
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ARCHITECTURE-AGNOSTIC TEST-TIME ADAPTATION
VIA BACKPROP-FREE EMBEDDING ALIGNMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Test-Time Adaptation (TTA) adapts a deployed model during online inference to
mitigate the impact of domain shift. While achieving strong accuracy, most exist-
ing methods rely on backpropagation, which is memory and computation inten-
sive, making them unsuitable for resource-constrained devices. Recent attempts
to reduce this overhead often suffer from high latency or are tied to specific ar-
chitectures such as ViT-only or CNN-only. In this work, we revisit domain shift
from an embedding perspective. Our analysis reveals that domain shift induces
three distinct structural changes in the embedding space: translation (mean shift),
scaling (variance shift), and rotation (covariance shift). Based on this insight, we
propose Progressive Embedding Alignment (PEA), a backpropagation-free and
architecture-agnostic TTA approach. By applying a novel covariance alignment
procedure at each intermediate layer, PEA efficiently corrects the embedding dis-
tortions with only two forward passes. Extensive experiments demonstrate that
PEA achieves state-of-the-art performance in both accuracy and efficiency, while
also proving versatile across different architectures including ViTs and CNNs.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of computer
vision tasks (Pouyanfar et al., 2018). However, their performance often degrades significantly under
distribution shifts between the training data and unseen test data - a challenge that frequently arises in
real-world and real-time applications (Koh et al., 2021; Sun et al., 2022). To address this limitation,
DNNs must be able to adapt effectively to such shifts. Test-time adaptation (TTA) (Liang et al.,
2025) has recently emerged as a promising paradigm, enabling a pretrained model to be fine-tuned
on-the-fly using unlabeled test batches as they arrive during inference. By continually adjusting
to new data distributions, TTA mitigates the performance degradation caused by domain shifts and
enhances the robustness of deployed models.

Most mainstream TTA approaches rely on either pseudo-labeling or entropy minimization. Pseudo-
labeling (Wang et al., 2022; Marsden et al., 2024; Lee & Chang, 2024) is a self-supervised strategy
that assigns provisional labels to the current test batch and updates the model based on these label
estimations. In contrast, entropy minimization (Wang et al., 2020; Niu et al., 2022; 2023) is an
unsupervised method that encourages the model to produce more confident predictions directly from
unlabeled data. Despite their effectiveness, both approaches suffer from a fundamental drawback:
they depend on backpropagation. Specifically, they require backward passes and gradient storage
across multiple layers during adaptation, which introduces substantial computational and memory
overhead. This reliance makes them unsuitable for deployment in resource-constrained settings,
such as edge devices or real-time applications. Recent methods like SPA and CMF cannot deploy
on edge devices due to exceeding 10GB memory requirements (Table 1).

To mitigate the inefficiency of backpropagation, several recent studies have proposed lightweight
alternatives via reducing the overhead of gradient-based updates. For example, MECTA (Hong
et al., 2023) combines model pruning with entropy minimization to reduce gradient computation.
EcoTTA (Song et al., 2023) replaces heavy convolutional blocks with lightweight meta-networks to
lower backpropagation costs. Similarly, L-TTA (Shin & Kim, 2024) observes that shallow layers
contribute most to adaptation and thus restricts updates to the stem layers, simplifying the process.
More recently, some methods attempt to remove backpropagation altogether. FOA (Niu et al., 2024),
for instance, performs derivative-free prompt search for Vision Transformers (ViTs) (Dosovitskiy
et al., 2020), thereby eliminating backward passes and reducing memory usage. However, FOA still
incurs high latency, as achieving competitive accuracy requires a large number of forward passes
(e.g., 27).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A second major limitation of existing efficient TTA methods lies in their lack of architectural gener-
ality. While full backpropagation-based approaches are broadly applicable to both CNNs (He et al.,
2016) and Transformers (Vaswani et al., 2017), most efficient variants are narrowly tailored. For
instance, FOA is designed exclusively for ViTs via prompt tuning and cannot be applied to CNNs.
Conversely, methods like EcoTTA and MECTA are tailored to ResNet-style CNNs that rely on batch
normalization layers, rendering them ineffective for Transformer architectures.

In this paper, we introduce PEA, a backpropagation-free and architecture-agnostic method for
efficient TTA. Our approach is motivated by a principled analysis of how domain shifts distort inter-
mediate feature representations. Specifically, our analysis reveals that features from shifted domains
consistently diverge from source-domain features through three structural transformations: (i) mean
shift, which displaces global feature centroids, analogous to a translation of the distribution; (ii)
variance shift that modifies the spread of features and inter-class spacing, corresponding to scal-
ing, and (iii) channel-wise covariance shift, which modifies inter-feature correlations, effectively
rotating the feature space and reorienting class relationships.

Grounded in these observations, PEA progressively aligns feature covariances at each model block
during inference, thereby enhancing the quality of final-layer representations and improving pre-
diction reliability. Specifically, PEA implements a two-forward-pass procedure: the first pass iden-
tifies the layer-wise shifts, and then, based on these shifts, assigns weights for each block to im-
plement a covariance alignment across all layers’ embeddings. Unlike prior methods, PEA is both
backpropagation-free and architecture-agnostic, making it applicable to both CNNs and Transform-
ers. This provides a unified and efficient solution to TTA. Our main contributions are as follows:

• Our analysis of intermediate embeddings uncovers the essence of domain shifts, which can be
characterized as translations, scalings, and rotations of the embedding space.

• We propose PEA, an approach that adapts using only two forward passes per batch without back-
propagation, allowing efficient adaptation with minimal memory and compute overhead.

• PEA is the first unified TTA framework that seamlessly generalizes across both CNNs and Trans-
formers using identical procedures. Experiments on CIFAR-C and ImageNet-C demonstrate that
it achieves competitive or superior performance compared to state-of-the-art methods, while main-
taining high efficiency with successful deployment on resource-constrained edge devices.

2 RELATED WORK

Conventional Test-Time Adaptation. TTA has emerged as a practical solution for mitigating do-
main shifts that can severely degrade model reliability in deployment (Wang et al., 2024; Liang
et al., 2025; Xiao & Snoek, 2024). The core idea is to update a pretrained model online using only
the incoming unlabeled test batches, without requiring access to source data or ground-truth labels.

Early TTA studies primarily focused on updating the model’s normalization layers. For example,
simply recalibrating batch normalization (BN) statistics was found to recover some of the accuracy
lost under distribution shifts (Benz et al., 2021). Building on this idea, entropy-based optimization
techniques such as TENT (Wang et al., 2020) and EATA (Niu et al., 2022) update gradients online
under the guidance of prediction entropy, which often combined with sample filtering or dynamic
reweighting to improve stability. These methods established the foundation for unsupervised TTA,
which adapts models based solely on their confidence without relying on external labels.

In parallel, another branch of work leveraged the model’s own predictions as supervision signals.
These self-supervised strategies fine-tune the model with pseudo-labels generated from the current
test batch. Representative examples include mean-teacher adaptation (Wang et al., 2022), meta-
learned initialization for rapid convergence (Bartler et al., 2022), and improved label robustness via
symmetric cross-entropy (Döbler et al., 2023). More recent efforts further stabilized this process
through ensembling (Marsden et al., 2024) and Kalman filter refinement (Lee & Chang, 2024).

Despite their differences, both unsupervised and self-supervised TTA methods share a key limita-
tion: they rely on backpropagation during adaptation. The need to compute gradients and store inter-
mediate activations largely increases memory and computation overhead, limiting their practicality
on resource-constrained devices and motivating the development of more efficient alternatives.

Efficient Test-Time Adaptation. Recent TTA research has increasingly focused on improving ef-
ficiency from various angles. Memory-aware gradient-based methods aim to reduce the footprint of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Impact of domain shift on intermediate layer embeddings. Feature distributions of three
classes from block 3 of the ViT model are visualized. Each subfigure illustrates a different type of
shift: translation, scaling, and rotation. More experiments can be found in Appendix A.

backpropagation. For example, MECTA (Hong et al., 2023) prunes gradient paths and normalizes
only selected layers to lower activation storage, while EcoTTA (Song et al., 2023) leverages com-
pact meta-networks to minimize backpropagation overhead. L-TTA (Shin & Kim, 2024) enhances
efficiency by restricting adaptation to shallow stem layers in CNNs, and TinyTTA (Jia et al., 2024)
combines early-exit classifiers with ensembling for low-memory adaptation on microcontrollers.

