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ABSTRACT

While looped transformers (termed as Looped-Attn) often outperform standard
transformers (termed as Single-Attn) on complex reasoning tasks, the theoretical
basis for this advantage remains underexplored. In this paper, we explain this
phenomenon through the lens of loss landscape geometry, inspired by empirical
observations of their distinct dynamics at both sample and Hessian levels. To
formalize this, we extend the River-Valley landscape model by distinguishing be-
tween U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical
observations, we conjecture that the recursive architecture of Looped-Attn induces
a landscape-level inductive bias towards River-V-Valley. Theoretical derivations
based on this conjectured inductive bias suggest a better loss convergence along
the river due to valley hopping, and further encourage learning about complex
patterns compared to the River-U-Valley induced by Single-Attn. Building on
this insight, we propose SHIFT (Staged Hlerarchical Framework for Progres-
sive Training), a staged training framework that accelerates the training process
of Looped-Attn while achieving comparable performances.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as a cornerstone across various fields (Devlin
et al., 2019; Radford et al., 2019; Liu et al., 2021; He et al., 2022), particularly in Large Language
Models (LLMs) (Brown et al., 2020; Achiam et al., 2023). Despite their success, transformers often
exhibit challenges in complex reasoning tasks involving arithmetic, commonsense, and symbolic
reasoning (Rae et al., 2021; Anil et al., 2022; Wei et al., 2022; Lightman et al., 2023; Ahn et al.,
2024). While prompting strategies such as Chain-of-Thought (CoT) have greatly enhanced the rea-
soning capabilities (Wei et al., 2022; Fu et al., 2022; Chowdhery et al., 2023), the corresponding
performances on tasks requiring long reasoning chains are inherently constrained by the fixed-depth
transformers (Chen et al., 2025). This limitation motivates the exploration of alternative architec-
tures designed for advanced multi-step reasoning.

It is well-established that standard, non-recursive transformers (Vaswani et al., 2017) (termed as
Single-Attn) often exhibit a performance plateau on complex problems. This is particularly evident
in length generalization issues, where performances of Single-Attn drop on sequences longer than
those seen during training (Anil et al., 2022; Xiao & Liu, 2023; Jin et al., 2024; Zhou et al., 2024). As
an alternative, looped transformers with recursive structure (Dehghani et al., 2018; Lan et al., 2019)
(termed as Looped-Attn) have demonstrated success on such complex reasoning tasks (Giannou
et al., 2023; Fan et al., 2024; Saunshi et al., 2025; Bae et al., 2025). Specifically, Looped-Attn
deploys recursive self-attention blocks to iteratively refine its internal representations, which helps
transformers overcome the performance bottlenecks observed in Single-Attn. Although empirical
evidence indicates the superiority of Looped-Attn over Single-Attn, the theoretical understanding of
this advantage remains underexplored. This performance gap evidently stems from the recursive
mechanism in Looped-Attn, but precisely how this structural modification translates into superior
reasoning capabilities is still an open question. This motivates the following question:

What makes looped transformers perform better than non-recursive ones? Specifically, how
does the inductive bias from recursion enhance reasoning capabilities?
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Figure 1: Loss Landscapes, Optimization Trajectories and SHIFT Strategy.

To theoretically answer this question, we start by empirically investigating the learning processes
of Single-Attn and Looped-Attn. Our investigation examines their behaviors at two levels: a macro-
level evaluation of model performance across samples of varying difficulties, and a micro-level
examination of the loss landscape’s local curvature via Hessian dynamics. These observations reveal
two key differences in how Single-Attn and Looped-Attn learn, which serve as the foundations for
our subsequent theoretical analysis. We outline these observations below and provide a detailed
discussion in Section 4.1.

Observation 1: Sample-Level Performance

(a) Single-Attn. The learning process stops progressing after mastering simple patterns.
(b) Looped-Atin. The learning process follows a two-phase curriculum, from simple patterns
to complex ones.

Observation 2: Hessian-Level Dynamics

(a) Single-Attn. The eigenspectrum remains relatively static.
(b) Looped-Attn. The eigenspectrum undergoes a three-phase evolution: Collapse, Diversifi-
cation, and Stabilization.

In this paper, we argue that the above two observations potentially originate from the distinct loss
landscapes induced by different attention architectures. To formalize this, we extend the River-
Valley landscape model (Wen et al., 2024) by distinguishing between U-shaped valleys (flat) and
V-shaped valleys (steep). Based on this framework, we hypothesize that the Single-Attn landscape is
dominated by U-shaped valleys, whereas the recursive structure of Looped-Attn creates a landscape
dominated by V-shaped valleys. This geometric difference accounts for the behaviors observed:

* V-shaped valleys induce a hopping path across valleys, which drives diversification before stabi-
lization of the Hessian eigenspectrum (Observation 2);

* V-shaped valleys might convert hopping to significant progress along the river, which encourages
to learn on the complex patterns (Observation 1).

This mechanism comes from the landscape-level inductive bias of Looped-Attn. Figure 1 provides
an intuitive illustration, and Sections 4.2~4.3 detail the formal propositions and theorems.

Furthermore, based on the above understandings, we propose SHIFT (Staged Hlerarchical
Framework for Progressive Training) that combines Single-Attn and Looped-Attn to improve the
computational efficiency of Looped-Attn. Above analysis reveals that both models share the initial
phase of mastering simple patterns, and we further demonstrate that their optimization landscapes
have a shared river upstream region containing solutions to these patterns. Therefore, SHIFT ini-
tially deploys the computationally efficient Single-Attn to learn simple patterns, and then switches
it to Looped-Atin, which enables to explore the river downstream and learn complex patterns. A
crucial question remains on when to switch from Single-Attn to Looped-Attn. We present a SHIFT
Criterion with Patience (SCP), established on the performance and optimization stability of Single-
Attn. Empirical results show that SHIFT achieves reasoning performance comparable to a pure
Looped-Attn with greater computational efficiency.

Our main contributions are summarized in Appendix A.
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2 RELATED WORK

Looped Transformers. The principle of recursion in Transformers via cross-layer parameter shar-
ing has been explored in foundational works like Universal Transformers (Dehghani et al., 2018) and
ALBERT (Lan et al., 2019). Building on this, looped transformers have demonstrated significant
empirical success in complex reasoning (Gao et al., 2024; Bae et al., 2025), such as length general-
ization capabilities (Giannou et al., 2023; Fan et al., 2024; Saunshi et al., 2025). Theoretical research
aiming to understand the advantages of looped transformers can be roughly split into two lines. The
first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato, 2024), show-
ing that looped transformers are Turing complete with universal computational capabilities. The
second line analyzes the optimization properties (Gatmiry et al., 2024), proving convergence for lin-
ear regression tasks. However, a provable connection between the recursive architecture of looped
transformers and the superior reasoning capabilities remains underexplored. Our work addresses
this gap by analyzing how the recursive structure shapes the optimization landscape.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neu-
ral networks (Hochreiter & Schmidhuber, 1994; 1997; Li et al., 2021; Lyu et al., 2022; Liu et al.,
2023). More recent work has characterized the more complex geometry of the loss landscape, going
beyond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river
structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

Additional related work is discussed in Appendix C.

3 PRELIMINARIES

This section formalizes the next-token prediction task and specific model architectures.

Next-token Prediction Task. Let the vocabulary V = {1,---,V} be a finite index set of V'
tokens (e.g. words, characters). We consider a training set Ty = {(X",3)}Y, of input sequences

X = [x1,29, -+ ,x,] € V™ and target tokens y € V. Model parameters 6 are trained by minimizing

the empirical cross-entropy loss: L(8) = —4 SN log (8,:(§7)), where S, (j) is the softmax

probability of the ground-truth token y given the model’s logit output ¢. The input sequence X
is first mapped to an embedding matrix £ € IR?*", For theoretical convenience, we consider a
simplified setting where the core component for both Single-Attn and Looped-Atin is a single-layer
linear self-attention function fy:

fo(E,2) = Wy EE Wi Woz,
where z € IR? is a query vector (typically the embedding of the last token) and Wy, W, Wq €
R%*? are the value, key, query matrices, respectively.

Single-Attn and Looped-Attn models. The two models are distinguished by how they apply this
attention layer. The Single-Attn model applies the attention operation once to produce its final state:
z1 = 20+ fo(Fo, z0), where zq is the initial query vector from the input embedding Ey. In contrast,
the Looped-Arm model refines the representation iteratively over 7" loops. At each step ¢ € [T'], both
the query state z and the embedding matrix E for all tokens are updated. We define F;_1 as the
embedding matrix resulting from the (¢ — 1)-th loop. Starting with the initial query state zy and the
input embedding matrix Ej, the state update is as follows:

2 =21+ fo(Ei—1, z-1).
For both models, a final linear head W}, maps the final state (z; or z7) to the output logits: § = Wp, 21
for Single-Attn and §j = W,z for Looped-Atin. More details are presented to Appendix D.
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Figure 3: Data Distribution, Task-Level Performance and Hessian-Level Dynamic. (a) Long-tail
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4  WHAT MAKES LOOPED TRANSFORMERS PERFORM BETTER

This section addresses the fundamental question posed in Section 1. Specifically, we begin by em-
pirical observations of sample-level performances and Hessian-level dynamics (Section 4.1). Moti-
vated by these findings, we introduce two theoretical landscape models, River-U-Valley and River-
V-Valley, to characterize landscape-level inductive biases of Single-Attn and Looped-Attn (Section
4.2). We then present formal theorems and corollaries showing that the River-V-Valley landscape
of Looped-Attn leads to superior optimization performance (Section 4.3). Finally, we discuss the
implications of our theoretical framework for length generalization (Section 4.4).

4.1 KEY OBSERVATIONS ON TASK-LEVEL AND HESSIAN-LEVEL

Experimental Setup. We analyze the learning dynamics of two toy models aligned with our the-
oretical formulation (Section 3): a non-recursive transformer with a single attention layer (Single-
Attn), a looped transformer consisting of iterating a single attention layer for three loops (Looped-
Attn). The learning task for both models is to predict the final token x3, given the first three
(zo,21,x2) as input. Detailed experiments are provided in the Appendix E.1. More experimen-
tal results on practical models and reasoning tasks are provided in Appendix E.2.

To establish a controllable task difficulty, we design a synthetic Markov language dataset, where
each sequence X is generated following a Markov process (Figure 2). The difficulty of predicting a
given sequence is quantified by its information content (IC), where IC(X) = — log P(X).

Sample-Level Performances. To evaluate sample-level per- . s
formances, sequences are categorized by difficulty using the IC S-S .
metric into ‘low information’ (simple; lowest 40%) and ‘high in- @ @ @ @
formation’ (complex; highest 40%). The training performances P
of both Single-Attn and Looped-Attn are presented in Figure 3(b), @ @ @ @

with a summary in Observation 1.

(a) Single-Attn. The learning process stops progressing af- @ @ @ @
ter mastering simple patterns. Single-Attn exhibits a perfor- o P, oy, 5
mance bottleneck. The model rapidly achieves perfect accuracy '
on low-information sequences. However, its performance on Figure 2: Generation of Markov
high-information sequences stagnates early in training, showing Language Sequences.

no subsequent improvement.

(b) Looped-Attn. The learning process follows a two-phase curriculum, from simple patterns
to complex ones. Looped-Attn demonstrates a distinct two-phase learning process. In the first 150
epochs, the model masters low-information sequences similar to Single-Attn. After epoch 150, it
makes significant progress on the high-information sequences, with accuracy rising from 44.65% to
54.72%. This dynamic suggests that the recursive architecture exhibits a two-phase learning process,
enabling the model to learn more complex patterns.

Hessian-Level Dynamics. To characterize the optimization process, we examine the loss land-
scape’s local curvature through the eigenspectrum {A} of Hessian matrix H. The evolution of this
spectrum is quantified using two information-theoretic metrics: Hessian Matrix Entropy E(H ),
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which measures landscape diversity or complexity, and Mutual Information I(H,; Hsy1), which
measures landscape stability between consecutive epoch s and s + 1.

P(|Ails, [Ajls+1)
p(Ails)p([Asls41)
A combined analysis of these two metrics and eigenspectra reveals fundamentally different Hessian-

level dynamics for Single-Attn and Looped-Atin. These findings are presented in Figures 3(c)~3(d)
and Figures 7~8, with a summary in Observation 2.

E(H) ==Y p(\iD)logp(I\il) I(Hy; Hopa) = Y p(IAilss [Ajls+1) log
i 1,

(a) Single-Attn. The eigenspectrum remains relatively static. The Hessian eigenspectrum of
Single-Attn stabilizes almost immediately after training begins. The model rapidly converges to
a region where the eigenspectrum is dominated by a spike of near-zero eigenvalues, indicating a
relatively flat local geometry (Figures 7(f)~7(j)). Meanwhile, both Matrix Entropy and Mutual
Information metrics keep static (Figures 3(c)~3(d)). This rapid convergence to a simple geometry
suggests that the model fails to explore more regions of the loss landscape after mastering simple
patterns, explaining its performance bottleneck.

(b) Looped-Attn. Three-phase in eigenspectrum: Collapse, Diversification, and Stabilization.

Phase I. The initial phase involves a collapse of the eigenspectrum, as many eigenvalues shrink
toward zero to form a dominant spike (Figures 8(a)~8(e)). It is also reflected by a significant drop
in Matrix Entropy (Figure 3(c)). In this phase, the model moves into a flat region of the landscape,
which is a low-dimensional subspace associated with simple patterns. A concurrent decrease in
Mutual Information indicates the landscape’s variation during this phase (Figure 3(d)).

Phase II. Subsequently, the eigenspectrum diversifies as new, larger eigenvalues emerge (Figures
8(f)~8(j)). It also corresponds to an increase and fluctuation in Matrix Entropy (Figure 3(c)). This
activity suggests an exploration of more complex regions along the river. Despite no immediate
accuracy gains, the rise in Mutual Information suggests this exploration is a stable search rather than
arandom process (Figure 3(d)), which makes Looped-Attn fundamentally different from Single-Attn.

Phase III. In the final phase, the eigenspectrum stabilizes (Figures 8(k)~8(0)). Matrix Entropy
converges, indicating that the landscape’s geometry has settled (Figure 3(c)). Concurrently, Mutual
Information increases to a high plateau, confirming that the landscape’s evolution has become stable
(Figure 3(d)). This geometric stabilization signifies the arrival at a flatter region, which enables the
model to learn complex patterns and ultimately improve its accuracy.

4.2 LANDSCAPE-LEVEL INDUCTIVE BIAS

This section extends the River-Valley landscape model by Wen et al. (2024), which formally charac-
terizes the loss landscapes and optimization dynamics suggested by our empirical observations. For
a loss function L (0) over model parameters 6, the local geometry of loss landscape is captured by
its Hessian matrix H(6) = V2Z(0). Our analysis focuses on the Hessian eigenspectrum, where A;
denotes its ¢-th largest eigenvalue and r; or v; denotes the corresponding eigenvector.

Definition 1 (River-Valley Loss Landscape). We define a River-Valley Landscape by specifying two
subspaces constructed from the Hessian eigenspectrum with a small threshold e > 0:

* River: The river subspace Sgiv, is spanned by eigenvectors with eigenvalues below the small
threshold: Sgiver = spanf{r; | \; < €}.
* Valley: The valley subspace Svey is spanned by eigenvectors with eigenvalues above the small
threshold: Syuyey = span{v; | A; > €}.
The geometry of valley is further classified by the spectral properties of Hessian restricted to this sub-
space, denoted Hyyyey, with eigenvalues {\1, ..., Aq, }. Define condition number as k(Hyyey) =
A1/Aay and Inverse Hessian Average Energy as £(Hyuey) £ 1/dv||H\7a,1,(,\,H% =1/dy Z:l;l 1/A2.
o U-shaped Valley (Flat Valley '): A valley is U-shaped if it is well-conditioned and has small
average energy. With constants 6,¢ > 0: K(Hyuuey) < 1+ 6 and 0 < E(Hyuey) < C.

"Here we use ‘flat’ to represent valleys with uniformly relatively small eigenvalues (U-shaped), and ‘steep’
to represent valleys with both relatively large and small eigenvalues (V-shaped).
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« V-shaped Valley (Steep Valley '): A valley is V-shaped if it is ill-conditioned and has large
average energy. With a constant ¢ > 0: £(Hyuuey) >> 1 and E(Hyypiey) > C.

