

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARCHITECTURE-AGNOSTIC TEST-TIME ADAPTATION VIA BACKPROP-FREE EMBEDDING ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Test-Time Adaptation (TTA) adapts a deployed model during online inference to mitigate the impact of domain shift. While achieving strong accuracy, most existing methods rely on backpropagation, which is memory and computation intensive, making them unsuitable for resource-constrained devices. Recent attempts to reduce this overhead often suffer from high latency or are tied to specific architectures such as ViT-only or CNN-only. In this work, we revisit domain shift from an embedding perspective. Our analysis reveals that domain shift induces three distinct structural changes in the embedding space: translation (mean shift), scaling (variance shift), and rotation (covariance shift). Based on this insight, we propose Progressive Embedding Alignment (PEA), a backpropagation-free and architecture-agnostic TTA approach. By applying a novel covariance alignment procedure at each intermediate layer, PEA efficiently corrects the embedding distortions with only two forward passes. Extensive experiments demonstrate that PEA achieves state-of-the-art performance in both accuracy and efficiency, while also proving versatile across different architectures including ViTs and CNNs.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable success across a wide range of computer vision tasks (Pouyanfar et al., 2018). However, their performance often degrades significantly under distribution shifts between the training data and unseen test data - a challenge that frequently arises in real-world and real-time applications (Koh et al., 2021; Sun et al., 2022). To address this limitation, DNNs must be able to adapt effectively to such shifts. Test-time adaptation (TTA) (Liang et al., 2025) has recently emerged as a promising paradigm, enabling a pretrained model to be fine-tuned on-the-fly using unlabeled test batches as they arrive during inference. By continually adjusting to new data distributions, TTA mitigates the performance degradation caused by domain shifts and enhances the robustness of deployed models.

Most mainstream TTA approaches rely on either pseudo-labeling or entropy minimization. Pseudo-labeling (Wang et al., 2022; Marsden et al., 2024; Lee & Chang, 2024) is a self-supervised strategy that assigns provisional labels to the current test batch and updates the model based on these label estimations. In contrast, entropy minimization (Wang et al., 2020; Niu et al., 2022; 2023) is an unsupervised method that encourages the model to produce more confident predictions directly from unlabeled data. Despite their effectiveness, both approaches suffer from a fundamental drawback: *they depend on backpropagation*. Specifically, they require backward passes and gradient storage across multiple layers during adaptation, which introduces substantial computational and memory overhead. This reliance makes them unsuitable for deployment in resource-constrained settings, such as edge devices or real-time applications. Recent methods like SPA and CMF cannot deploy on edge devices due to exceeding 10GB memory requirements (Table 1).

To mitigate the inefficiency of backpropagation, several recent studies have proposed lightweight alternatives via reducing the overhead of gradient-based updates. For example, MECTA (Hong et al., 2023) combines model pruning with entropy minimization to reduce gradient computation. EcoTTA (Song et al., 2023) replaces heavy convolutional blocks with lightweight meta-networks to lower backpropagation costs. Similarly, L-TTA (Shin & Kim, 2024) observes that shallow layers contribute most to adaptation and thus restricts updates to the stem layers, simplifying the process. More recently, some methods attempt to remove backpropagation altogether. FOA (Niu et al., 2024), for instance, performs derivative-free prompt search for Vision Transformers (ViTs) (Dosovitskiy et al., 2020), thereby eliminating backward passes and reducing memory usage. However, FOA still incurs high latency, as achieving competitive accuracy requires a large number of forward passes (e.g., 27).

054 A second major limitation of existing efficient TTA methods lies in their lack of architectural gener-
 055 ality. While full backpropagation-based approaches are broadly applicable to both CNNs (He et al.,
 056 2016) and Transformers (Vaswani et al., 2017), most efficient variants are narrowly tailored. For
 057 instance, FOA is designed exclusively for ViTs via prompt tuning and cannot be applied to CNNs.
 058 Conversely, methods like EcoTTA and MECTA are tailored to ResNet-style CNNs that rely on batch
 059 normalization layers, rendering them ineffective for Transformer architectures.

060 In this paper, we introduce **PEA**, a **backpropagation-free** and **architecture-agnostic** method for
 061 efficient TTA. Our approach is motivated by a principled analysis of how domain shifts distort inter-
 062 mediate feature representations. Specifically, our analysis reveals that features from shifted domains
 063 consistently diverge from source-domain features through three structural transformations: (i) *mean*
 064 *shift*, which displaces global feature centroids, analogous to a **translation** of the distribution; (ii)
 065 *variance shift* that modifies the spread of features and inter-class spacing, corresponding to **scal-**
 066 **ing**, and (iii) *channel-wise covariance shift*, which modifies inter-feature correlations, effectively
 067 **rotating** the feature space and reorienting class relationships.

068 Grounded in these observations, PEA progressively aligns feature covariances at each model block
 069 during inference, thereby enhancing the quality of final-layer representations and improving pre-
 070 diction reliability. Specifically, PEA implements a two-forward-pass procedure: the first pass iden-
 071 tifies the layer-wise shifts, and then, based on these shifts, assigns weights for each block to im-
 072 plement a covariance alignment across all layers’ embeddings. Unlike prior methods, PEA is both
 073 backpropagation-free and architecture-agnostic, making it applicable to both CNNs and Transfor-
 074 mers. This provides a unified and efficient solution to TTA. Our main contributions are as follows:

- 075 • Our analysis of intermediate embeddings uncovers the essence of domain shifts, which can be
 076 characterized as translations, scalings, and rotations of the embedding space.
- 077 • We propose PEA, an approach that adapts using only two forward passes per batch without back-
 078 propagation, allowing efficient adaptation with minimal memory and compute overhead.
- 079 • PEA is the first unified TTA framework that seamlessly generalizes across both CNNs and Trans-
 080 formers using identical procedures. Experiments on CIFAR-C and ImageNet-C demonstrate that
 081 it achieves competitive or superior performance compared to state-of-the-art methods, while main-
 082 taining high efficiency with successful deployment on resource-constrained edge devices.

084 2 RELATED WORK

085 **Conventional Test-Time Adaptation.** TTA has emerged as a practical solution for mitigating do-
 086 main shifts that can severely degrade model reliability in deployment (Wang et al., 2024; Liang
 087 et al., 2025; Xiao & Snoek, 2024). The core idea is to update a pretrained model online using only
 088 the incoming unlabeled test batches, without requiring access to source data or ground-truth labels.

089 Early TTA studies primarily focused on updating the model’s normalization layers. For example,
 090 simply recalibrating batch normalization (BN) statistics was found to recover some of the accuracy
 091 lost under distribution shifts (Benz et al., 2021). Building on this idea, entropy-based optimization
 092 techniques such as TENT (Wang et al., 2020) and EATA (Niu et al., 2022) update gradients online
 093 under the guidance of prediction entropy, which often combined with sample filtering or dynamic
 094 reweighting to improve stability. These methods established the foundation for unsupervised TTA,
 095 which adapts models based solely on their confidence without relying on external labels.

096 In parallel, another branch of work leveraged the model’s own predictions as supervision signals.
 097 These self-supervised strategies fine-tune the model with pseudo-labels generated from the current
 098 test batch. Representative examples include mean-teacher adaptation (Wang et al., 2022), meta-
 099 learned initialization for rapid convergence (Bartler et al., 2022), and improved label robustness via
 100 symmetric cross-entropy (Döbler et al., 2023). More recent efforts further stabilized this process
 101 through ensembling (Marsden et al., 2024) and Kalman filter refinement (Lee & Chang, 2024).

102 Despite their differences, both unsupervised and self-supervised TTA methods share a key limita-
 103 tion: they rely on backpropagation during adaptation. The need to compute gradients and store inter-
 104 mediate activations largely increases memory and computation overhead, limiting their practicality
 105 on resource-constrained devices and motivating the development of more efficient alternatives.

107 **Efficient Test-Time Adaptation.** Recent TTA research has increasingly focused on improving ef-
 108 ficiency from various angles. Memory-aware gradient-based methods aim to reduce the footprint of

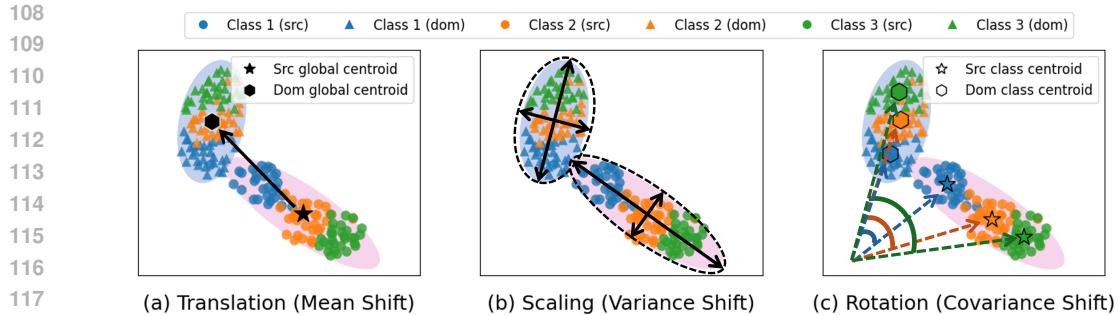


Figure 1: Impact of domain shift on intermediate layer embeddings. Feature distributions of three classes from block 3 of the ViT model are visualized. Each subfigure illustrates a different type of shift: translation, scaling, and rotation. More experiments can be found in Appendix A.

backpropagation. For example, MECTA (Hong et al., 2023) prunes gradient paths and normalizes only selected layers to lower activation storage, while EcoTTA (Song et al., 2023) leverages compact meta-networks to minimize backpropagation overhead. L-TTA (Shin & Kim, 2024) enhances efficiency by restricting adaptation to shallow stem layers in CNNs, and TinyTTA (Jia et al., 2024) combines early-exit classifiers with ensembling for low-memory adaptation on microcontrollers.

Notably, forward-only approaches eliminate gradient computation entirely. For example, LAME (Boudiaf et al., 2022) adjusts classifier decision boundaries post hoc without any gradient updates, though its limited adaptability can reduce accuracy. FOA (Niu et al., 2024) employs derivative-free prompt optimization for Vision Transformers, substantially lowering memory usage but incurring high latency due to the large number of forward passes required.

Overall, existing efficient TTA methods either rely on backpropagation, leading to high memory and computational costs, or are limited to specific architectures (e.g., CNN-only or ViT-only designs). In contrast, our method presents a unified forward-only framework that delivers fast, memory-efficient adaptation while maintaining strong accuracy across both CNNs and Transformers.

3 MOTIVATION: ANALYSIS OF DOMAIN SHIFT

Although contemporary TTA methods have achieved empirical success, they often treat domain shift as a black-box problem, focusing on high-level strategies like entropy minimization and prompt tuning without exploring the root cause of performance degradation. This motivates our central question: **what is the essence of domain shift?** We approach this question from the perspective of the **embedding space**, hypothesizing that *misalignment in intermediate representations is a key driver of performance drop under domain shift*. To test this, we conducted an empirical analysis using a ViT model trained on CIFAR10 (source) and evaluated on CIFAR10-C with Fog (target). We applied t-SNE to visualize the intermediate embeddings from ViT block 3, focusing on three representative classes for the sake of clarity in illustration. The resulting visualizations consistently reveal three distinct structural transformations in the embedding space, as shown in Figure 1. We conduct more similar experiments and observe the same phenomenon, which can be found in Appendix A.