Notably, forward-only approaches eliminate gradient computation entirely. For example,
LAME (Boudiaf et al., 2022) adjusts classifier decision boundaries post hoc without any gradi-
ent updates, though its limited adaptability can reduce accuracy. FOA (Niu et al., 2024) employs
derivative-free prompt optimization for Vision Transformers, substantially lowering memory usage
but incurring high latency due to the large number of forward passes required.

Overall, existing efficient TTA methods either rely on backpropagation, leading to high memory and
computational costs, or are limited to specific architectures (e.g., CNN-only or ViT-only designs). In
contrast, our method presents a unified forward-only framework that delivers fast, memory-efficient
adaptation while maintaining strong accuracy across both CNNs and Transformers.

3 MOTIVATION: ANALYSIS OF DOMAIN SHIFT

Although contemporary TTA methods have achieved empirical success, they often treat domain shift
as a black-box problem, focusing on high-level strategies like entropy minimization and prompt tun-
ing without exploring the root cause of performance degradation. This motivates our central ques-
tion: what is the essence of domain shift? We approach this question from the perspective of the
embedding space, hypothesizing that misalignment in intermediate representations is a key driver
of performance drop under domain shift. To test this, we conducted an empirical analysis using
a ViT model trained on CIFAR10 (source) and evaluated on CIFAR10-C with Fog (target). We
applied t-SNE to visualize the intermediate embeddings from ViT block 3, focusing on three repre-
sentative classes for the sake of clarity in illustration. The resulting visualizations consistently reveal
three distinct structural transformations in the embedding space, as shown in Figure 1. We conduct
more similar experiments and observe the same phenomenon, which can be found in Appendix A.

Our analysis reveals that, despite its varied forms, domain shift primarily manifests through three
characteristic geometric changes in the embedding space:

(i) Translation (Mean Shift). As shown in Figure 1(a), the most fundamental effect of domain shift
is a translation of the feature distribution. The global centroid of the target domain’s embeddings is
displaced relative to that of the source domain. As a result, the embedding magnitudes in the target
shifted domain become misaligned with the parameters learned by the source model. While this is
the most common form of shift addressed by conventional TTA methods, it is often only one part of
a more complex problem.

(ii) Scaling (Variance Shift). Beyond a simple translation, domain shift significantly alters the
scaling of the entire feature distribution, corresponding to a variance shift. As depicted in Figure
1(b), the global ”cloud” of features changes its overall shape and density. Some layers may exhibit
a more compact feature distribution, where the embeddings are compressed closer to their mean,
while others become more dispersed, expanding outwards. This observation is consistent with the
insight in GALA (Sahoo et al., 2025) and PALM (Maharana et al., 2025). This non-uniform scaling

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

across layers cannot be corrected by simple global normalization; instead, it requires a layer-specific
approach to align the variance change in feature space.

(iii) Rotation (Channel-wise Covariance Shift). Our most crucial observation is the presence of
a covariance shift in the feature space. This indicates a systematic change in the correlation among
the embedding dimensions. The shift mainly appears as a coherent geometric transformation of the
feature cloud, resembling rotation and shearing. As visualized in Figure 1(c), this distortion goes be-
yond simple translation and scaling, fundamentally altering the relative orientation and arrangement
of class clusters.

4 PROGRESSIVE EMBEDDING ALIGNMENT

Based on the analysis above, a natural TTA solution is to progressively realign the shifted em-
beddings toward the source distribution across model layers. However, applying such alignment
presents two key challenges: (1) Since intermediate features are automatically learned and propa-
gated through the model layers, even small misalignments at early layers can accumulate and cause
significant degradation in deeper representations. (2) TTA typically operates with small batch sizes
(e.g., 64 or fewer) on the devices, making it difficult to reliably estimate feature statistics.

To address these issues, we propose Progressive Embedding Alignment (PEA), a simple yet effective
method that incrementally refines intermediate representations through robust covariance alignment.
To tackle the challenge of accumulating errors, our method employs a distance-aware weighted
covariance alignment strategy that progressively interpolates between the original and aligned em-
beddings based on their degree of shift, ensuring robustness and preventing over-correction. To
overcome the challenges of small batch sizes, we introduce two techniques: an exponential moving
average (EMA) to accumulate historical estimates of statistics, and lightweight data augmenta-
tion to diversify input samples and enrich the feature distribution observed at test time. Unlike
many prior TTA methods that require updating model parameters to fit the shifted domain, PEA is
entirely backpropagation-free and architecture-agnostic, operating solely on intermediate features.
The complete PEA pipeline is summarized in Algorithm 1 (Appendix B).

4.1 DISTANCE-AWARE WEIGHTED COVARIANCE ALIGNMENT

The key objective of our method is to progressively realign the test-time intermediate features with
the source-domain distribution at each block of the DNN. We achieve this using a Whitening-
Coloring Transform (WCT) (Cho et al., 2019) that geometrically transforms the target-domain fea-
tures to match the structure of the source domain. However, as we mentioned in the first challenge
above, applying covariance alignment too aggressively risks over-correction and misalignment. To
balance this, we introduce a distance-aware weighting mechanism that adaptively combines the orig-
inal and aligned features based on their layer-specific statistical discrepancy. Our method operates
in two stages: an offline stage that extracts source statistics prior to deployment, and an online stage
that performs dynamic alignment at test time through a two-forward-pass procedure.

Offline Stage. Prior to test-time deployment, we compute and store the source feature statistics for
each block l of the model using the training set. These include the source mean vector µs,l and
covariance matrix Σs,l. These pre-computed statistics serve as the source geometry toward which
we realign the test-time features. This offline process requires only a forward pass through the train-
ing data and does not involve any gradient computation or backpropagation. Once computed, the
statistics require only minimal storage (about 30MB for ViT-Base) and enable deployment without
ongoing source data access, making our approach practical for real-world deployment scenarios.

Online Stage. At test time, each incoming batch undergoes two forward passes. The first pass
estimates the degree of domain shift at each layer to determine the appropriate alignment strength.
The second pass then performs the actual feature alignment using WCT. Unlike prior forward-only
methods (Niu et al., 2024) that require multiple runs to optimize prompts, our approach achieves
adaptation with just two forward passes.

Pass 1: Estimating Alignment Weights. The goal of the first pass is to measure how much the current
batch deviates from the source distribution at each block. To achieve this, we forward the test batch
through the network to extract the intermediate feature activations Fl ∈ RB×N×D. For each block l,
we compute the batch mean µb,l and variance σ2

b,l. These statistics characterize the current batch’s
distribution. To quantify the shift, we calculate a statistical distance between the batch and source

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

distribution:
dl = ∥µs,l − µb,l∥2 + ∥σ2

s,l − σ2
b,l∥2 (1)

This distance captures both center shift (translation) and scale mismatch at each layer. We then
normalize these raw distances across all layers using min-max scaling to obtain the alignment weight
wl ∈ [0, 1]:

wl =
dl −minl dl

maxl dl −minl dl
(2)

The weight wl reflects how strongly the features at block l should be aligned: layers with minimal
shift receive near-zero weights (i.e., skip alignment), while those with high discrepancy are corrected
more aggressively.

Pass 2: Performing Weighted Feature Alignment. In the second forward pass, we reprocess the
batch through the model and apply WCT-based alignment at each block. Let the updated test-time
batch statistics be µt,l and Σt,l, which may be computed either from the current batch or from EMA
tracking (see Section 4.2). We then apply the whitening-coloring transformation:

Yl = (Fl − µt,l)Σ
−1/2
t,l Σ

1/2
s,l + µs,l (3)

In Eq. 3, we first whiten the test features by removing domain-specific variations using the target-
domain mean and the square root of its covariance matrix. We then re-color the features with the
source-domain covariance and mean to restore the geometry of the source distribution.

Instead of directly replacing the original feature with the aligned output, we blend them using the
previously computed weight:

F ′
l = (1− wl)Fl + wlYl (4)

The combination of Fl and Yl ensures that features are only shifted when necessary, maintaining
stability for well-aligned layers while correcting mismatched ones.