Definition 1 provides a formal characterization of the landscape’s features. The river corresponds to
directions with near-zero eigenvalues, forming a flat manifold where the loss value changes slowly,
while the valley corresponds to directions with large eigenvalues. The geometry within the valley
is determined by the condition number of the valley Hessian and inverse Hessian average energy.
Specifically, a U-shaped valley is characterized by a broad and flat floor through which the river
flows. This valley is surrounded by uniformly steep cliffs, ensuring that movement in any direction
within this subspace leads to a comparable loss. In contrast, a V-shaped valley is characterized by a
narrow river channel, with cliffs of highly varied steepness. An intuitive illustration is presented in
Figure 1. We discuss the hyperparameters and representative loss examples in Appendix E.2.2.

The spectral experiments presented in Figure 27 (with ¢ = 0.02) reveal that Looped-Attn exhibits
a larger £(H- Vaucy) than Single-Attn. Building on Definition 1, we then formalize the distinct opti-
mization landscapes and specific dynamics in Single-Attn and Looped-Attn models.

Conjecture 1 (Single-Attn: Flat Valley Trapping). The Single-Attn model creates a River-U-
Valley landscape. After a rapid descent, the optimizer becomes trapped in the valley’s broad and flat
floor, stopping further exploration within this low-gradient region.

Empirical Justifications for Conjecture 1. The River-U-Valley model is empirically supported
by the Hessian-level dynamics in Single-Attn (Observation 2). The river component is evidenced
by a dominant spike of near-zero eigenvalues from the early epochs, which confirms the existence
of a flat subspace. Surrounding this river, large eigenvalues of similar magnitudes form uniformly
steep cliffs that enclose a broad and flat floor, characterizing the valley as U-shaped. This land-
scape geometry is captured by Matrix Entropy and Mutual Information metrics, which indicate a
simple and static landscape structure. Such a geometry determines a specific optimization dynamic:
the optimizer initially descends rapidly along the steep cliffs. However, the broad and flat valley
floor constitutes an optimization trap where weak gradient signals provide insufficient guidance for
exploration along the river, resulting in flat valley trapping.

Conjecture 2 (Looped-Attn: From Steep Valley Hopping to River Convergence). The Looped-
Attn model creates a River-V-Valley landscape. The optimizer exhibits significant hopping between
the valley’s varied and steep cliffs, guiding its trajectory along the river toward convergence.

Empirical Justifications for Conjecture 2. The River-V-Valley model is empirically justified by
the three-phase evolution of Hessian-level dynamics in Looped-Attn (Observation 2). The model
initially enters the river subspace from a complex valley, evidenced by the gradually dominant spike
of near-zero eigenvalues. A diversifying set of large eigenvalues forms the V-shaped valley’s varied
and steep cliffs, where a narrow river channel exists at the valley floor. The complex and evolving
geometry is also captured by Matrix Entropy and Mutual Information. Such a geometry leads to
a specific optimization dynamic: the optimizer initially descends by hopping between the valleys.
After reaching the valley floor, the narrow river channel enables sustained exploration, avoiding
getting trapped in the broad U-shaped valley of Single-Attn.

4.3 RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

In this section, we prove that the River-V-Valley landscape in Looped-Attn provides a superior per-
formance than Single-Attn. Before the formal theoretical analysis, we provide an intuition for the
connection between loss landscapes and sample-level performances (Observation 1).

Intuition for Superior Performance. The River-U-Valley landscape of Single-Attn induces Flat
Valley Trapping, which might account for its performance bottleneck. The initial rapid descent along
the cliffs converts into progress along the river, corresponding to mastering simple patterns. How-
ever, the optimizer subsequently becomes trapped in the flat valley floor, preventing it from discov-
ering the path to more complex patterns. In contrast, the River-V-Valley landscape of Looped-Attn
facilitates Steep Valley Hopping dynamics, which might drive its two-phase learning curriculum.
After an initial descent for learning simple patterns, its enhanced performance might stem from two
key factors: (a) The hopping dynamic converts descent into more forward progress along the river;
(b) The narrow river channel prevents the optimizer from becoming trapped. These together ensure
deep exploration in the river downstream, enabling the model to learn complex patterns.
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We now proceed with a formal analysis to mathematically demonstrate how these hopping dynamics
lead to more effective optimization. Our analysis begins by modeling the loss landscape using a
structured quadratic form that captures its essential geometry (The general loss is later in Setting 2).
The parameter space is decomposed into two orthogonal subspaces: the valley subspace Svaiey =
span{vy, ..., vq, } and the river subspace Sriver = span{ri, ..., 74y}, with dimensions dy, dg, and
parameters 6y, O respectively.

Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the

quadratic loss:
T
7 _ 1oy Hyarey Hyr\ (0v T
L(GV,QR)_2<9R) ( i 5) W0,

o
where [Hygjey|i; = 8'0 (% J[Hvrlig = %, [Hrv]ij = ar (% (Definition 2 in Appendix G.1).

We assume the coupling strength along the valley eigenvectors v; satisfies h < ||Hpyv;| < h
for constants h,h > 0, and the valley parameters are initialized as 0yo ~ N(0,a%I/dy) with
|0v.oll < afora constant & > 0.

Setting 1 formalizes a structured quadratic loss, which is characterized by three key components.
Specifically, this includes (a) The valley Hessian Hyqey: This matrix captures the valley’s curvature.
Its condition number quantitatively distinguishes between the well-conditioned U-shaped valley of
Single-Attn and the ill-conditioned V-shaped valley of Looped-Attn; (b) The Coupling Matrix Hpgy :
This matrix quantifies the critical interaction that allows movement in the valley to induce a gradient
in the river; (c) The river gradient —hJ,: This term represents the intrinsic optimization drive along
the river. More details are deferred to Remark 5 in Appendix G.1.

Theorem 1 (Cumulative Force under Quadratic Loss). Under Setting 1, we define C as the upper
bound of cumulative force ||Ck || generated by the valley dynamics on the river subspace after K
optimization steps, then it holds that

K
ICKkll = ||n > Hrv®* v,

dv
- 1
< Vdy ha 2,
<\dyha ; o
where ® = I — nHyyypy with a learning rate 1, and {\; } is the spectrum of valley Hessian Hy,jey.

Theorem 1 establishes the relationship between the potential/maximal cumulative force on the river
parameters and the valley’s geometry, as encoded in the valley eigenvalues \;. The theorem indicates
that this force is determined by the nuclear norm of inverse Hessian, alongside a scaling factor of
valley dimension.

Corollary 1 (Greater Maximal Cumulative Force of Looped-Attn). Under Theorem 1 and Defi-
nition 1, the maximal cumulative force generated by Looped-Attn (C'?)) is significantly greater than
that of Single-Atin (CV): C?) > ¢,

Theorem 2 (Expected Squared Cumulative Force under Quadratic Loss). Under Setting 1, after
a sufficient large K optimization steps, the expected squared cumulative force E [HC K ||2] holds that

hZ—g]E <—h22/\2

where {\;} is the spectrum of valley Hessian Hygey.

Corollary 2 (Superior Asymptotic Optimization Performance of Looped-Attn). Under Theorem
2, Definition 1 and Assumption 1, for the same initialization, after a sufficiently large K optimization

steps, the expected squared loss values for Looped-Attn ( Eg) ) is smaller than for Single-Attn ( Eg) ):
(2 ~Q
E((Li)?] < BI(LY)?).

Based on Definition 1, the V-shaped valley of Looped-Attn possesses a larger average energy, which
creates a larger potential force C than that of Single-Attn (Corollary 1). Furthermore, when taking
expectation over initialization, the cumulative force is ultimately reflected in the asymptotic training
loss (Corollary 2). The larger force in Looped-Attn facilitates sustained river progress via valley
hopping, enabling the model to learn both simple and complex patterns. The detailed proof is
deferred to Appendix G.2 and Appendix G.3.



Under review as a conference paper at ICLR 2026

g ........................................................ 1.30 1.0
2115
S ——n 14
g /._,-| 125, 208
L110 e 8 [ e a
p ”/ 1.20 g s Single-Attn Accuracy 1.2 ©
£ / Max Speedup: 1.26x w 8 0.6 —— Looped-Attn Accuracy -
- — = SHIFT Accur: )
F 105 - "7 Ginglettn Loss £
=2 e <1 g —— Looped-Attn Loss 1.0E
£ ] =0.4 == SHIFT Loss s
[ ~&— SHIFT Training Time Q c o
'm oo == -+ Looped-Attn Baseline (117.10s) [1.10 & s =
4 r —m- Speedup vs. Looped-Attn n =
- Foz 08
= 1.05 :
s 95 T AT TP YT AR VY R T Voo o
F 1.00 ki i 0.6
20 40 60 80 100 120 140 ' 0.0 100 200 300 400 500 600
Shift Point (Epoch) Epoch
(a) Speedup Factor (b) Performance with Shift Point 120

Figure 4: SHIFT Efficiency and Performance on Markov Dataset.

Setting 2 (General Loss). A general Loss of River-Valley landscape (Definition 1) is defined as:

Z(GVa GR) = EValley(GV) + ERiver(eR) + ECnupling(gVa QR)

We assume the valley parameters are initialized as 0y.o ~ N (0,a%1/dy) with |0y < a fora
constant & > 0. Further technical assumptions are detailed in Appendix G.1 (Assumptions 2~4).

Setting 2 considers a general loss, which is an extension to Setting 1.

Theorem 3 (Superior Optimization Performance of Looped-Attn under General Loss). Under
Setting 2 and Definition 1, the following results hold:

(a) Cumulative Force. The maximal cumulative force Cy, generated by the valley dynamics on
the river subspace is given by: Coen = \/dy hgen & Zfﬁl 1/|\B|, where {\B} is the spectrum
of the lower-bound valley Hessian HP (Assumption 2).

(b) Greater Maximal Cumulative Force. The maximal cumulative force generated by Looped-Attn
(C?) is significantly greater than that of Single-Atm (CV)): C(2) > c(1),

(c¢) Lower Asymptotic Training Loss. For the same initialization and a sufficiently large K, after
K optimization steps, the expected squared training loss for Looped-Attn ( Zg) ) is lower than
for Single-Atm (LYY ): E[(L'?)2] < E[(L'})?).

Theorem 3 extends the provably superior optimization performance of Looped-Attn to a general loss
function. The detailed proof of Theorem 3 is deferred to Appendix G.4.

4.4 DISCUSSION IN LENGTH GENERALIZATION

This section introduces how our theoretical framework relates to Looped-Attn’s success in length
generalization. Figure 5 illustrates the Information Content (IC) distributions for the test datasets
with different sequence lengths. As length increases, the total space of possible sequences expands,
which causes two primary effects on the IC distribution: its mean value shifts to the right (indicating
a higher average complexity), and its variance increases (the distribution becomes broader). A
direct consequence is that the low-IC sequences during training may become rare or non-existent in
longer test sequences, which frames the core challenge of length generalization: a model must find
a generalizable solution capable of mastering sufficiently complex patterns.

Empirical performances are provided in Figure 18 and Table 1,
and theoretical results provide an explanation for how Looped-
Attn achieves this. As established in Corollaries 1~2 and The-
orem 3, the River-V-Valley landscape of Looped-Attn enables
exploration deeper into the downstream river (a manifold of flat
minima). Thus it guides Looped-Attn towards solutions that in-
herently generalize better. We connect this to the finding that
the superior optimization dynamic brings better performance 000
on length generalization tasks for the Looped-Attn model. De-

tailed experiments are provided in the Appendix E.1.3 and E.2.  Figure 5: Length Generalization.
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5 STAGED HIERARCHICAL FRAMEWORK FOR PROGRESSIVE TRAINING

This section proposes SHIFT (Staged Hlerarchical Framework for Progressive Training), a computa-
tionally efficient two-stage training strategy motivated by our theoretical analysis of River-U-Valley
and River-V-Valley landscapes. The strategy utilizes distinct model architectures at different learn-
ing stages, as illustrated in Figure 1(c).

Stage I: Rapid Valley Descent with Single-Attn. Training begins with the Single-Attn architecture.
The objective is to move efficiently from a random initialization (the clifftop) to a low-loss region
(the valley floor). We thus adopt Single-Attn which facilitates initial convergence on simple tasks
with computational efficiency.

Stage II: Valley Hopping and Deep River Exploration with Looped-Attn. Training is transitioned
to Looped-Attn when Single-Attn reaches loss plateaus. This transition reshapes the optimization
within a V-shaped valley. As established in Corollaries 1~2 and Theorem 3, the V-shaped valley
induces a hopping descent mechanism, enabling further exploration in the river direction. This
allows the model to find solutions to complex tasks that are less accessible to Single-Attn.

A key component of SHIFT is determining the moment to transition between architectures. To this
end, we introduce the SHIFT Criterion with Patience (SCP), which consists of two steps.

(a) Plateau Detection. First, SCP detects a performance plateau. The validation loss for Single-Attn
reaches plateaus after initial epochs (Figure 19(a)). The plateau point Epjaeau is identified when the
validation loss fails to decrease by a threshold d; over P consecutive epochs.

(b) Gradient Stabilization Wait. Second, SCP incorporates a patience period W for gradient
stabilization. The gradient norm initially exhibits high variance, which would make an unstable
transition (Figure 19(b)). This period ensures the optimizer norm has settled by a threshold J,.
Consequently, the shift point is calculated as Egig = Eplaean + W.

Figure 4(a) reveals that an immediate transition is suboptimal on Markov dataset. A delayed transi-
tion yields greater speedup, but an excessive delay prevents Looped-Attn from converging in Stage
II. To address this trade-off, SCP selects a shift point between 100 and 150 epochs. This achieves
a training speedup of approximately 1.26 x without compromising final performance (Figure 4(b)).
The hyperparameter sensitivity analysis of d1, P, d5 and W are provided in Appendix E.1.4.

We next provide the theoretical foundation for this architectural transition in Theorem 4, by estab-
lishing a connection between their landscapes.

Theorem 4 (Shared River Upstream). Let Vyy L1 (6) and Wy Ly (6) be the gradients of the Single-
At and Looped-Attn models with a weight matrix W € {Wx,Wq}. Under Assumption 5~6
(Appendix H.1.1), the gradients of the two models are positively aligned:

(Vi L1(8), Vi L2(6)) > 0, (Vi L1(6), Viwg L2(6)) > 0.

Justification for SHIFT. Theorem 4 ensures the feasibility of this architectural transition. It es-
tablishes that the gradients of both architectures are positively aligned, implying that optimization
within their respective valleys corresponds to progress along a shared upstream river in the loss
landscape. This shared foundation guarantees that the parameters learned by Single-Attn in Stage 1
provide a effective initialization for the deeper exploration by Looped-Attn in Stage II. A detailed
proof is available in Appendix H. Furthermore, Theorem 1~3 and Corollary 1~2 guarantee the
superiority of this two-stage strategy. These results prove that the V-shaped valley of Looped-Attn
generates a greater cumulative optimization force along the river. Therefore, SHIFT combines the
training speed of Single-Attn with the superior optimization performance of Looped-Attn. In prac-
tice, SHIFT is implemented that progressively increases computational depth (i.e., loop iterations
from 7" = 1 to 7" > 1). This approach can be viewed as a form of curriculum learning (Bengio
et al., 2009; Wang et al., 2021), where an efficient model (Single-Attn) first learns simple patterns
before a more powerful model (Looped-Attn) is deployed for further refinement.

6 CONCLUSION

This paper theoretically answers what makes looped transformers perform better than non-recursive
ones. We investigate their distinct dynamics and formalize these by extending the River-Valley
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model to distinguish between U-shaped valleys and V-shaped valleys. We provably demonstrate
that the landscape-level inductive bias of River-V-Valley facilitates superior convergence on com-
plex patterns. Building on this, we propose SHIFT, a framework that achieves comparable reasoning
performance compared to Looped-Attn but with greater computational efficiency. Overall, our work
provides a new perspective and a theoretical framework for understanding the advantages of looped
transformers, potentially inspiring more effective and principled training paradigms. More discus-
sions and future work are provided in Appendix B.

ETHICS STATEMENT

This paper presents a fundamental research focusing on the theoretical and empirical analysis of
neural network architectures. Our work is methodological, investigating the mathematical proper-
ties of loss landscapes for different types of transformer models. The experiments are conducted
on two categories of datasets: (a) a synthetic Markov language dataset, created specifically for con-
trolled analysis of learning dynamics, and (b) publicly available algorithmic reasoning datasets. Our
research does not involve the use of human subjects, personally identifiable information, or any
form of sensitive data. Therefore, this work does not raise ethical concerns related to data privacy,
algorithmic bias in social contexts, or potential societal harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we have provided
detailed descriptions of our theoretical frameworks and experimental procedures.