Our analysis reveals that, despite its varied forms, domain shift primarily manifests through three characteristic geometric changes in the embedding space:

(i) Translation (Mean Shift). As shown in Figure 1(a), the most fundamental effect of domain shift is a translation of the feature distribution. The global centroid of the target domain’s embeddings is displaced relative to that of the source domain. As a result, the embedding magnitudes in the target shifted domain become misaligned with the parameters learned by the source model. While this is the most common form of shift addressed by conventional TTA methods, it is often only one part of a more complex problem.

(ii) Scaling (Variance Shift). Beyond a simple translation, domain shift significantly alters the scaling of the entire feature distribution, corresponding to a variance shift. As depicted in Figure 1(b), the global “cloud” of features changes its overall shape and density. Some layers may exhibit a more compact feature distribution, where the embeddings are compressed closer to their mean, while others become more dispersed, expanding outwards. **This observation is consistent with the insight in GALA (Sahoo et al., 2025) and PALM (Maharana et al., 2025).** This non-uniform scaling

162 across layers cannot be corrected by simple global normalization; instead, it requires a layer-specific
 163 approach to align the variance change in feature space.

164 **(iii) Rotation (Channel-wise Covariance Shift).** Our most crucial observation is the presence of
 165 a covariance shift in the feature space. This indicates a systematic change in the correlation among
 166 the embedding dimensions. **The shift mainly appears as a coherent geometric transformation of the**
 167 **feature cloud, resembling rotation and shearing.** As visualized in Figure 1(c), this distortion goes be-
 168 yond simple translation and scaling, fundamentally altering the relative orientation and arrangement
 169 of class clusters.

171 4 PROGRESSIVE EMBEDDING ALIGNMENT

172 Based on the analysis above, a natural TTA solution is to progressively realign the shifted em-
 173 beddings toward the source distribution across model layers. However, applying such alignment
 174 presents two key challenges: (1) Since intermediate features are automatically learned and propa-
 175 gated through the model layers, even small misalignments at early layers can accumulate and cause
 176 significant degradation in deeper representations. (2) TTA typically operates with small batch sizes
 177 (e.g., 64 or fewer) on the devices, making it difficult to reliably estimate feature statistics.

178 To address these issues, we propose Progressive Embedding Alignment (PEA), a simple yet effective
 179 method that incrementally refines intermediate representations through robust covariance alignment.
 180 To tackle the challenge of accumulating errors, our method employs a **distance-aware weighted**
 181 **covariance alignment** strategy that progressively interpolates between the original and aligned em-
 182 beddings based on their degree of shift, ensuring robustness and preventing over-correction. To
 183 overcome the challenges of small batch sizes, we introduce two techniques: an **exponential moving**
 184 **average (EMA)** to accumulate historical estimates of statistics, and lightweight **data augmenta-**
 185 **tion** to diversify input samples and enrich the feature distribution observed at test time. Unlike
 186 many prior TTA methods that require updating model parameters to fit the shifted domain, *PEA is*
 187 *entirely backpropagation-free and architecture-agnostic, operating solely on intermediate features.*
 188 The complete PEA pipeline is summarized in Algorithm 1 (Appendix B).

189 4.1 DISTANCE-AWARE WEIGHTED COVARIANCE ALIGNMENT

190 The key objective of our method is to progressively realign the test-time intermediate features with
 191 the source-domain distribution at each block of the DNN. We achieve this using a Whitening-
 192 Coloring Transform (WCT) (Cho et al., 2019) that geometrically transforms the target-domain fea-
 193 tures to match the structure of the source domain. However, as we mentioned in the first challenge
 194 above, applying covariance alignment too aggressively risks over-correction and misalignment. To
 195 balance this, we introduce a *distance-aware weighting mechanism* that adaptively combines the orig-
 196 inal and aligned features based on their layer-specific statistical discrepancy. Our method operates
 197 in two stages: an **offline stage** that extracts source statistics prior to deployment, and an **online stage**
 198 that performs dynamic alignment at test time through a two-forward-pass procedure.

199 **Offline Stage.** Prior to test-time deployment, we compute and store the source feature statistics for
 200 each block l of the model using the training set. These include the source mean vector $\mu_{s,l}$ and
 201 covariance matrix $\Sigma_{s,l}$. These pre-computed statistics serve as the source geometry toward which
 202 we realign the test-time features. This offline process requires only a forward pass through the train-
 203 ing data and does not involve any gradient computation or backpropagation. Once computed, the
 204 statistics require only minimal storage (about 30MB for ViT-Base) and enable deployment without
 205 ongoing source data access, making our approach practical for real-world deployment scenarios.

206 **Online Stage.** At test time, each incoming batch undergoes two forward passes. The first pass
 207 estimates the degree of domain shift at each layer to determine the appropriate alignment strength.
 208 The second pass then performs the actual feature alignment using WCT. Unlike prior forward-only
 209 methods (Niu et al., 2024) that require multiple runs to optimize prompts, our approach achieves
 210 adaptation with just *two forward passes*.

211 *Pass 1: Estimating Alignment Weights.* The goal of the first pass is to measure how much the current
 212 batch deviates from the source distribution at each block. To achieve this, we forward the test batch
 213 through the network to extract the intermediate feature activations $F_l \in \mathbb{R}^{B \times N \times D}$. For each block l ,
 214 we compute the batch mean $\mu_{b,l}$ and variance $\sigma_{b,l}^2$. These statistics characterize the current batch’s
 215 distribution. To quantify the shift, we calculate a statistical distance between the batch and source

216 distribution:

217
$$d_l = \|\boldsymbol{\mu}_{s,l} - \boldsymbol{\mu}_{b,l}\|_2 + \|\boldsymbol{\sigma}_{s,l}^2 - \boldsymbol{\sigma}_{b,l}^2\|_2 \quad (1)$$
 218

219 This distance captures both center shift (translation) and scale mismatch at each layer. We then
220 normalize these raw distances across all layers using min-max scaling to obtain the alignment weight
221 $w_l \in [0, 1]$:

222
$$w_l = \frac{d_l - \min_l d_l}{\max_l d_l - \min_l d_l} \quad (2)$$
 223

224 The weight w_l reflects how strongly the features at block l should be aligned: *layers with minimal*
225 *shift receive near-zero weights (i.e., skip alignment), while those with high discrepancy are corrected*
226 *more aggressively.*227 *Pass 2: Performing Weighted Feature Alignment.* In the second forward pass, we reprocess the
228 batch through the model and apply WCT-based alignment at each block. Let the updated test-time
229 batch statistics be $\boldsymbol{\mu}_{t,l}$ and $\boldsymbol{\Sigma}_{t,l}$, which may be computed either from the current batch or from EMA
230 tracking (see Section 4.2). We then apply the whitening-coloring transformation:

231
$$\mathbf{Y}_l = (\mathbf{F}_l - \boldsymbol{\mu}_{t,l}) \boldsymbol{\Sigma}_{t,l}^{-1/2} \boldsymbol{\Sigma}_{s,l}^{1/2} + \boldsymbol{\mu}_{s,l} \quad (3)$$
 232

233 In Eq. 3, we first whiten the test features by removing domain-specific variations using the target-
234 domain mean and the square root of its covariance matrix. We then re-color the features with the
235 source-domain covariance and mean to restore the geometry of the source distribution.236 Instead of directly replacing the original feature with the aligned output, we blend them using the
237 previously computed weight:

238
$$\mathbf{F}'_l = (1 - w_l) \mathbf{F}_l + w_l \mathbf{Y}_l \quad (4)$$
 239

240 The combination of \mathbf{F}_l and \mathbf{Y}_l ensures that features are only shifted when necessary, maintaining
241 stability for well-aligned layers while correcting mismatched ones.242 One of the main computational bottlenecks in our alignment lies in the operations on covariance
243 matrices, especially the computation of the matrix square root $\boldsymbol{\Sigma}^{1/2}$ and its inverse $\boldsymbol{\Sigma}^{-1/2}$. To
244 perform this efficiently and stably, we use eigendecomposition tailored for symmetric positive semi-
245 definite (SPSD) matrices. Given a covariance matrix $\boldsymbol{\Sigma}$, we first compute the eigendecomposition
246 $\boldsymbol{\Sigma} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^\top$, where \mathbf{V} contains the eigenvectors and $\boldsymbol{\Lambda}$ contains the eigenvalues. The square root
247 and inverse square root are then computed as:

248
$$\boldsymbol{\Sigma}^{1/2} = \mathbf{V} \boldsymbol{\Lambda}^{1/2} \mathbf{V}^\top, \quad \boldsymbol{\Sigma}^{-1/2} = \mathbf{V} \boldsymbol{\Lambda}^{-1/2} \mathbf{V}^\top \quad (5)$$
 249

250 This eigendecomposition simplifies the computation of the matrix square root and its inverse, effec-
251 tively avoiding the high computational burden of general matrix operations. Overall, our method in-
252 introduces minimal overhead: the eigendecomposition used for alignment is computationally efficient
253 due to the moderate feature dimensionality at each layer (typically 128 - 1024), and it is only applied
254 during the forward pass. Crucially, our approach is entirely *gradient-free* and *model-agnostic* — it
255 does not require backpropagation and task-specific tuning. All operations are performed on interme-
256 diate feature activations, allowing for seamless integration with a wide range of architectures (e.g.,
257 CNNs and ViTs) and low-latency deployment on resource-constrained devices.258

4.2 ROBUST STATISTICS ESTIMATION VIA EMA

259 The effectiveness of the embedding alignment critically depends on the accurate estimation of
260 the target domain statistics $(\boldsymbol{\mu}_{t,l}, \boldsymbol{\Sigma}_{t,l})$. However, test-time deployment, especially on resource-
261 constrained devices equipped with limited memory, often necessitates small batch sizes (e.g., 64 or
262 fewer), resulting in unreliable statistical estimates when derived from a single batch. To mitigate this
263 issue, we maintain an Exponential Moving Average (EMA) strategy of the target feature statistics to
264 accumulates historical batches to yield a more stable and robust estimation over time. For each new
265 batch i , the EMA is updated with a momentum parameter m :

266
$$\boldsymbol{\mu}_{t,l}^{(i)} = (1 - m) \boldsymbol{\mu}_{t,l}^{(i-1)} + m \boldsymbol{\mu}_{b,l}, \quad \boldsymbol{\Sigma}_{t,l}^{(i)} = (1 - m) \boldsymbol{\Sigma}_{t,l}^{(i-1)} + m \boldsymbol{\Sigma}_{b,l} \quad (6)$$
 267

268 While EMA ensures stability, it can be slow to adapt to *sudden and fast* domain shifts, causing the
269 model to be anchored to outdated statistics. To solve this problem, we incorporate a **spike domain**
shift detection mechanism based on prediction entropy.

270 Spike detection uses the model’s prediction confidence as a signal for detecting a domain shift. A
 271 sudden drop in confidence (i.e., a sharp rise in entropy) often indicates that the model is encountering
 272 a new, unfamiliar domain (Ma et al., 2025). We track an EMA of the batch average prediction
 273 entropy, E_{ema} , and compare it to the instantaneous entropy of the current batch, H_t . A spike is
 274 flagged if the current entropy surpasses the historical average by a fixed threshold θ_{ent} :

$$275 \quad \text{Spike if: } H_t > E_{\text{ema}} + \theta_{\text{ent}} \quad (7)$$

276 If an entropy spike is detected, the EMA statistics $(\mu_{t,l}, \Sigma_{t,l})$ are immediately reset to those of the
 277 current batch. The detection module allows the model to rapidly adapt to the new data distribution,
 278 ensuring both stability during gradual shifts and agility during abrupt ones. The EMA update is
 279 computationally lightweight, involving only simple averaging per layer with negligible cost. Memory
 280 usage is also minimal, requiring storage of just two small tensors per block.