One of the main computational bottlenecks in our alignment lies in the operations on covariance
matrices, especially the computation of the matrix square root Σ1/2 and its inverse Σ−1/2. To
perform this efficiently and stably, we use eigendecomposition tailored for symmetric positive semi-
definite (SPSD) matrices. Given a covariance matrix Σ, we first compute the eigendecomposition
Σ = V ΛV ⊤, where V contains the eigenvectors and Λ contains the eigenvalues. The square root
and inverse square root are then computed as:

Σ1/2 = V Λ1/2V ⊤, Σ−1/2 = V Λ−1/2V ⊤ (5)

This eigendecomposition simplifies the computation of the matrix square root and its inverse, effec-
tively avoiding the high computational burden of general matrix operations. Overall, our method in-
troduces minimal overhead: the eigendecomposition used for alignment is computationally efficient
due to the moderate feature dimensionality at each layer (typically 128 - 1024), and it is only applied
during the forward pass. Crucially, our approach is entirely gradient-free and model-agnostic — it
does not require backpropagation and task-specific tuning. All operations are performed on interme-
diate feature activations, allowing for seamless integration with a wide range of architectures (e.g.,
CNNs and ViTs) and low-latency deployment on resource-constrained devices.

4.2 ROBUST STATISTICS ESTIMATION VIA EMA
The effectiveness of the embedding alignment critically depends on the accurate estimation of
the target domain statistics (µt,l,Σt,l). However, test-time deployment, especially on resource-
constrained devices equipped with limited memory, often necessitates small batch sizes (e.g., 64 or
fewer), resulting in unreliable statistical estimates when derived from a single batch. To mitigate this
issue, we maintain an Exponential Moving Average (EMA) strategy of the target feature statistics to
accumulates historical batches to yield a more stable and robust estimation over time. For each new
batch i, the EMA is updated with a momentum parameter m:

µ
(i)
t,l = (1−m)µ

(i−1)
t,l +mµb,l, Σ

(i)
t,l = (1−m)Σ

(i−1)
t,l +mΣb,l (6)

While EMA ensures stability, it can be slow to adapt to sudden and fast domain shifts, causing the
model to be anchored to outdated statistics. To solve this problem, we incorporate a spike domain
shift detection mechanism based on prediction entropy.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Spike detection uses the model’s prediction confidence as a signal for detecting a domain shift. A
sudden drop in confidence (i.e., a sharp rise in entropy) often indicates that the model is encountering
a new, unfamiliar domain (Ma et al., 2025). We track an EMA of the batch average prediction
entropy, Eema, and compare it to the instantaneous entropy of the current batch, Ht. A spike is
flagged if the current entropy surpasses the historical average by a fixed threshold θent:

Spike if: Ht > Eema + θent (7)

If an entropy spike is detected, the EMA statistics (µt,l,Σt,l) are immediately reset to those of the
current batch. The detection module allows the model to rapidly adapt to the new data distribution,
ensuring both stability during gradual shifts and agility during abrupt ones. The EMA update is com-
putationally lightweight, involving only simple averaging per layer with negligible cost. Memory
usage is also minimal, requiring storage of just two small tensors per block.

4.3 DATA ENRICHMENT VIA LIGHTWEIGHT AUGMENTATION

To further enhance the estimation of the target batch distribution, we introduce a lightweight data
enrichment strategy based on simple and low-cost augmentations (Simonyan & Zisserman, 2014).
These augmentations include common geometric transformations such as horizontal flips, random
crops, and mild rotations. They are computationally inexpensive and preserve the semantic consis-
tency of the domain. For each input image, we generate K augmented views. This data augmenta-
tion is integrated into both forward passes during the online adaptation stage:

Pass 1: As described in Section 4.1, the first forward pass is used to estimate the layer-wise distribu-
tion discrepancy by computing the feature statistics of the current batch. To enhance the estimation
under small batch sizes, we apply augmentation to each image and process the resulting K-view
batch in the first forward pass. We then compute the alignment distance in Eq. 1 using this enriched
batch, which results in more robust and stable weight estimation for each layer.

Pass 2: The second forward pass performs the actual alignment using the WCT transformation
shown in Eq. 3. As in the first pass, we augment the batch into K views and apply the WCT align-
ment across all views. After obtaining K sets of aligned predictions, we aggregate them through
uniform averaging:

predfinal =
1

K

K∑
k=1

logitsk (8)

The feature enrichment and ensembling not only improve the stability of embedding alignment but
also enhance final predictions by incorporating multiple complementary views of the data. Despite
introducing multiple views per input, the augmentations are lightweight and require no additional
model parameters or backward passes. As a result, the added cost is limited to repeated forward
passes with minor geometric transforms, making this approach highly efficient and practical even
on memory-constrained edge devices.

Fundamental Methodological Difference of PEA: Existing TTA methods typically update the
affine parameters of normalization layers through backpropagation, i.e., they adapt the model to fit
the shifted domains, using techniques such as entropy minimization and data augmentation. How-
ever, as discussed in (Press et al., 2024), the absence of ground-truth labels at test time often cause
embedding drifts over successive iterations, resulting in suboptimal performance or even leading to
catastrophic forgetting.

In contrast, our approach adopts a fundamentally different strategy: rather than modifying the model,
we align the shifted embeddings with the source distribution. This eliminates the need for backprop-
agation, ensuring that the original model parameters remain intact and robust, thereby completely
mitigating catastrophic forgetting.

5 EXPERIMENTS

5.1 DATASETS AND BASELINES

Datasets and Models. Following recent works in TTA (Shin & Kim, 2024; Niu et al., 2024), we
conduct a comprehensive evaluation across multiple datasets. Specifically, we use CIFAR10-C,
CIFAR100-C, and ImageNet-C, each of which introduces 15 common corruption types applied to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of accuracy (%) on ImageNet-C using ViT-Base and ResNet-50 with memory
consumption on server. Aug and BP indicate whether the approaches utilize data augmentation and
backpropagation. In FOA, F specifies how many forward passes per batch.

Model Aug BP Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg. Mem.
(MB)

Latency
(s/batch)

✗ ✗ No Adapt 56.7 56.8 57.5 46.9 35.6 53.1 44.8 62.2 62.5 65.7 77.6 32.6 46.0 66.9 67.6 55.5 858 0.18
✗ ✓ SAR 59.9 62.2 62.8 54.1 54.1 59.1 54.5 63.5 65.6 65.3 78.2 64.4 58.3 69.2 69.7 62.7 6181 0.59
✗ ✓ Tent 57.1 58.1 59.2 44.7 43.2 56.6 50.6 62.8 60.5 65.2 78.0 59.7 49.8 68.2 68.6 58.8 6108 0.31
✗ ✓ EATA 57.3 59.1 59.9 53.6 49.4 58.2 51.8 63.0 62.9 65.7 77.8 62.0 55.7 65.8 68.7 60.7 6108 0.31
✗ ✗ FOA (F = 27) 61.5 63.5 64.3 56.9 55.1 61.0 60.9 68.4 70.9 73.6 80.9 66.0 61.8 73.5 73.6 66.1 870 3.33
✗ ✗ FOA (F = 9) 60.5 63.1 63.9 54.6 48.5 60.4 57.2 66.8 69.6 71.5 80.9 66.6 55.9 72.9 72.8 64.3 870 1.25
✓ ✓ CMF 60.0 61.2 60.9 56.6 56.8 62.4 60.8 69.3 67.9 72.7 78.8 65.2 69.4 73.8 72.0 65.9 10404 0.53
✓ ✓ SPA 61.7 64.0 63.0 50.7 58.3 63.0 59.1 68.2 65.5 67.9 77.7 63.9 67.3 72.6 66.0 64.6 10902 0.50
✗ ✗ PEA 57.7 58.4 58.9 53.2 50.4 59.8 60.4 69.1 68.7 72.9 80.2 63.5 69.9 72.0 72.0 64.5±0.0 887 0.31±0.1