Theoretical Results. The theoretical formalization of the River-Valley landscape (Section 4.2) is
motivated by empirical observations (Section 4.1). The superiority of Looped-Attn (Section 4.3)
is supported by mathematical proofs. Detailed derivations for Theorem 1, Corollaries 1~2 and
Theorem 3 are available in Appendix G. The foundation for the SHIFT framework is established in
Theorem 4 with proof in Appendix H.

Experimental Setup. We provide a comprehensive description of our experimental design. The
experimental setup in the synthetic dataset with toy models, including the data generation process,
model details, and hyperparameters, is described in Section 4.1 and further detailed in Appendix
E.1. The experimental setup for the practical models and the standard algorithmic reasoning tasks is
detailed in Appendix E.2.

Source Code. To facilitate the verification of our findings and support further research in this area,
the source code used for all experiments will be made publicly available upon publication.
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A CONTRIBUTIONS

Our main contributions are summarized as follows.

(a) A Refined Geometric View of Loss Landscape. Inspired by distinct empirical observations
in sample-level performance and Hessian-level dynamics (Section 4.1), we enrich the River-Valley
landscape model by introducing a geometric characterization of U-shaped and V-shaped Valleys
(formal definition in Section 4.2). This characterization is essential for attributing these observations
to the landscape-level inductive biases of Single-Attn and Looped-Attn models.

(b) Distinct Landscape-Level Inductive Biases. To our knowledge, we are the first to formally
hypothesize inductive bias of Looped-Attn from the perspective of loss landscape. Specifically, in
Section 4.2, we reveal that the River-U-Valley landscape of Single-Attn leads to flat valley trapping.
In contrast, the River-V-Valley landscape of Looped-Attn creates an effective path characterized by
steep valley hopping and river convergence.

(c) Theoretical Illustration of Superior Performance in Looped-Attn. Building upon our find-
ings on inductive bias, we theoretically illustrate the superior performance that would arise from the
conjectured River-V-Valley landscape in Looped-Attn under the landscape framework (Section 4.3
and Appendix G). Furthermore, we leverage this optimization analysis to explain its strong length
generalization ability, empirically demonstrating that the effective optimization path leads to gener-
alizable solutions (Section 4.4).

(d) An Effective Progressive Training Framework. Based on the aforementioned landscape-
level inductive biases, we design SHIFT, an intuitive framework that combines Single-Attn and
Looped-Attn (Section 5). The framework’s feasibility is grounded in a provable shared river up-
stream between the two landscapes (detailed proof in Appendix H). We present a shifting criterion
with patience (SCP) and demonstrate that SHIFT achieves a balance between computational effi-
ciency and final performance.

B DISCUSSIONS AND FUTURE WORK

We present more necessary discussions on our work, which might be helpful for understanding our
contributions and existing limitations, and highlight valuable directions for future research.

Model Simplification. Our analysis employs a simplified model with a single linear attention layer
for two key purposes: (a) It provides a controlled setting for our experiments to investigate the Hes-
sian dynamics. (b) It ensures the gradient calculations for Theorem 4 (Section 5) are mathematically
tractable, which is the theoretical foundation of our SHIFT framework.

It is curial to note that our core theoretical framework is general and does not rely on this specific
model architecture. This landscape framework characterizes loss landscapes using River-U-Valley
and River-V-Valley to show the optimization advantage of Looped-Attn (Sections 4.2 and 4.3). These
insights are corroborated by our experiments on GPT-2 based models in Appendix E.2. Although
it is hard to directly analyze the Hessian in these practical settings, the superior performance of
Looped-Attn aligns with the optimization advantage predicted by our River-V-Valley conjecture. We
can also explain the training dynamics within our landscape framework, reinforcing its applicability
to more complex, non-linear models.

Nevertheless, extending the formal proof of gradient alignment from the simplified model to deep,
nonlinear transformers remains a promising direction for future work.

Landscape Conjectures. Conjectures 1~2 formalize the loss landscapes for Single-Aftn and
Looped-Attn by proposing the River-U-Valley and River-V-Valley models. These conjectures are
empirically motivated. We justify these with the analysis of Hessian dynamics (Section 4.1), which
reveals different evolutionary eigenspectrum of the two architectures. Given the complexity of opti-
mization process, grounding theoretical analysis in empirically-inspired landscape model is a crucial
step toward formal understanding (Wen et al., 2024). A key direction for future work is to move be-
yond empirical motivation and establish a formal proof for these landscape conjectures. This would
involve theoretically deriving the geometric properties of the Hessian from the recursive architec-
ture, potentially by extending emerging mathematical tools such as Dong et al. (2025). Proving this
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formally is highly challenging beyond our current scope, which remains a promising direction for
future study.

Landscape Transition Dynamics of SHIFT. Our landscape model provides a geometric perspec-
tive on why the SHIFT framework achieves performance comparable to Looped-Atin. Stage I begins
with Single-Attn in a River-U-Valley landscape, where the optimizer rapidly descends from a high-
loss clifftop to a low-loss valley floor near the river. The architectural switch to Looped-Attn then
induces a geometric transformation: the flat valley floor suddenly becomes the steep slopes of a
V-shaped valley. This landscape change forces the optimizer to perform valley hopping which is
unique for Looped-Attn. This temporary hopping enables it to escape the flat valley floor and reach
the narrow river channel. Once in the river, it can proceed with deep downstream exploration. While
both models share an upstream river (Theorem 4), their distinct architectures determine the final
performance. Single-Attn traps in the flat valley floor, whereas SHIFT (Looped-Attn in Stage II)
successfully navigates downstream, leading to different solutions.

Practical Implications of SHIFT. The principles behind SHIFT suggest a promising paradigm for
enhancing pre-trained foundation models. We begin with a well-trained standard, non-recursive
model (equivalent to Stage I). To improve its performance on tasks requiring complex, multi-step
reasoning, we could introduce recursion into some of its blocks and continue to train (equivalent
to Stage II). This approach leverages the base model’s existing knowledge while reshaping the op-
timization landscape to unlock more powerful reasoning abilities, guided by the principles of the
River-V-Valley. It represents a computationally efficient alternative to training a large recursive
model from scratch and offers a valuable direction for future empirical investigation.

C ADDITIONAL RELATED WORK

This section provides a more detailed discussion of the related work for Section 2 in the main text.

Looped Transformers. The principle of recurrence in Transformers, achieved via cross-layer pa-
rameter sharing, has been explored in foundational works like Universal Transformers (Dehghani
et al., 2018) and ALBERT (Lan et al., 2019). Building on this, looped transformers have demon-
strated significant empirical success in diverse applications, from in-context learning (ICL) (Yang
et al., 2023; Chen et al., 2024; Gatmiry et al., 2024) to length generalization that enables them to
process sequences much longer than those seen during training (Giannou et al., 2023; Fan et al.,
2024; Gao et al., 2024; Saunshi et al., 2025; Bae et al., 2025).

Theoretical research aiming to understand these empirical advantages can be roughly split into two
lines. The first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato,
2024), showing that looped transformers are Turing complete with universal computational capa-
bilities. The second line analyzes the optimization properties (Gatmiry et al., 2024), proving opti-
mization convergence for linear regression tasks within the ICL framework. However, a provable
connection between the recursive architectural prior of looped transformers, optimization landscape,
and superior reasoning capabilities remains missing, particularly under the general next-token pre-
diction paradigm. Our work addresses this gap by analyzing how the recursive structure shapes the
optimization landscape, ultimately seeking to combine the length generalization benefits of looped
transformers with the efficiency of standard, non-recursive models.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neural
networks. Empirically, Hochreiter & Schmidhuber (1994; 1997) first demonstrate that SGD can typ-
ically find flat minima among various solutions. Theoretically, much research has provided strong
evidence supporting this idea, reporting that models converging to flat minima exhibit better gener-
alization performance across various tasks and architectures (Keskar et al., 2016; Wu et al., 2017;
Neyshabur et al., 2017; Kleinberg et al., 2018; Xie et al., 2020; Li et al., 2021; Lyu et al., 2022;
Andriushchenko et al., 2023; Liu et al., 2023).

More recent work has characterized the more complex geometry of the loss landscape, going be-
yond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
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dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river
structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

These two perspectives, flat minima and river-valley landscapes, are highly compatible. We argue
that the river downstream locates flatter minima, which is potentially corresponding to better gener-
alization (Hochreiter & Schmidhuber, 1994; 1997).

Inductive Bias. Implicit bias and inductive bias are fundamental concepts in deep learning the-
ory. Implicit bias is an emergent property of the optimization algorithm (e.g., gradient descent)
that guides the model toward a particular minimum that does generalize well (Soudry et al., 2018;
Gunasekar et al., 2018a; Ji & Telgarsky, 2019; Woodworth et al., 2020; HaoChen et al., 2021;
Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2023; Thrampoulidis, 2024). In contrast, induc-
tive bias is induced by the model architecture. For example, weight sharing and locality inherently
bias convolutional neural networks (CNNs) over fully-connected networks (FCN) by breaking the
learning algorithm’s symmetry (Gunasekar et al., 2018b; Li et al., 2020; Jagadeesan et al., 2022;
Wang & Wu, 2023). Jelassi et al. (2024) reveal an inductive bias in transformers that makes it eas-
ier for them to copy from the context. Saunshi et al. (2024) uncover an inductive bias of stacking
for improving downstream reasoning tasks, but without a theoretical basis. Gatmiry et al. (2024)
also study looped transformers, showing their inductive biases in optimization convergence for lin-
ear regression tasks. Distinct from above, we introduce landscape-level inductive bias, where the
model architecture fundamentally reshapes the optimization landscape (River-U-Valley and River-
V-Valley). These different landscapes induce unique training dynamics. From this perspective, we
reveal the advantages of Looped-Attn over Single-Attn supported by both empirical observations and
theoretical analysis (Section 4).

18



Under review as a conference paper at ICLR 2026

D DETAILED PRELIMINARIES

This section provides more details for Section 3 in the main text.

We formalize the next-token prediction task, specify the objective function, and present the mathe-
matical characterizations of Single-Attn and Looped-Attn models.

Let the vocabulary V = {1,--- ,V} be a finite index set of V' tokens (e.g. words, characters). An
input sequence is denoted by X = [z, 22, ,2,] € V", where each token z; € V. The task is
to predict the next token, y € V, given the context X. We consider a training set of N sequences
Tn = {(X%y")}Y,, where X? € V" and y* € V for all i € [N]. A model with parameter 6 is
trained by minimizing the empirical cross-entropy loss. Let § € IR be the logit vector output by
the model, then the loss function is defined as:

N
£0) = = 108 (8,4(5%) = B[ log (8,3)]

where S, () = exp(9y)/ Z;;l exp(y;) denotes the softmax probability for the ground-truth token
y, with 7, being the y-th component of the logit vector 4.

Input Embeddings and Self-Attention Module. The input sequence X is mapped to d-
dimensional embedding matrix E via an embedding map g : V" — R%*" parameterized by Gemp,
so that £ = g(X; Oemp). We assume that g is fixed (i.e., not trainable) and focus our analysis on the
self-attention module.

Both Single-Attn and Looped-Attn utilize a fundamental self-attention function fy, implemented as
a single-layer linear attention block (without residual connections), defined as:

fo(E,2) =Wy EE"WiWgqz, fo(E)=WyEE WLWQE,
where E € R?*" is the embedding matrix, z € R? is the query vector, i.e., the n-th column of E,
and Wy, Wi, Wg € R%*? are the value, key, query matrices, respectively.

Single-Attn Model and Looped-Attn Model. The Single-Attn model applies the self-attention
operation once, then
z1 = 20 + fo(Eo, 20),

where zj is the n-th column of the input embedding matrix Ej and z; is the final state.

The Looped-Arm model iteratively refines representations over T' steps. For each loop ¢ € [T, the
representations are updated via residual connections and gating mechanisms:

2 =21+ fo(Bi—1,2-1), Ei=Ei1+ fo(Ei—1).
We have the recursive definition for the final state zp after T loop iterations, i.e.,

T
2r =20+ Zfe(Et—th—1)-

t=1
Prediction Head. The final logit output § € R" is generated by a linear projection head h : R% —

RY, parameterized by W), € RV *<. Finally, the output logits are §j = W)}, 2, for Single-Attn and
y = Whzp for Looped-Attn.
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E DETAILED EXPERIMENTS

E.1 EXPERIMENTS ON TOY MODELS AND SYNTHETIC MARKOV LANGUAGE DATASET
E.1.1 EXPERIMENTAL SETUP

Toy Models and Hyperparameter Details. To conduct the motivating experiments and investi-
gate the learning dynamics of different architectures, we employ simplified toy models. Specifically,
we adopt a non-recursive transformer with a single attention layer (Single-Attn), and a looped trans-
former consisting of iterating a single attention layer for three loops (Looped-Attn). These toy mod-
els are aligned with our theoretical formulation in Section 3. We train both models for 600 epochs,
using Adam optimizer with the learning rate 0.001. Each experiment is conducted on a single 24GB
NVIDIA GeForce RTX 3090.

Markov Language Dataset. We utilize a synthetic Markov language dataset, specifically de-
signed to provide a controllable spectrum of task difficulty. As illustrated in Figure 2, each sample
is a sequence of four tokens, X = (zg,x1, T2, 23) (e.g., ‘aaaa’,‘aaab’,‘abbc’), drawn from a vocab-
ulary of three discrete symbols {a, b, c}. The sequences are generated according to a homogeneous
Markov process, where the probability of a full sequence is given by

P(X) = P(l’o)P(l’l|I0)P(I’2|I1)P(I’3|IL‘2)

The initial state probabilities P(x) are uniform, while the transition probabilities at each step are
governed by three distinct, randomly generated transition matrices.

The learning task for both Single-Attn and Looped-Attn is to predict the final token x3, given the first
three (xg, 1, x2) as input. We quantify the difficulty of each prediction by the information content
(IC) of its corresponding ground-truth sequence:

IC(X) = —log P(X).

To create a dataset with a mixture of simple and complex tasks, we begin by generating all 3* possi-
ble sequences. The initial set is then expanded to a larger dataset size of N = 500 through a weighted
oversampling process. This sampling probability for each sequence is proportional to its ground-
truth probability raised to the power of 2. This ensures that high-probability (low-information,
or simple) sequences are sampled more frequently, resulting in a long-tail training distribution, as
shown in Figure 6. Consequently, simple patterns are abundant while complex patterns are rare,
posing a generalization challenge.
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Figure 6: Data Distribution. (a,b) Long-tail distribution of the dataset shown by IC and CP.

E.1.2 EMPIRICAL OBSERVATIONS
By combining two information-theoretic metrics (Hessian Matrix Entropy and Mutual Information)

with a direct analysis of the eigenspectrum, we investigate different Hessian-level dynamics for
Single-Attn and Looped-Attn.
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More Discussion on Hessian-Level Dynamics. The metrics of matrix entropy and mutual infor-
mation based on Hessian w.z¢. the value matrix Wy, are presented in Figures 3(c)~3(d). Regarding
Figure 3(d), it is important to understand that we cannot directly compare the absolute values of
Mutual Information (MI) for Single-Attn and Looped-Attn. This is because they have a different
baseline level of Matrix Entropy. In information theory, the mutual information between two ran-
dom variables is fundamentally bounded by the entropy of each variable. Specifically, we have
I(Hs; Heq1) < min(E(Hg), E(Hs41)). This means that the absolute values of MI is limited by
the complexity of landscape itself, as measured by Matrix Entropy.

This helps explain the low final MI value for Single-Attn. Even though the state at epoch s 4 1 is
similar to the state at epoch s, the overall landscape is simple (low entropy) thus the absolute MI
value remains small. However, notice that both models ultimately reach a stable state of high MI
within the limits set by its own entropy. It represents a stagnation, not exploration.

Eigenspectra of Hessian w.r.t. the Value Matrix 11/,. We present the eigenspectra of Hessian
with respect to (w.r.t.) the value matrix Wy, in Figure 7~11 for three models: Single-Attn, Looped-
Attn and Deep-Attn (a non-recursive transformer with three attention layers).

We find that the spectral shape and evolution of Single-Attn (Figure 7) and Deep-Attn (Figure 9~11)
are nearly identical. Both converge to a simple and static landscape, and their valley eigenspec-
tra contain uniformly relatively small eigenvalues, with maximum eigenvalues of a similar small
magnitude (e.g., Amax = 0.83 for Single-Attn and A\ ~ 0.28 for Deep-Attn Layer 1). Based on
Definition 2, both Single-Attn and Deep-Attn create River-U-Valley landscapes. In contrast, Looped-
At (Figure 8) exhibits the distinct three-phase evolution. Its valley eigenspectra contain both rela-
tively large and small eigenvalues, with a significantly larger A\,.x =~ 2.84. Based on Definition 2,
Looped-Attn creates a River-V-Valley landscape.

