data access, making our approach practical for real-world deployment scenarios.

Online Stage. At test time, each incoming batch undergoes two forward passes. The first pass
estimates the degree of domain shift at each layer to determine the appropriate alignment strength.
The second pass then performs the actual feature alignment using WCT. Unlike prior forward-only
methods (Niu et al., 2024) that require multiple runs to optimize prompts, our approach achieves
adaptation with just two forward passes.

Pass 1: Estimating Alignment Weights. The goal of the first pass is to measure how much the current
batch deviates from the source distribution at each block. To achieve this, we forward the test batch
through the network to extract the intermediate feature activations F; € REXN>D_ For each block [,
we compute the batch mean 15, ; and variance a’fv ;- These statistics characterize the current batch’s
distribution. To quantify the shift, we calculate a statistical distance between the batch and source
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distribution:

di = ||psg — w2 + o, — o7 ll2 )
This distance captures both center shift (translation) and scale mismatch at each layer. We then
normalize these raw distances across all layers using min-max scaling to obtain the alignment weight
w; € [0, 1]:
w0y = d; — min; .dl @)
max; d; — min; d
The weight w; reflects how strongly the features at block [ should be aligned: layers with minimal
shift receive near-zero weights (i.e., skip alignment), while those with high discrepancy are corrected
more aggressively.

Pass 2: Performing Weighted Feature Alignment. In the second forward pass, we reprocess the
batch through the model and apply WCT-based alignment at each block. Let the updated test-time
batch statistics be gt ; and 33, ;, which may be computed either from the current batch or from EMA
tracking (see Section 4.2). We then apply the whitening-coloring transformation:

Y, = (F — pe) S, P 4 pay 3)

In Eq. 3, we first whiten the test features by removing domain-specific variations using the target-
domain mean and the square root of its covariance matrix. We then re-color the features with the
source-domain covariance and mean to restore the geometry of the source distribution.

Instead of directly replacing the original feature with the aligned output, we blend them using the
previously computed weight:

F = (1—w)F +wY, &)
The combination of F; and Y; ensures that features are only shifted when necessary, maintaining
stability for well-aligned layers while correcting mismatched ones.

One of the main computational bottlenecks in our alignment lies in the operations on covariance
matrices, especially the computation of the matrix square root /2 and its inverse ©¥~'/2. To
perform this efficiently and stably, we use eigendecomposition tailored for symmetric positive semi-
definite (SPSD) matrices. Given a covariance matrix X, we first compute the eigendecomposition
3 = VAV, where V contains the eigenvectors and A contains the eigenvalues. The square root
and inverse square root are then computed as:

21/2 — VA1/2VT, 2—1/2 — VA—l/QvT (5)

This eigendecomposition simplifies the computation of the matrix square root and its inverse, effec-
tively avoiding the high computational burden of general matrix operations. Overall, our method in-
troduces minimal overhead: the eigendecomposition used for alignment is computationally efficient
due to the moderate feature dimensionality at each layer (typically 128 - 1024), and it is only applied
during the forward pass. Crucially, our approach is entirely gradient-free and model-agnostic — it
does not require backpropagation and task-specific tuning. All operations are performed on interme-
diate feature activations, allowing for seamless integration with a wide range of architectures (e.g.,
CNNs and ViTs) and low-latency deployment on resource-constrained devices.

4.2 ROBUST STATISTICS ESTIMATION VIA EMA

The effectiveness of the embedding alignment critically depends on the accurate estimation of
the target domain statistics (g, 3;). However, test-time deployment, especially on resource-
constrained devices equipped with limited memory, often necessitates small batch sizes (e.g., 64 or
fewer), resulting in unreliable statistical estimates when derived from a single batch. To mitigate this
issue, we maintain an Exponential Moving Average (EMA) strategy of the target feature statistics to
accumulates historical batches to yield a more stable and robust estimation over time. For each new
batch 7, the EMA is updated with a momentum parameter m:

(

i1
=(1-m) Ky )

tmmg, B =1-m) S 4 m sy, (6)

While EMA ensures stability, it can be slow to adapt to sudden and fast domain shifts, causing the
model to be anchored to outdated statistics. To solve this problem, we incorporate a spike domain
shift detection mechanism based on prediction entropy.
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Spike detection uses the model’s prediction confidence as a signal for detecting a domain shift. A
sudden drop in confidence (i.e., a sharp rise in entropy) often indicates that the model is encountering
a new, unfamiliar domain (Ma et al., 2025). We track an EMA of the batch average prediction
entropy, F.m,, and compare it to the instantaneous entropy of the current batch, H;. A spike is
flagged if the current entropy surpasses the historical average by a fixed threshold cy:

Spike if: H; > Fema + Oent )

If an entropy spike is detected, the EMA statistics (p14,;, 3¢;) are immediately reset to those of the
current batch. The detection module allows the model to rapidly adapt to the new data distribution,
ensuring both stability during gradual shifts and agility during abrupt ones. The EMA update is com-
putationally lightweight, involving only simple averaging per layer with negligible cost. Memory
usage is also minimal, requiring storage of just two small tensors per block.