282 4.3 DATA ENRICHMENT VIA LIGHTWEIGHT AUGMENTATION

283 To further enhance the estimation of the target batch distribution, we introduce a lightweight data
 284 enrichment strategy based on *simple and low-cost augmentations* (Simonyan & Zisserman, 2014).
 285 These augmentations include common geometric transformations such as horizontal flips, random
 286 crops, and mild rotations. They are computationally inexpensive and preserve the semantic consis-
 287 tency of the domain. For each input image, we generate K augmented views. This data augmentation
 288 is integrated into both forward passes during the online adaptation stage:

289 *Pass 1:* As described in Section 4.1, the first forward pass is used to estimate the layer-wise distribu-
 290 tion discrepancy by computing the feature statistics of the current batch. To enhance the estimation
 291 under small batch sizes, we apply augmentation to each image and process the resulting K -view
 292 batch in the first forward pass. We then compute the alignment distance in Eq. 1 using this enriched
 293 batch, which results in more robust and stable weight estimation for each layer.

294 *Pass 2:* The second forward pass performs the actual alignment using the WCT transformation
 295 shown in Eq. 3. As in the first pass, we augment the batch into K views and apply the WCT align-
 296 ment across all views. After obtaining K sets of aligned predictions, we aggregate them through
 297 uniform averaging:

$$298 \quad \text{pred}_{\text{final}} = \frac{1}{K} \sum_{k=1}^K \text{logits}_k \quad (8)$$

302 The feature enrichment and ensembling not only improve the stability of embedding alignment but
 303 also enhance final predictions by incorporating multiple complementary views of the data. Despite
 304 introducing multiple views per input, the augmentations are lightweight and require no additional
 305 model parameters or backward passes. As a result, the added cost is limited to repeated forward
 306 passes with minor geometric transforms, making this approach highly efficient and practical even
 307 on memory-constrained edge devices.

308 **Fundamental Methodological Difference of PEA:** Existing TTA methods typically update the
 309 affine parameters of normalization layers through backpropagation, i.e., they *adapt the model to fit*
 310 *the shifted domains*, using techniques such as entropy minimization and data augmentation. How-
 311 ever, as discussed in (Press et al., 2024), the absence of ground-truth labels at test time often cause
 312 embedding drifts over successive iterations, resulting in suboptimal performance or even leading to
 313 catastrophic forgetting.

314 In contrast, our approach adopts a fundamentally different strategy: rather than modifying the model,
 315 we *align the shifted embeddings with the source distribution*. This eliminates the need for *backprop-*
 316 *agation*, ensuring that the original model parameters remain intact and robust, thereby completely
 317 mitigating catastrophic forgetting.

318 5 EXPERIMENTS

320 5.1 DATASETS AND BASELINES

322 **Datasets and Models.** Following recent works in TTA (Shin & Kim, 2024; Niu et al., 2024), we
 323 conduct a comprehensive evaluation across multiple datasets. Specifically, we use CIFAR10-C,
 CIFAR100-C, and ImageNet-C, each of which introduces 15 common corruption types applied to

324 Table 1: Comparison of accuracy (%) on ImageNet-C using ViT-Base and ResNet-50 with memory
325 consumption on server. Aug and BP indicate whether the approaches utilize data augmentation and
326 backpropagation. In FOA, F specifies how many forward passes per batch.

Model	Aug	BP	Methods	gauss.	shot	impul.	defoc.	glass	motion	zoom	snow	frost	fog	bright	conta.	elast.	pixel.	jpeg	Avg.	Mem. (MB)	Latency (s/batch)
ViT	X	X	No Adapt	56.7	56.8	57.5	46.9	35.6	53.1	44.8	62.2	62.5	65.7	77.6	32.6	46.0	66.9	67.6	55.5	858	0.18
	X	✓	SAR	59.9	62.2	62.8	54.1	54.1	59.1	54.5	63.5	65.6	65.3	78.2	64.4	58.3	69.2	69.7	62.7	6181	0.59
	X	✓	Tent	57.1	58.1	59.2	44.7	43.2	56.6	50.6	62.8	60.5	65.2	78.0	59.7	49.8	68.2	68.6	58.8	6108	0.31
	X	✓	EATA	57.3	59.1	59.9	53.6	49.4	58.2	51.8	63.0	62.9	65.7	77.8	62.0	55.7	65.8	68.7	60.7	6108	0.31
	X	X	FOA (F = 27)	61.5	63.5	64.3	56.9	55.1	61.0	60.9	68.4	70.9	73.6	80.9	66.0	61.8	73.5	73.6	66.1	870	3.33
	X	X	FOA (F = 9)	60.5	63.1	63.9	54.6	48.5	60.4	57.2	66.8	69.6	71.5	80.9	66.6	55.9	72.9	72.8	64.3	870	1.25
	✓	✓	CMF	60.0	61.2	60.8	56.6	56.8	62.4	60.8	69.3	67.9	72.7	78.8	65.2	69.4	73.8	72.0	65.9	10404	0.53
	✓	✓	SPA	61.7	64.0	63.0	50.7	58.3	63.0	59.1	68.2	65.5	67.9	77.7	63.9	67.3	72.6	66.0	64.6	10902	0.50
	X	X	PEA	57.7	58.4	58.9	53.2	50.4	59.8	60.4	69.1	68.7	72.9	80.2	63.5	69.9	72.0	72.0	64.5±0.0	887	0.31±0.1
	✓	X	PEA + Aug	61.2	61.5	62.1	55.6	52.4	61.4	62.1	70.4	70.7	74.5	80.9	65.8	71.7	73.4	73.6	66.5±0.1	1867	0.59±0.2
ResNet	X	X	No Adapt	22.2	23.7	21.3	20.0	10.2	21.6	26.1	31.6	33.1	39.3	67.7	25.4	14.0	13.1	47.3	27.8	817	0.17
	X	✓	Tent	14.4	17.9	14.2	14.3	15.3	27.8	51.1	41.9	43.6	59.8	69.4	27.4	45.3	44.2	46.4	35.5	5901	0.36
	X	✓	EATA	15.4	20.6	18.6	17.4	19.7	32.5	44.9	44.5	47.4	60.8	70.0	34.4	49.0	51.0	50.9	38.5	5965	0.36
	X	✓	MECTA	19.3	22.9	18.6	16.1	18.0	31.6	45.0	44.9	45.1	63.0	71.1	33.5	47.7	53.2	39.4	38.0	4425	0.50
	X	X	EcoTTA	3.9	6.2	3.5	7.5	9.8	24.2	41.8	43.3	31.9	60.7	68.8	16.5	47.1	46.2	46.2	30.5	5177	0.63
	X	✓	L-TTA	16.8	24.0	22.6	12.1	16.7	23.3	33.6	42.0	44.8	57.3	66.7	16.6	43.5	49.4	47.8	34.5	3373	0.25
	✓	✓	CMF	35.0	35.1	36.6	19.2	27.5	34.5	42.9	47.9	47.6	60.2	69.7	38.2	51.0	54.7	55.7	43.7	10413	0.38
	X	X	PEA	22.6	25.0	22.0	26.0	23.1	37.3	48.2	49.7	48.7	64.8	73.5	51.1	53.0	43.3	52.2	42.7±0.1	983	0.36±0.2
	✓	X	PEA + Aug	26.2	28.3	25.8	27.5	24.8	38.8	49.6	51.3	50.4	65.6	74.0	52.4	55.1	47.9	54.1	44.8±0.2	2397	0.56±0.2

338 the original test sets. We adopt the most severe corruption level (severity = 5) and batch size of
339 64 throughout all experiments. To simulate a realistic online domain shift scenario, we follow the
340 **lifelong continual** test-time adaptation setting in CoTTA (Wang et al., 2022; Niu et al., 2022), where
341 corrupted samples are streamed sequentially at test time. Compared to always adapting each domain
342 from the source domain, our continual setting is more realistic and challenging.

343 For backbone models, we adopt both ResNet-50 (He et al., 2016) and ViT-Base (Dosovitskiy et al.,
344 2020) on the ImageNet-C and CIFAR100-C datasets. For CIFAR10-C, we evaluate using ResNet-50
345 and ViT-Tiny to account for the dataset’s smaller scale. This diverse selection demonstrates that our
346 method generalizes effectively across both CNN and Transformer-based architectures.

347 **Baselines.** We compare our proposed PEA with several efficient TTA approaches as well as state-
348 of-the-art performance-driven methods. For efficient CNN-based TTA, we include EcoTTA (Song
349 et al., 2023), MECTA (Hong et al., 2023), and L-TTA (Shin & Kim, 2024). For ViT-specific adap-
350 tation, we evaluate FOA (Niu et al., 2024), which performs forward-only prompt optimization. We
351 also evaluate entropy minimization-based methods including Tent (Wang et al., 2020), EATA (Niu
352 et al., 2022), and SAR (Niu et al., 2023). Finally, we include recent state-of-the-art approaches based
353 on pseudo-labeling and data augmentation: CMF (Lee & Chang, 2024) and SPA (Niu et al., 2025)¹.
354 Details of the implementation and additional clarifications are provided in Appendix C.

356 5.2 MAIN RESULTS ON IMAGENET-C

357 Table 1 presents the classification accuracy and variation (averaged over 5 runs with different random
358 seeds) for each domain, together with the memory consumption and per-batch inference latency
359 measured on the server.

360 For ViT-Base, without adaptation, the baseline ViT model achieves an average accuracy of 55.5%.
361 Although existing methods such as Tent (Wang et al., 2020) and EATA (Niu et al., 2022) offer
362 moderate improvements to 58.8% and 60.7%, they incur substantial memory overhead (more than
363 6 GB) due to backpropagation-based updates. More recent backprop-free method FOA (Niu et al.,
364 2024) and SOTA SPA (Niu et al., 2025) achieve stronger accuracy (up to 66.1% and 64.6%) but
365 with high latency (up to 3.33s) or memory consumption (over 10 GB). By contrast, our PEA achieves
366 64.5% accuracy with only 887MB of memory and 0.31s latency. When combined with augmentation
367 (PEA + Aug), performance further improves to 66.5%, surpassing FOA with better latency. This
368 demonstrates that PEA not only provides competitive accuracy but also delivers exceptional memory
369 and latency efficiency, making it highly suitable for real-time or on-device deployment.

370 For ResNet-50, TTA baselines such as Tent, EATA, and CMF improve performance to up to 43%,
371 but again at the cost of large memory (more than 5.9 GB) and higher compute demand. PEA out-
372 performs all low-cost adaptation methods with an average accuracy of 42.7%, using only 983MB of
373 memory. With augmentation, it reaches 44.8%, outperforming all existing backprop-free methods
374 like EcoTTA and L-TTA by a large margin.

375
376 ¹The SPA results reported in the original paper are obtained under a single-domain adaptation setting, where
377 the model is reset before each corruption. In our experiments, we use a more challenging lifelong TTA setting,
378 where the model adapts continuously across all domains without reset.

378
379

Table 2: Adaptation accuracy (%) on CIFAR10-C and CIFAR100-C using ViT and ResNet.

380
381
382
383
384
385
386
387
388
389
390

Model	Dataset	Method								
		No Adapt	SAR	Tent	EATA	FOA (F=27)	CMF	SPA	PEA	PEA + Aug
ViT	CIFAR10-C	76.5	75.8	76.2	76.5	83.3	83.3	76.2	83.7±0.0	84.7±0.0
	CIFAR100-C	61.6	61.3	61.2	61.6	68.0	73.0	71.7	75.7±0.2	77.0±0.1
ResNet	Dataset	No Adapt	Tent	EATA	MECTA	EcoTTA	L-TTA	CMF	PEA	PEA + Aug
	CIFAR10-C	62.5	81.2	81.3	82.0	80.2	81.2	78.6	82.3±0.0	83.4±0.1
	CIFAR100-C	33.5	49.2	50.0	49.7	45.6	50.9	48.8	53.9±0.0	54.6±0.1

Table 3: Results on small batch sizes on CIFAR100-C and ImageNet-C.