This comparison demonstrates that the River-V-Valley landscape is a unique inductive bias of the
recursive architecture, not simply a product of computational depth.

Eigenspectra of Hessian w.r.t. the Key Matrix IW;. The metrics of matrix entropy and mutual
information based on Hessian w.r.¢. the key matrix Wy, are presented in Figure 12. We present
the eigenspectra of Hessian with respect to (w.r.t.) the key matrix Wy in Figure 13~17 for three
models: Single-Attn, Looped-Attn and Deep-Atin.
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Figure 7: Single-Attn Eigenspectra (Hessian w.x.t. the Value Matrix Wy/).
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Figure 11: Deep-Attn Eigenspectra (Hessian w.r.t. the Value Matrix Wy in Layer 3).
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Figure 16: Deep-Attn Eigenspectra (Hessian w.zt. the Key Matrix Wx in Layer 2).

Epoch 1 Epoch 2 Epocn 3 Epoch a Epochs
3 3 3 3 3
g 3 3 H H
g g g g g
7 7 z z 7
£ 5 £ H §
H H H H H
H & & H H

] ] 11 ] ] 1L

- g ) & T P F S ra

Eigenvalues Eigenvalues Eigenvalues Eigenvalues Eigenvalues

Epoch 10 Epoch 15 Epoch 20 Epoch 100 Epoch 150
3 3 T 2 3
3 3 3 H 3
§ § § & §
H H H H H
2 & 2 2 E)
z 3 Zw z z
§ § § § H
H H H H H
2 2 2 2 g
H H £ £ H

L 1 1 1 1 1 1 L1 1

R P s s R o Fy

Eigenvalues Eigenvalues Eigenvalues Eigenvalues Eigenvales

® ® () ® )

Figure 17: Deep-Attn Eigenspectra (Hessian w.r.t. the Key Matrix Wi in Layer 3).
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Table 1: Accuracy on Relatively Simple Sequences.

Datasets Sequence Length # Simple Sequences Single-Attn Looped-Attn

Training L= 100% 69.25% 72.29%

L= 99.5% 52.83% 62.78%

Testin L=11 64.5% 55.57% 70.28%
8 L=14 0 N/A N/A
L=18 0 N/A N/A

E.1.3 LENGTH GENERALIZATION

To bridge optimization with generalization, we design a controlled experiment on the synthetic
Markov language dataset to evaluate the length generalization capabilities of the Single-Attn and
Looped-Attn models.

Testing Datasets. We generate a series of test datasets with sequence lengths L € {8,11,14,17}.
To specifically isolate the challenge of generalizing a learned rule to longer sequences, rather
than adapting to entirely new dynamics (where our designed simplified Single-Attn and Looped-
Attn might be completely failed), we generate all test datasets using the same transition dynamics
{T1,T», T3} employed for the training data. For sequence lengths L > 4, the transition matrices
are applied cyclically. Furthermore, to ensure consistent evaluation across lengths, each dataset is
generated by sampling a fixed number of Ny = 5000 sequences, following the same long-tail sam-
pling rules (o« = 2) as the training dataset. With these rules, we present the Information Content
(IC) distributions for the test datasets with different sequence lengths in Figure 5.

Evaluation Metrics. We analyze model performance based on the IC of each sequence. This
allows us to distinguish between simple (low-IC) and complex (high-IC) tasks. Based on the IC
distribution of the training data (L = 4), we establish a fixed complexity threshold IC' = 14.57,
which represents the maximum IC in the training sequences. We then evaluate both models on the
following metrics:

» Total Accuracy: The accuracy on the total test datasets.

* Accuracy on Relatively Simple Sequences: The accuracy on the subset of test sequences with
an IC below the fixed threshold (/C' < 14.57).

Figure 18 and Table 1 present the length generalization performance of the Single-Attn and Looped-
Attn models. We find that:

(a) Total Accuracy. As shown in Figure 18, Looped-Attn significantly outperforms Single-Attn
on out-of-distribution testing datasets with sequence lengths greater than the training length. This
performance gap confirms that the inductive bias of Looped-Attn leads to a more generalizable so-
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lution, aligning with our theoretical findings that its optimization landscape guides toward a more
flatter minimum.

An interesting observation from Figure 18 is that the accuracy of both models does not strictly
decrease as testing length increases (and even increases slightly). This phenomenon originates from
our specific design which employs cyclic transitions. In this setup, a longer sequence provides
the model with more in-context examples of the underlying repeating rule. This may temporarily
counteract the performance drops from increasing complexity. However, we point out on more
general datasets, a clearer trend of performance dropping with increasing sequence length would
be observed (Fan et al., 2024). Here, we focus more on the consistently superior performance of
Looped-Attn over Single-Attn.

(b) Accuracy on Relatively Simple Sequences. The ‘# Simple Sequences’ column reveals a critical
length generalization challenge: the low-IC sequences during training become rare or non-existent
in longer test sequences. This confirms that longer sequences are inherently more complex.

We consider the accuracy on these relatively simple sequences. Specifically, at L = 11 where a
significant portion of simple sequences still exists, Looped-Attn maintains a higher accuracy com-
pared to Single-Attn. This indicates that Single-Attn struggles to apply its knowledge even to tasks of
comparable complexity when the sequence is longer. In contrast, Looped-Attn generalizes better to
longer sequences. This aligns with our theory that Looped-Attn finds a more generalizable solution
by exploring further into the river downstream with flat minima.

E.1.4 SHIFT CRITERION WITH PATIENCE

Motivation for SCP Design. As discussed in Section 5, Figure 4 empirically validates the mo-
tivation behind SCP by illustrating the trade-off between computational efficiency and reasoning
accuracy. Specifically, Figure 4(a) reveals that while a delayed transition increases the speedup
factor, an excessive delay prevents Looped-Attn from converging in Stage IL. In Figure 4(b), we vi-
sualize the training dynamics at a specific shift point (Epoch 120) to compare SHIFT, Single-Attn,
and Looped-Attn. These experiments indicate that relying solely on the loss plateau is insufficient
for determining the optimal transition timing. Since Single-Attn exhibits a long loss plateau, it is dif-
ficult to identify a precise moment that balances accuracy and efficiency based on loss alone. This
observation motivates the design of the second stage of SCP.

Hyperparameter Sensitivity of d;, P, o and W. We conduct a detailed sensitivity analy-
sis of the SCP criterion’s hyperparameters. Specifically, the baseline configuration is estab-
lished at 67 = 0.001, P = 10, o = 0.03 and W = b5, with experimental ranges in
4, € {0.0001,0.0005,0.001,0.005,0.01,0.05,0.1,0.5}, P € {5,6,7,8,9,10,15,20}, 02 €
{0.025,0.03,0.035,0.04,0.045,0.05} and W € {3,4,5,6,7}.

As shown in Figure 20, for the Plateau Detection phase, the model exhibits robustness with the shift
point consistently stabilizing around epoch 119 regardless of variations in the loss threshold §; and
patience P. For the Gradient Stabilization Wait phase, a larger gradient norm threshold J- relaxes
the stability constraint, resulting in earlier transitions. To maximize total training efficiency, we
recommend selecting - slightly above the intrinsic gradient norm rather than using arbitrarily loose
thresholds. The window W serves primarily to filter out single-step stochastic outliers. We advise
against setting W too large unless the gradient curve is exceptionally smooth.
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Figure 20: Hyperparameter Sensitivity in SCP.
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E.2 EXPERIMENTS ON PRACTICAL MODELS AND DATASETS

E.2.1 EXPERIMENTAL SETUP

This section details the experimental setup for evaluating three training paradigms on practical mod-
els and datasets: Single-Attn, Looped-Attn, and our proposed SHIFT framework. Our experimental
design follows the methodology for length generalization in looped transformers established by Fan
et al. (2024).

Architectures and Training Paradigms. To ensure a fair comparison, all experiments are con-
ducted under the equal parameter count principle. We employ a decoder-only GPT-2 architecture as
the foundational building block for all models.

e Single-Attn: This model is a standard, non-recursive Transformer trained via Full-Output Pre-
diction to generate the entire output sequence in a single forward pass.

* Looped-Attn: This model uses the same Transformer block as Single-Attn but applies it itera-
tively. We adopt a recursive variant “FOP-Loop-Adaptive” from Fan et al. (2024). Unlike our
toy model with a fixed number of loops (Section E.1), this more advanced setup allows the
model to adapt its computational depth. During training, the model is trained to produce the
output after exactly 7" loops for a training sequence of length T, with the loss computed only
at the T'-th loop. During inference, it uses an adaptive stopping criterion to select the number
of loops for test sequences of different lengths.

* SHIFT: This is our proposed two-stage training strategy that transitions from Single-Attn to
Looped-Attn at a shift point guided by SCP (Section 5).

Datasets and Tasks. The datasets and tasks are adapted from Fan et al. (2024). We mainly eval-
uate models on five algorithmic reasoning tasks: Parity, Addition, Copy, Binary Sum, and Unique
Set. These tasks require multi-step reasoning, sequential computation and serve as benchmarks for
assessing a model’s ability to learn underlying patterns and generalize to sequence lengths not seen
during training (length generalization).

Hyperparameters and Implementation Details. Across all experiments, the model block is con-
figured with an embedding dimension of 256. The number of attention heads and block depth are
task-specific, following the settings in Fan et al. (2024). We use the AdamW optimizer with a learn-
ing rate of le-4. All models are trained for a total of 50,001 steps. Each experiment is conducted on
a single 24GB NVIDIA GeForce RTX 3090.

E.2.2 EXPERIMENTAL RESULTS

In the following, we present the experimental results on the above five datasets in Figure 22~26.
For each dataset, we compare the training, validation, and length generalization performances of
the three models. Figure 21 summarizes the computational efficiency of the SHIFT framework
compared to the Looped-Attn baseline.

Performances of Single-Attn and Looped-Attn. We observe two interesting different behaviors
on training accuracy curves compared to the experiments on our synthetic Markov language datasets
(Figures 22~26). However, our central findings remain consistent: Looped-Attn creates a River-
V-Valley landscape and thus demonstrates superior performance compared to the River-U-Valley
landscape in Single-Attn.

(a) On practical models and tasks, the training accuracy for all models achieves near 100% early,
which contrasts with the distinct two-phase accuracy curve observed on the toy dataset (Figure 3(b)).
This difference stems from the intrinsic structures of the tasks. Specifically,

* An algorithmic task like Parity is governed by a single, recursive underlying rule (e.g., a sequential
XOR operation) for all training samples, regardless of length. The initial descent in the valley
corresponds to the model learning this core operation, which is sufficient to solve nearly all in-
distribution short sequences and causes the training accuracy to quickly plateau. However, this
plateau masks a critical divergence in the optimization dynamics. Even after the accuracy metric
no longer improves, Looped-Attn continues its optimization by exploring river downstream, which
is essential for refining the learned core operation into a truly generalizable algorithm. In contrast,
Single-Attn gets trapped in the flat valley floor which explains its failure in length generalization.
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Figure 21: SHIFT Computational Efficiency on Algorithmic Datasets.

* Our synthetic Markov dataset is designed to contain a diverse set of distinct generative rules with
varying complexities. This naturally separates the training process: during the valley descent, the
model masters the simple rules, while the subsequent downstream exploration is required to learn
the more complex rules, resulting in a clear two-phase accuracy progression (if the model learns
the complex ones).

(b) On practical models and tasks, the accuracy drop upon shifting is significant, but minimal in our
toy model experiments (Figure 4(b)). This phenomenon does not contradict the validity of the Stage
I initialization in SHIFT, as the accuracy recovers rapidly. It reveals a crucial interaction between
the complexity of base architecture and the change of loss landscape.

In both experimental setups, the SHIFT transition reshapes the landscape from a U-shaped valley
to a V-shaped valley. However, the magnitude of this geometric shift appears to depend on the
complexity of the base architecture.

* On practical tasks, Looped-Attn and Single-Attn are built upon GPT-2. Applying the recursive
principle to this complex base architecture creates a V-shaped valley that is greatly different from
the U-shaped valley of its non-recursive ones. This causes the optimizer to significantly push the
parameters far from the stable region, leading to the observed temporary collapse in accuracy.

* On our synthetic dataset, Looped-Attn and Single-Attn are built from a single attention layer. For
these simplified models, the geometric distinction between the U-shaped valley and V-shaped
valley leads to a relatively smooth architectural transition and a stable accuracy trajectory.

This initial instability is the short-term cost of transitioning to a more powerful optimization path.

Effectiveness of SHIFT. Figures 22~26 consistently validate the performance effectiveness of our
proposed SHIFT framework across all evaluated tasks. As shown in the (c¢) subfigures, Single-Attn
fails to generalize to longer sequences, while capable of achieving high accuracy on in-distribution
training data. In contrast, Looped-Attn demonstrates great length generalization capabilities by
maintaining high accuracy on longer test sequences. Our SHIFT framework successfully combines
the rapid initial convergence of Single-Attn with a final performance comparable to the Looped-
Attn baseline. Furthermore, as shown in Figure 21, SHIFT achieves this strong performance with
significantly greater computational efficiency, reducing training time across evaluated algorithmic
tasks.
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Figure 22: Parity Dataset (Shift Step 30k).
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F ADDITIONAL DISCUSSIONS ON DEFINITION 1
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Figure 27: Eigenvalues of Valley Hessian (¢ = 0.02).

Hyperparameters. The constants ¢, d, and ¢ in Definition 1 serve as descriptive symbols to char-
acterize the intrinsic landscape geometry. Specifically, € partitions the parameter space into the river
(the optimum exists in the river downstream) and valley (it generates driving force on river). Its
selection needs to respect the intrinsic spectral gap of the model. A reasonable € is essential for
our theoretical results: setting € too large would misclassify small eigenvalues as river components.
This artificially excludes the primary contributors to the valley’s energy £, thereby hiding the driving
force inherent in the V-shaped valley on river. Conversely, setting € too close to zero risks including
numerical noise into the valley analysis. Furthermore, § and ¢ quantify geometric distinctions: ¢ dis-
tinguishes between the well-conditioned and ill-conditioned geometries, and ¢ serves as a baseline
for energy magnitude.

Representative Examples. We assume a small threshold € (e.g., e = 0.02) separates the River and
Valley subspaces. Let { A1, A2, A3} denote the eigenvalues and {v1, vo, v3} denote the corresponding
eigenvectors. We analyze four representative functions to illustrate the standard River-U-Valley,
River-V-Valley, and other special landscapes beyond the scope of Definition 1.

Case A: River-U-Valley («x and £ are small).
fa =0.001z7 + x5 + 3.

The eigenvalues are A\; = 0.002 < €, A3, A3 = 2 > €. With Definition 1, the subspaces are
Swriver = span{v; } and Svaiey = span{ve,vs}. For the valley subspace, the condition number of
valley Hessian is k = 1 (well-condition), and the inverse Hessian average energy is £ = 0.25 (small
energy). This geometry corresponds to a U-shaped Valley: an isotropic bowl with uniformly steep
cliffs. In total, the landscape of f4 is River-U-Valley.

Case B: River-V-Valley (x and £ are large).
fp = 0.001z7 + 0.0223 + 223.

The eigenvalues are \; = 0.002 < €, Ay = 0.04 > ¢, A3 = 4 > €. With Definition 1, the subspaces
are Sriver = span{v; } and Svaiey = span{vs, vs}. For the valley subspace, the condition number of
valley Hessian is x = 100 (ill-condition), the inverse Hessian average energy is £ = 312.625 (large
energy). This geometry corresponds to a V-shaped Valley, characterized by varied and steep cliffs.
In total, the landscape of fp is River-V-Valley.

Case C: Anisotropic Valley with Low Energy (Large «x, Small £).
fc =0.0012% + 23 + 100z3.

The eigenvalues are \; = 0.002 < €, Ay = 2 > €, A3 = 200 > e. With Definition 1, the subspaces
are Sgiver = span{v;} and Svaiey = span{va,vs}. For the valley subspace, the condition number
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of valley Hessian is k = 100 (ill-condition), the inverse Hessian average energy is £ ~ 0 (small
energy). Consequently, this geometry fits neither the U-shaped nor the V-shaped definition. For
the optimization dynamic, the large condition number induces hopping within the valley. However,
unlike the V-shaped valley, this hopping does not convert into effective river exploration because the
valley lacks a sufficiently small eigenvalue to drive the update. This case represents a suboptimal
anisotropic optimization landscape where the model endures instability without facilitating river
exploration. In total, this case is beyond the scope of this paper (Definition 1). In other words,
Single-Attn and Looped-Attn does not possess such landscapes.