4.3 DATA ENRICHMENT VIA LIGHTWEIGHT AUGMENTATION

To further enhance the estimation of the target batch distribution, we introduce a lightweight data
enrichment strategy based on simple and low-cost augmentations (Simonyan & Zisserman, 2014).
These augmentations include common geometric transformations such as horizontal flips, random
crops, and mild rotations. They are computationally inexpensive and preserve the semantic consis-
tency of the domain. For each input image, we generate K augmented views. This data augmenta-
tion is integrated into both forward passes during the online adaptation stage:

Pass 1: As described in Section 4.1, the first forward pass is used to estimate the layer-wise distribu-
tion discrepancy by computing the feature statistics of the current batch. To enhance the estimation
under small batch sizes, we apply augmentation to each image and process the resulting K -view
batch in the first forward pass. We then compute the alignment distance in Eq. 1 using this enriched
batch, which results in more robust and stable weight estimation for each layer.

Pass 2: The second forward pass performs the actual alignment using the WCT transformation
shown in Eq. 3. As in the first pass, we augment the batch into K views and apply the WCT align-
ment across all views. After obtaining K sets of aligned predictions, we aggregate them through
uniform averaging:

K
1 .
predg,, = Ve g logits,, ®)
k=1

The feature enrichment and ensembling not only improve the stability of embedding alignment but
also enhance final predictions by incorporating multiple complementary views of the data. Despite
introducing multiple views per input, the augmentations are lightweight and require no additional
model parameters or backward passes. As a result, the added cost is limited to repeated forward
passes with minor geometric transforms, making this approach highly efficient and practical even
on memory-constrained edge devices.

Fundamental Methodological Difference of PEA: Existing TTA methods typically update the
affine parameters of normalization layers through backpropagation, i.e., they adapt the model to fit
the shifted domains, using techniques such as entropy minimization and data augmentation. How-
ever, as discussed in (Press et al., 2024), the absence of ground-truth labels at test time often cause
embedding drifts over successive iterations, resulting in suboptimal performance or even leading to
catastrophic forgetting.

In contrast, our approach adopts a fundamentally different strategy: rather than modifying the model,
we align the shifted embeddings with the source distribution. This eliminates the need for backprop-
agation, ensuring that the original model parameters remain intact and robust, thereby completely
mitigating catastrophic forgetting.

5 EXPERIMENTS
5.1 DATASETS AND BASELINES

Datasets and Models. Following recent works in TTA (Shin & Kim, 2024; Niu et al., 2024), we
conduct a comprehensive evaluation across multiple datasets. Specifically, we use CIFAR10-C,
CIFAR100-C, and ImageNet-C, each of which introduces 15 common corruption types applied to



Under review as a conference paper at ICLR 2026

Table 1: Comparison of accuracy (%) on ImageNet-C using ViT-Base and ResNet-50 with memory
consumption on server. Aug and BP indicate whether the approaches utilize data augmentation and
backpropagation. In FOA, F specifies how many forward passes per batch.

Mem. Latency

Model  Aug BP Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. (MB)  (s/batch)
X X No Adapt 56.7 568 575 469 356 53.1 448 622 625 657 776 326 460 669 67.6 555 858 0.18
X v SAR 599 622 628 541 541 591 545 635 656 653 782 644 583 692 69.7 62.7 6181 0.59
X v Tent 57.1 581 592 447 432 56.6 506 628 605 652 780 597 498 682 68.6 58.8 6108 0.31
X v EATA 573 59.1 599 53.6 494 58.2 51.8 630 629 657 7718 62.0 557 658 687 60.7 6108 0.31
VIT X X FOA (F=27) 615 635 643 56.9 551 61.0 609 684 709 736 809 660 618 735 736 66.1 870 3.33
X X FOA (F=9) 60.5 63.1 639 546 485 60.4 572 668 69.6 715 809 666 559 729 728 64.3 870 1.25
4 4 CMF 600 612 609 566 568 624 608 693 679 727 788 652 694 738 720 65.9 10404 0.53
v v SPA 61.7 640 63.0 507 583 63.0 59.1 682 655 679 717 639 673 726 660 64.6 10902 0.50
X X PEA 577 584 589 532 504 59.8 604 69.1 687 729 802 635 699 720 720 64.5+0.0 887 0.31£0.1
v X PEA+Aug 612 615 621 556 524 614 621 704 707 745 809 658 717 734 736 66.5+0.1 1867 0.59+0.2
X X No Adapt 222 237 213 20.0 10.2 21.6 26.1 316 331 393 677 254 140 131 473 27.8 817 0.17
X v Tent 144 179 142 14.3 15.3 278 SIL1 419 436 598 694 274 453 442 464 B 5901 0.36
X v EATA 154 206 186 174 19.7 325 449 445 474 608 700 344 490 510 509 385 5965 0.36
X v MECTA 193 229 186 16.1 18.0 31.6 450 449 451 63.0 711 335 477 532 394 38.0 4425 0.50
ResNet X v EcoTTA 39 6.2 35 15 9.8 242 418 433 319 60.7 68.8 165 47.1 462 462 30.5 5177 0.63
X v L-TTA 168 240 226 12.1 16.7 233 336 420 448 573 66.7 166 435 494 478 345 3373 0.25
4 4 CMF 350 351 366 192 275 345 429 479 476 602 697 382 510 547 557 43.7 10413 0.38
X X PEA 226 250 220 260 231 373 482 497 487 648 735 511 530 433 522 427+0.1 983  0.36+0.2
v X PEA + Aug 262 283 258 275 248 38.8 496 513 504 656 740 524 551 479 541 44.8+0.2 2397 0.56+0.2

the original test sets. We adopt the most severe corruption level (severity = 5) and batch size of
64 throughout all experiments. To simulate a realistic online domain shift scenario, we follow the
lifelong continual test-time adaptation setting in CoTTA (Wang et al., 2022; Niu et al., 2022), where
corrupted samples are streamed sequentially at test time. Compared to always adapting each domain
from the source domain, our continual setting is more realistic and challenging.