ViT

✓ ✗ PEA + Aug 61.2 61.5 62.1 55.6 52.4 61.4 62.1 70.4 70.7 74.5 80.9 65.8 71.7 73.4 73.6 66.5±0.1 1867 0.59±0.2
✗ ✗ No Adapt 22.2 23.7 21.3 20.0 10.2 21.6 26.1 31.6 33.1 39.3 67.7 25.4 14.0 13.1 47.3 27.8 817 0.17
✗ ✓ Tent 14.4 17.9 14.2 14.3 15.3 27.8 51.1 41.9 43.6 59.8 69.4 27.4 45.3 44.2 46.4 35.5 5901 0.36
✗ ✓ EATA 15.4 20.6 18.6 17.4 19.7 32.5 44.9 44.5 47.4 60.8 70.0 34.4 49.0 51.0 50.9 38.5 5965 0.36
✗ ✓ MECTA 19.3 22.9 18.6 16.1 18.0 31.6 45.0 44.9 45.1 63.0 71.1 33.5 47.7 53.2 39.4 38.0 4425 0.50
✗ ✓ EcoTTA 3.9 6.2 3.5 7.5 9.8 24.2 41.8 43.3 31.9 60.7 68.8 16.5 47.1 46.2 46.2 30.5 5177 0.63
✗ ✓ L-TTA 16.8 24.0 22.6 12.1 16.7 23.3 33.6 42.0 44.8 57.3 66.7 16.6 43.5 49.4 47.8 34.5 3373 0.25
✓ ✓ CMF 35.0 35.1 36.6 19.2 27.5 34.5 42.9 47.9 47.6 60.2 69.7 38.2 51.0 54.7 55.7 43.7 10413 0.38
✗ ✗ PEA 22.6 25.0 22.0 26.0 23.1 37.3 48.2 49.7 48.7 64.8 73.5 51.1 53.0 43.3 52.2 42.7±0.1 983 0.36±0.2

ResNet

✓ ✗ PEA + Aug 26.2 28.3 25.8 27.5 24.8 38.8 49.6 51.3 50.4 65.6 74.0 52.4 55.1 47.9 54.1 44.8±0.2 2397 0.56±0.2

the original test sets. We adopt the most severe corruption level (severity = 5) and batch size of
64 throughout all experiments. To simulate a realistic online domain shift scenario, we follow the
lifelong continual test-time adaptation setting in CoTTA (Wang et al., 2022; Niu et al., 2022), where
corrupted samples are streamed sequentially at test time. Compared to always adapting each domain
from the source domain, our continual setting is more realistic and challenging.

For backbone models, we adopt both ResNet-50 (He et al., 2016) and ViT-Base (Dosovitskiy et al.,
2020) on the ImageNet-C and CIFAR100-C datasets. For CIFAR10-C, we evaluate using ResNet-50
and ViT-Tiny to account for the dataset’s smaller scale. This diverse selection demonstrates that our
method generalizes effectively across both CNN and Transformer-based architectures.

Baselines. We compare our proposed PEA with several efficient TTA approaches as well as state-
of-the-art performance-driven methods. For efficient CNN-based TTA, we include EcoTTA (Song
et al., 2023), MECTA (Hong et al., 2023), and L-TTA (Shin & Kim, 2024). For ViT-specific adap-
tation, we evaluate FOA (Niu et al., 2024), which performs forward-only prompt optimization. We
also evaluate entropy minimization-based methods including Tent (Wang et al., 2020), EATA (Niu
et al., 2022), and SAR (Niu et al., 2023). Finally, we include recent state-of-the-art approaches based
on pseudo-labeling and data augmentation: CMF (Lee & Chang, 2024) and SPA (Niu et al., 2025)1.
Details of the implementation and additional clarifications are provided in Appendix C.

5.2 MAIN RESULTS ON IMAGENET-C

Table 1 presents the classification accuracy and variation (averaged over 5 runs with different random
seeds) for each domain, together with the memory consumption and per-batch inference latency
measured on the server.

For ViT-Base, without adaptation, the baseline ViT model achieves an average accuracy of 55.5%.
Although existing methods such as Tent (Wang et al., 2020) and EATA (Niu et al., 2022) offer
moderate improvements to 58.8% and 60.7%, they incur substantial memory overhead (more than
6 GB) due to backpropagation-based updates. More recent backprop-free method FOA (Niu et al.,
2024) and SOTA SPA (Niu et al., 2025) achieve stronger accuracy (up to 66.1% and 64.6%) but
with high latency (up to 3.33s) or memory consumption (over 10 GB). By contrast, our PEA achieves
64.5% accuracy with only 887MB of memory and 0.31s latency. When combined with augmentation
(PEA + Aug), performance further improves to 66.5%, surpassing FOA with better latency. This
demonstrates that PEA not only provides competitive accuracy but also delivers exceptional memory
and latency efficiency, making it highly suitable for real-time or on-device deployment.

For ResNet-50, TTA baselines such as Tent, EATA, and CMF improve performance to up to 43%,
but again at the cost of large memory (more than 5.9 GB) and higher compute demand. PEA out-
performs all low-cost adaptation methods with an average accuracy of 42.7%, using only 983MB of
memory. With augmentation, it reaches 44.8%, outperforming all existing backprop-free methods
like EcoTTA and L-TTA by a large margin.

1The SPA results reported in the original paper are obtained under a single-domain adaptation setting, where
the model is reset before each corruption. In our experiments, we use a more challenging lifelong TTA setting,
where the model adapts continuously across all domains without reset.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Adaptation accuracy (%) on CIFAR10-C and CIFAR100-C using ViT and ResNet.

Method
Model Dataset No Adapt SAR Tent EATA FOA (F=27) CMF SPA PEA PEA + Aug

CIFAR10-C 76.5 75.8 76.2 76.5 83.3 83.3 76.2 83.7±0.0 84.7±0.0ViT CIFAR100-C 61.6 61.3 61.2 61.6 68.0 73.0 71.7 75.7±0.2 77.0±0.1
Dataset No Adapt Tent EATA MECTA EcoTTA L-TTA CMF PEA PEA + Aug

CIFAR10-C 62.5 81.2 81.3 82.0 80.2 81.2 78.6 82.3±0.0 83.4±0.1ResNet
CIFAR100-C 33.5 49.2 50.0 49.7 45.6 50.9 48.8 53.9±0.0 54.6±0.1

Table 3: Results on small batch sizes
on CIFAR100-C and ImageNet-C.

Datasets Model Accuracy (%)

BS = 4 BS = 16 BS = 64

CIFAR100-C ResNet-50 51.8 54.0 54.6
ViT-Base 70.0 75.7 77.0

ImageNet-C ResNet-50 41.7 44.0 44.8
ViT-Base 63.3 65.8 66.5

Table 4: Evaluation on Jetson Orin Nano using CIFAR100-
C with batch size of 64. Methods marked as incompatible
(✗) fail due to insufficient memory on the target device (3.5
GB). Memory requirements for them are shown in Table 1.

ViT-Base ResNet-50

Method Latency (s/batch) Memory (MB) Method Latency (s/batch) Memory (MB)

No Adapt 3.5 901 No Adapt 0.9 810
SAR ✗ ✗ Tent ✗ ✗
Tent ✗ ✗ EATA ✗ ✗

EATA ✗ ✗ MECTA ✗ ✗
FOA (F = 9) 98.9 920 EcoTTA ✗ ✗

CMF ✗ ✗ L-TTA 1.4 3249
SPA ✗ ✗ CMF ✗ ✗
PEA 4.1±0.2 1011 PEA 3.0±0.1 976

PEA + Aug 9.8±0.3 2322 PEA + Aug 7.2±0.2 2388

Efficiency and Accuracy Trade-off: Our approach achieves a highly favorable balance between ro-
bustness and efficiency. Unlike backpropagation-based TTA methods, PEA delivers strong adap-
tation performance while consuming significantly less memory and maintaining low latency. This
lightweight yet effective design makes PEA highly suitable for practical deployment, especially in
resource-constrained devices or real-time systems, we will further discuss it in Section 5.5.

5.3 RESULTS ON CIFAR10-C AND CIFAR100-C
We also evaluate the performance of PEA on the CIFAR10-C and CIFAR100-C using both ViT and
ResNet. As shown in Table 2 (for more details see Section D.1), PEA consistently outperforms
existing TTA approaches. Notably, under the ViT backbone, PEA achieves 77.0% accuracy on
CIFAR10-C and 84.7% on CIFAR100-C when lightweight augmentation is applied, substantially
outperforming augmentation-based baselines like CMF and SPA. Even without augmentation, PEA
attains competitive results (75.7% and 83.7%), demonstrating its intrinsic robustness. Similar trends
are observed with the ResNet backbone, where PEA achieves 83.4% on CIFAR10-C and 54.6% on
CIFAR100-C, again outperforming strong baselines including MECTA, EcoTTA, and L-TTA.