Case D: Isotropic Valley with High Energy (Small , Large £).
fp = 0.001z7 4 0.0223 + 0.02x3.

The eigenvalues are A\; = 0.002 < €, A\, A3 = 0.04 > e. With Definition 1, the subspaces are
Sriver = span{vi } and Svaiey = span{vg, v3}. For the valley subspace, the condition number of
valley Hessian is k = 1 (well-condition), the inverse Hessian average energy is £ = 625 (large
energy). Consequently, this geometry fits neither the U-shaped nor the V-shaped definition. For the
optimization dynamic, although the high energy implies a large potential driving force, the small
condition number induces a rapid smooth descent to the valley floor (y — 0). Unlike the V-shaped
valley where oscillation keeps the valley parameters active, the rapid decay of 6y, causes the coupling
force on the river (H gy 0y) to vanish quickly. Therefore, despite the high energy, the model quickly
becomes trapped at the valley floor, failing to explore river downstream. In total, this case is beyond
the scope of this paper (Definition 1). In other words, Single-Attn and Looped-Attn does not possess
such landscapes.
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G RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

G.1 DEFINITIONS AND ASSUMPTIONS

Definition 2 (Block-Structured Hessian). Let the Hessian matrix H be represented in the or-
thonormal basis of the Valley {v;} and River {r;} subspaces. Its block components are defined by

the second directional derivatives of the loss L as follows:
9’L 9°L 9’L 0°L

[HValley]ij = M7 [HVR]ij = m7 [HRV]ij = m, [HRiver]ij = ariaTj.

Proof. This block structure is formally derived through a change of basis, transforming the standard
Hessian into the coordinate system defined by the River-Valley subspaces.

From standard basis to the River-Valley subspaces. Let H,q4 be the Hessian of the loss function
L(6) with respect to the standard basis of R, where
2L
Hodlii = .
[How:s 96,00,

We introduce a new orthonormal basis aligned with the geometry of the landscape, formed by the
basis vectors of the valley subspace, Svaiey = span{vy, ..., vq, }, and the river subspace, Sriver =

span{ri,..., 7 q, }-

The change of basis from the River-Valley coordinates to the standard coordinates is given by the
orthonormal matrix U

U= (V7R) = (vla"' s Vdy 5 T1y ardR) S RdX(dV+dR)7

where V € R and R € R%X9r gre matrices whose columns are the basis vectors of the
respective subspaces.

The Hessian in the new basis. The representation of the Hessian H in this new basis is
H=U"HyU.
Substituting the block form of U yields the block structure of H:

(VT  (VTHuwWV VTHuR
H= (RT> Hold (V R) - <RTH01dV RTHoldR .

From this, we can identify each block:
* Hyaltey = V' T H,4V': The projection of the Hessian onto the Valley subspace.

e Hyp =V T HyaR: The coupling term from the River to the Valley subspace.
» Hpy = RT HyqV: The coupling term from the Valley to the River subspace.

* Hgiver = R HyqR: The projection of the Hessian onto the River subspace.

Thus, we have

[Hvatey)i; = v; Hov; = af;ij’
[Hyg)ij = v Hoarj = af;zrj’
(Hrylij = r; Houqvj = 8?1285157
[Hriver)ij = i Hoarj = gfm
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Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the

quadratic loss:
.
> _ 16y Hyiey Hyr\ (Ov T
Lbv,0r) = 2 <9R) (HRV 0 0r ) ~Nrfr;

27 27 27
where [Hyajey)ij = %, [Hyrlij = %, [Hrv]ij = % (Definition 2 in Appendix G.1).
We assume the coupling strength along the valley eigenvectors v; satisfies h < ||Hgryvi]| < h
for constants h,h > 0, and the valley parameters are initialized as 0y ~ N(0,&%I/dy ) with
10v.oll < afora constant & > 0.

Remark 5. The structure of this loss model is a principled abstraction of our theoretical model
and empirical observations. Each component of the function corresponds to a specific geometric
hypothesis.

The valley component EVauey(Hv). The valley is a subspace with high curvature. Any movement
away from the valley floor should result in a significant increase in the loss value. We adopt a
simplest quadratic function to capture this behavior and landscape:

~ 1
Lyvaiiey (0v) = ie\tHValleyev-

The matrix Hyapey is the valley Hessian. Its spectral properties (condition number) directly model
the shape of the valley: U-shape and V-shape defined in Definition 1.

The river component ERiver(Q r). The river corresponds to the subspace with near-zero eigenvalues,
forming a flat manifold. While the true landscape may possess non-zero curvature in these direc-
tions, empirical observations in Figures 7~8 reveal a massive spectral gap between valley and river
directions (i.e., Avaliey > ARiver). This suggests that along the full optimization trajectory (including
regions outside the idealized flat manifold), the quadratic confinement provided by the curvature in
the river direction is negligible compared to the driving force of the gradient. Consequently, opti-
mization dynamics within the river are dominated by the first-order gradient term. We thus adopt
the approximation H r;yer ~ 0 and model the river using a linear term:

2V:River (HR) - - h% ‘QR

Here, the vector h  represents the intrinsic gradient flow along the River. The negative sign indicates
that moving in the direction of h i decreases the loss. It effectively captures the slow dynamics along
the river relative to the fast dynamics in the valley.

The coupling component Ec(mpﬁng(ﬂv, Or). The optimization in valley and river subspaces are not
perfectly independent. To model their interaction, we adopt Hpry to construct a simple quadratic
form:

Lecoupling (0, 0r) = 0, Hry 0y = 0y, Hy rOr,

since Hessian is symmetric, i.e., Hry = H{,r - The matrix Hgy is the Coupling Matrix that
quantifies the strength of the interaction between the subspaces. Specifically, H gy describes how a
movement in the valley induces a gradient in the river.

Assembling the final model. By combining these three principled components, we arrive at our
final quadratic loss function:

1
L(Ov,0r) = §9$HVauey9V — hpOr + 0% HryOy.

This can be expressed compactly in the block-matrix form:
T
7 _ 1oy Hyvaey Hvr)\ (Ov T
Bovn = (30) (% 50 (4) - g
In addition, for the initialization 6y, we derive that

dy _2
(6%
E {HHV,OHQ} =E E 9?] — d\/@ — &2
i=1
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According to the Law of Large Numbers, as dy is large, the norm of 6y is concentrated around
its expected value &. This initialization guarantees that 6y, o possesses non-zero projections onto the
eigenvectors associated with small valley eigenvalues. These components are essential for activating
the significant cumulative driving force of Looped-Attn.

Assumption 1 (Dominant Effect in Average Energy). Let £ and £?) denote the Inverse
Hessian Average Energy (Definition 1) for Single-Attn and Looped-Attn, respectively. With h <
| Hryvuvi|| < h (Setting 1), assume that £ /€M) > h2 /h?.

Remark 6. Assumption 1 ensures that the landscape advantage of Looped-Attn compared to Single-
Atm, characterized by the significant magnitude of inverse eigenvalues (£(2) > £(1)), dominates
the scaling effects in the coupling strength. Specifically, the ratio h?/ h? is of a constant order, since
h and h correspond to the projection strengths of Hpy onto different valley eigenvectors, which
typically share the same magnitude. In contrast, the energy ratio £(*) /€ (1) exceeds this constant
order due to the significant structural differences between Single-Attn and Looped-Attn models.

Assumption 2 (Bounded Time-Varying Valley Hessian). Let { Hyey(0) } x>0 be the sequence
of Valley Hessians during the optimization trajectory. There exist constant, positive semi-definite
matrices HB and H™ sharing a common stable basis with {H Va,,ey(ek)} k>0, such that for all steps
k: HB < Hyairey(0r) = H T ywhere < denotes the Loewner order.

Remark 7. Assumption 2 posits a structurally stable valley subspace where the eigenvectors of
Hyaiiey (1) do not rotate significantly, while the eigenvalues vary during the optimization phase.
We use matrices HZ and H” to bound this evolving eigenspectrum. Specifically, with HZ <
Hyqiiey(0r) = HT, we have that the sorted eigenvalues satisfy \;(H?) < i (Hvaniey (0r)) <
Ni(HT), Vi = 1,---,d. Intuitively, the lower bound \;(H?) guarantees that the valley direc-
tions do not become infinitely flat, ensuring the landscape possesses sufficient curvature to drive
optimization. The upper bound \;(H ') ensures that the steepest directions do not become infinitely
steep, i.e., the Hessian satisfies Lipschitz smoothness.

Assumption 3 (Bounded Time-Varying Coupling Hessian). Letr Hpy (0)) be the time-varying
coupling matrix at step k. There exist constant matrices H and H, such that H T H<H EVH RV =
FTﬁ, The coupling strength along the stable valley eigenvectors (Assumption 2) satisfy h,,, <

_ o Logen
|Hof [, [HoP || < hgen for constants By, hgen > 0.

Remark 8. With Assumption 2, the eigenvectors {v! '} or {vP} are stable, where {v] } denote the
eigenvalues of Hessian upper bound H”', and {v?} denote the eigenvalues of Hessian lower bound
HPB. Assumption 3 bounds the coupling energy H ;z—v Hpry and coupling strength along these stable
eigenvectors. Specifically, it guarantees that the interaction between the valley and river subspaces
is well-behaved. The upper bounds ensure Lipschitz smoothness and the lower bounds ensure that
the gradient conversion from valley to river does not vanish.

Assumption 4 (Dominant Effect in Average Energy). Let ) and £2) denote the Inverse Hes-
sian Average Energy (Definition 1) for Single-Atm and Looped-Attn, respectively. With ||Hvl'|| >

Do IHOP|| < higen (Assumption 3), assume that ED /e > ﬁgen/bf,m.

Remark 9. Assumption 4 ensures that the landscape advantage of Looped-Attn compared to Single-
Attn, characterized by the significant magnitude of inverse eigenvalues (£(2) > £(1)), dominates the
scaling effects in the coupling strength.
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G.2 PROOF FOR THEOREM 1 AND COROLLARY 1

We aim to prove that over K iterations (the stage where the valley’s dynamics largely drive progress
in the river, i.e., before reaching the river), the total progress made in the river subspace is signifi-
cantly greater for Looped-Attn than for Single-Attn. In our theoretical model, superior convergence
performance is defined as the ability to explore further along the river, thus reaching a better opti-
mization performance.

With the quadratic loss model from Setting 1, L(fy, 0r) = 50y HvaeyOv — hjz0r + 0, Hry Oy,
we derive the gradients:

OL(6v, 0

OLOV-OR) _ gy 00+ Hy b,
90y

32(9\/791%)

TNV T HevOvie — e
89R RV UV Ek R

Therefore the GD update rules for the two subspaces are:

Ovi+1 = Ovie — 0 (HvaneyOv,k + HyrOr k) = (I — nHvaey)0v,x — nHy ROR i, (D
Ork+1 =Ork — 1 (HryOvr — hR). (2

Derivation of the cumulative change in the river subspace. Our goal is to quantify the total
progress made within the river subspace during K iterations. From Equation 2, the total change in
Or after K steps is:

K-1

AOpx £ 0px —Oro = Z (Ork+1 — ORr.k)
k=0

=

(nhr —nHgyOv,)
0

el
Il

K-1
Knhr =1 HryvOv. 3)
k=0

The first term represents progress driven by the river’s intrinsic constant gradient. The second term
represents the influence from the valley. We define C'x to be the cumulative effect induced by the
valley dynamics on the river, i.e., movement in the valley 6y, induces a gradient in the river:

K-1

Crx =1 Z Hpyv Oy .
k=0

Spectral analysis of the dominant dynamics. The cumulative effect C'x- depends on the trajectory
of By .. The recurrence for 0y, in Equation 1 can be solved as

k—1

Ovy =@ 0vo—nY O I Hyplr;, 4)
i=0

where @ £ ] — N Hvaiey. The trajectory of 0y is composed of two parts: (a) the unforced update,
®*y (, represents the intrinsic decay of the valley component; and (b) the summation term repre-
sents the cumulative influence on the valley from the river. During the early and intermediate stages
of optimization (bouncing between the valleys), the magnitude of 6y, grows rapidly and remains sig-
nificantly larger than that of §r. Consequently, the term —nH gy 0y generates a significant driving
force on the river, while the term —nHy g0 g acts only as a minor perturbation on the valley. Thus,
the dynamics of the valley dominate and drive the exploration of the river, while the dynamics of the
river can be regarded as a secondary perturbation to the valley. We mainly consider the dominant
part (a) in the following.
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Let Hyyey = QAQT be the spectral decomposition, where Q = [v1, . ..,vq, ] is the orthonormal
matrix of eigenvectors and A = diag(\1,. .., Ag, ) is the diagonal matrix of corresponding eigen-
values. The dominant dynamics of 8y are governed by the unforced update <I>kt9v70, which can be
expressed in the eigen-space as:

®*0y,0 = (I —nQAQ ) v,
= (QIQ" —nQAQ")*by,
= QI —nA)FQ v,
dv

=Y (1= 1) 0] by ovs &)

i=1

Dominant cumulative effect for Single-Attn and Looped-Attn. We denote the dominant part of
the cumulative effect, arising from the unforced update, as C'x:
K—1

Ck 21 Z Hpy @0y 0. (6)
k=0

Let p; £ 1 — n)\; be the decay rate of the i-th component. Substituting Equation 5 into Equation 6
yields:

K-1 K-1
Cx=n)Y Hrv®*0yo=n> Hgy (Zpl v; 9V0U1>
k=

k=0 =1

0
dy K-1

=n>_ Hryv] Oyov; (Z Pf)
i=1 k=0

= 772 Hpyv; Oy,ov; < = )

l_pz

o TGVOH
—Z rvvi (1= pK).

As K — oo, C Kk is asymptotic to C,
dy
Coo = lim CK = lim Z HRv’U Gvo’Ut (1 — P; )

K—oo K—oo

dy 1
Z YHRV,U;FGV,O/U’L"

i=1""

With ||Hgy || < hand ||fyo < @& in Setting 1, we consider the norm of asymptotic value C,
dy

[Cooll = Z N ~— Hryv Ovov;

dv 1
<> — v bvol- || Hryvs
= ; |Az|| i V70| H RV ZH

dy 1
< [[Hrv|l Z m|”j9v,o|
i=1 17"

dv
1
< dy | Hry || |6v,oll Z <Xl

@..

dy h é (7
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It means that after K iterations, the driving force from valley is limited to C. In other words, C
quantifies the total potential driving force the valley can generate, which is primarily related to the
inverse of the eigenvalues of the valley subspace.

With the expression of cumulative force, C = v/dy h & Zj;’l ﬁ, we then compare two models.

The spectral experiments presented in Figure 27 (with € = 0.02) reveal that Looped-Attn exhibits a
larger £ (Hyaley) than Single-Attn. Thus with Definition 1, we summarize the characteristics of two
models in Conjecture 1~2.

[ (1) . . .
For Single-Attn with River-U-Valley, we have ﬁ Egl (/\&))2 < (. With inequality ||z|; <
ay, i

Vd||z||2 for vector 2 € R%, the maximal cumulative force satisfies

(lg)
. 1 -
¢ =hay/dP Y 5] < hay/di)/d)
i=1 i

1
()2
||||2 for vector x € IR%, the maximal cumulative force satisfies

(2)
For Looped-Atmn with River-V-Valley, we have d(—lz) Zf;’l > (. With inequality ||z[[; >
\4

The valley dimensions of two model are typically of the same order, thus we conclude that

c? > cWm,

This proves that the ill-conditioned nature of the V-shaped valley provides a larger potential for
driving exploration in the river subspace. This continued and powerful exploration allows Looped-
Attn to navigate further down the river, overcoming performance plateaus and achieving a superior
optimization performance compared to the rapidly trapped Single-Attn model.
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G.3 PROOF FOR COROLLARY 2

The quadratic loss in Setting 1 is:

~ 1
L(Ov,0r) = §HJHValley9V — hpbr + 04 Hry by

From Theorem 1, as K — oo, the cumulative force converges to:

dvy

dy
Z )\i Hpyv] Oy ov; = ; %711
where ¢; £ v, Oy and u; = Hryv; € RI7.
With .o ~ N(0,&*I/dy ) in Setting 1, we have
Elcicj] = IE[U;FG\/@@;OUJ] = v, E[0v,00yo]v;.
Ifi = j, E[c?] = a®/dy. If i # j, E[c?] = 0. Then the expected norm is

dv ) dyv )
E (|0l = B < AZA>
i =174

i=1
dy dvy

—ZZ )\)\ 111,11J>

71]1

— dy
0/2

~E[¢f], o_a i

With h < ||[Hgryv;|| < h in Setting 1, we have

&2 dy 1 72 dy
2 2
o théﬂi[ncmu]é ;AQ
Thus,
pre) d<n
a’ B2 ~ 1 a? ;2 (1))2
E[ICQ1] 2 “50* Y o ol z >E [|cQ)?].
V =1 ( i ) =1 1',

With Definition 1 and Assumption 1, it leads to
E [|c2)?] > E[lc@?].

e as K — o0, E [|C2)P] > E [Io@P]

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Aftn leads to converge rapidly in the valley subspace
(within K steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K5 steps, where K > K;). We consider K = K.