For backbone models, we adopt both ResNet-50 (He et al., 2016) and ViT-Base (Dosovitskiy et al.,
2020) on the ImageNet-C and CIFAR100-C datasets. For CIFAR10-C, we evaluate using ResNet-50
and ViT-Tiny to account for the dataset’s smaller scale. This diverse selection demonstrates that our
method generalizes effectively across both CNN and Transformer-based architectures.

Baselines. We compare our proposed PEA with several efficient TTA approaches as well as state-
of-the-art performance-driven methods. For efficient CNN-based TTA, we include EcoTTA (Song
et al., 2023), MECTA (Hong et al., 2023), and L-TTA (Shin & Kim, 2024). For ViT-specific adap-
tation, we evaluate FOA (Niu et al., 2024), which performs forward-only prompt optimization. We
also evaluate entropy minimization-based methods including Tent (Wang et al., 2020), EATA (Niu
etal., 2022), and SAR (Niu et al., 2023). Finally, we include recent state-of-the-art approaches based
on pseudo-labeling and data augmentation: CMF (Lee & Chang, 2024) and SPA (Niu et al., 2025)".
Details of the implementation and additional clarifications are provided in Appendix C.

5.2 MAIN RESULTS ON IMAGENET-C

Table 1 presents the classification accuracy and variation (averaged over 5 runs with different random
seeds) for each domain, together with the memory consumption and per-batch inference latency
measured on the server.

For ViT-Base, without adaptation, the baseline ViT model achieves an average accuracy of 55.5%.
Although existing methods such as Tent (Wang et al., 2020) and EATA (Niu et al., 2022) offer
moderate improvements to 58.8% and 60.7%, they incur substantial memory overhead (more than
6 GB) due to backpropagation-based updates. More recent backprop-free method FOA (Niu et al.,
2024) and SOTA SPA (Niu et al., 2025) achieve stronger accuracy (up to 66.1% and 64.6%) but
with high latency (up to 3.33s) or memory consumption (over 10 GB). By contrast, our PEA achieves
64.5% accuracy with only 887MB of memory and 0.31s latency. When combined with augmentation
(PEA + Aug), performance further improves to 66.5%, surpassing FOA with better latency. This
demonstrates that PEA not only provides competitive accuracy but also delivers exceptional memory
and latency efficiency, making it highly suitable for real-time or on-device deployment.

For ResNet-50, TTA baselines such as Tent, EATA, and CMF improve performance to up to 43%,
but again at the cost of large memory (more than 5.9 GB) and higher compute demand. PEA out-
performs all low-cost adaptation methods with an average accuracy of 42.7%, using only 983MB of
memory. With augmentation, it reaches 44.8%, outperforming all existing backprop-free methods
like EcoTTA and L-TTA by a large margin.

!The SPA results reported in the original paper are obtained under a single-domain adaptation setting, where
the model is reset before each corruption. In our experiments, we use a more challenging lifelong TTA setting,
where the model adapts continuously across all domains without reset.
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Table 2: Adaptation accuracy (%) on CIFAR10-C and CIFAR100-C using ViT and ResNet.

Method
Model Dataset G Adapt SAR Tent EATA FOA (F=27) CMF SPA  PEA  PEA +Aug
vir  CIFARIO-C 765 758 162 765 833 833 762 837+00  84.7+0.0
CIFARI00-C 616 613 612 616 68.0 730 717 757%02  77.00.1
Dataset No Adapt Tent EATA MECTA EcoTTA L-TTA CMF PEA PEA + Aug
ResNet  CIFAR10-C 625 812 813 820 80.2 812  78.6 82300  83.4%0.1
CIFARI00-C 335 492 500 497 45.6 509 488 53.9:0.0  54.60.1

Table 4: Evaluation on Jetson Orin Nano using CIFAR100-
C with batch size of 64. Methods marked as incompatible
Table 3: Results on small batch sizes (X) fail due to insufficient memory on the target device (3.5
on CIFAR100-C and ImageNet-C. GB). Memory requirements for them are shown in Table 1.

Accuracy (%) ViT-Base | ResNet-50
Datasets Model
BS=4 BS=16 BS=64 Method Latency (s/batch) Memory (MB) ‘ Method Latency (s/batch) Memory (MB)
ResNet-50 518 54.0 54.6 No Adapt 35 901 No Adapt 0.9 810
CIFAR100-C VIiT-B 70.0 757 770 SAR X X Tent X X
11-base - : : Tent X X EATA X X
ImageNet-C ResNet-50 41.7 44.0 44.8 EATA X X MECTA X X
g - ViT-Base 63.3 65.8 66.5 FOA (F=9) 98.9 920 EcoTTA X X
CMF X X L-TTA 1.4 3249
SPA X X CMF X X
PEA 4.1+0.2 1011 PEA 3.0+0.1 976
PEA + Aug 9.8+0.3 2322 PEA + Aug 7.240.2 2388

Efficiency and Accuracy Trade-off: Our approach achieves a highly favorable balance between ro-
bustness and efficiency. Unlike backpropagation-based TTA methods, PEA delivers strong adap-
tation performance while consuming significantly less memory and maintaining low latency. This
lightweight yet effective design makes PEA highly suitable for practical deployment, especially in
resource-constrained devices or real-time systems, we will further discuss it in Section 5.5.