In addition, we observe that augmentation-based methods such as CMF and SPA show relatively lim-
ited gains on these small-scale datasets compared to their performance on larger dataset ImageNet-C.
This suggests that excessive reliance on augmentation alone may not generalize well across dataset
scales. In contrast, PEA demonstrates strong generalization across both model architectures and
dataset types. Importantly, it achieves this without updating any model parameters and is entirely
backprop-free, making it naturally compatible with both CNN and Transformer architectures.

5.4 RESULTS ON SMALL BATCH SIZE

Table 3 presents the performance of our method under varying batch sizes (BS = 4, 16, 64) on both
CIFAR100-C and ImageNet-C, using ResNet-50 and ViT-Base. We observe that while accuracy
slightly drops as the batch size decreases, our method retains high performance even under very
small batches. On CIFAR100-C, the ViT-Base model achieves 77.0% with BS=64 and maintains a
strong 70.0% even with BS=4, a modest 7.0% drop. In contrast, the ResNet-50 model sees a smaller
absolute decline (from 54.6% to 51.8%), but its overall accuracy remains much lower. A similar
trend is observed on ImageNet-C, where ViT-Base drops by 3.2% and ResNet by 3.1%. As shown
in Table 8 in Appendix D.3, our method performs better than other baselines.

5.5 EVALUATION ON EDGE DEVICE

To assess practical deployability, we evaluate the system performance on the Jetson Orin Nano, a
resource-constrained edge device with 8 GB of shared memory, only 3.5 GB of which is accessible
to deep learning applications due to OS and system overhead. We test all methods under a default

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

setting with batch size 64 on CIFAR100-C. Table 4 reports both the latency (in seconds per batch)
and peak memory usage (in MB) for ViT-Base and ResNet-50 backbones.

Due to limited memory, many TTA methods fail to run on-device, especially those requiring back-
propagation (e.g., Tent, EATA, MECTA, SAR). In contrast, our method (PEA) successfully runs on
both backbones, maintaining reasonable latency (4.1s for ViT, 3.0s for ResNet) and modest mem-
ory usage (1011MB and 976MB, respectively). With augmentation enabled, performance trade-offs
increase modestly, but still remain within edge constraints. While both FOA and L-TTA are com-
patible with edge devices, FOA incurs extremely high latency, rendering it impractical for real-time
applications. In contrast, L-TTA is fast but consistently underperforms in accuracy across all three
datasets, as discussed in Section 5.2 and 5.3. Notably, the forward-only design of PEA ensures com-
patibility with edge settings, where low memory footprint and gradient-free inference are critical,
showing its strong potential for real-world deployment without sacrificing adaptation effectiveness.

5.6 ABLATION STUDY

Table 5: Ablation study of PEA using ViT-Base
model on CIFAR100-C and ImageNet-C.

Ablation Acc. (CIFAR100-C) Acc. (ImageNet-C)

No Adapt 61.6 55.5
Cov Align Only 67.0 25.2

+ Weighting 68.3 52.9
+ Weighting, EMA 75.7 64.5

+ Weighting, EMA, Aug 77.0 66.5

We conduct an ablation study to quantify the con-
tribution of each major component in PEA using
the ViT-Base model on both CIFAR100-C and
ImageNet-C. Table 5 summarizes the incremental
performance improvements by the proposed com-
ponents. Starting from the unadapted baseline,
introducing only the covariance alignment mod-
ule (Cov Align Only) brings a significant gain
on CIFAR100-C (from 61.6% to 67.0%), demon-
strating that aligning feature second-order statis-

tics is a strong and lightweight signal for domain correction. However, this setting results in a sharp
drop on ImageNet-C (down to 25.2%), due to over-alignment across all layers. Since ImageNet is
more challenging and features greater domain complexity, the per-batch estimation of target distri-
bution becomes less reliable, leading to misaligned feature transformations.

Adding the layer-wise distance-based weighting mechanism (+ Weighting) mitigates the misalign-
ment on ImageNet-C, boosting performance from 25.2% to 52.9%. This highlights the importance
of selectively applying alignment only to blocks that exhibit significant distributional shift. The im-
provement on CIFAR100-C is more modest but still positive, suggesting that the weighting scheme
contributes to robustness across datasets. Incorporating exponential moving average (EMA) for
estimating test-time statistics (+ Weighting, EMA) provides a large boost in both datasets (75.7%
on CIFAR100-C and 64.5% on ImageNet-C). The EMA strategy accumulates stable statistics over
time, which is especially beneficial when the test-time batch size is small or noisy. This component
ensures the alignment is based on reliable statistics rather than volatile per-batch estimates. Finally,
adding data enrichment via lightweight augmentations (+ Weighting, EMA, Aug) yields the high-
est accuracy 77.0% on CIFAR100-C and 66.5% on ImageNet-C. The multiple views not only help
stabilize the estimation of target statistics, but also improve final predictions via ensemble averaging.

Overall, each component contributes complementary benefits to the final performance, and their
combination enables PEA to maintain high accuracy under diverse corruptions while being
backprop-free and resource-efficient. See Appendix D.4 for more hyperparameter evaluations.

6 CONCLUSION

This work begins by revisiting the impact of domain shift on intermediate model embeddings, identi-
fying three core transformations: mean shift (translation), variance shift (scaling), and channel-wise
covariance shift (rotation), which systematically distort the feature space across layers. Motivated
by this insight, we propose PEA, a lightweight, backpropagation-free, and architecture-agnostic
test-time adaptation approach that progressively aligns embeddings through layer-wise covariance
correction using only two forward passes. Experiments across 3 datasets, including evaluations
on resource-constrained edge devices, demonstrate that PEA achieves state-of-the-art accuracy and
efficiency, offering a practical and generalizable solution for robust real-world deployment.

Limitations. While PEA offers a lightweight, backpropagation-free solution that generalizes across
model architectures, the effectiveness of feature alignment relies on the quality of the estimated
target domain statistics, which can be noisy when batch sizes are extremely small (e.g., 1) or class
distributions are highly imbalanced. Although we mitigate this with EMA, extreme scenarios may

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

still lead to suboptimal correction. In addition, our method requires extracting source statistics from
training dataset prior to deployment. While this is acceptable under TTA setting (Song et al., 2023;
Niu et al., 2024), such source statistics may not always be available in certain practical scenarios.

7 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or applications with direct
societal or ethical risks. The datasets used in our experiments are publicly available benchmarks
that have been widely adopted in the research community. We believe the contributions of this paper
align with the ICLR Code of Ethics.

8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. All datasets employed in this
study are publicly available and described in the main text. Detailed descriptions of model architec-
tures, hyperparameters, and training protocols are provided in the paper and appendix. Furthermore,
we provide pseudocode and implementation details in the appendix, and the complete source code
will be made available if the paper is accepted.

REFERENCES

Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, and Bin Yang. Mt3: Meta test-
time training for self-supervised test-time adaption. In International Conference on Artificial
Intelligence and Statistics, pp. 3080–3090. PMLR, 2022.

Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization
for improving corruption robustness. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 494–503, 2021.

Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8344–8353, 2022.

Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, and Jaegul Choo. Image-to-image
translation via group-wise deep whitening-and-coloring transformation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10639–10647, 2019.

Mario Döbler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-
time adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7704–7714, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic con-
tinual test-time model adaptation. In 2023 International Conference on Learning Representations,
2023.

Hong Jia, Young Kwon, Alessio Orsino, Ting Dang, Domenico Talia, and Cecilia Mascolo. Tinytta:
Efficient test-time adaptation via early-exit ensembles on edge devices. Advances in Neural In-
formation Processing Systems, 37:43274–43299, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pp. 5637–5664. PMLR, 2021.

Jae-Hong Lee and Joon-Hyuk Chang. Continual momentum filtering on parameter space for online
test-time adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
bution shifts. International Journal of Computer Vision, 133(1):31–64, 2025.