At iteration K, for both models, the valley parameters are effectively zero:

99)1( ~0 and 9‘(/2)1( ~ 0.
Given 0y, i ~ 0, the valley and coupling terms become negligible for both models:

N . _
Lvaliey, k. = §9V,KHVa11ey9V,K ~ 0.
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T T
Lcoupting, x = 0p x Hrv0v,ix = 0.
Therefore, the total loss for each model at step K is dominated by its river component:

T 1 1
L( ) ~ Ll(il\)/er K — _hTeg% K-

L ~ Liler i = —hif3 -

From Equation 3,
K-1

Abp k= Knhg —n Y Hpybyi = Knhg — Ck,
k=0
where C'i represents the cumulative effect from the valley dynamics over K iterations.

Loss Comparison. We analyze the change in the river loss, AZRiver, K= ERiver, K — ZRiver,0~
r 2 2
7@ 72
E ’ALRiver,K o ‘ALRiver,K :|

_E _’%R oD, — o) ) RO 9@))}

=E | K0’ |hgll* + [elPICE I — K*0*|hr]l* — hal*|CE 1

1 2
=|lhal*E [ICR12 = IO -
As K — oo, we have E {HC;(Z)HQ} >E {HCI((UHQ} then
1) 2) 2 1
E||a28n| - [AZ00 k[ ] = Inel?E [IC@1? - 10@1P] <0,

which yields IEHALRMr o < ]E[\ALRMr «|?] and demonstrates that Looped-Atm achieves a

significantly greater loss reduction. Starting from the same initialization, a greater loss reduction
implies a lower final loss value:

E[(L)?] < E[(LY)?].

During the phase K = Ky, Looped-Attn has exhibited significant advantages over Single-Attn.
Furthermore, for subsequent steps K > K», Looped-Attn continues to explore the river downstream
while Single-Attn remains trapped in the flat valley.
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G.4 PROOF FOR THEOREM 3

We extend the analysis in Theorem 1 and Corollary 1~2 to the more general loss model introduced
in Setting 2:
L(0v,0r) = Lvaney(0v') + Lriver(0r) + Lcoupting (O, Or)-

Time-Varying Hessian and Dynamics Analysis. To analyze the optimization dynamics for the
general loss, we approximate the landscape locally around each iterate 0, = (0y x,0r k) using a

second-order Taylor expansion. This approximation is justified since each step of GD n@f(@k) is
typically small, the subsequent parameter 61 remains within this neighborhood.

The Taylor expansion of L (0) around 6y, is given by:

~ ~ ~ 1
L(0) ~ L(0k) + 09 L(0k) " (6 — 0i) + 50— Ox) " H(0k)(0 — 1), ®)
where 9y L(6) and H (6},) are the gradient and Hessian evaluated at 6. And we have:
Ov — vk 7 Do, L(0) Hvaey () Hv (k)
— 0y, = , L(op) = (9% H(0;) = Y .
0 =0 <9R - 9R,k) » 9eLO) <8QRL(0k) o HOD = UHp(00)  Hivver 00)

Substituting these into Equation 8 yields the local quadratic approximation:
~ ~ ~ T ~ T
L(Ov,0r) = L(Ov, 0r,K) + (89VL(9k)> Oy —bvi) + (89RL(9k)) (Or —Ork)
1
+ 5(9\/ —0v1.) " Hyatiey (01) (0y — Ov )
1
+ 5(91% —Or1) " Hriver(01) (O — Or )
+ (0r — Or.k) " Hry (1) (0y — Ovi).

From this approximation, we have

B9y L(Ov,0r) ~ 99, L(01,) + Hvaitey (01) (0v — Ovi) + Hyr(0k)(Or — Or k),
0o L(Ov, 0r) =~ 09, L(0y) + Hry (04) (0v — Ov),
where we assume Hpiver(6) =~ O since river is an extremely flat region.

We find that the river update at the point near 6y, is approximately linearly dependent 6y, and the
linear coefficient is H gy (0)). Thus we assume that the river gradient at 6y, is also following:

6GRZ(GV,I€79R,I€) ~ Hryv(01)0v,k — hir ks )

where hg j is the inherent driving force of the river itself, independent of the valley position. This
term is similar to the residual term in linear model. Similarly, we assume that the valley gradient at
0y is following:

B9, L(Ov 1, Ork) = Hvaey(01)0v,i + Hy r(0k)0R, k- (10)

We here assume the valley and river gradient as a linear function of 6y or #r. Equation 9 cor-
responds to a first-order Taylor expansion of the gradient function expanded at the river manifold
0= (0., GRJ@), i.e.,

~ ~

OonL(Ovi, Or k) = Oon L(0,0R 1) + Hrv (0k)0v, + Ri(Ovi),

where 0y, L(0,0Rr 1) £ —hpr, is the intrinsic driver force along the river, and Ry (0yv) =
%[3% H RV}Q‘; x0v,1. is the Taylor remainder. The approximation in Equation 9 corresponds to re-
taining the first two terms and neglecting the remainder. Assuming the Hessian H gy is p;-Lipschitz
continuous w.r.t. 8y, the remainder satisfies

p
[R1(Ovie)|l < éHWkHQ-
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We find that the linear term is of order O(||0y x||), while the remainder is of order O(||0y.x|?).
Therefore, as the valley parameters ||0y ;|| decay during optimization, the error term vanishes at a
significantly faster rate than the linear term, ensuring the validity of Equation 9.

Equation 10 corresponds to a first-order Taylor expansion of the gradient function expanded at 6 =
(0,0),i.e

39VE(9v,k;, Or.k) = Opy L(0,0) + Hvatiey (01) (8v.e — 0) + Hy g(01) (0r,x — 0) + Ra(6),

where Ro(0p ) = 5[80HRV] Rﬁkﬁg_k is the Taylor remainder. Assuming the Hessian Hpy is
pa-Lipschitz continuous w.r.z. 6, the remainder satisfies

P2 p
R2(6v,i) | < 5 [16k[1*.

We find that the linear term is of order O(||0||), while the remainder is of order O(]|0y||?). There-
fore, as the parameters ||0|| decay to minimum during optimization, the error term vanishes at a
significantly faster rate than the linear term, ensuring the validity of Equation 10.

Therefore the GD update rules for the two subspaces under general loss are:
0v.i+1 = Ov,, — 10s, L A(avm Ork) =~ (I — nHvaiey(0r)) Ovii — nHyr(Ok)0RE,  (11)

Orps1 = Or — 109, L(Ov.i, Or.1) ~ Ork — 0 (Hrv (01)0vs — hr) - 12)
Comparing Equation 11~12 with Equation 1~2, we find that the optimization dynamics under
general loss can be viewed as evolving on a sequence of local quadratic landscapes, each defined by
a time-varying Hessian H (6},).

Derivation of the cumulative change in the river subspace. Following the same procedure as in
the quadratic case, we analyze the cumulative change in the river subspace over K iterations:

K1
AfOp,x =0rx —0ORro = Z (Ork+1 — Ork)
k=0
K-1
Z —nHpy (0r)0vi. +nhrk)
k=0
K1 K-1
1 Z hrk—n Z Hpy (0k)0v, k- (13)
k= k=0

We define C'k gen to be the cumulative effect induced by the valley dynamics:
K—1

CK,gen £ n Z HRV(ek)QV,k.
k=0

The cumulative effect C'i oon depends on the trajectory of 6y ;. The recurrence for 6y, in Equation
11 can be solved as

k-1 k=1 [ k-1
Ovi~ | [] @] Ovo—nd_| T] @05
=0 =0 \i=j+1

where @ = I — nHvaiiey(0x) and by, = Hy g(6%)0r k. Similarly to Appendix G.2, we assume that
the unforced update (the first term) is dominant, then

ev’k ~ H (I)j 9\/’0.

To analyze this, we introduce a effective Hessian H” with eigenvalues {\”} and eigenvectors {vP},
which satisfies HZ < Hvaiiey (05) for all j (Assumption 2). Let ®B = I — nHB. This implies that
|@;v] < ||®Bv| for any vector v. Thus,

10vill = ||| T] @5 ] Oveol| < [|(@7) 0y, -
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Let H? = QBAB(QP)T be the spectral decomposition of this bounding Hessian, where Qf =

[vf,..., v} ]is the orthonormal matrix of eigenvectors and A® = diag(A?,..., A} ) is the diago-
nal matrix of corresponding eigenvalues. Let pf == n)\iB be the decay rate of the i-th component,
dv dy
10vill < [[(@5)E0vol| = D (1 = AP (0f) T v 0vf > ()P Tovevf
i=1 i=1
Thus, under Assumption 3 and ||fy | < &
K-1 K—1]| dv
[Crgenll =1 Z I Hry (06)0val <0 Y (1D Heyv (0k)(pP)* (vF) T 0y 00f
k=0 [|li=1
K-1 dv
<n | Hrv (0x)0 || [|(0F)* () T0v0]|
k=0 i=1
K—1 dy
<n h gen H(piB)k(viB)THVOH

£l
Il
<
-
Il
-

I/\
;~
?s-Mx

<Z|P ] (vf T9V,0|>
— dv
1 Pgen 5oyl (Z I ’f)

=1

dv
B 1 — (pf
= e 3 1(0F) Tl (L2
IAB|
i=1 i
<h & |(vP) 6y
= fgen E |)\B|

i=1

\ N

genaz |)\B| £C gen'

It means that after K iterations, the dr1V1ng force from valley is limited to Cgen, determined by two
factors: (a) hgen, the supremum of the coupling strength which represents the most efficient effect of
valley on the river; (b) {\P1, the eigenspecturm of valley subspace.

With the expression of cumulative force Coen = v/d hgcn a Z‘f‘ 1] B‘ we compare two models.

The spectral experiments presented in Figure 27 (with e = 0.02) reveal that Looped-Attn exhibits a
larger £ (Hva“ey) than Single-Attn. Thus with Definition 1, we summarize the characteristics of two
models in Conjecture 1~2.

For Single-Artn with River-U-Valley, we have (1) Z, 1 B(l) < (. With inequality ||z|; <
Vd||z|) for vector z € R?, the maximal cumulatlve force satlsﬁes

4

_ 1)\
Z B(l) < hyent(dy)*21/C.

pIeY

Ol =Tty o) Y= iy < P4 )

@)
For Looped-Attn with River-V-Valley, we have ﬁ v m > (. With inequality ||z|; >
dy i

||| for vector x € R?, the maximal cumulative force satisfies

dy? v
) = hynar/d2 Y 1 handr 42 | S0 1 B ad®
Céeg = }Lgena dV W > }Lgen()é dV T})Q > h/gen()édv \/Z
i=1 7 =1 1
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The valley dimensions of two model are typically of the same order, thus we conclude that

e@) > cll.
In summary, under general loss, we prove that the V-shaped valley in Looped-Attn provides a larger
potential for driving exploration in the river subspace.

In the following, similar to Corollary 2, we can also connect with loss values.

With the general loss form in Setting 2,
E(9V7 Or) = zValley(HV) + ZRiver(9R) + zCOupling<9V7 Or).
Recall that, as K — 00 ||Ck gen|l < hgen Y004 % let B = (WB)T0yo. With 6y ~
N(0,a21/dy) in Setting 2, we have
T T
Elcfcf] = E[(vF) 0v00700F | = 0F) " E [ov067.0] 0]

Ifi = j, B[(cB)?] = a%/dy. If i # j, E[(cP)?] = 0. Then taking expectation over initialization,
we have

0 2) 70yl
E [HCK,gen”Q} <E gen <Z |>\B|V0| Z |)\B - >

- "
=E hze“<z ‘)\B| Z/\B|>

dy dV]E

- hzeﬂzz )\B)\B

i=1j=1 °

o~ E [(cP)’]

= hﬁZW

=1
2 dv
s - 1
= TR
gen B
dV i=1 (>\z )2

We introduce Hessian HT with eigenvalues {\]'} and eigenvectors {v!}, which satisfies
Hyaiey (65) = HT for all j (Assumption 2).

dy dv
16vill = [ @) e0vol = [ D (1 = A @) Tovov! | =D (of )"0y ov] ||
i=1 i=1

With Assumption 3, we can derive the lower bound of [E [ |CKk gen| }

2

K—
E [|ICr gol’| = E Z v (O1)0v.i
k=
K-—1 K-—1
=1°E <Z Hpy (01)0vi, Y HRV(et)ev,t>]
k=0 t=0
1K-1
- 7,21E Z 0V H by (01) HRV(ot)e)Vt]
=0 t=
[K—1
> n’E 9$,k(H)TH9V,k]
L k=0
-K,1 dy T dy
B (z@f)k(v?fev,ov?) T H S ! ) |
| k=0 \i=1 j=1
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where the last inequality holds due to the stable valley eigenvectors in Assumption 2. As K — oo,
we have

T

[/ dv dy
1 1
E[|Crcgenl’] > E <§:AT@ﬂTﬁmﬁ> (H)TH | 3 57 (] Tovor]
i=1 "' j=1"17
T

dy
1
=E (Z H U 9‘/()17 ) Z ﬁﬂ(vf)TQV,(]vf

T

dv o dy ¢
= <Z )\f?@) Z )\T )
= g Jj=1

where ¢; = (v]) T8y € R and u; = Hv! € R~ Furthermore,

dy 5
: [E[c « U;
E [[ICx genl”] = (Ag)Jﬁ ET’E:“ u
2\ 3

> h
— 7gen T 2
dV i=1 ()\7 )
Thus,
—92 (12/2) —92 dV
« 1 o~ - 1 1) 2
E [|Cl?] = —ﬂmgﬁTa—@n—?feEW&M]
ge (2) < 1(/\'())2 dy — (/\'())2 g

7 7

With Definition 1 and Assumption 4, it leads to

E [Hc@

1 -
renll?] > B IO al?]

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Attn leads to converge rapidly in the valley subspace
(within K steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K> steps, where K > K1). We consider K = K.

At iteration K, for both models, the valley parameters are 9‘(/1, )K ~ 0 and 9‘(/2’ )K ~ 0. Thus, Zg) ~

Zl(ili\)/er,K and Zg) ~ E1(121\)/er,K'

We then analyze the change in the river loss, Aikivm K = ERiVCr’ K — ERiveno. With the Taylor
expansion of L(6) around 6y,

L(8) ~ L(6x) + D6 L(00) T (6 — 6,) + %(9 — 00 TH(0:)(0 — 01). (14)

Substitute 6 = Oy and O;11 = O — nﬁgf(ﬂk), we have
2

L(6s1) ~ L(6) — n0oL(61) 06 L(6r) + -

5 L(6w)TH (01)L(61). (15)

With a small learning rate, we approximate the above as L(641) ~ L(6)) — n9gL(6)) T 9 L(61,).
Thus

K-1

AZRiver Z (LRlver(aR k+1) LRlver oRk ) ~ -1 Z HaOR ok H .
=0
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From Equation 12, aoRZ(ev,k, 93’]6) ~~ HRv(ek)av’k — hR,k‘7 we have

K-1

ALgiver,x =1 Y ||Hrv (05)0vk — hrkl?
k=0

=-n Z | H gy (0k)0vkl|” —n Z Ihrkll® + 21 Z (hrw) " (Hrv (0k)0v.k)-

Assume that the river inherent gradient h g is the same during training for both models,

E [(Azgzw)g - (A2n)]

Eley (HHW 0| - e )]
k=0
v Y ({05507 TR ORI ~ 1055 T 00 F)
k=0

E [|IC{ 4l = I1CE)

2 1
Een KW.M 1C el + 1CZl?] + 4R P [ICK a2 = 1€ el

K,gen

As K — oo, we have E [HC(D

Kgenl } < E {HCQ) ||2},then

K,gen
1) )? 2@ )2
E (ALRiver,K> - (ALRiver,K) < 07

which yields ]E[(Aflgliger_’ ) < E[(Aifjjer )?] and demonstrates that Looped-Atm achieves a
significantly greater loss reduction. Starting from the same initialization, a greater loss reduction
implies a lower final loss value IE[(LSJH’K)Q} < ]E[(nglizen 2], then

E[(L)?] < E[(LY)?].