5.3 RESULTS ON CIFAR10-C AND CIFAR100-C

We also evaluate the performance of PEA on the CIFAR10-C and CIFAR100-C using both ViT and
ResNet. As shown in Table 2 (for more details see Section D.1), PEA consistently outperforms
existing TTA approaches. Notably, under the ViT backbone, PEA achieves 77.0% accuracy on
CIFAR10-C and 84.7% on CIFAR100-C when lightweight augmentation is applied, substantially
outperforming augmentation-based baselines like CMF and SPA. Even without augmentation, PEA
attains competitive results (75.7% and 83.7%), demonstrating its intrinsic robustness. Similar trends
are observed with the ResNet backbone, where PEA achieves 83.4% on CIFAR10-C and 54.6% on
CIFAR100-C, again outperforming strong baselines including MECTA, EcoTTA, and L-TTA.

In addition, we observe that augmentation-based methods such as CMF and SPA show relatively lim-
ited gains on these small-scale datasets compared to their performance on larger dataset ImageNet-C.
This suggests that excessive reliance on augmentation alone may not generalize well across dataset
scales. In contrast, PEA demonstrates strong generalization across both model architectures and
dataset types. Importantly, it achieves this without updating any model parameters and is entirely
backprop-free, making it naturally compatible with both CNN and Transformer architectures.

5.4 RESULTS ON SMALL BATCH SIZE

Table 3 presents the performance of our method under varying batch sizes (BS =4, 16, 64) on both
CIFAR100-C and ImageNet-C, using ResNet-50 and ViT-Base. We observe that while accuracy
slightly drops as the batch size decreases, our method retains high performance even under very
small batches. On CIFAR100-C, the ViT-Base model achieves 77.0% with BS=64 and maintains a
strong 70.0% even with BS=4, a modest 7.0% drop. In contrast, the ResNet-50 model sees a smaller
absolute decline (from 54.6% to 51.8%), but its overall accuracy remains much lower. A similar
trend is observed on ImageNet-C, where ViT-Base drops by 3.2% and ResNet by 3.1%. As shown
in Table 8 in Appendix D.3, our method performs better than other baselines.

5.5 EVALUATION ON EDGE DEVICE

To assess practical deployability, we evaluate the system performance on the Jetson Orin Nano, a
resource-constrained edge device with 8 GB of shared memory, only 3.5 GB of which is accessible
to deep learning applications due to OS and system overhead. We test all methods under a default
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setting with batch size 64 on CIFAR100-C. Table 4 reports both the latency (in seconds per batch)
and peak memory usage (in MB) for ViT-Base and ResNet-50 backbones.

Due to limited memory, many TTA methods fail to run on-device, especially those requiring back-
propagation (e.g., Tent, EATA, MECTA, SAR). In contrast, our method (PEA) successfully runs on
both backbones, maintaining reasonable latency (4.1s for ViT, 3.0s for ResNet) and modest mem-
ory usage (1011MB and 976MB, respectively). With augmentation enabled, performance trade-offs
increase modestly, but still remain within edge constraints. While both FOA and L-TTA are com-
patible with edge devices, FOA incurs extremely high latency, rendering it impractical for real-time
applications. In contrast, L-TTA is fast but consistently underperforms in accuracy across all three
datasets, as discussed in Section 5.2 and 5.3. Notably, the forward-only design of PEA ensures com-
patibility with edge settings, where low memory footprint and gradient-free inference are critical,
showing its strong potential for real-world deployment without sacrificing adaptation effectiveness.

5.6 ABLATION STUDY
We conduct an ablation study to quantify the con-
Table 5: Ablation study of PEA using ViT-Base tribution of each major component in PEA using

model on CIFAR100-C and ImageNet-C. the ViT-Base model on both CIFAR100-C and
ImageNet-C. Table 5 summarizes the incremental

Ablation Acc. (CIFARI00-C) _ Ace. (ImageNer.C)  performance improvements by the proposed com-

No Adapt 616 555 ponents. Starting from the unadapted baseline,

Cov Align Only 67.0 252 introducing only the covariance alignment mod-
+“?ei\:|f:§fgf'§MA ?23 242;:2 ule (Cov Align Only) brings a significant gain
+ Weighting, EMA, Aug 71.0 60.5 on CIFAR100-C (from 61.6% to 67.0%), demon-

strating that aligning feature second-order statis-
tics is a strong and lightweight signal for domain correction. However, this setting results in a sharp
drop on ImageNet-C (down to 25.2%), due to over-alignment across all layers. Since ImageNet is
more challenging and features greater domain complexity, the per-batch estimation of target distri-
bution becomes less reliable, leading to misaligned feature transformations.

Adding the layer-wise distance-based weighting mechanism (+ Weighting) mitigates the misalign-
ment on ImageNet-C, boosting performance from 25.2% to 52.9%. This highlights the importance
of selectively applying alignment only to blocks that exhibit significant distributional shift. The im-
provement on CIFAR100-C is more modest but still positive, suggesting that the weighting scheme
contributes to robustness across datasets. Incorporating exponential moving average (EMA) for
estimating test-time statistics (+ Weighting, EMA) provides a large boost in both datasets (75.7%
on CIFAR100-C and 64.5% on ImageNet-C). The EMA strategy accumulates stable statistics over
time, which is especially beneficial when the test-time batch size is small or noisy. This component
ensures the alignment is based on reliable statistics rather than volatile per-batch estimates. Finally,
adding data enrichment via lightweight augmentations (+ Weighting, EMA, Aug) yields the high-
est accuracy 77.0% on CIFAR100-C and 66.5% on ImageNet-C. The multiple views not only help
stabilize the estimation of target statistics, but also improve final predictions via ensemble averaging.