391
392
393
394
395
396
397

Datasets	Model	Accuracy (%)		
		BS = 4	BS = 16	BS = 64
CIFAR100-C	ResNet-50	51.8	54.0	54.6
	ViT-Base	70.0	75.7	77.0
ImageNet-C	ResNet-50	41.7	44.0	44.8
	ViT-Base	63.3	65.8	66.5

Table 4: Evaluation on Jetson Orin Nano using CIFAR100-C with batch size of 64. Methods marked as incompatible (**X**) fail due to insufficient memory on the target device (3.5 GB). Memory requirements for them are shown in Table 1.

Method	ViT-Base		ResNet-50		
	Latency (s/batch)	Memory (MB)	Method	Latency (s/batch)	Memory (MB)
No Adapt	3.5	901	No Adapt	0.9	810
SAR	X	X	Tent	X	X
Tent	X	X	EATA	X	X
EATA	X	X	MECTA	X	X
FOA (F = 9)	98.9	920	EcoTTA	X	X
CMF	X	X	L-TTA	1.4	3249
SPA	X	X	CMF	X	X
PEA	4.1±0.2	1011	PEA	3.0±0.1	976
PEA + Aug	9.8±0.3	2322	PEA + Aug	7.2±0.2	2388

Efficiency and Accuracy Trade-off: Our approach achieves a highly favorable balance between robustness and efficiency. Unlike backpropagation-based TTA methods, PEA delivers strong adaptation performance while consuming significantly less memory and maintaining low latency. This lightweight yet effective design makes PEA highly suitable for practical deployment, especially in resource-constrained devices or real-time systems, we will further discuss it in Section 5.5.

5.3 RESULTS ON CIFAR10-C AND CIFAR100-C

We also evaluate the performance of PEA on the CIFAR10-C and CIFAR100-C using both ViT and ResNet. As shown in Table 2 (for more details see Section D.1), PEA consistently outperforms existing TTA approaches. Notably, under the ViT backbone, PEA achieves 77.0% accuracy on CIFAR10-C and 84.7% on CIFAR100-C when lightweight augmentation is applied, substantially outperforming augmentation-based baselines like CMF and SPA. Even without augmentation, PEA attains competitive results (75.7% and 83.7%), demonstrating its intrinsic robustness. Similar trends are observed with the ResNet backbone, where PEA achieves 83.4% on CIFAR10-C and 54.6% on CIFAR100-C, again outperforming strong baselines including MECTA, EcoTTA, and L-TTA.

In addition, we observe that augmentation-based methods such as CMF and SPA show relatively limited gains on these small-scale datasets compared to their performance on larger dataset ImageNet-C. This suggests that excessive reliance on augmentation alone may not generalize well across dataset scales. In contrast, PEA demonstrates strong generalization across both model architectures and dataset types. Importantly, it achieves this *without updating any model parameters* and is entirely *backprop-free*, making it naturally compatible with both CNN and Transformer architectures.

5.4 RESULTS ON SMALL BATCH SIZE

Table 3 presents the performance of our method under varying batch sizes (BS = 4, 16, 64) on both CIFAR100-C and ImageNet-C, using ResNet-50 and ViT-Base. We observe that while accuracy slightly drops as the batch size decreases, our method retains high performance even under very small batches. On CIFAR100-C, the ViT-Base model achieves 77.0% with BS=64 and maintains a strong 70.0% even with BS=4, a modest 7.0% drop. In contrast, the ResNet-50 model sees a smaller absolute decline (from 54.6% to 51.8%), but its overall accuracy remains much lower. A similar trend is observed on ImageNet-C, where ViT-Base drops by 3.2% and ResNet by 3.1%. As shown in Table 8 in Appendix D.3, our method performs better than other baselines.

5.5 EVALUATION ON EDGE DEVICE

To assess practical deployability, we evaluate the system performance on the Jetson Orin Nano, a resource-constrained edge device with 8 GB of shared memory, only 3.5 GB of which is accessible to deep learning applications due to OS and system overhead. We test all methods under a default

432 setting with batch size 64 on CIFAR100-C. Table 4 reports both the latency (in seconds per batch)
 433 and peak memory usage (in MB) for ViT-Base and ResNet-50 backbones.
 434

435 Due to limited memory, many TTA methods fail to run on-device, especially those requiring back-
 436 propagation (e.g., Tent, EATA, MECTA, SAR). In contrast, our method (PEA) successfully runs on
 437 both backbones, maintaining reasonable latency (4.1s for ViT, 3.0s for ResNet) and modest mem-
 438 ory usage (1011MB and 976MB, respectively). With augmentation enabled, performance trade-offs
 439 increase modestly, but still remain within edge constraints. While both FOA and L-TTA are com-
 440 patible with edge devices, FOA incurs extremely high latency, rendering it impractical for real-time
 441 applications. In contrast, L-TTA is fast but consistently underperforms in accuracy across all three
 442 datasets, as discussed in Section 5.2 and 5.3. Notably, the forward-only design of PEA ensures com-
 443 patibility with edge settings, where low memory footprint and gradient-free inference are critical,
 444 showing its strong potential for real-world deployment without sacrificing adaptation effectiveness.
 445

5.6 ABLATION STUDY

446 Table 5: Ablation study of PEA using ViT-Base
 447 model on CIFAR100-C and ImageNet-C.
 448

Ablation	Acc. (CIFAR100-C)	Acc. (ImageNet-C)
No Adapt	61.6	55.5
Cov Align Only	67.0	25.2
+ Weighting	68.3	52.9
+ Weighting, EMA	75.7	64.5
+ Weighting, EMA, Aug	77.0	66.5

449 We conduct an ablation study to quantify the contribution of each major component in PEA using
 450 the ViT-Base model on both CIFAR100-C and ImageNet-C. Table 5 summarizes the incremental
 451 performance improvements by the proposed components. Starting from the unadapted baseline,
 452 introducing only the covariance alignment module (Cov Align Only) brings a significant gain
 453 on CIFAR100-C (from 61.6% to 67.0%), demonstrating that aligning feature second-order statis-
 454 tics is a strong and lightweight signal for domain correction. However, this setting results in a sharp
 455 drop on ImageNet-C (down to 25.2%), due to over-alignment across all layers. Since ImageNet is
 456 more challenging and features greater domain complexity, the per-batch estimation of target distri-
 457 bution becomes less reliable, leading to misaligned feature transformations.
 458

459 Adding the layer-wise distance-based weighting mechanism (+ Weighting) mitigates the misalign-
 460 ment on ImageNet-C, boosting performance from 25.2% to 52.9%. This highlights the importance
 461 of selectively applying alignment only to blocks that exhibit significant distributional shift. The im-
 462 provement on CIFAR100-C is more modest but still positive, suggesting that the weighting scheme
 463 contributes to robustness across datasets. Incorporating exponential moving average (EMA) for
 464 estimating test-time statistics (+ Weighting, EMA) provides a large boost in both datasets (75.7%
 465 on CIFAR100-C and 64.5% on ImageNet-C). The EMA strategy accumulates stable statistics over
 466 time, which is especially beneficial when the test-time batch size is small or noisy. This component
 467 ensures the alignment is based on reliable statistics rather than volatile per-batch estimates. Finally,
 468 adding data enrichment via lightweight augmentations (+ Weighting, EMA, Aug) yields the high-
 469 est accuracy 77.0% on CIFAR100-C and 66.5% on ImageNet-C. The multiple views not only help
 470 stabilize the estimation of target statistics, but also improve final predictions via ensemble averaging.
 471

472 Overall, each component contributes complementary benefits to the final performance, and their
 473 combination enables PEA to maintain high accuracy under diverse corruptions while being
 474 backprop-free and resource-efficient. See Appendix D.4 for more hyperparameter evaluations.
 475

6 CONCLUSION

476 This work begins by revisiting the impact of domain shift on intermediate model embeddings, identi-
 477 fying three core transformations: mean shift (translation), variance shift (scaling), and channel-wise
 478 covariance shift (rotation), which systematically distort the feature space across layers. Motivated
 479 by this insight, we propose PEA, a lightweight, backpropagation-free, and architecture-agnostic
 480 test-time adaptation approach that progressively aligns embeddings through layer-wise covariance
 481 correction using only two forward passes. Experiments across 3 datasets, including evaluations
 482 on resource-constrained edge devices, demonstrate that PEA achieves state-of-the-art accuracy and
 483 efficiency, offering a practical and generalizable solution for robust real-world deployment.
 484

485 *Limitations.* While PEA offers a lightweight, backpropagation-free solution that generalizes across
 486 model architectures, the effectiveness of feature alignment relies on the quality of the estimated
 487 target domain statistics, which can be noisy when batch sizes are extremely small (e.g., 1) or class
 488 distributions are highly imbalanced. Although we mitigate this with EMA, extreme scenarios may
 489

486 still lead to suboptimal correction. In addition, our method requires extracting source statistics from
 487 training dataset prior to deployment. While this is acceptable under TTA setting (Song et al., 2023;
 488 Niu et al., 2024), such source statistics may not always be available in certain practical scenarios.
 489

490 **7 ETHICS STATEMENT**

491 This work does not involve human subjects, sensitive personal data, or applications with direct
 492 societal or ethical risks. The datasets used in our experiments are publicly available benchmarks
 493 that have been widely adopted in the research community. We believe the contributions of this paper
 494 align with the ICLR Code of Ethics.
 495

496 **8 REPRODUCIBILITY STATEMENT**

497 We have taken several steps to ensure the reproducibility of our results. All datasets employed in this
 498 study are publicly available and described in the main text. Detailed descriptions of model architec-
 499 tures, hyperparameters, and training protocols are provided in the paper and appendix. Furthermore,
 500 we provide pseudocode and implementation details in the appendix, and the complete source code
 501 will be made available if the paper is accepted.
 502

503 **REFERENCES**

504 Alexander Bartler, Andre Bühler, Felix Wiewel, Mario Döbler, and Bin Yang. Mt3: Meta test-
 505 time training for self-supervised test-time adaption. In *International Conference on Artificial
 506 Intelligence and Statistics*, pp. 3080–3090. PMLR, 2022.

507 Philipp Benz, Chaoning Zhang, Adil Karjauv, and In So Kweon. Revisiting batch normalization
 508 for improving corruption robustness. In *Proceedings of the IEEE/CVF winter conference on
 509 applications of computer vision*, pp. 494–503, 2021.

510 Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca Bertinetto. Parameter-free online test-
 511 time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 512 Recognition*, pp. 8344–8353, 2022.

513 Wonwoong Cho, Sungha Choi, David Keetae Park, Inkyu Shin, and Jaegul Choo. Image-to-image
 514 translation via group-wise deep whitening-and-coloring transformation. In *Proceedings of the
 515 IEEE/CVF conference on computer vision and pattern recognition*, pp. 10639–10647, 2019.

516 Mario Döbler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-
 517 time adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 518 Recognition*, pp. 7704–7714, 2023.

519 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 520 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 521 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 522 arXiv:2010.11929*, 2020.

523 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 524 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 525 770–778, 2016.

526 Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic con-
 527 tinual test-time model adaptation. In *2023 International Conference on Learning Representations*,
 528 2023.