During the phase K = Ko, Looped-Attn has exhibited significant advantages over Single-Attn.
Furthermore, for subsequent steps K > Ko, Looped-Attn continues to explore the river downstream
while Single-Attn remains trapped in the flat valley.
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H SHARED RIVER UPSTREAM

H.1 ASSUMPTIONS AND USEFUL LEMMAS
H.1.1 ASSUMPTIONS

Assumption 5 (Diagonally Dominant and PSD Weight Matrices). Assume that the key, query, and
value weight matrices (W, Wq, Wy, ) are diagonally dominant with Positive Semidefinite (PSD)
diagonal matrices Dy, Dg, Dy, we have

Wk = Dk + €k,
WQ = DQ + €@,
Wy =Dy +ev,
where €k, €q, €y are dense matrices with significantly smaller spectral norm.

Remark 10 (Justification of Assumption 5). This assumption provides mathematical tractability
for the formal analysis of composite matrix transformations, which is necessary for proving the posi-
tive alignment of gradients. Intuitively, it may approximate the behavior of the attention mechanism
during the early stages of training, where the model first learns simple local dependencies before
capturing more complex global interactions.

This assumption represents a relative idealization. In practice, the weight matrices of a well-trained,
deep Transformer are typically dense and are not guaranteed to be PSD. In a practical setting, we
posit that the gradients are more likely to be broadly aligned or at least non-negatively correlated,
particularly during the initial phase of training. This weaker form of alignment is sufficient to
support the theoretical basis for our SHIFT framework, ensuring that the parameters learned by
Single-Attn provide a beneficial starting point for Looped-Attn.

Assumption 6 (Approximate PSD Property of Composite Transformations). Let D 4 and Dp be
Positive Semidefinite (PSD) diagonal matrices, and let P be a general PSD matrix. We assume that
their product, M = D o PDp, is approximately PSD. This means the matrix M can be decomposed
as:

M = Mpsp + €,

where Mpgsp is a PSD matrix that captures the dominant, direction-preserving behavior of the trans-
formation, and € is a perturbation matrix with a small norm relative to Mpgp.

Remark 11 (Justification for Assumption 6). A matrix is strictly PSD only if it is symmetric and
its quadratic form is non-negative for all vectors. The composite transformation M = D PDp
generally fails the first symmetric condition, and in rare extreme cases, may fail the second. The
perturbation term e accounts for these two sources of deviation from strict PSD properties.

(a) Minor Fluctuation from Non-Symmetry. The primary deviation arises from the non-
commutativity of matrix multiplication, which breaks symmetry. The transpose of M is M T =
DgpPD 4, which is generally not equal to M. Therefore, M is not symmetric. In a well-behaved
system, we assume that this non-symmetry only introduce minor fluctuations rather than fundamen-
tally altering the transformation’s property.

(b) Non-PSD Behavior from Extreme Anisotropic Scaling. Another possible deviation can occur
even in the symmetric part of M, i.e., Mgy, = %(DAPDB + DpPD ). While the composition of
direction-preserving operators (D 4, P, D p) is intuitively expected to remain direction-preserving, it
is possible to construct extreme counterexamples. Such cases arises when the diagonal matrices D 4
and Dp induce extreme anisotropic scaling (i.e., some diagonal entries are very large while others
are near-zero). This can significantly alter the direction of an arbitrary vector before and after the
application of P, leading to a negative quadratic form. Our assumption posits that during the initial
stage of training attention models, such extreme conditions are not common. We model these rare
non-PSD behaviors as part of the small perturbation ¢, allowing our analysis to focus on the system’s
dominant, approximately PSD behavior captured by Mpgp.

H.1.2 GRADIENT CALCULATIONS

In this section, we present two key lemmas regarding the gradients of the cross-entropy loss function
with respect to the key (Wg) and query (W) matrices for the Single-Attn and Looped-Attn models.
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Lemma 1. For the Single-Attn model, the gradients of the empirical loss E(Q) with respect to the
key matrix Wy and query matrix W¢y are given by:

Vi L(0) =E [(AT @ )W, (S(5) —e,)] ,
Vo L(0) = E [be AW,/ (8(5) —e,)] .

where A = Wy EgE] € R4 b= Wgzy € R% and A = Wy EgE] Wi € R4, b = 25 € R%

Remark 12. Recall that, £y € R?*" is the input embedding matrix, zy € R? is the query vector,
which is the last column of embedding Ey. Wx, Wq, Wy € R%*? are the key, query, and value
weight matrices, respectively. W}, is the prediction head parameters. Furthermore, S(g) represents
the softmax probability vector of the logits, and e, = [0,--- ,1,--- ,0]7, i.e., the value of the y-th
component is 1, and 0 otherwise. The operator @ denotes the Kronecker product.

Proof. Our objective is to compute the gradients VWKE(G) and VWQE(G) for the Single-Attn
model. We begin by recalling the definition of the empirical loss and the architecture of the Single-

At model. The loss for one sequence is given by [ = — log(S,(9)), where logits § = W, fo(Eo, 20)
and the linear attention function is fy(FEp, z9) = VVVEOEOT W; Wqzp. The overall empirical loss
L(0) is averaging over the training set.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss [ is a function of the logit vector g.
2. The logit vector g is a function of the final state z;.
3. The final state z; is function of the attention output fp(Ep, 20).

4. The attention output fy(Ep, z9) is a function of the model parameters Wx and W,.

We will compute the gradient for each component of the chain rule individually.

Step 1: Gradient with respect to the logit vector . We first compute the derivative of [ with
respect to an individual logit component ;. The softmax probability for the ground-truth token ¥ is

defined as:
log (8, (5)) =1 < - ) Iy~ XV:y
08 oyly)) =log | Wy~ | =Yy —log p e
Dj—1€% 7=1
When k = y,
910g(S, (9 e j
le_?zl—sy@)-
Yy Zj:ley]
When k # y,
D10g(S, (7 et j
Uk 2 j=1 €Y

Combining these results,
Vi 1og(8,(9)) = ey —S(1),
where e, is a one-hot vector with a 1 at the position corresponding to the ground-truth token y, 5()

represents the softmax probability vector of the logits. Therefore, the gradient of the loss [ with
respect to ¢ is:

Vgl = —(e, —S()) = S(3) — e,

Step 2: Gradient with respect to the final state z;. We then compute the derivative of the logit
vector g with respect to the state z1. With § = W}, 21, we have
@ 6Wh,21

= =W, .
821 821 h
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Step 3: Gradient with respect to the key matrix Wy . We now compute the derivative of the final
state z; with respect to the key matrix Wi

With 21 = 29 + fo(Eo, 20), we have

821 _ 8f9(E0, Zo) 82’1 _ 8f9(E0, ZO) c ]RdQXd
8WK 8WK 8f9 (EQ, Zo) 8WK '

Define A = Wy EoE] € R™4 and b = Wgzo € R? The attention function fy(Ep, z9) =
Wy EoEq W Wqzo simplifies to fo(Eo, z9) = AW -b. We get

afe(EO7 ZO) — 8(AWI—(rb) _ AT ® he IRd2><d,
OWge oWk
where ® denotes the Kronecker product. Thus,
821

oWk

—AT®@bec R

Combining the above steps using the chain rule, we have
Vi L(0) = E [-Vw, log (5,(9))]

~ 0z 09 .
—E|-—L 2P y.1
8”7 821 Yy Og(SU(y))

=E[(AT @)Wy (S() —e,)].
where A = Wy EgE] € R4, b= Wozo € R<.

Step 4: Gradient with respect to the query matrix Wg. The process for computing the gradient
with respect to W, is similar.

Define A = Wy EoE] W € R and b = 2, € R% The attention function fy(Eo,z) =
WVEOE(;r VV}—(r Wqzo can be written as fg(Ey, z0) = AWQZ;. We have
dfs(Eo,20) O(AWQD)

= =bo A e RY*
oo I wa e

Thus,

oWg
Again, applying the chain rule by combining this result with Step 1 and Step 2, we have

Vg L(0) = E [V, log (S,(7))]
5 [_ 01 05 1og<sy(y>>}

where A = Wy EoEJ W € R4, b = 25 € R O
Lemma 2. For the Looped-Attn model, the gradients of the empirical loss E(G) with respect to the
key matrix Wy and the query matrix W¢ are given by:
T

Z (A;[1 ® btfl) WJ(S(?}) - ey)
T

> (br @ AL, ) Wi (8(5) — eyﬂ ,

t=1

Vi, L(0) =E

)

~

Vi, L(0) = E

where Ay_1 = WvEt,lEt—[l e R¥d p,_4 = Wozi—1 € R?, and gt,l = WVEHELW} €
RXd b, 1 =2 4 € lefor each loop iteration t.
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Remark 13. Recall that, F;_; and z;_; are the intermediate representations during looping. The
representations are updated by z; = z:—1 + fo(Fi—1,2¢—1) and Ey = Ey_1 + fo(E:—1). Further-
more, Wi, Wqo, Wy € R4¥4 are the key, query, and value weight matrices, respectively. W}, is
the prediction head parameters. S(7) represents the softmax probability vector of the logits, and
e, =[0,---,1,--- ,O]T, i.e., the value of the y-th component is 1, and 0 otherwise. The operator
® denotes the Kronecker product.

Proof. We aim to compute the gradients Vyy,. L(6) and VWQE(G) for the Looped-Attn model. The
final logit vector ¢ is produced by applying the prediction head W}, to the final state zp, which is
obtained by T loops of the attention function.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss [ is a function of the logit vector g.
2. The logit vector g is a function of the final state z7.

3. The final state zp is a function of the attention outputs fy(F;_1, z;—1) from all preceding steps
t=1,...,T.

4. Each attention output fy(FE¢_1, 2z¢—1) is a function of the model parameters W and W,.

We proceed by computing the gradient for each component in this chain.

Step 1: Gradient with respect to the logit vector ¢. This step is identical to the derivation for the
Single-Attn model. The gradient of the loss [ with respect to the logit vector ¥ is:

Vil =5(9) — ey,
where 5(3) is the softmax probability vector and e, is the one-hot vector for the ground-truth token.

Step 2: Gradient with respect to the final state zp. With § = W)z, we have

@ _ 8thT _ W;;r

8ZT 8zT

Step 3: Gradient with respect to the key matrix Wy. With the iteration z; = 2,1 +
fo(Ey—1,zt—1), we can derive a recursive defintion

T
ar =20+ fo(Bi1,2-1).
t=1
Then we have
T

Ozt _ Z Ofo(Er—1,2t-1) Ozt
OWg oWk Ofo(Er—1,2t-1)

t=1
_ zT: Ofo(Er-1,2-1) _ pdxd
=1 oWk .

The derivative of the attention function fp(E;_1,2¢-1) = WvEt_lEtT_ 1W; Wqzi—1 with respect
to W is structurally identical to the Single-Attn case, but with time-dependent inputs.

Define A;_1 = I/VVEt_lEtT_1 and by_1 = Wgz,_1 for each loop t € [T, then
Ofg(Et—1,21-1)

oW A @
Thus
T
ai — Z(AT @b_1) € ]RdZXd.
aWK t—1

t=1
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Combining the above results using the chain rule, we have
Vivi L(8) = E [~ Vi, log (S, (9))

E[- 5L 29, g, 3]

T

> (AL @bia) Wy (S(9) — ey)] »

t=1

~

=E

where A;_1 = WVEt_lE;r_l € ]RdXd, bi_1 = WQZt_l € R4,

Step 4: Gradient with respect to the query matrix Wy. The derivation for W, is similar to that
for Wg.

Define th_l = WvEt_lEtT_lW;(r and Et_l = z;_1 for each loop ¢ € [T, then

Ofo(Er—1,2t-1)

=b_ 1 @A .
aWo -1 Q@ Ap_4

Thus

aZT L = ~ 2
=3 (i A7) RO

Finally, applying the chain rule gives the gradient for Wg,:

[ s a‘iyv (5,(0)

|
es)

T

Z (bt,1 ® All) WJ(S(Y) - ey)] )

t=1

where ﬁt_l = WVEt_lEtT_lwf;r € RIxd p = 21 € R O

H.1.3 THE PRECONDITIONING EFFECT FOR Looped-Attn

In Lemma 1 and 2, we have derived the gradients for both Single-Attn and Looped-Attn models, we
now directly compare them. This analysis reveals a crucial insight into the optimization dynamics
of Looped-Attn.

Lemma 3. Denote the empirical loss El for Single-Attn and Eg for Looped-Attn, then the gradient
of the Looped-Attn model can be expressed as the preconditioned gradient of the Single-Attn model:

Vv La(60) = Py Vv L1 (0),
Vg L2(0) = Py Vg L1(8),
where the preconditioners Py, and Py, are defined as:
Pw, = I +E[RP]],

with P, = AT ®b, P, = ZZ;Q (AtT_l ® bt_l), P1+P1 =1, and Pf‘ is the Moore-Penrose pseu-
doinverse. L
Pw, =I+E [PQPﬂ :

with ]51 =bh® f~1T, ]52 = Zthz (Z;t,l ®/T:_1), ]51+151 = I, and ]31+ is the Moore-Penrose
pseudoinverse.

Remark 14. Recall that in Lemma 1 and 2, we define: A;_1 = Wy E;_ 1Et 15 bi—1 = Wozi_1,
A =WyEyE, ,and b = Wgzo; Ay = WyE,_ 1B W, b1 = 241, A = Wy EoEj Wi,
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and b = zy. This Lemma shows that the gradient of the Looped-Attn model can be expressed as
the gradient of the Single-Attn model multiplied by a specific linear operator. The operator acts
as a preconditioner, effectively using information from the iterative refinement steps to adjust the
magnitude and direction of the base gradient calculated from a single attention pass.

In Lemma 3, the full-rank assumption for EqE, holds during the early stages of training. At
initialization, the input embeddings Ey = Wy, X utilize the full representation space and have not
collapsed into a low-dimensional intrinsic subspace. The rank deficiency typically arises in the late
training stage due to feature collapse where the dimension d exceeds the intrinsic dimension.

Lemma 4 discusses the rank-deficiency case in the late training stage, where the residual terms

emerge due to feature collapse. Specifically, the terms I — II or I — II represent the null-space of
Single-Attn where the model fails to acquire gradient information. The lemma reveals that Looped-
Attn retains access to these directions via the residual terms Ry, and Ryy,,. Consequently, the

recursive operations P, and P, process these null-space signals, effectively recovering information
lost by the non-recursive model.

While Lemma 4 addresses the rank-deficiency case in the late training stage, we utilize Lemma 3
for the derivation of Theorem 4. This is because Theorem 4 investigates gradient alignment in the
initial descent phase within the valley subspace.

Proof. We prove this lemma by direct algebraic computation, starting with the gradient with respect
to the key matrix Wi

Derivation for the key matrix Wy. Recall the expressions for the Single-Attn gradient (VWKzl)
and the Looped-Attn gradient (V. Lo):

Vi, L1(0) = E [(AT )W, (S(5) —ey)] .

Vv L2

Z Ty ®bit) W (S(d >—ey>].

The core of the proof is to decompose the summation in the Looped-Attn gradient. We separate the
first term of the series (for ¢ = 1) from the subsequent terms (for ¢ = 2 to T):

VWK/L\z (0)

(AT@bO)Wh g) —ey) JFZ L1 @b1) W, (S() )ey)]-

By the definitions, we have Ag = A, by = b. With our assumption, §; = 1, and Diag(d,) = I
Thus, the first term is exactly the gradient of the Single-Attn model:

T

~

Ve La(0) = Vi, L1 (0) + E

(A1 @ be1) Wy (S(9) — ey)] -
t=2
Define P, = AT @b, P, = >21_, (A ®b;_1), then we derive that

T

(AT @ by) W (S() - ey>]

t=2

Vi, L2(0) = Vi, L1(0) + E

= Vi L1(0) + E [PQPfLPlT/VJ (S(Y) — ey)}

= Ve L1(0) + E [P2P]] Vi, L1 (9)

- (1 +E [Pngr]) Vi, L1 (6).
where Pfr P=1, PfL is the Moore-Penrose pseudoinverse with b # 0, rank(AT) =d
We can therefore identify the preconditioner for W as:

Pw, = I +E[RP]].
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Derivation for the query matrix 1. The derivation for the query matrix W, follows an identical
procedure. We begin by stating the gradients:

VioLi(0) =B [(bo AW (S(3) — e,)] .