Overall, each component contributes complementary benefits to the final performance, and their
combination enables PEA to maintain high accuracy under diverse corruptions while being
backprop-free and resource-efficient. See Appendix D.4 for more hyperparameter evaluations.

6 CONCLUSION

This work begins by revisiting the impact of domain shift on intermediate model embeddings, identi-
fying three core transformations: mean shift (translation), variance shift (scaling), and channel-wise
covariance shift (rotation), which systematically distort the feature space across layers. Motivated
by this insight, we propose PEA, a lightweight, backpropagation-free, and architecture-agnostic
test-time adaptation approach that progressively aligns embeddings through layer-wise covariance
correction using only two forward passes. Experiments across 3 datasets, including evaluations
on resource-constrained edge devices, demonstrate that PEA achieves state-of-the-art accuracy and
efficiency, offering a practical and generalizable solution for robust real-world deployment.

Limitations. While PEA offers a lightweight, backpropagation-free solution that generalizes across
model architectures, the effectiveness of feature alignment relies on the quality of the estimated
target domain statistics, which can be noisy when batch sizes are extremely small (e.g., 1) or class
distributions are highly imbalanced. Although we mitigate this with EMA, extreme scenarios may
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still lead to suboptimal correction. In addition, our method requires extracting source statistics from
training dataset prior to deployment. While this is acceptable under TTA setting (Song et al., 2023;
Niu et al., 2024), such source statistics may not always be available in certain practical scenarios.

7 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with direct
societal or ethical risks. The datasets used in our experiments are publicly available benchmarks
that have been widely adopted in the research community. We believe the contributions of this paper
align with the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets employed in this
study are publicly available and described in the main text. Detailed descriptions of model architec-
tures, hyperparameters, and training protocols are provided in the paper and appendix. Furthermore,
we provide pseudocode and implementation details in the appendix, and the complete source code
will be made available if the paper is accepted.
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Figure 2: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize
the features of class plane, dog and frog in Domain Fog across ViT block 1 to block 9.

A  DOMAIN SHIFT IN THE EMBEDDING SPACE

As discussed in Section 3, domain shifts manifest as structural distortions in the intermediate fea-
ture space of deep models. These distortions—namely mean shift, variance shift, and covariance
shift—occur consistently across all layers of the network. In this section, we provide additional
empirical evidence to support this analysis by visualizing feature distributions under domain shift
using ViT models on CIFAR10-C.

Visualization of Feature Shift Across Layers and Domains. We conduct a detailed visualiza-
tion of intermediate features extracted from ViT blocks 1 through 9 on two corruption types from
CIFARI10-C: Fog and Gaussian Noise. We focus on three representative classes—plane, dog,
and frog—to illustrate how domain shift affects the geometry of class embeddings at different depths
of the model.

Figures 2, 3 and 4 show the progressive deformation of class-wise embeddings under these two
corruption domains. These results complement our earlier analysis and reveal consistent patterns
across domains and layers.

From the visualizations, we observe that: 1) All layers are affected by geometric distortions. Across
all blocks, we observe consistent evidence of (i) mean shift, where class centers drift from their
source positions; (ii) variance shift, indicated by altered spread and scale of feature clusters; and
(iii) channel-wise covariance shift, where the orientation and shape of the clusters change due to
altered inter-channel relationships; 2) The severity of distortion varies across layers. Different layers
exhibit different sensitivities to each type of transformation; 3) Different domains impact features
in distinct ways. Although both Fog and Gaussian Noise induce all three types of shifts,
the degree and pattern of deformation vary. This reflects the domain-specific characteristics of the
corruption types—e.g., Fog tends to cause smoother global drifts, while Gaussian Noise leads
to more irregular scatter.

Moreover, in domains such as Fog, which are relatively easy to adapt, the transformations at deeper
layers are more faithful than at shallow layers, suggesting the architecture can progressively correct

13
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Figure 3: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize
the features of class plane, dog and frog in Domain Gaussian Noise.

the shift as features propagate. In contrast, in domains such as Gaussian Noise, deeper layer
features deteriorate (pronounced scaling shrinkage and rotation), indicating that domain character-
istics strongly shape the final representations and can hinder self-correction in depth.

These insights reinforce the central hypothesis of our work: domain shift induces systematic, layer-
wise geometric transformations in the embedding space. They also motivate our proposed method,
which explicitly corrects such distortions through progressive covariance alignment at each interme-
diate block.

Visualization of Feature Shift on CIFAR100-C. To further validate that the observed structural
shifts in embedding space are not specific to CIFAR10-C, we extend our visualization to CIFAR100-
C. We select three representative classes—pine tree, bicycle, and bee—from the CIFAR100-C
dataset and examine their intermediate representations under domain shift caused by Shot Noise,
a common corruption in CIFAR100-C. The results are shown in Figure 5.

Similar to the patterns observed in CIFAR10-C, we find that domain shift consistently induces sys-
tematic geometric transformations in the embedding space: mean shift (translation), variance shift
(scaling) and covariance shift (rotation). While the inter-class topology is often preserved, these
structural distortions displace features away from the decision boundaries, ultimately degrading
classification performance. In particular, even though class relationships remain recognizable, the
shifted features can no longer be correctly classified due to their increased distance from the source-
aligned classification regions.