529 Hong Jia, Young Kwon, Alessio Orsino, Ting Dang, Domenico Talia, and Cecilia Mascolo. Tinytta:
 530 Efficient test-time adaptation via early-exit ensembles on edge devices. *Advances in Neural In-
 531 formation Processing Systems*, 37:43274–43299, 2024.

540 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
 541 subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
 542 benchmark of in-the-wild distribution shifts. In *International conference on machine learning*,
 543 pp. 5637–5664. PMLR, 2021.

544

545 Jae-Hong Lee and Joon-Hyuk Chang. Continual momentum filtering on parameter space for online
 546 test-time adaptation. In *The Twelfth International Conference on Learning Representations*, 2024.

547

548 Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
 549 bution shifts. *International Journal of Computer Vision*, 133(1):31–64, 2025.

550

551 Xiao Ma, Young D Kwon, and Dong Ma. On-demand test-time adaptation for edge devices. *arXiv*
 552 preprint *arXiv:2505.00986*, 2025.

553

554 Sarthak Kumar Maharana, Baoming Zhang, and Yunhui Guo. Palm: Pushing adaptive learning
 555 rate mechanisms for continual test-time adaptation. In *Proceedings of the AAAI Conference on*
Artificial Intelligence, volume 39, pp. 19378–19386, 2025.

556

557 Robert A Marsden, Mario Döbler, and Bin Yang. Universal test-time adaptation through weight
 558 ensembling, diversity weighting, and prior correction. In *Proceedings of the IEEE/CVF Winter*
Conference on Applications of Computer Vision, pp. 2555–2565, 2024.

559

560 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofu Chen, Shijian Zheng, Peilin Zhao, and Mingkui
 561 Tan. Efficient test-time model adaptation without forgetting. In *International conference on*
machine learning, pp. 16888–16905. PMLR, 2022.

562

563 Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiqian Wen, Yaofu Chen, Peilin Zhao, and Mingkui
 564 Tan. Towards stable test-time adaptation in dynamic wild world. *arXiv preprint*
 565 *arXiv:2302.12400*, 2023.

566

567 Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, and Peilin Zhao. Test-time model
 568 adaptation with only forward passes. *arXiv preprint arXiv:2404.01650*, 2024.

569

570 Shuaicheng Niu, Guohao Chen, Peilin Zhao, Tianyi Wang, Pengcheng Wu, and Zhiqi Shen. Self-
 571 bootstrapping for versatile test-time adaptation. In *Forty-second International Conference on*
Machine Learning, 2025. URL <https://openreview.net/forum?id=Li4rieeC1O>.

572

573 Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao, Maria Presa Reyes, Mei-
 574 Ling Shyu, Shu-Ching Chen, and Sundaraja S Iyengar. A survey on deep learning: Algorithms,
 575 techniques, and applications. *ACM computing surveys (CSUR)*, 51(5):1–36, 2018.

576

577 Ori Press, Ravid Shwartz-Ziv, Yann LeCun, and Matthias Bethge. The entropy enigma: Success and
 578 failure of entropy minimization. *arXiv preprint arXiv:2405.05012*, 2024.

579

580 Sabyasachi Sahoo, Mostafa ElAraby, Jonas Nganawe, Yann Batiste Pequignot, Frédéric Precioso,
 581 and Christian Gagné. A layer selection approach to test time adaptation. In *Proceedings of the*
AAAI Conference on Artificial Intelligence, volume 39, pp. 20237–20245, 2025.

582

583 Jin Shin and Hyun Kim. L-tta: Lightweight test-time adaptation using a versatile stem layer. *Ad-*
584 vances in Neural Information Processing Systems, 37:39325–39349, 2024.

585

586 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 587 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

588

589 Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. Ecotta: Memory-efficient continual
 590 test-time adaptation via self-distilled regularization. In *Proceedings of the IEEE/CVF Conference*
on Computer Vision and Pattern Recognition, pp. 11920–11929, 2023.

591

592 Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari,
 593 and Fisher Yu. Shift: a synthetic driving dataset for continuous multi-task domain adaptation.
 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 21371–21382, 2022.

594 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
595 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
596 *tion processing systems*, 30, 2017.

597 Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
598 test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020.

600 Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation.
601 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
602 7201–7211, 2022.

603 Zixin Wang, Yadan Luo, Liang Zheng, Zhuoxiao Chen, Sen Wang, and Zi Huang. In search of lost
604 online test-time adaptation: A survey. *International Journal of Computer Vision*, pp. 1–34, 2024.

606 Zehao Xiao and Cees GM Snoek. Beyond model adaptation at test time: A survey. *arXiv preprint*
607 *arXiv:2411.03687*, 2024.

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

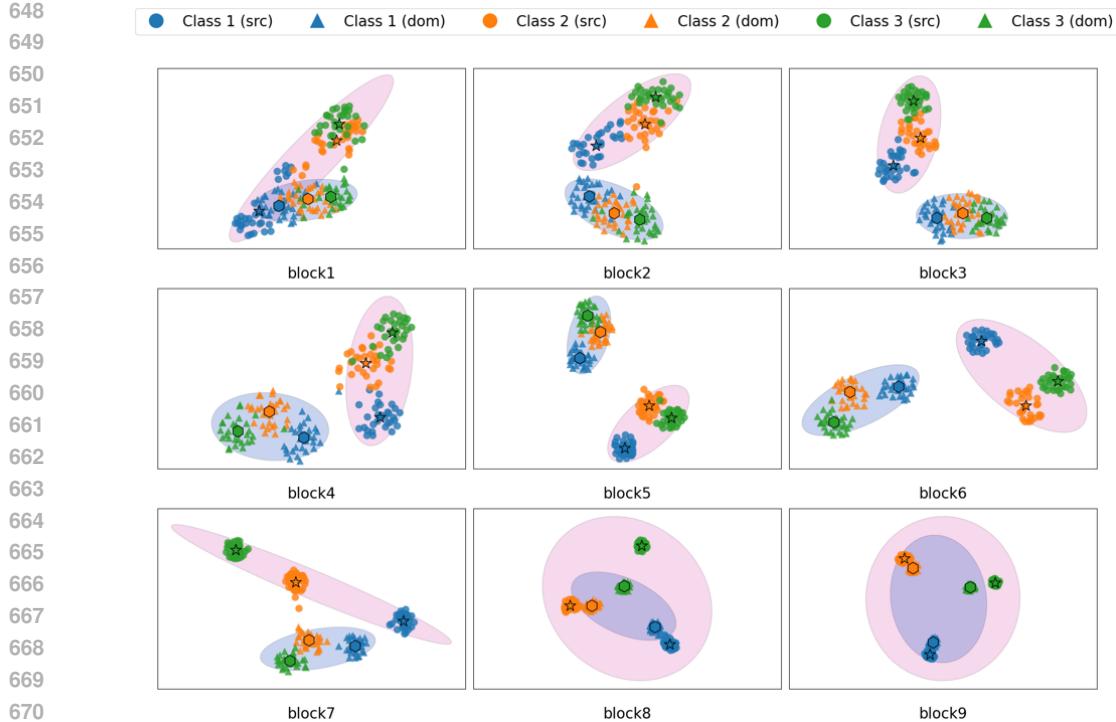


Figure 2: Impact of domain shift on intermediate layer embeddings using **CIFAR10-C**. We visualize the features of class plane, dog and frog in Domain **Fog** across ViT block 1 to block 9.

A DOMAIN SHIFT IN THE EMBEDDING SPACE

As discussed in Section 3, domain shifts manifest as structural distortions in the intermediate feature space of deep models. These distortions—namely mean shift, variance shift, and covariance shift—occur consistently across all layers of the network. In this section, we provide additional empirical evidence to support this analysis by visualizing feature distributions under domain shift using ViT models on CIFAR10-C.

Visualization of Feature Shift Across Layers and Domains. We conduct a detailed visualization of intermediate features extracted from ViT blocks 1 through 9 on two corruption types from CIFAR10-C: Fog and Gaussian Noise. We focus on three representative classes—*plane*, *dog*, and *frog*—to illustrate how domain shift affects the geometry of class embeddings at different depths of the model.

Figures 2, 3 and 4 show the progressive deformation of class-wise embeddings under these two corruption domains. These results complement our earlier analysis and reveal consistent patterns across domains and layers.

From the visualizations, we observe that: 1) All layers are affected by geometric distortions. Across all blocks, we observe consistent evidence of (i) **mean shift**, where class centers drift from their source positions; (ii) **variance shift**, indicated by altered spread and scale of feature clusters; and (iii) **channel-wise covariance shift**, where the orientation and shape of the clusters change due to altered inter-channel relationships; 2) The severity of distortion varies across layers. Different layers exhibit different sensitivities to each type of transformation; 3) Different domains impact features in distinct ways. Although both Fog and Gaussian Noise induce all three types of shifts, the degree and pattern of deformation vary. This reflects the domain-specific characteristics of the corruption types—e.g., Fog tends to cause smoother global drifts, while Gaussian Noise leads to more irregular scatter.

Moreover, in domains such as Fog, which are relatively easy to adapt, the transformations at deeper layers are more faithful than at shallow layers, suggesting the architecture can progressively correct

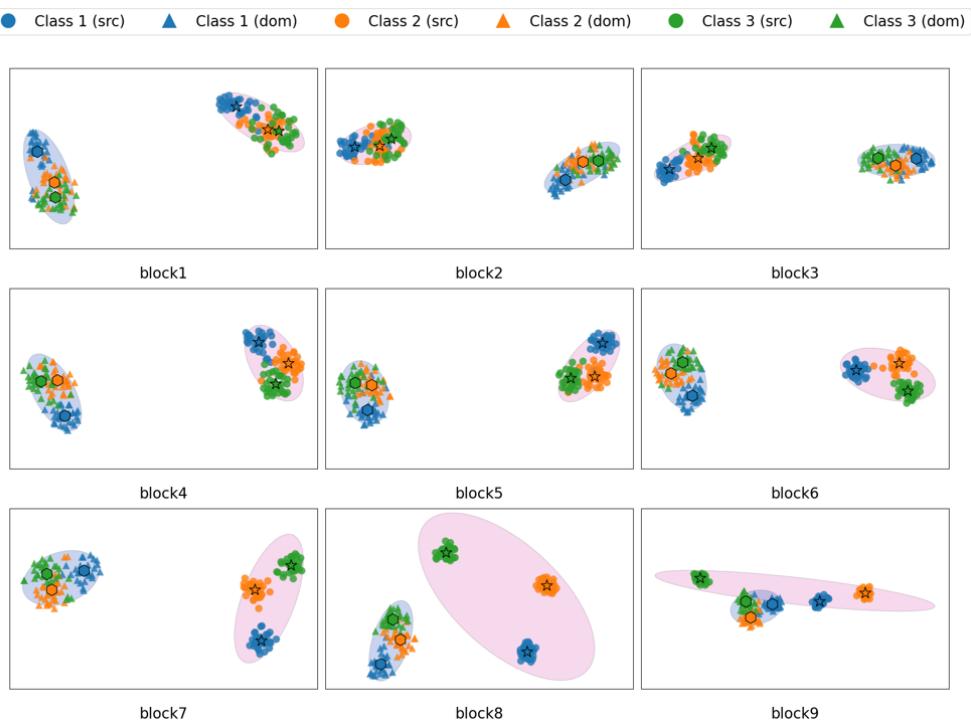


Figure 3: Impact of domain shift on intermediate layer embeddings using **CIFAR10-C**. We visualize the features of class plane, dog and frog in Domain **Gaussian Noise**.

the shift as features propagate. In contrast, in domains such as Gaussian Noise, deeper layer features deteriorate (pronounced scaling shrinkage and rotation), indicating that domain characteristics strongly shape the final representations and can hinder self-correction in depth.