Xiao Ma, Young D Kwon, and Dong Ma. On-demand test-time adaptation for edge devices. arXiv
preprint arXiv:2505.00986, 2025.

Sarthak Kumar Maharana, Baoming Zhang, and Yunhui Guo. Palm: Pushing adaptive learning
rate mechanisms for continual test-time adaptation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pp. 19378–19386, 2025.

Robert A Marsden, Mario Döbler, and Bin Yang. Universal test-time adaptation through weight
ensembling, diversity weighting, and prior correction. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2555–2565, 2024.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui
Tan. Efficient test-time model adaptation without forgetting. In International conference on
machine learning, pp. 16888–16905. PMLR, 2022.

Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and
Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. arXiv preprint
arXiv:2302.12400, 2023.

Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
adaptation with only forward passes. arXiv preprint arXiv:2404.01650, 2024.

Shuaicheng Niu, Guohao Chen, Peilin Zhao, Tianyi Wang, Pengcheng Wu, and Zhiqi Shen. Self-
bootstrapping for versatile test-time adaptation. In Forty-second International Conference on
Machine Learning, 2025. URL https://openreview.net/forum?id=Li4rieeClO.

Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-
Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning: Algorithms,
techniques, and applications. ACM computing surveys (CSUR), 51(5):1–36, 2018.

Ori Press, Ravid Shwartz-Ziv, Yann LeCun, and Matthias Bethge. The entropy enigma: Success and
failure of entropy minimization. arXiv preprint arXiv:2405.05012, 2024.

Sabyasachi Sahoo, Mostafa ElAraby, Jonas Ngnawe, Yann Batiste Pequignot, Frédéric Precioso,
and Christian Gagné. A layer selection approach to test time adaptation. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 39, pp. 20237–20245, 2025.

Jin Shin and Hyun Kim. L-tta: Lightweight test-time adaptation using a versatile stem layer. Ad-
vances in Neural Information Processing Systems, 37:39325–39349, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual
test-time adaptation via self-distilled regularization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11920–11929, 2023.

Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari,
and Fisher Yu. Shift: a synthetic driving dataset for continuous multi-task domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21371–21382, 2022.

11

https://openreview.net/forum?id=Li4rieeClO


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. arXiv preprint arXiv:2006.10726, 2020.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7201–7211, 2022.

Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang. In search of lost
online test-time adaptation: A survey. International Journal of Computer Vision, pp. 1–34, 2024.

Zehao Xiao and Cees GM Snoek. Beyond model adaptation at test time: A survey. arXiv preprint
arXiv:2411.03687, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 2: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize
the features of class plane, dog and frog in Domain Fog across ViT block 1 to block 9.

A DOMAIN SHIFT IN THE EMBEDDING SPACE

As discussed in Section 3, domain shifts manifest as structural distortions in the intermediate fea-
ture space of deep models. These distortions—namely mean shift, variance shift, and covariance
shift—occur consistently across all layers of the network. In this section, we provide additional
empirical evidence to support this analysis by visualizing feature distributions under domain shift
using ViT models on CIFAR10-C.

Visualization of Feature Shift Across Layers and Domains. We conduct a detailed visualiza-
tion of intermediate features extracted from ViT blocks 1 through 9 on two corruption types from
CIFAR10-C: Fog and Gaussian Noise. We focus on three representative classes—plane, dog,
and frog—to illustrate how domain shift affects the geometry of class embeddings at different depths
of the model.

Figures 2, 3 and 4 show the progressive deformation of class-wise embeddings under these two
corruption domains. These results complement our earlier analysis and reveal consistent patterns
across domains and layers.

From the visualizations, we observe that: 1) All layers are affected by geometric distortions. Across
all blocks, we observe consistent evidence of (i) mean shift, where class centers drift from their
source positions; (ii) variance shift, indicated by altered spread and scale of feature clusters; and
(iii) channel-wise covariance shift, where the orientation and shape of the clusters change due to
altered inter-channel relationships; 2) The severity of distortion varies across layers. Different layers
exhibit different sensitivities to each type of transformation; 3) Different domains impact features
in distinct ways. Although both Fog and Gaussian Noise induce all three types of shifts,
the degree and pattern of deformation vary. This reflects the domain-specific characteristics of the
corruption types—e.g., Fog tends to cause smoother global drifts, while Gaussian Noise leads
to more irregular scatter.

Moreover, in domains such as Fog, which are relatively easy to adapt, the transformations at deeper
layers are more faithful than at shallow layers, suggesting the architecture can progressively correct

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize
the features of class plane, dog and frog in Domain Gaussian Noise.

the shift as features propagate. In contrast, in domains such as Gaussian Noise, deeper layer
features deteriorate (pronounced scaling shrinkage and rotation), indicating that domain character-
istics strongly shape the final representations and can hinder self-correction in depth.

These insights reinforce the central hypothesis of our work: domain shift induces systematic, layer-
wise geometric transformations in the embedding space. They also motivate our proposed method,
which explicitly corrects such distortions through progressive covariance alignment at each interme-
diate block.

Visualization of Feature Shift on CIFAR100-C. To further validate that the observed structural
shifts in embedding space are not specific to CIFAR10-C, we extend our visualization to CIFAR100-
C. We select three representative classes—pine tree, bicycle, and bee—from the CIFAR100-C
dataset and examine their intermediate representations under domain shift caused by Shot Noise,
a common corruption in CIFAR100-C. The results are shown in Figure 5.

Similar to the patterns observed in CIFAR10-C, we find that domain shift consistently induces sys-
tematic geometric transformations in the embedding space: mean shift (translation), variance shift
(scaling) and covariance shift (rotation). While the inter-class topology is often preserved, these
structural distortions displace features away from the decision boundaries, ultimately degrading
classification performance. In particular, even though class relationships remain recognizable, the
shifted features can no longer be correctly classified due to their increased distance from the source-
aligned classification regions.

These shifts manifest across multiple blocks of the ViT model, reinforcing our claim that domain
shift affects not only the output layer but also the intermediate representations in a systematic and
structured manner. The consistency of these patterns across both CIFAR10-C and CIFAR100-C
highlights the generality of our observation and motivates the need for intermediate-layer realign-
ment strategies, such as the one introduced in PEA.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Impact of domain shift on intermediate layer embeddings using CIFAR10-C. We visualize
the features of class plane, dog and frog in Domain Defocus Blur.

Figure 5: Impact of domain shift on intermediate layer embeddings using CIFAR100-C. We visu-
alize the features of class pine tree, bicycle and bee in Domain Shot Noise.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 PROGRESSIVE EMBEDDING ALIGNMENT (PEA)

Require: source stats {µs,l,Σs,l}Ll=1, test batch X , views K

1: Pass 1: Estimate alignment weights
2: Augment input: Xaug = Augment(X,K)
3: Extract block features Fl; compute alignment weights wl using Eq.1 and Eq.2

4: Pass 2: Align and predict
5: Extract Fl from Xaug
6: for each block l do
7: Update µt,l, Σt,l with EMA (Eq.6)
8: Apply covariance alignment: Yl = (Fl − µt,l)Σ

−1/2
t,l Σ

1/2
s,l + µs,l // Eq.3

9: Fuse: F ′
l = (1− wl)Fl + wlYl // Eq.4

10: end for
11: Compute logits for all views: logitsk = Classifier(ZL)

12: Final prediction: predfinal =
1
K

∑K
k=1 logitsk // Eq.8

13: return predfinal

B PSEUDO CODE

To clarify the workflow of our PEA, we present its pseudo-code in Algorithm 1, which outlines the
step-by-step process of progressively aligning domain-shifted features toward the source distribution
during test-time adaptation.

C IMPLEMENTATION DETAILS

We use a default batch size of 64 for all evaluations, consistent with prior works (Niu et al., 2022;
Lee & Chang, 2024). All methods are implemented and tested on a server equipped with NVIDIA
A5000 Ada GPU. To evaluate the feasibility of deployment under real-world constraints, we also
compare PEA with efficient TTA baselines on an edge device: the Jetson Orin Nano, which includes
a Cortex-A78AE CPU and an 8GB shared RAM mobile GPU.