These shifts manifest across multiple blocks of the ViT model, reinforcing our claim that domain
shift affects not only the output layer but also the intermediate representations in a systematic and
structured manner. The consistency of these patterns across both CIFAR10-C and CIFAR100-C
highlights the generality of our observation and motivates the need for intermediate-layer realign-
ment strategies, such as the one introduced in PEA.

14
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Figure 4: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize

the features of class plane, dog and frog in Domain Defocus Blur.
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Algorithm 1 PROGRESSIVE EMBEDDING ALIGNMENT (PEA)

Require: source stats {51, 3}, test batch X, views K

Pass 1: Estimate alignment weights
Augment input: X,,, = Augment(X, K)
Extract block features Fj; compute alignment weights w; using Eq. 1 and Eq. 2

Pass 2: Align and predict
Extract Fy from X
for each block [ do

Update p;, 334 ; with EMA (Eq. 6)

Apply covariance alignment: Y; = (F; — utﬁl)E;ll/QE‘;/lQ + s, // Eq.3
9:  Fuse: F/ = (1 —w)F +wY; // Eq.4
10: end for
11: Compute logits for all views: logits;, = Classifier(Z,)
12: Final prediction: predg,, = % Zle logits,, // Eq.8
13: return predg,,

P N hH W

B PSEUDO CODE

To clarify the workflow of our PEA, we present its pseudo-code in Algorithm I, which outlines the
step-by-step process of progressively aligning domain-shifted features toward the source distribution
during test-time adaptation.

C IMPLEMENTATION DETAILS

We use a default batch size of 64 for all evaluations, consistent with prior works (Niu et al., 2022;
Lee & Chang, 2024). All methods are implemented and tested on a server equipped with NVIDIA
A5000 Ada GPU. To evaluate the feasibility of deployment under real-world constraints, we also
compare PEA with efficient TTA baselines on an edge device: the Jetson Orin Nano, which includes
a Cortex-A78 AE CPU and an 8 GB shared RAM mobile GPU.

For our PEA, we set the EMA momentum to m = 0.02 to ensure a stable yet responsive estimate of
feature statistics. To detect domain shifts, we use an entropy spike threshold 6., = 1.0; when this
is exceeded, the EMA statistics are reset. We tested EMA momentum values of 0.01, 0.02, 0.05, 0.1
and found the performance to be robust, with accuracy fluctuations of at most 1% (see D.4). For
augmentation, we use random horizontal flips and random resized crops (scale = 0.9). Each input
generates K = 2 augmented views, which, combined with the original, produce 3 views used for
prediction ensembling. Since the augmentation is an optional technique based on the available mem-
ory, we also report the results without augmentation. All other hyperparameters, such as learning
rates and optimization settings for baseline methods, are taken from their official implementations
to maintain fair comparison conditions. Note that we use prior works’ original implementations
without modification to ensure fair assessment of each method’s realistic resource requirements.

Clarification of SPA. For SPA, although the paper (Niu et al., 2025) claims that it can generalize
to both CNNs and ViTs, the official code provided by the authors includes only the ViT implemen-
tation. Consequently, we report comparisons with SPA only on ViT. As shown in Table 1, while
SPA achieves competitive performance, it incurs extremely high memory consumption (exceeding
10GB), making it impractical for efficiency-driven applications.

D FURTHER DETAILS FOR EVALUATION

D.1 DETAILED RESULTS ON CIFAR10-C AND CIFAR100-C
While the main paper (Table 2) reports average adaptation performance across the 15 corruption

types of CIFAR10-C and CIFAR100-C, we provide the full per-domain performance in this appendix
to offer a more granular view of model robustness.
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Table 6: Detailed accuracies (%) on CIFAR10-C.

Model Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg.
No Adapt 438 498 693 82.1 710 823 846 91.8 895 875 955 834 832 518 814 765

SAR 454 547 700 819 698 81.7 839 890 875 836 933 832 817 515 795 758

Tent 43.8  50.1  69.6 816 712 82.6 846 917 89.7 880 952 805 835 49.0 816 762

EATA 43.8 498 693 82.1 710 823 846 91.8 895 875 955 834 832 51.7 8l4 765

VIiT FOA (F=27) 627 71.6 775 882 764 87.7 91.1 916 909 89.1 952 8.3 8.2 765 813 833
FOA (F=9) 609 69.8 759 876 732 85.7 904 914 902 89.6 951 849 845 682 805 819

CMF 662 716 7Ll 878 756 87.5 90.5 89.6 905 881 948 863 833 833 832 833

SPA 723 792 618 80.3  69.8 78.9 857 804 852 70.1 915 727 70.1 699 749 762

PEA 619 660 77.8 885 714 88.3 90.7 919 915 899 955 869 856 81.7 820 837

PEA + Aug 645 683 802 88.6 788 88.4 904 928 926 90.6 958 87.1 865 83.1 826 847

No Adapt 342 395 262 66.5  48.6 62.9 703 858 802 847 930 81.0 713 244 694 625

TENT 639 685 65.1 89.1 674 87.4 90.5 877 864 902 939 914 806 832 722 812

EATA 639 684 65.1 893 693 87.4 90.5 874 868 904 938 914 808 829 720 813

MECTA 649 692 649 89.6 694 88.2 922 881 878 909 946 926 8I1.1 835 732 820

ResNet EcoTTA 639 680 6.8 887 674 873 90.6 873 867 90.8 939 915 795 831 629 802

L-TTA 644 689 64.0 88.7 693 87.1 903 874 870 90.0 933 905 80.6 840 729 812
CMF 703 756  69.6 76.5 683 76.6 81.5 824 829 847 895 873 764 818 764 78.6
PEA 655 69.1 732 884  69.8 86.7 91.1 892 889 919 946 934 809 783 733 823

PEA + Aug 683 720 756 89.1 712 874 912 895 893 923 950 938 820 797 746 834

Table 7: Detailed accuracies (%) on CIFAR100-C.