These insights reinforce the central hypothesis of our work: *domain shift induces systematic, layer-wise geometric transformations in the embedding space*. They also motivate our proposed method, which explicitly corrects such distortions through progressive covariance alignment at each intermediate block.

Visualization of Feature Shift on CIFAR100-C. To further validate that the observed structural shifts in embedding space are not specific to CIFAR10-C, we extend our visualization to CIFAR100-C. We select three representative classes—pine tree, bicycle, and bee—from the CIFAR100-C dataset and examine their intermediate representations under domain shift caused by Shot Noise, a common corruption in CIFAR100-C. The results are shown in Figure 5.

Similar to the patterns observed in CIFAR10-C, we find that domain shift consistently induces systematic geometric transformations in the embedding space: mean shift (translation), variance shift (scaling) and covariance shift (rotation). While the inter-class topology is often preserved, these structural distortions displace features away from the decision boundaries, ultimately degrading classification performance. In particular, even though class relationships remain recognizable, the shifted features can no longer be correctly classified due to their increased distance from the source-aligned classification regions.

These shifts manifest across multiple blocks of the ViT model, reinforcing our claim that domain shift affects not only the output layer but also the intermediate representations in a systematic and structured manner. The consistency of these patterns across both CIFAR10-C and CIFAR100-C highlights the generality of our observation and motivates the need for intermediate-layer realignment strategies, such as the one introduced in PEA.

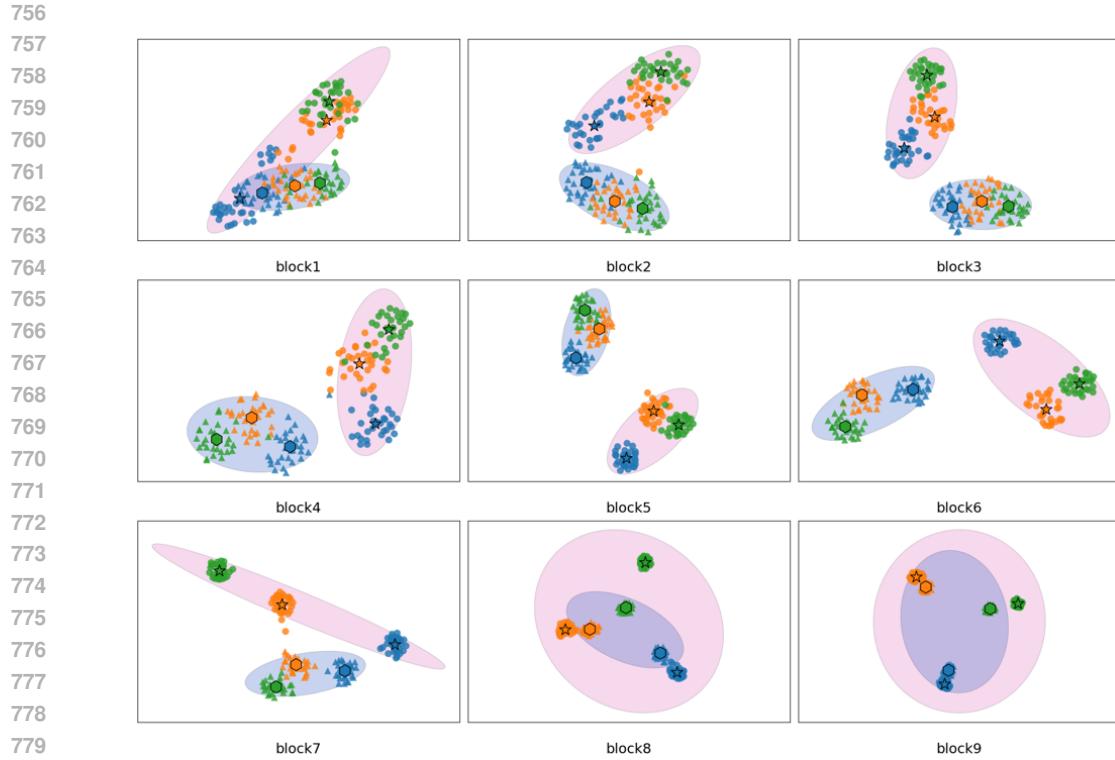


Figure 4: Impact of domain shift on intermediate layer embeddings using **CIFAR10-C**. We visualize the features of class plane, dog and frog in Domain **Defocus Blur**.

Figure 5: Impact of domain shift on intermediate layer embeddings using **CIFAR100-C**. We visualize the features of class pine tree, bicycle and bee in Domain **Shot Noise**.

810 **Algorithm 1** PROGRESSIVE EMBEDDING ALIGNMENT (PEA)

```

811 Require: source stats  $\{\mu_{s,l}, \Sigma_{s,l}\}_{l=1}^L$ , test batch  $\mathbf{X}$ , views  $K$ 
812
813 1: Pass 1: Estimate alignment weights
814 2: Augment input:  $\mathbf{X}_{\text{aug}} = \text{Augment}(\mathbf{X}, K)$ 
815 3: Extract block features  $\mathbf{F}_l$ ; compute alignment weights  $w_l$  using Eq. 1 and Eq. 2
816
817 4: Pass 2: Align and predict
818 5: Extract  $\mathbf{F}_l$  from  $\mathbf{X}_{\text{aug}}$ 
819 6: for each block  $l$  do
820 7:   Update  $\mu_{t,l}, \Sigma_{t,l}$  with EMA (Eq. 6)
821 8:   Apply covariance alignment:  $\mathbf{Y}_l = (\mathbf{F}_l - \mu_{t,l})\Sigma_{t,l}^{-1/2}\Sigma_{s,l}^{1/2} + \mu_{s,l}$  // Eq. 3
822 9:   Fuse:  $\mathbf{F}'_l = (1 - w_l)\mathbf{F}_l + w_l\mathbf{Y}_l$  // Eq. 4
823 10: end for
824 11: Compute logits for all views:  $\text{logits}_k = \text{Classifier}(\mathbf{Z}_L)$ 
825 12: Final prediction:  $\text{pred}_{\text{final}} = \frac{1}{K} \sum_{k=1}^K \text{logits}_k$  // Eq. 8
826 13: return  $\text{pred}_{\text{final}}$ 
827

```

828 **B PSEUDO CODE**

829
830 To clarify the workflow of our PEA, we present its pseudo-code in Algorithm 1, which outlines the
831 step-by-step process of progressively aligning domain-shifted features toward the source distribution
832 during test-time adaptation.

834 **C IMPLEMENTATION DETAILS**

835
836 We use a default batch size of 64 for all evaluations, consistent with prior works (Niu et al., 2022;
837 Lee & Chang, 2024). All methods are implemented and tested on a server equipped with NVIDIA
838 A5000 Ada GPU. To evaluate the feasibility of deployment under real-world constraints, we also
839 compare PEA with efficient TTA baselines on an edge device: the Jetson Orin Nano, which includes
840 a Cortex-A78AE CPU and an 8GB shared RAM mobile GPU.

841 For our PEA, we set the EMA momentum to $m = 0.02$ to ensure a stable yet responsive estimate of
842 feature statistics. To detect domain shifts, we use an entropy spike threshold $\theta_{\text{ent}} = 1.0$; when this
843 is exceeded, the EMA statistics are reset. We tested EMA momentum values of 0.01, 0.02, 0.05, 0.1
844 and found the performance to be robust, with accuracy fluctuations of at most 1% (see D.4). For
845 augmentation, we use random horizontal flips and random resized crops (scale = 0.9). Each input
846 generates $K = 2$ augmented views, which, combined with the original, produce 3 views used for
847 prediction ensembling. Since the augmentation is an optional technique based on the available mem-
848 ory, we also report the results without augmentation. All other hyperparameters, such as learning
849 rates and optimization settings for baseline methods, are taken from their official implementa-
850 tions to maintain fair comparison conditions. Note that we use prior works' original implementa-
851 tions without modification to ensure fair assessment of each method's realistic resource requirements.

852 **Clarification of SPA.** For SPA, although the paper (Niu et al., 2025) claims that it can generalize
853 to both CNNs and ViTs, the official code provided by the authors includes only the ViT imple-
854 mentation. Consequently, we report comparisons with SPA only on ViT. As shown in Table 1, while
855 SPA achieves competitive performance, it incurs extremely high memory consumption (exceeding
856 10GB), making it impractical for efficiency-driven applications.

857 **D FURTHER DETAILS FOR EVALUATION**859 **D.1 DETAILED RESULTS ON CIFAR10-C AND CIFAR100-C**

860 While the main paper (Table 2) reports average adaptation performance across the 15 corruption
861 types of CIFAR10-C and CIFAR100-C, we provide the full per-domain performance in this appendix
862 to offer a more granular view of model robustness.

Table 6: Detailed accuracies (%) on CIFAR10-C.

Model	Methods	gauss.	shot	impul.	defoc.	glass	motion	zoom	snow	frost	fog	brigh.	contr.	elast.	pixel.	jpeg	Avg.
ViT	No Adapt	43.8	49.8	69.3	82.1	71.0	82.3	84.6	91.8	89.5	87.5	95.5	83.4	83.2	51.8	81.4	76.5
	SAR	45.4	54.7	70.0	81.9	69.8	81.7	83.9	89.0	87.5	83.6	93.3	83.2	81.7	51.5	79.5	75.8
	Tent	43.8	50.1	69.6	81.6	71.2	82.6	84.6	91.7	89.7	88.0	95.2	80.5	83.5	49.0	81.6	76.2
	EATA	43.8	49.8	69.3	82.1	71.0	82.3	84.6	91.8	89.5	87.5	95.5	83.4	83.2	51.7	81.4	76.5
	FOA (F = 27)	62.7	71.6	77.5	88.2	76.4	87.7	91.1	91.6	90.9	89.1	95.2	85.3	85.2	76.5	81.3	83.3
	FOA (F = 9)	60.9	69.8	75.9	87.6	73.2	85.7	90.4	91.4	90.2	89.6	95.1	84.9	84.5	68.2	80.5	81.9
	CMF	66.2	71.6	71.1	87.8	75.6	87.5	90.5	89.6	90.5	88.1	94.8	86.3	83.3	83.3	83.2	83.3
	SPA	72.3	79.2	61.8	80.3	69.8	78.9	85.7	80.4	85.2	70.1	91.5	72.7	70.1	69.9	74.9	76.2
	PEA	61.9	66.0	77.8	88.5	77.4	88.3	90.7	91.9	91.5	89.9	95.5	86.9	85.6	81.7	82.0	83.7
	PEA + Aug	64.5	68.3	80.2	88.6	78.8	88.4	90.4	92.8	92.6	90.6	95.8	87.1	86.5	83.1	82.6	84.7
ResNet	No Adapt	34.2	39.5	26.2	66.5	48.6	62.9	70.3	85.8	80.2	84.7	93.0	81.0	71.3	24.4	69.4	62.5
	TENT	63.9	68.5	65.1	89.1	67.4	87.4	90.5	87.7	86.4	90.2	93.9	91.4	80.6	83.2	72.2	81.2
	EATA	63.9	68.4	65.1	89.3	69.3	87.4	90.5	87.4	86.8	90.4	93.8	91.4	80.8	82.9	72.0	81.3
	MECTA	64.9	69.2	64.9	89.6	69.4	88.2	92.2	88.1	87.8	90.9	94.6	92.6	81.1	83.5	73.2	82.0
	EcoTTA	63.9	68.0	61.8	88.7	67.4	87.3	90.6	87.3	86.7	90.8	93.9	91.5	79.5	83.1	62.9	80.2
	L-TTA	64.4	68.9	64.0	88.7	69.3	87.1	90.3	87.4	87.0	90.0	93.3	90.5	80.6	84.0	72.9	81.2
	CMF	70.3	75.6	69.6	76.5	68.3	76.6	81.5	82.4	82.9	84.7	89.5	87.3	76.4	81.8	76.4	78.6
	PEA	65.5	69.1	73.2	88.4	69.8	86.7	91.1	89.2	88.9	91.9	94.6	93.4	80.9	78.3	73.3	82.3
	PEA + Aug	68.3	72.0	75.6	89.1	71.2	87.4	91.2	89.5	89.3	92.3	95.0	93.8	82.0	79.7	74.6	83.4

Table 7: Detailed accuracies (%) on CIFAR100-C.