For our PEA, we set the EMA momentum to m = 0.02 to ensure a stable yet responsive estimate of
feature statistics. To detect domain shifts, we use an entropy spike threshold θent = 1.0; when this
is exceeded, the EMA statistics are reset. We tested EMA momentum values of 0.01, 0.02, 0.05, 0.1
and found the performance to be robust, with accuracy fluctuations of at most 1% (see D.4). For
augmentation, we use random horizontal flips and random resized crops (scale = 0.9). Each input
generates K = 2 augmented views, which, combined with the original, produce 3 views used for
prediction ensembling. Since the augmentation is an optional technique based on the available mem-
ory, we also report the results without augmentation. All other hyperparameters, such as learning
rates and optimization settings for baseline methods, are taken from their official implementations
to maintain fair comparison conditions. Note that we use prior works’ original implementations
without modification to ensure fair assessment of each method’s realistic resource requirements.

Clarification of SPA. For SPA, although the paper (Niu et al., 2025) claims that it can generalize
to both CNNs and ViTs, the official code provided by the authors includes only the ViT implemen-
tation. Consequently, we report comparisons with SPA only on ViT. As shown in Table 1, while
SPA achieves competitive performance, it incurs extremely high memory consumption (exceeding
10GB), making it impractical for efficiency-driven applications.

D FURTHER DETAILS FOR EVALUATION

D.1 DETAILED RESULTS ON CIFAR10-C AND CIFAR100-C

While the main paper (Table 2) reports average adaptation performance across the 15 corruption
types of CIFAR10-C and CIFAR100-C, we provide the full per-domain performance in this appendix
to offer a more granular view of model robustness.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Detailed accuracies (%) on CIFAR10-C.

Model Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg.
No Adapt 43.8 49.8 69.3 82.1 71.0 82.3 84.6 91.8 89.5 87.5 95.5 83.4 83.2 51.8 81.4 76.5

SAR 45.4 54.7 70.0 81.9 69.8 81.7 83.9 89.0 87.5 83.6 93.3 83.2 81.7 51.5 79.5 75.8
Tent 43.8 50.1 69.6 81.6 71.2 82.6 84.6 91.7 89.7 88.0 95.2 80.5 83.5 49.0 81.6 76.2

EATA 43.8 49.8 69.3 82.1 71.0 82.3 84.6 91.8 89.5 87.5 95.5 83.4 83.2 51.7 81.4 76.5
FOA (F = 27) 62.7 71.6 77.5 88.2 76.4 87.7 91.1 91.6 90.9 89.1 95.2 85.3 85.2 76.5 81.3 83.3
FOA (F = 9) 60.9 69.8 75.9 87.6 73.2 85.7 90.4 91.4 90.2 89.6 95.1 84.9 84.5 68.2 80.5 81.9

CMF 66.2 71.6 71.1 87.8 75.6 87.5 90.5 89.6 90.5 88.1 94.8 86.3 83.3 83.3 83.2 83.3
SPA 72.3 79.2 61.8 80.3 69.8 78.9 85.7 80.4 85.2 70.1 91.5 72.7 70.1 69.9 74.9 76.2
PEA 61.9 66.0 77.8 88.5 77.4 88.3 90.7 91.9 91.5 89.9 95.5 86.9 85.6 81.7 82.0 83.7

ViT

PEA + Aug 64.5 68.3 80.2 88.6 78.8 88.4 90.4 92.8 92.6 90.6 95.8 87.1 86.5 83.1 82.6 84.7
No Adapt 34.2 39.5 26.2 66.5 48.6 62.9 70.3 85.8 80.2 84.7 93.0 81.0 71.3 24.4 69.4 62.5

TENT 63.9 68.5 65.1 89.1 67.4 87.4 90.5 87.7 86.4 90.2 93.9 91.4 80.6 83.2 72.2 81.2
EATA 63.9 68.4 65.1 89.3 69.3 87.4 90.5 87.4 86.8 90.4 93.8 91.4 80.8 82.9 72.0 81.3

MECTA 64.9 69.2 64.9 89.6 69.4 88.2 92.2 88.1 87.8 90.9 94.6 92.6 81.1 83.5 73.2 82.0
EcoTTA 63.9 68.0 61.8 88.7 67.4 87.3 90.6 87.3 86.7 90.8 93.9 91.5 79.5 83.1 62.9 80.2
L-TTA 64.4 68.9 64.0 88.7 69.3 87.1 90.3 87.4 87.0 90.0 93.3 90.5 80.6 84.0 72.9 81.2
CMF 70.3 75.6 69.6 76.5 68.3 76.6 81.5 82.4 82.9 84.7 89.5 87.3 76.4 81.8 76.4 78.6
PEA 65.5 69.1 73.2 88.4 69.8 86.7 91.1 89.2 88.9 91.9 94.6 93.4 80.9 78.3 73.3 82.3

ResNet

PEA + Aug 68.3 72.0 75.6 89.1 71.2 87.4 91.2 89.5 89.3 92.3 95.0 93.8 82.0 79.7 74.6 83.4

Table 7: Detailed accuracies (%) on CIFAR100-C.

Model Methods gauss. shot impul. defoc. glass motion zoom snow frost fog brigh. contr. elast. pixel. jpeg Avg.
No Adapt 42.0 42.4 54.1 73.1 47.5 72.8 75.0 80.5 79.7 57.1 86.0 44.0 64.5 47.7 57.5 61.6

SAR 42.9 44.5 54.0 73.3 47.6 73.0 74.9 79.5 79.1 53.6 85.4 46.3 63.9 46.9 55.4 61.3
Tent 42.6 43.4 54.8 73.4 47.2 73.0 75.2 80.3 79.5 54.3 86.0 39.8 64.4 46.8 57.2 61.2

EATA 42.5 43.8 54.5 73.2 47.9 73.0 75.0 80.1 79.7 55.6 85.7 42.0 65.1 48.9 57.2 61.6
FOA (F = 27) 43.5 49.0 55.3 74.3 55.3 75.8 78.5 81.0 81.9 76.0 87.2 76.2 70.1 55.6 60.7 68.0
FOA (F = 9) 44.5 48.5 52.8 73.5 50.5 74.5 78.0 80.5 80.8 75.3 87.2 75.4 70.0 55.1 61.3 67.2

CMF 56.5 65.3 66.0 77.0 61.1 76.4 79.5 81.0 81.7 77.8 86.1 82.9 69.6 68.7 65.7 73.0
SPA 62.4 70.8 74.0 74.2 52.2 77.8 79.2 77.5 81.3 74.8 86.0 84.3 61.7 53.4 65.5 71.7
PEA 62.1 64.8 71.5 81.2 65.9 80.0 82.6 82.7 83.6 82.1 87.4 86.4 70.7 70.8 64.4 75.7

ViT

PEA + Aug 64.3 67.2 74.2 81.9 67.5 80.6 83.0 83.9 84.4 83.2 87.9 86.8 72.3 72.7 65.6 77.0
No Adapt 12.5 14.0 8.8 34.5 16.7 36.5 42.8 53.4 46.4 52.0 68.5 39.4 35.7 9.4 32.4 33.5

TENT 28.9 30.7 29.7 60.4 31.9 57.1 63.2 55.6 54.1 61.2 69.5 65.4 46.4 47.1 37.4 49.2
EATA 29.3 32.1 30.0 60.7 32.7 57.4 63.8 56.4 55.0 61.6 70.2 66.2 47.5 48.6 38.8 50.0

MECTA 30.2 33.9 29.3 58.4 32.3 55.7 63.1 55.7 54.9 60.8 70.0 64.4 47.3 49.2 40.5 49.7
EcoTTA 17.7 22.3 18.8 60.5 23.8 57.1 63.5 55.7 51.9 60.7 70.6 65.9 41.3 43.9 30.0 45.6
L-TTA 30.8 34.4 31.2 57.8 34.3 56.1 63.1 57.0 57.0 61.7 70.1 64.9 48.6 53.7 42.5 50.9
CMF 38.6 44.5 37.5 45.8 37.7 46.0 53.1 52.7 53.5 53.0 63.2 58.4 46.8 54.0 46.8 48.8
PEA 34.3 35.7 38.2 63.4 39.1 59.8 66.8 60.1 59.8 65.7 74.4 68.4 50.0 51.6 41.1 53.9

ResNet

PEA + Aug 35.5 36.9 39.1 64.0 39.8 60.8 67.1 60.7 60.4 66.6 74.7 68.7 51.5 52.3 41.2 54.6

Table 6 presents the detailed results on CIFAR10-C. Our method, PEA, consistently outperforms
prior baselines across most corruption types for both ViT and ResNet backbones. Notably, PEA
+ Aug achieves the highest overall accuracy, benefiting from robust alignment and enriched feature
diversity. The improvement is especially pronounced under severe corruptions such as impulse noise
and pixelate, where domain shifts are more extreme.