Model Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg.
No Adapt 420 424 541 73.1 47.5 72.8 750 805 79.7 571 86.0 440 645 477 575 61.6

SAR 429 445 54.0 73.3 47.6 73.0 749 795 79.1 53,6 854 463 639 469 554 613

Tent 42,6 434 548 73.4 47.2 73.0 752 803 795 543  86.0 39.8 644 468 572 612

EATA 425 438 54.5 732 479 73.0 750 80.1 79.7 556 857 420 65.1 489 572 616

FOA (F=27) 435 490 553 743 553 75.8 785 81.0 819 760 872 762 701 556 60.7 68.0

Vit FOA (F=9) 445 485 528 735 505 74.5 78.0 805 808 753 872 754 700 551 613 672
CMF 56.5 653  66.0 770  61.1 76.4 795 810 817 77.8 86.1 829 69.6 687 657 730

SPA 624 708 74.0 742 522 77.8 792 775 813 748 860 843 61.7 534 655 717

PEA 62.1 648 715 812 659 80.0 826 827 83.6 821 874 864 707 708 644 757

PEA + Aug 643 672 742 819 675 80.6 830 839 844 832 879 868 723 727 656 710

No Adapt 125 140 8.8 34.5 16.7 36.5 428 534 464 520 685 394 357 94 324 335

TENT 289 307 297 604 319 57.1 632 556 541 612 695 654 464 471 374 492

EATA 293 321 300 60.7 327 574 638 564 550 61.6 702 662 475 486 388 50.0

MECTA 302 339 293 584 323 55.7 63.1 557 549 608 700 644 473 492 405 497

ResNet EcoTTA 177 223 188 60.5  23.8 57.1 635 557 519 607 706 659 413 439 300 45.6
L-TTA 308 344 312 57.8 343 56.1 63.1 570 57.0 617 70.1 649 48,6 537 425 509

CMF 386 445 375 45.8 377 46.0 531 527 535 530 632 584 468 540 46.8 488

PEA 343 357 382 634 391 59.8 66.8 60.1 598 657 744 684 500 51.6 411 539

PEA + Aug 355 369 391 640 39.8 60.8 671 607 604 66.6 747 687 515 523 412 54.6

Table 6 presents the detailed results on CIFAR10-C. Our method, PEA, consistently outperforms
prior baselines across most corruption types for both ViT and ResNet backbones. Notably, PEA
+ Aug achieves the highest overall accuracy, benefiting from robust alignment and enriched feature
diversity. The improvement is especially pronounced under severe corruptions such as impulse noise
and pixelate, where domain shifts are more extreme.

Table 7 shows the corresponding breakdown for CIFAR100-C. Similar trends are observed: PEA and
its augmented variant deliver consistent gains across nearly all corruption types. On both ViT and
ResNet, PEA + Aug achieves the best performance on most corruptions, highlighting the strength
of our progressive alignment and augmentation strategy.

These detailed results further demonstrate that our method generalizes well across a wide range
of perturbation types, offering both strong average performance and consistent robustness under
diverse corruption scenarios.

D.2 VISUALIZATION OF THE ALIGNED FEATURES

To better understand how our proposed PEA progressively corrects domain shifts across layers, we
visualize the intermediate embeddings of three representative classes—pine tree, bicycle, and bee
from CIFAR100-C under the Contrast corruption. The upper row of Figure 6 shows the feature
distributions of the source (circle markers) and shifted domain samples (triangle markers) at three
representative layers (block1, block6, and block11), along with their respective class centroids (stars
for source and hexagons for domain). The visualizations clearly reveal that the domain features drift
away from the source distributions in all intermediate layers, manifesting as embedding translation,
scaling, and rotational shifts.

The lower row presents the domain features after applying our adaptation approach. We observe that
the domain clusters become progressively more compact and align closely with the source clusters,
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Figure 6: Visualization of intermediate embeddings before and after PEA adaptation on CIFAR100-
C. We display the features of the pine tree, bicycle, and bee classes under the CIFAR100-C Contrast
corruption.

Table 8: Detailed accuracies (%) under batch size of 4.

Model Method
ViT-Base No Adapt  SAR Tent EATA FOA (F=9) CMF SPA PEA
) 55.5 63.0 620 62.2 62.0 620 626 633
ResNet.so NoAdapt  TENT EATA MECTA  EcoTTA  L-TTA CMF PEA
27.8 1.7 18.5 28.2 1.2 345 176 417

and the class centroids from the two domains converge. Notably, by the final block (blockl11),
the previously shrinking domain features are largely pulled back to their original source positions.
These results demonstrate that PEA can systematically reduce the three types of distortions across
and successfully realign the feature spaces to the source distribution.