Model	Methods	gauss.	shot	impul.	defoc.	glass	motion	zoom	snow	frost	fog	brigh.	contr.	elast.	pixel.	jpeg	Avg.
ViT	No Adapt	42.0	42.4	54.1	73.1	47.5	72.8	75.0	80.5	79.7	57.1	86.0	44.0	64.5	47.7	57.5	61.6
	SAR	42.9	44.5	54.0	73.3	47.6	73.0	74.9	79.5	79.1	53.6	85.4	46.3	63.9	46.9	55.4	61.3
	Tent	42.6	43.4	54.8	73.4	47.2	73.0	75.2	80.3	79.5	54.3	86.0	39.8	64.4	46.8	57.2	61.2
	EATA	42.5	43.8	54.5	73.2	47.9	73.0	75.0	80.1	79.7	55.6	85.7	42.0	65.1	48.9	57.2	61.6
	FOA (F = 27)	43.5	49.0	55.3	74.3	55.3	75.8	78.5	81.0	81.9	76.0	87.2	76.2	70.1	55.6	60.7	68.0
	FOA (F = 9)	44.5	48.5	52.8	73.5	50.5	74.5	78.0	80.5	80.8	75.3	87.2	75.4	70.0	55.1	61.3	67.2
	CMF	56.5	65.3	66.0	77.0	61.1	76.4	79.5	81.0	81.7	77.8	86.1	82.9	69.6	68.7	65.7	73.0
	SPA	62.4	70.8	74.0	74.2	52.2	77.8	79.2	77.5	81.3	74.8	86.0	84.3	61.7	53.4	65.5	71.7
	PEA	62.1	64.8	71.5	81.2	65.9	80.0	82.6	82.7	83.6	82.1	87.4	86.4	70.7	70.8	64.4	75.7
	PEA + Aug	64.3	67.2	74.2	81.9	67.5	80.6	83.0	83.9	84.4	83.2	87.9	86.8	72.3	72.7	65.6	77.0
ResNet	No Adapt	12.5	14.0	8.8	34.5	16.7	36.5	42.8	53.4	46.4	52.0	68.5	39.4	35.7	9.4	32.4	33.5
	TENT	28.9	30.7	29.7	60.4	31.9	57.1	63.2	55.6	54.1	61.2	69.5	65.4	46.4	47.1	37.4	49.2
	EATA	29.3	32.1	30.0	60.7	32.7	57.4	63.8	56.4	55.0	61.6	70.2	66.2	47.5	48.6	38.8	50.0
	MECTA	30.2	33.9	29.3	58.4	32.3	55.7	63.1	55.7	54.9	60.8	70.0	64.4	47.3	49.2	40.5	49.7
	EcoTTA	17.7	22.3	18.8	60.5	23.8	57.1	63.5	55.7	51.9	60.7	70.6	65.9	41.3	43.9	30.0	45.6
	L-TTA	30.8	34.4	31.2	57.8	34.3	56.1	63.1	57.0	57.0	61.7	70.1	64.9	48.6	53.7	42.5	50.9
	CMF	38.6	44.5	37.5	45.8	37.7	46.0	53.1	52.7	53.5	53.0	63.2	58.4	46.8	54.0	46.8	48.8
	PEA	34.3	35.7	38.2	63.4	39.1	59.8	66.8	60.1	59.8	65.7	74.4	68.4	50.0	51.6	41.1	53.9
	PEA + Aug	35.5	36.9	39.1	64.0	39.8	60.8	67.1	60.7	60.4	66.6	74.7	68.7	51.5	52.3	41.2	54.6

Table 6 presents the detailed results on CIFAR10-C. Our method, PEA, consistently outperforms prior baselines across most corruption types for both ViT and ResNet backbones. Notably, PEA + Aug achieves the highest overall accuracy, benefiting from robust alignment and enriched feature diversity. The improvement is especially pronounced under severe corruptions such as impulse noise and pixelate, where domain shifts are more extreme.

Table 7 shows the corresponding breakdown for CIFAR100-C. Similar trends are observed: PEA and its augmented variant deliver consistent gains across nearly all corruption types. On both ViT and ResNet, PEA + Aug achieves the best performance on most corruptions, highlighting the strength of our progressive alignment and augmentation strategy.

These detailed results further demonstrate that our method generalizes well across a wide range of perturbation types, offering both strong average performance and consistent robustness under diverse corruption scenarios.

D.2 VISUALIZATION OF THE ALIGNED FEATURES

To better understand how our proposed PEA progressively corrects domain shifts across layers, we visualize the intermediate embeddings of three representative classes—pine tree, bicycle, and bee from CIFAR100-C under the Contrast corruption. The upper row of Figure 6 shows the feature distributions of the source (circle markers) and shifted domain samples (triangle markers) at three representative layers (block1, block6, and block11), along with their respective class centroids (stars for source and hexagons for domain). The visualizations clearly reveal that the domain features drift away from the source distributions in all intermediate layers, manifesting as embedding translation, scaling, and rotational shifts.

The lower row presents the domain features after applying our adaptation approach. We observe that the domain clusters become progressively more compact and align closely with the source clusters,

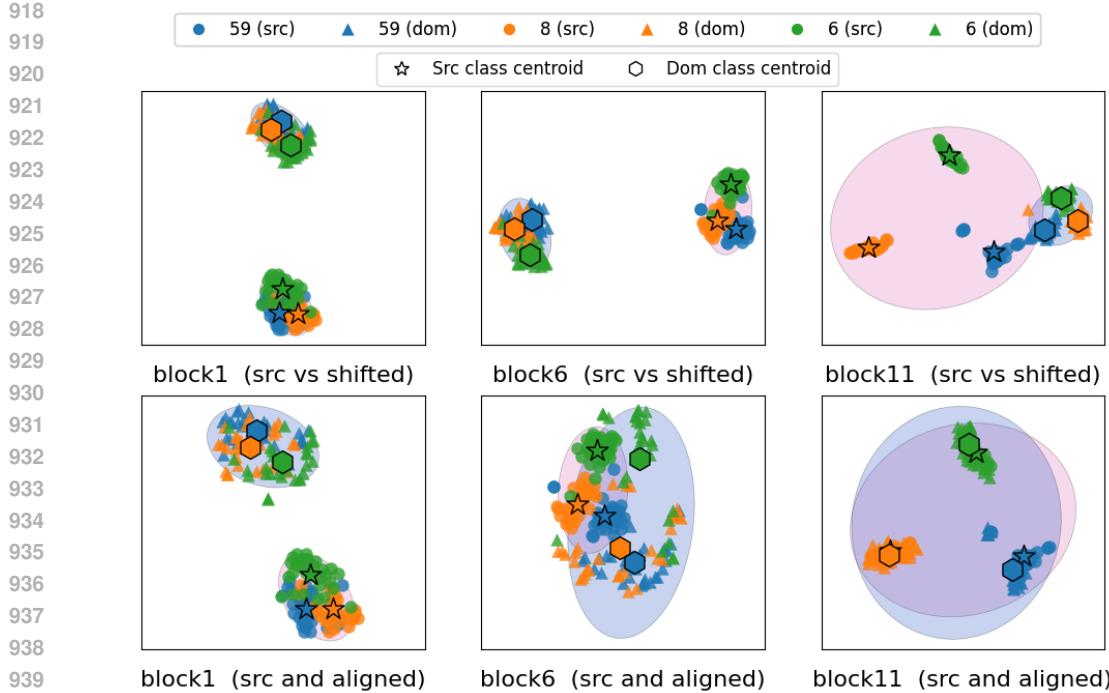


Figure 6: Visualization of intermediate embeddings before and after PEA adaptation on CIFAR100-C. We display the features of the pine tree, bicycle, and bee classes under the CIFAR100-C Contrast corruption.

Table 8: Detailed accuracies (%) under batch size of 4.

Model	Method							
	No Adapt	SAR	Tent	EATA	FOA (F = 9)	CMF	SPA	PEA
Vit-Base	55.5	63.0	62.0	62.2	62.0	62.0	62.6	63.3
ResNet-50	27.8	1.7	18.5	28.2	1.2	34.5	17.6	41.7

and the class centroids from the two domains converge. Notably, by the final block (block11), the previously shrinking domain features are largely pulled back to their original source positions. These results demonstrate that PEA can systematically reduce the three types of distortions across and successfully realign the feature spaces to the source distribution.

D.3 SMALL BATCH SIZE COMPARISON

Table 8 provides a detailed comparison of PEA against existing TTA baselines under a severely constrained setting (batch size = 4). While conventional entropy-minimization methods such as SAR, Tent, and EATA provide consistent improvements around 62%, and FOA (F = 9) reaches similar accuracy, our method further improves performance to 63.3%. For the ResNet-50 backbone, the difference between methods is even more striking. Without adaptation, the baseline model achieves 27.8% accuracy. Most entropy-minimization methods either fail or perform poorly. While MECTA and L-TTA achieve moderate improvements, they still lag behind our method, which attains 41.7%.

The primary reason for the failure on ResNet is that most existing TTA baselines rely on updating BatchNorm (BN) statistics. This process requires sufficiently large batch sizes to estimate stable mean and variance values; otherwise, the updates become noisy and cause severe performance degradation. Under small-batch regimes, such as those common on edge devices, these baselines therefore collapse in accuracy. In contrast, PEA avoids this limitation by not depending on BN updates or backpropagation. Instead, it realigns embeddings using pre-computed source statistics and lightweight covariance alignment, which remain stable even with very small batches. This design

972 Table 9: Effect of momentum m and entropy threshold θ_{ent} on average accuracy (%) on CIFAR100-
 973 C. Each cell reports accuracy with the average number of entropy spikes in (·).

m	Accuracy (%) (Spikes) vs. θ_{ent}			
	0.5	0.8	1.0	1.5
0.01	75.3 (16)	75.4 (9)	75.0 (7)	74.6 (2)
0.02	75.7 (17)	75.8 (9)	75.5 (5)	75.5 (2)
0.05	75.7 (17)	75.7 (6)	75.7 (3)	75.7 (2)
0.10	75.4 (17)	75.3 (8)	75.4 (2)	75.3 (1)

981
 982 makes PEA inherently more robust under constrained batch sizes, ensuring consistent performance
 983 across both CNN and ViT backbones.
 984

985 D.4 MORE RESULTS OF ABLATION STUDY

988 We further analyze the sensitivity of our method to the two hyperparameters: the EMA momentum
 989 m , which controls the update rate of domain statistics, and the entropy threshold θ_{ent} , which is
 990 used for detecting distribution shifts. To this end, we sweep a range of values for both parameters
 991 and report the average accuracy across the 15 CIFAR100-C domains, together with the number of
 992 entropy spikes triggered during evaluation, as shown in Table 9.