Table 7 shows the corresponding breakdown for CIFAR100-C. Similar trends are observed: PEA and
its augmented variant deliver consistent gains across nearly all corruption types. On both ViT and
ResNet, PEA + Aug achieves the best performance on most corruptions, highlighting the strength
of our progressive alignment and augmentation strategy.

These detailed results further demonstrate that our method generalizes well across a wide range
of perturbation types, offering both strong average performance and consistent robustness under
diverse corruption scenarios.

D.2 VISUALIZATION OF THE ALIGNED FEATURES

To better understand how our proposed PEA progressively corrects domain shifts across layers, we
visualize the intermediate embeddings of three representative classes—pine tree, bicycle, and bee
from CIFAR100-C under the Contrast corruption. The upper row of Figure 6 shows the feature
distributions of the source (circle markers) and shifted domain samples (triangle markers) at three
representative layers (block1, block6, and block11), along with their respective class centroids (stars
for source and hexagons for domain). The visualizations clearly reveal that the domain features drift
away from the source distributions in all intermediate layers, manifesting as embedding translation,
scaling, and rotational shifts.

The lower row presents the domain features after applying our adaptation approach. We observe that
the domain clusters become progressively more compact and align closely with the source clusters,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: Visualization of intermediate embeddings before and after PEA adaptation on CIFAR100-
C. We display the features of the pine tree, bicycle, and bee classes under the CIFAR100-C Contrast
corruption.

Table 8: Detailed accuracies (%) under batch size of 4.

Model Method

ViT-Base No Adapt SAR Tent EATA FOA (F = 9) CMF SPA PEA
55.5 63.0 62.0 62.2 62.0 62.0 62.6 63.3

ResNet-50 No Adapt TENT EATA MECTA EcoTTA L-TTA CMF PEA
27.8 1.7 18.5 28.2 1.2 34.5 17.6 41.7

and the class centroids from the two domains converge. Notably, by the final block (block11),
the previously shrinking domain features are largely pulled back to their original source positions.
These results demonstrate that PEA can systematically reduce the three types of distortions across
and successfully realign the feature spaces to the source distribution.

D.3 SMALL BATCH SIZE COMPARISON

Table 8 provides a detailed comparison of PEA against existing TTA baselines under a severely con-
strained setting (batch size = 4). While conventional entropy-minimization methods such as SAR,
Tent, and EATA provide consistent improvements around 62%, and FOA (F = 9) reaches similar
accuracy, our method further improves performance to 63.3%. For the ResNet-50 backbone, the
difference between methods is even more striking. Without adaptation, the baseline model achieves
27.8% accuracy. Most entropy-minimization methods either fail or perform poorly. While MECTA
and L-TTA achieve moderate improvements, they still lag behind our method, which attains 41.7%.

The primary reason for the failure on ResNet is that most existing TTA baselines rely on updat-
ing BatchNorm (BN) statistics. This process requires sufficiently large batch sizes to estimate sta-
ble mean and variance values; otherwise, the updates become noisy and cause severe performance
degradation. Under small-batch regimes, such as those common on edge devices, these baselines
therefore collapse in accuracy. In contrast, PEA avoids this limitation by not depending on BN up-
dates or backpropagation. Instead, it realigns embeddings using pre-computed source statistics and
lightweight covariance alignment, which remain stable even with very small batches. This design

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Effect of momentum m and entropy threshold θent on average accuracy (%) on CIFAR100-
C. Each cell reports accuracy with the average number of entropy spikes in (·).

m
Accuracy (%) (Spikes) vs. θent

0.5 0.8 1.0 1.5

0.01 75.3 (16) 75.4 (9) 75.0 (7) 74.6 (2)
0.02 75.7 (17) 75.8 (9) 75.5 (5) 75.5 (2)
0.05 75.7 (17) 75.7 (6) 75.7 (3) 75.7 (2)
0.10 75.4 (17) 75.3 (8) 75.4 (2) 75.3 (1)

makes PEA inherently more robust under constrained batch sizes, ensuring consistent performance
across both CNN and ViT backbones.

D.4 MORE RESULTS OF ABLATION STUDY

We further analyze the sensitivity of our method to the two hyperparameters: the EMA momentum
m, which controls the update rate of domain statistics, and the entropy threshold θent, which is
used for detecting distribution shifts. To this end, we sweep a range of values for both parameters
and report the average accuracy across the 15 CIFAR100-C domains, together with the number of
entropy spikes triggered during evaluation, as shown in Table 9.

The results show that very small momenta (e.g., m = 0.01) underperform with accuracies around
75.0–75.4%, while moderate values of m = 0.02–0.05 consistently achieve the best performance
(75.5–75.8%). Larger momentum (m = 0.10) again reduces accuracy to about 75.3–75.4%. For the
entropy threshold, low values such as θent = 0.5 lead to frequent resets (16–17 spikes), whereas high
values like θent = 1.5 almost disable resets (1–2 spikes). Accuracy remains stable across thresholds
with differences within 1%, but excessively low thresholds slightly degrade performance due to too
many resets, while overly high thresholds risk ignoring meaningful shifts. The balanced setting of
θent = 0.8–1.0 achieves both high accuracy (75.5%–75.8%) and moderate spike counts.

In conclusion, our method is not highly sensitive to these hyperparameters, with accuracy variation
contained within about 1%. For all main experiments, we adopt m = 0.02 and θent = 1.0 as they
provide the best trade-off between responsiveness and stability.

E USE OF LLM IN THIS PAPER

We emphasize that large language models (LLMs) were used solely for polishing the writing and
improving readability. No part of the technical content, experimental design, analysis, or results
relied on LLM-generated material. All research ideas, implementations, and evaluations are original
to the authors.

F DOMAIN SHIFT IN RESNET EMBEDDING SPACE

In this section, we illustrate that the embedding-space shift for ResNet is consistent with that ob-
served in ViT. We visualize the embedding space of ResNet-50 on CIFAR10-C and observe the
same systematic shifts in mean, variance, and channel-wise covariance across layers. Specifically,
Figure 7 and Figure 8 show the Zoom Blur and Frost domains, respectively, where the embedding
shifts closely match those seen in ViT, indicating that the effect is driven by domain shift rather
than architectural design. This aligns with our experimental results, where PEA also improves CNN
backbones (ResNet-50) on CIFAR10-C/100-C and ImageNet-C.

G MIXED-DOMAIN EMBEDDING SHIFT VISUALIZATION

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Impact of domain shift on intermediate layer embeddings using CIFAR100-C. We visu-
alize the features in Domain Zoom Blur for ResNet-50.

Figure 8: Impact of domain shift on intermediate layer embeddings using CIFAR100-C. We visu-
alize the features in Domain Frost for ResNet-50.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 9: Impact of mixed domains on intermediate-layer embeddings on CIFAR100-C. We visu-
alize ViT-Base features for 3 classes.

To better understand why PEA remains effective under the mixed-domain scenario, we visualize
the intermediate embeddings of ViT-Base on CIFAR100-C in a mixed-domain setting. Specifically,
we construct a mixed CIFAR100-C stream where all 15 corruptions (severity 5) are combined and
shuffled, so that each batch contains samples from multiple domains. For a subset of 3 classes, we
extract features from 9 ViT blocks (from shallow to deep) and jointly project the clean and mixed-
domain embeddings. Figure 9 shows the resulting embeddings for all 9 blocks.

As expected, compared to the clean case, mixed-domain embeddings exhibit lower intra-class com-
pactness and increased spread, since each class now aggregates samples from heterogeneous cor-
ruptions. However, the key observation is that the distortion is still highly systematic across layers.
This matches our hypothesis that domain shift, even when composed of multiple human-defined
“domains” (fog, snow, blur, etc.), induces a geometric shift in the embedding space.

21