S (b o A7) W (500) - ey>] .

t=1

Vg L2(0) = E

Again, we split the summation and identify the first term as the Single-Attn gradient:

Vi La(0) = B | (B © 47 ) W, <s<g>—ey>+i(ét1®Arl)wJ<s<@>—ey>]

= Vw,L1(0) + E

5 (b1 @ AL, ) Wi (S(9) - ey)l .

t=2

Define P, = b A", P, = Zt 5 (bt 1 ® At 1) then we derive that

T
ViaLa(0) = Virg Lu(0) + B | Y (s & AL, ) W (S(V) = ey>]
Lt=2

= Vw,L1(0) + E [ BPf Pw, (S(Y) — ey)}

= VoL (0) + E 'ﬁzﬁﬂ Vo L1 (0)
<I+IE [PQ ]) Vo L1 (0),

where ﬁ+ﬁ1 =1, P is the Moore-Penrose pseudoinverse with b 0, rank AT) =d.
1 1 p

We can therefore identify the preconditioner for W as:
Py, = I—|—]E [152151—’_} .

This completes the proof, demonstrating that the iterative updates in Looped-Attn introduce a pre-
conditioning term to the standard single-pass attention gradient. O

Lemma 4. Denote the empirical loss El for Single-Attn and EQ for Looped-Attn, then the gradient
of the Looped-Attn model can be expressed as the preconditioned gradient of the Single-Attn model
in addition with a residual term:

Vi L2(0) = P Vivy L1(0) + Ry,
Vo Ly(0) = Py, Vw, Li(0) + Rwg,,

where the preconditioners Py, Py, and residual terms Ry, Rw,, are defined as:
Pw, = I+E[PP], R, = B {PQ(I mw, (S(Y )—ey)] .

with P, = AT @b, Py, = ZLTZQ (Al ®bi1), P{'Py £ 11, and P} is the Moore-Penrose
pseudoinverse.

Pug =1+ E[BPf| Ruv, = E [B(1 - W (S(Y) —e,)] .
with P, = b AT, Py = ZLQ (BFI ®AV;1), ﬁfrﬁl 2 11, and ﬁf is the Moore-Penrose

pseudoinverse.
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Proof. We proceed with the derivation for Wx without assuming P; is full rank. Recall the decom-
position of the summation:

VWKEQ(Q)
N N T
=V Li(0) + B | > (A @ b)) Wy (S(Y )—ey)]
t=2
Vi, L1 (0) + E [PQ(P+P1+I PrPYW,T (5(?)—%)}
Vi Li(0) + B [BPE W (S(V) — ey)| + B [P = PFPOW (S(V) — )]

~Vu, L1 (0) + B [PP] Vi La(0) + B [Po(T = TOW, (S(T) — e,)]
= (T+E[PoP{]) Vi Li(9) + Ruve,

where P;" is the Moore-Penrose pseudoinverse and P;" P, £ TI.

The derivation for the query matrix W follows an identical procedure:

Vivg L2(6)

“Vig Li(0) + B | Y (bor © AL, ) W S(V) - )]

Lt=

=V L1(0) + B [Po(P Py + 1 = B PYW] (S(V) — e,)]

:vWQil(a)HE_ﬁzﬁjﬁlwg(s&)—ey} [ (I - P PO)W, (S(Y )—ey)]

=Viwo L1(0) + E [BP | Vi L (0) + E | Po(Z ~ )W (S(V) )]
_ <I 4 E [Eﬁﬂ) Vo L1(0) + R,

where P;" is the Moore-Penrose pseudoinverse and P;" P, = TI.

Under the full-rank assumption (rank(A) = d, b # 0), IT = I, and the residual term Ry, vanishes,
recovering Lemma 3. O
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H.2 PROOF FOR THEOREM 4

This section provides a formal analysis to demonstrate that the gradients of the Single-Attn and
Looped-Attn models are positively aligned, a key theoretical foundation for the two-phase training
strategy (SHIFT) proposed in our work. We establish this by proving that the inner product of the
two gradient vectors is positive. This positive alignment ensures they point in a similar direction of
descent. As both models make progress in the river direction during the initial phase of learning,
this implies they explore a shared river upstream.

Proof. We begin by recalling the gradient expressions from Lemmas 1~2, and the preconditioner
relationship from Lemma 3. We have

Vi L1(0) = E [(AT @ )W, (S(7) — ey)] ,

T
Z (A;rq @ be_1) W, (S(9) — ey)] )

t=1

Vi, L2(0) = E

Vg La(8) = P, Vv, L1 (6).

We then analysis the directions of two gradients,
~ ~ ~ T ~
(T B1(0), T Ea(0) =T ( (T E2(0)) ViwiZ(6))

=Tr ((PWKVWKil(H))T VWKE1(9)>
—Tr (VJVKil(o)PVLKvwkil(e)) .

The inner product is guaranteed to be non-negative if the matrix PV—I'—,K is Positive Semidefinite (PSD),
ie., PV—'[—,K > 0. Our goal is to derive a set of sufficient conditions under which this holds.

From Lemma 3, we have
Py, = T+ E[(P) " Py].
To ensure Py, = 0, we need to find conditions of IE[(P;' )TP] = 0. We analyze the term

(P")T P, for a single data sample. Using the properties of Kronecker products and pseudo-
inverses, we have:

T T
(PHTR = @bT)Y (A1 @bl ) = (AT @bt (A1 @bl )]
t=2 t=2

To analyze this expression, we first establish recursive updates for A;_; and b;_;.

Recursive Updates of A; ;. The matrix A;_, = Wy, Et,lEtT_ 1 depends on the history of updates
to the embedding matrix E. With E;_1 = Eg + Zi;ll f(Es_1), we can write:

i—1 t—1 T
Ay =Wy E_1El | =Wy (Eo +y f(EH)) (Eo + Zf(ES_n)
s=1

s=1

t—1 t—1 t—1 t—1
:WV[EOE(—)r‘i’EOZ(f(Es—l))T Z s 1 EO +Z f s— 1 s’ 1))T}
s=1 =1 s=1s'=1
t—1 t—1 t—1
:A+WV[EO ( +Zf s— 1 E(;r“i’ Zf s— 1 s’ 1))T}~
s=1 s=1s'=1
We denote
t—1 t—1 t—1
AA; =Wy [Ey ) (f(E +Zf E] + )Y f(Ea ) (f(Ba1))T].
s=1 s=1s'=1
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Recursive Updates of b,_;. Similarly, the vector b,y = Wz, depends on the history of
updates to the query vector z. With z;_1 = 2o + 22;11 f(Fs—1,2s-1), we can write:

t—1 t—1
b1 = Woz1 = W (zO +> f(Bo, zs_1)> = b+ WY f(Be1,251).

s=1 s=1
We denote Ab,_1 = Wo 22;11 f(Es—1,25-1)-

Substitute A;_; and b;,_; into (P;") TP, Let At = (Wy EgE] )t andb™ T = (Wg2)* . For
each term in the summation (¢t = 2 to T), substitute A;_1 = A+ AA;_1and b;_1 = b+ Ab;_1,
where AA;_; and Ab,_; denote the recursive updates:

(AT @b T)(A1 ®@b_y)
=(AT @bt [(A+AAi1) ® (b+ Abiy) ']
=(AT @b ) [(A®b") + (A Ab ) + (A4 1 ®b) + (A1 ® Ab )]
For the first term,

d
(At @bt )AL ) = (AT b"T) > eref (A@b")
k=1

(AT @b epeg (A7)

Il
x>~
a i M&
[

(AT @b* ) ((ereg A)@b")

ko

&
—

(Aferey A) @ (7107,

ES
Il
—

where e, = [0,---,1,---,0]T € RY, the k-th element is 1, and others is 0. exe] (A ® b') means
that keeping the k-th row of matrix A ® b' and others is 0. Similarly, exe, A means that keeping
the k-th row of matrix A, thus exe] (A®b") = (exe, A) @b".

bis a vector and b # 0, then b+ =b' /bTb,

d
(AT @bt (A@bT) =) (Ateref A) @ (b7Td")
k=1
d
= (AT eref A (bTTHT)
k=1

— (A+A) (b+TbT)

bTb(A*A) ® (bb").

For the second term,
(At @bt ") (A Ab,) = (A+A) (b"TAbL)

For the third term,
(AT @b (A4 ®@b") = (A+AAt D@0ty

bTb(A AA_1) @ (bbT).
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For the fourth term,
(A @bt T) (A4, @ Ab],) = <A+AAt D e GTTAY )

m“‘ AA; 1) ® (bAL ).

Summarizing the decomposition for (P;") " Py’ :

(P)" Py
T

[Term1 + Term2 + Term3 + Term4]
t=2

T
Z (ATA) @ (bb") + (AT A) @ (bAD, ) + (ATAA,_1) @ (bb") + (ATAA,_1) @ (bAL] ).
t=2

‘We now derive sufficient conditions for each term satisfies PSD.
Term Analysis. For Terml,
Terml = AtA) @ (bb").
erm bTb ( ) ( )
bbT is a rank-1 PSD matrix. We also have AT A =T > 0.

For Term2,

1
Term2 = m(A+A) ® (bAb, ).

We have AT A = I = 0. For bAb/ ,,

t—1

Abt_l = WQ Z f(Es—1> Zs—l)

s=1
f(Bi1,201) = Wy Ey 1B \WEWgz 4

f(Bie1) = Wy By EL W WQ By
t—1

Ei1=Eo+ Zf(Esq)

s=1
t—1
21=20+ Y fo(Es1,21)-
s=1
We need to prove there exists > 0 such that Ab; 1 = ab.
Base Case: Whent =2,s=1,

Aby = Wq f(Eo, 20)
= Wo(Wyv EoEy WiWaqzo)
= Wo(Wy EgEy Wich)
= (WoWy EgEg Wi )b
2 p,

where EUEOT > 0. With Assumption 5, Wg, Wg, Wy, are approximately diagonal matrices,

Wk = Dk + ¢k,
WQ :DQ + €@,
Wy = Dy +ev,
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where Dy, Dg, Dy are diagonal and e, €q, ey are dense matrices with extremely small elements.
Thus we have

O = WoWy EyEq Wy
= (Dq + €Q)(Dv + ev)EoEg (Dx + €x)
= (DgDv + Dgey + eqDyv + egev)EoEy (Dk + €x)
= DDy EyE] Dk + O(ex, g, €v).

With Assumption 6 (D4 = DgDy,Dp = Dy, P = EOEOT ), we conclude that ®; is approximately
PSD, and Ab; is co-directional with b.

Inductive Hypothesis: Assume that fors = 1tos =k — 1, Abx_1 = ®f_1b where &, = 0, i.e.,
Aby_1 is co-directional with b.

k—1
Aby oy =Wo Y f(Be1,2e1) = Pp_1b. (16)

s=1

Inductive Step: When s = k,

k
Ab, =Wo Y f(Bs1,21)

s=1
k—1

=Wq Z f(Es—1,25-1) + Wo f(Ek-1, 25-1)
s=1

=®p_1b+ WQ(Wka_lE;;r_lwl—(rWsz_l)
= Oy b+ WoWyEy 1B WEiWgz,_1,
where

k—1
Zk—1 =20 + Z 05 © fo(Es—1,25-1)

s=1

=Wo'b+ W5 ®p1b
= Wél(f + @5 _1)b,
then z;_, is co-directional with b. Denote @), £ WQDiag(5k)WVEk_lEkTAWI—(rWQWél(I +
®j,_1), similarly with Assumption 5~6, we have @, is approximately PSD, and then
Ab, = Pp_1b+ P1.b.
Thus, Aby, is co-directional with b.

Summary of Sufficient Condition: Wy, W, Wy, are approximately diagonal matrices, Dg, Dg,
Dy, are PSD. These are summarized in Assumption 5~6.

For Term3,

1
bTh
bb' is a rank-1 PSD matrix. We need to derive that the condition of ATAA,_; > 0. With the
definition of AA;_1,

Term3 = (ATAA ) @ (bb").

t—1 t—1 t—1

AA;_y =Wy [Ey > (f(Ee1))" + i FBE<)E] +> > f(Ea1)(f(Ev—1))]

s=1 s=1s'=1

f(Ery) =Wy B, B\ WgWoE,

-1
E, 1 =Fy+ Z F(Es—1).

s=1
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We need to prove there exists ¥ = 0 such that AA; ; = WA, then ATAA; 1 = 0 can be derived.
Base Case: Whent =2,s=1,
AAy =Wy [Eo(f(Eo)" + f(Eo)E] + f(Eo)(f(Eo))T]

(1) Substitute A = Wy EqE{ into f(Eo) = Wy EgEg Wi WgF. Let 21 2 WL Wq E.
f(Ey) = Wy EoEqg WiWoEy = AW WoE, = AZ,.

(2) Substitute

AA,
=Wy [Eo(AZ1)" + (AZ1)E) + (AE1)(AE)) ]
=Wy EoZ] AT + Wy AZ | E] + Wy AZ,E] AT
=Wy E E] Wy Wk EoEg Wy + Wy Wy EoE] W WoEE] + Wy AW WoE Eg W Wi AT
=AW Wi AT + Wy AW WoWy 't A+ Wy AW WqEE) W Wi AT

—

Ty Ty T

=AW W ATAT A+ Wy AW WoW ' A+ Wy AW WoE E, Wy Wi ATAT A

Ty T T

éqle7

where A™ is the pseudoinverse matrix of A. Similarly with Assumption 5~6, when assuming that
Wk, Wg, Wy are approximately diagonal matrices. Dy, Dg, Dy = 0, we have AA; = ¥, A
where U, is approximately PSD.

Inductive Hypothesis: Assume thatfors =1tos =%k — 1, AAx_1 = V1A where ¥;,_; = 0.
k-1

k—1
Adgy =Wy [Eg Y (A0 f(Bs1) " + > (A0 f(Ber) B

s=1
k—1k—1

+3 D (A F(Ba1))(Ay © f(By—1)T] = Ui A,

s=1s'=1

Inductive Step: When s = k,
AA

Kk K Kok
=Wy | Eo Y (F(Bemr) T+ Y f(Be-)E] + Y Y f(Bemt)(f(Bo1))T
s=1 s=1

s=1s'=1
=V 1 A+ Wy [Eo(f(Ex-1))" + f(Er-1)Eq + f(Be-1)(f(Br—1)")]
=V 1A+ WyEof(Ex1)" + Wy f(Ex-1)Eg + Wy f(Ex_1)f(Er-1)"
=Wy 1A+ Wy EoE_ Wy Wk E_1E{_ Wy + WyWyE,_1El_ \WgWqoEr_1E]
+ Wy Wy Ey 1 Ef_ W WoEr 1 E]_ Wy Wi E,_1E/_ Wy
=V 1A+ (WyEgE] + Wy EoAE]_ ) Wy Wi Er_1E/_ Wy AT A
My
+ Wy Wy Ep_1E_{WxWq (EoEy + AEy_1Ej ) AT A

2M2
+ Wy Wy By 1 Ef_ Wi WoEr 1 E]_ Wy Wk E,_1E_, Wy At A

‘M3
U A+ MyA+ MyA+ MsA
:‘I]kA7
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where Ej,_1 = Eo+ 3."_1 f(E._1), denote AE, _; = S.* "1 f(E,_,), similarly to Ab = ®b, we
have AE,_1 = Qp_1Epand Q,_1 = 0,

Wy EoE, | = Wy EyE; + Wy EyAE]_,,
E, B, = EyE] + AE, 1 E, .
Similarly to AA;, we have Uy, = Uy_1 + M; + My + M3 = 0, thus we conclude that AAy, = Wy A.
Furthermore, using AA;, = U, A with ¥, = 0, we then have ATAA = 0.

Summary of Sufficient Condition: Wy, Wg, Wy are approximately diagonal matrices,
Dk, Dqg, Dy = 0. These are summarized in Assumption 5~6.

For Termd4,
1
Term4 = m(/ﬁAAt—l) ® (bAb,_,).
Combining the analysis for Term2 and Term3, we need the conditions in Assumption 5~6.
Similarly to W, the conditions for preconditioner Py, = 0 are also Assumption 5~6.

Therefore, when with Assumption 5~6, the gradient updates on key and query matrices are co-
directional between Single-Attn and Looped-Attn models:

(Vi L1(8), Vi L2(0)) > 0, (Vi L1(6), Vivg L2(6)) > 0.

I USAGE OF LARGE LANGUAGE MODELS

In this work, we utilize Large Language Models (LLMs) for language polishing and grammar cor-
rection under our supervision. These suggestions are carefully reviewed and selectively adopted,
ensuring consistency with our intended meaning and academic integrity. In addition, we use LLMs
to generate the background visualizations for Figures 1(a)~1(b). The optimization trajectories pre-
sented in these figures are manually plotted by us.
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