993 The results show that very small momenta (e.g., $m = 0.01$) underperform with accuracies around
 994 75.0–75.4%, while moderate values of $m = 0.02$ – 0.05 consistently achieve the best performance
 995 (75.5–75.8%). Larger momentum ($m = 0.10$) again reduces accuracy to about 75.3–75.4%. For the
 996 entropy threshold, low values such as $\theta_{\text{ent}} = 0.5$ lead to frequent resets (16–17 spikes), whereas high
 997 values like $\theta_{\text{ent}} = 1.5$ almost disable resets (1–2 spikes). Accuracy remains stable across thresholds
 998 with differences within 1%, but excessively low thresholds slightly degrade performance due to too
 999 many resets, while overly high thresholds risk ignoring meaningful shifts. The balanced setting of
 1000 $\theta_{\text{ent}} = 0.8$ – 1.0 achieves both high accuracy (75.5%–75.8%) and moderate spike counts.

1001 In conclusion, our method is not highly sensitive to these hyperparameters, with accuracy variation
 1002 contained within about 1%. For all main experiments, we adopt $m = 0.02$ and $\theta_{\text{ent}} = 1.0$ as they
 1003 provide the best trade-off between responsiveness and stability.

1004 E USE OF LLM IN THIS PAPER

1007 We emphasize that large language models (LLMs) were used solely for polishing the writing and
 1008 improving readability. No part of the technical content, experimental design, analysis, or results
 1009 relied on LLM-generated material. All research ideas, implementations, and evaluations are original
 1010 to the authors.

1014 F DOMAIN SHIFT IN RESNET EMBEDDING SPACE

1016 In this section, we illustrate that the embedding-space shift for ResNet is consistent with that ob-
 1017 served in ViT. We visualize the embedding space of ResNet-50 on CIFAR10-C and observe the
 1018 same systematic shifts in mean, variance, and channel-wise covariance across layers. Specifically,
 1019 Figure 7 and Figure 8 show the Zoom Blur and Frost domains, respectively, where the embedding
 1020 shifts closely match those seen in ViT, indicating that the effect is driven by domain shift rather
 1021 than architectural design. This aligns with our experimental results, where PEA also improves CNN
 1022 backbones (ResNet-50) on CIFAR10-C/100-C and ImageNet-C.

1025 G MIXED-DOMAIN EMBEDDING SHIFT VISUALIZATION

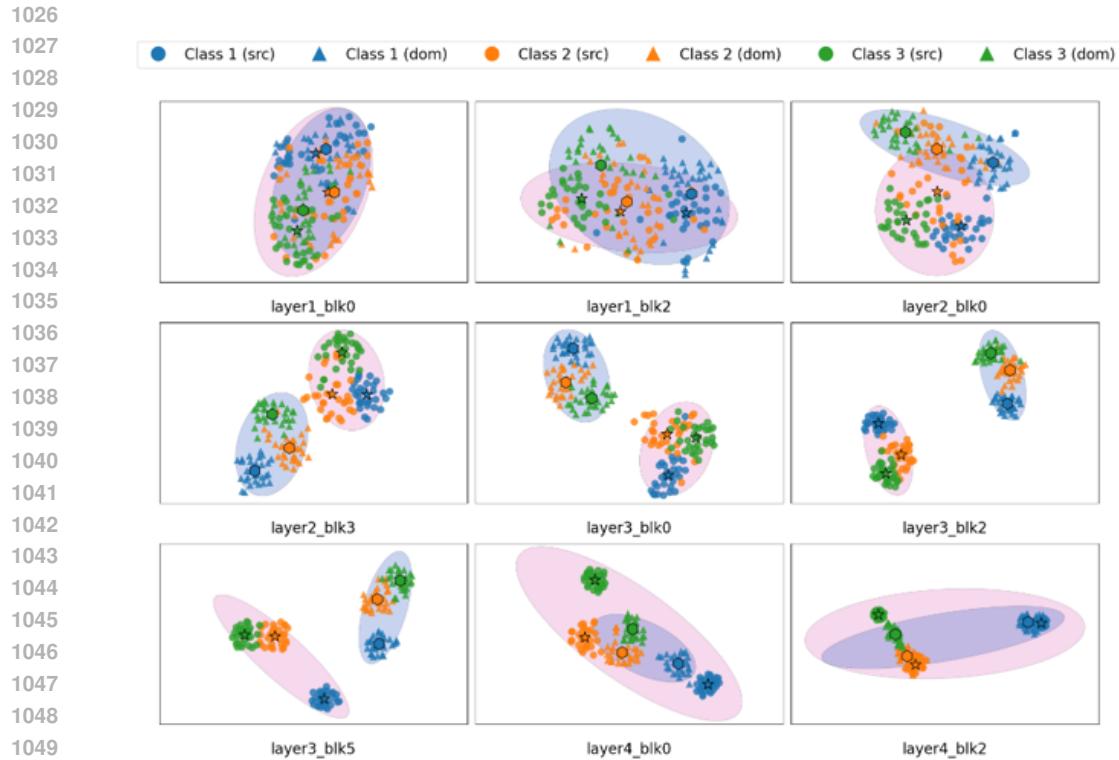


Figure 7: Impact of domain shift on intermediate layer embeddings using **CIFAR100-C**. We visualize the features in Domain **Zoom Blur** for **ResNet-50**.

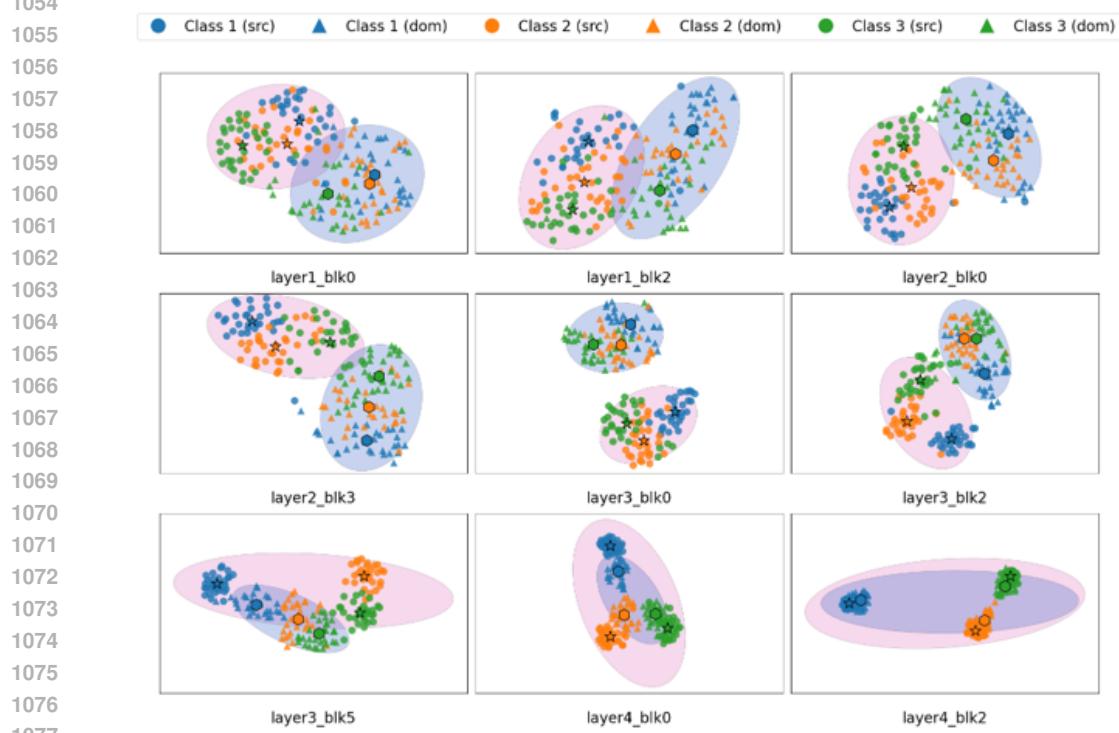


Figure 8: Impact of domain shift on intermediate layer embeddings using **CIFAR100-C**. We visualize the features in Domain **Frost** for **ResNet-50**.

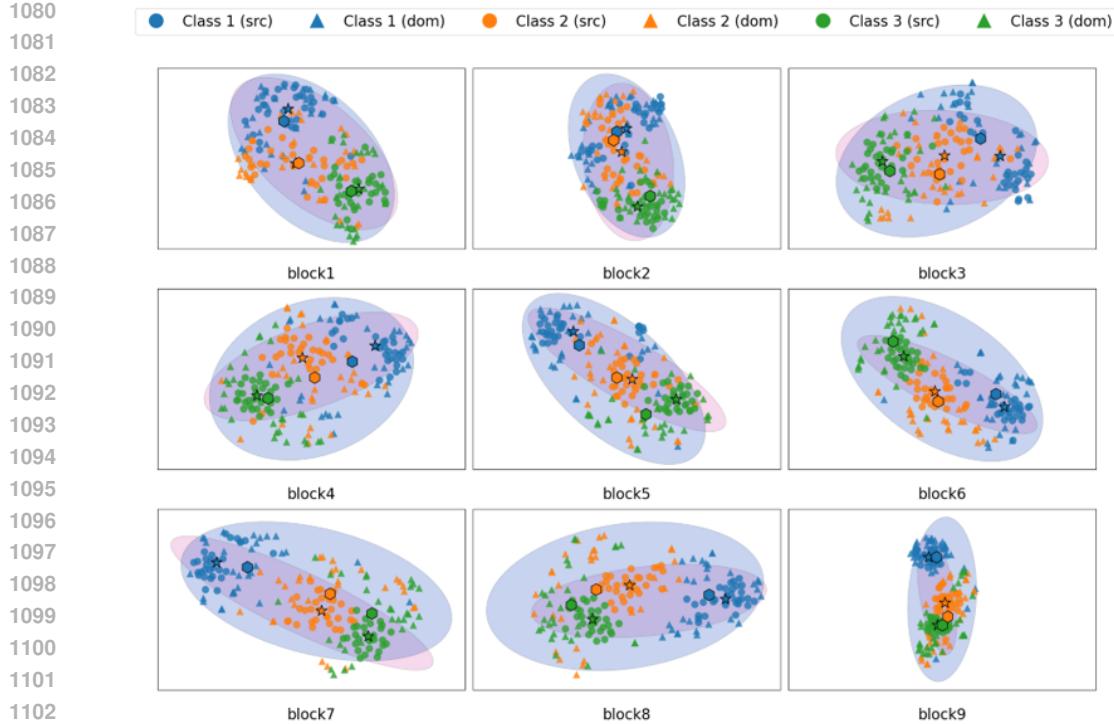


Figure 9: Impact of mixed domains on intermediate-layer embeddings on **CIFAR100-C**. We visualize ViT-Base features for 3 classes.

To better understand why PEA remains effective under the mixed-domain scenario, we visualize the intermediate embeddings of ViT-Base on CIFAR100-C in a mixed-domain setting. Specifically, we construct a mixed CIFAR100-C stream where all 15 corruptions (severity 5) are combined and shuffled, so that each batch contains samples from multiple domains. For a subset of 3 classes, we extract features from 9 ViT blocks (from shallow to deep) and jointly project the clean and mixed-domain embeddings. Figure 9 shows the resulting embeddings for all 9 blocks.

As expected, compared to the clean case, mixed-domain embeddings exhibit lower intra-class compactness and increased spread, since each class now aggregates samples from heterogeneous corruptions. However, the key observation is that the distortion is still highly systematic across layers. This matches our hypothesis that domain shift, even when composed of multiple human-defined “domains” (fog, snow, blur, etc.), induces a geometric shift in the embedding space.