D.3 SMALL BATCH SIZE COMPARISON

Table 8 provides a detailed comparison of PEA against existing TTA baselines under a severely con-
strained setting (batch size = 4). While conventional entropy-minimization methods such as SAR,
Tent, and EATA provide consistent improvements around 62%, and FOA (F = 9) reaches similar
accuracy, our method further improves performance to 63.3%. For the ResNet-50 backbone, the
difference between methods is even more striking. Without adaptation, the baseline model achieves
27.8% accuracy. Most entropy-minimization methods either fail or perform poorly. While MECTA
and L-TTA achieve moderate improvements, they still lag behind our method, which attains 41.7%.

The primary reason for the failure on ResNet is that most existing TTA baselines rely on updat-
ing BatchNorm (BN) statistics. This process requires sufficiently large batch sizes to estimate sta-
ble mean and variance values; otherwise, the updates become noisy and cause severe performance
degradation. Under small-batch regimes, such as those common on edge devices, these baselines
therefore collapse in accuracy. In contrast, PEA avoids this limitation by not depending on BN up-
dates or backpropagation. Instead, it realigns embeddings using pre-computed source statistics and
lightweight covariance alignment, which remain stable even with very small batches. This design
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Table 9: Effect of momentum m and entropy threshold 6, on average accuracy (%) on CIFAR100-
C. Each cell reports accuracy with the average number of entropy spikes in (-).

m | Accuracy (%) (Spikes) vs. ent

| 0.5 0.8 1.0 1.5

0.01 | 753(16) 7549 75.0(7) 74.6(2)
0.02 | 75.7(17) 758(9) 755(5) 75.5(2)
0.05 | 75.7(17)  75.7(6) 75.7(3) 75.7(2)
0.10 | 754 (17) 753(8) 754(2) 753 (1)

makes PEA inherently more robust under constrained batch sizes, ensuring consistent performance
across both CNN and ViT backbones.

D.4 MORE RESULTS OF ABLATION STUDY

We further analyze the sensitivity of our method to the two hyperparameters: the EMA momentum
m, which controls the update rate of domain statistics, and the entropy threshold 6y, which is
used for detecting distribution shifts. To this end, we sweep a range of values for both parameters
and report the average accuracy across the 15 CIFAR100-C domains, together with the number of
entropy spikes triggered during evaluation, as shown in Table 9.

The results show that very small momenta (e.g., m = 0.01) underperform with accuracies around
75.0-75.4%, while moderate values of m = 0.02-0.05 consistently achieve the best performance
(75.5-75.8%). Larger momentum (m = 0.10) again reduces accuracy to about 75.3-75.4%. For the
entropy threshold, low values such as 6, = 0.5 lead to frequent resets (1617 spikes), whereas high
values like 6., = 1.5 almost disable resets (1-2 spikes). Accuracy remains stable across thresholds
with differences within 1%, but excessively low thresholds slightly degrade performance due to too
many resets, while overly high thresholds risk ignoring meaningful shifts. The balanced setting of
Oent = 0.8-1.0 achieves both high accuracy (75.5%-75.8%) and moderate spike counts.

In conclusion, our method is not highly sensitive to these hyperparameters, with accuracy variation
contained within about 1%. For all main experiments, we adopt m = 0.02 and ., = 1.0 as they
provide the best trade-off between responsiveness and stability.

E USE OoF LLM IN THIS PAPER

We emphasize that large language models (LLMs) were used solely for polishing the writing and
improving readability. No part of the technical content, experimental design, analysis, or results
relied on LLM-generated material. All research ideas, implementations, and evaluations are original
to the authors.

F DOMAIN SHIFT IN RESNET EMBEDDING SPACE

In this section, we illustrate that the embedding-space shift for ResNet is consistent with that ob-
served in ViT. We visualize the embedding space of ResNet-50 on CIFAR10-C and observe the
same systematic shifts in mean, variance, and channel-wise covariance across layers. Specifically,
Figure 7 and Figure 8 show the Zoom Blur and Frost domains, respectively, where the embedding
shifts closely match those seen in ViT, indicating that the effect is driven by domain shift rather
than architectural design. This aligns with our experimental results, where PEA also improves CNN
backbones (ResNet-50) on CIFAR10-C/100-C and ImageNet-C.

G MIXED-DOMAIN EMBEDDING SHIFT VISUALIZATION
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Figure 7: Impact of domain shift on intermediate layer embeddings using CIFAR100-C. We visu-
alize the features in Domain Zoom Blur for ResNet-50.
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Figure 8: Impact of domain shift on intermediate layer embeddings using CIFAR100-C. We visu-
alize the features in Domain Frost for ResNet-50.
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Figure 9: Impact of mixed domains on intermediate-layer embeddings on CIFAR100-C. We visu-
alize ViT-Base features for 3 classes.

To better understand why PEA remains effective under the mixed-domain scenario, we visualize
the intermediate embeddings of ViT-Base on CIFAR100-C in a mixed-domain setting. Specifically,
we construct a mixed CIFAR100-C stream where all 15 corruptions (severity 5) are combined and
shuffled, so that each batch contains samples from multiple domains. For a subset of 3 classes, we
extract features from 9 ViT blocks (from shallow to deep) and jointly project the clean and mixed-
domain embeddings. Figure 9 shows the resulting embeddings for all 9 blocks.

As expected, compared to the clean case, mixed-domain embeddings exhibit lower intra-class com-
pactness and increased spread, since each class now aggregates samples from heterogeneous cor-
ruptions. However, the key observation is that the distortion is still highly systematic across layers.
This matches our hypothesis that domain shift, even when composed of multiple human-defined
“domains” (fog, snow, blur, etc.), induces a geometric shift in the embedding space.
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