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ABSTRACT

While looped transformers (termed as Looped-Attn) often outperform standard
transformers (termed as Single-Attn) on complex reasoning tasks, the theoretical
basis for this advantage remains underexplored. In this paper, we explain this
phenomenon through the lens of loss landscape geometry, inspired by empirical
observations of their distinct dynamics at both sample and Hessian levels. To
formalize this, we extend the River-Valley landscape model by distinguishing be-
tween U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical
observations, we conjecture that the recursive architecture of Looped-Attn induces
a landscape-level inductive bias towards River-V-Valley. Theoretical derivations
based on this conjectured inductive bias suggest a better loss convergence along
the river due to valley hopping, and further encourage learning about complex
patterns compared to the River-U-Valley induced by Single-Attn. Building on
this insight, we propose SHIFT (Staged HIerarchical Framework for Progres-
sive Training), a staged training framework that accelerates the training process
of Looped-Attn while achieving comparable performances.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as a cornerstone across various fields (Devlin
et al., 2019; Radford et al., 2019; Liu et al., 2021; He et al., 2022), particularly in Large Language
Models (LLMs) (Brown et al., 2020; Achiam et al., 2023). Despite their success, transformers often
exhibit challenges in complex reasoning tasks involving arithmetic, commonsense, and symbolic
reasoning (Rae et al., 2021; Anil et al., 2022; Wei et al., 2022; Lightman et al., 2023; Ahn et al.,
2024). While prompting strategies such as Chain-of-Thought (CoT) have greatly enhanced the rea-
soning capabilities (Wei et al., 2022; Fu et al., 2022; Chowdhery et al., 2023), the corresponding
performances on tasks requiring long reasoning chains are inherently constrained by the fixed-depth
transformers (Chen et al., 2025). This limitation motivates the exploration of alternative architec-
tures designed for advanced multi-step reasoning.

It is well-established that standard, non-recursive transformers (Vaswani et al., 2017) (termed as
Single-Attn) often exhibit a performance plateau on complex problems. This is particularly evident
in length generalization issues, where performances of Single-Attn drop on sequences longer than
those seen during training (Anil et al., 2022; Xiao & Liu, 2023; Jin et al., 2024; Zhou et al., 2024). As
an alternative, looped transformers with recursive structure (Dehghani et al., 2018; Lan et al., 2019)
(termed as Looped-Attn) have demonstrated success on such complex reasoning tasks (Giannou
et al., 2023; Fan et al., 2024; Saunshi et al., 2025; Bae et al., 2025). Specifically, Looped-Attn
deploys recursive self-attention blocks to iteratively refine its internal representations, which helps
transformers overcome the performance bottlenecks observed in Single-Attn. Although empirical
evidence indicates the superiority of Looped-Attn over Single-Attn, the theoretical understanding of
this advantage remains underexplored. This performance gap evidently stems from the recursive
mechanism in Looped-Attn, but precisely how this structural modification translates into superior
reasoning capabilities is still an open question. This motivates the following question:

What makes looped transformers perform better than non-recursive ones? Specifically, how
does the inductive bias from recursion enhance reasoning capabilities?
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(a) River-U-Valley (b) River-V-Valley
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Figure 1: Loss Landscapes, Optimization Trajectories and SHIFT Strategy.

To theoretically answer this question, we start by empirically investigating the learning processes
of Single-Attn and Looped-Attn. Our investigation examines their behaviors at two levels: a macro-
level evaluation of model performance across samples of varying difficulties, and a micro-level
examination of the loss landscape’s local curvature via Hessian dynamics. These observations reveal
two key differences in how Single-Attn and Looped-Attn learn, which serve as the foundations for
our subsequent theoretical analysis. We outline these observations below and provide a detailed
discussion in Section 4.1.

Observation 1: Sample-Level Performance

(a) Single-Attn. The learning process stops progressing after mastering simple patterns.
(b) Looped-Attn. The learning process follows a two-phase curriculum, from simple patterns
to complex ones.

Observation 2: Hessian-Level Dynamics

(a) Single-Attn. The eigenspectrum remains relatively static.
(b) Looped-Attn. The eigenspectrum undergoes a three-phase evolution: Collapse, Diversifi-
cation, and Stabilization.

In this paper, we argue that the above two observations potentially originate from the distinct loss
landscapes induced by different attention architectures. To formalize this, we extend the River-
Valley landscape model (Wen et al., 2024) by distinguishing between U-shaped valleys (flat) and
V-shaped valleys (steep). Based on this framework, we hypothesize that the Single-Attn landscape is
dominated by U-shaped valleys, whereas the recursive structure of Looped-Attn creates a landscape
dominated by V-shaped valleys. This geometric difference accounts for the behaviors observed:

• V-shaped valleys induce a hopping path across valleys, which drives diversification before stabi-
lization of the Hessian eigenspectrum (Observation 2);

• V-shaped valleys might convert hopping to significant progress along the river, which encourages
to learn on the complex patterns (Observation 1).

This mechanism comes from the landscape-level inductive bias of Looped-Attn. Figure 1 provides
an intuitive illustration, and Sections 4.2∼4.3 detail the formal propositions and theorems.

Furthermore, based on the above understandings, we propose SHIFT (Staged HIerarchical
Framework for Progressive Training) that combines Single-Attn and Looped-Attn to improve the
computational efficiency of Looped-Attn. Above analysis reveals that both models share the initial
phase of mastering simple patterns, and we further demonstrate that their optimization landscapes
have a shared river upstream region containing solutions to these patterns. Therefore, SHIFT ini-
tially deploys the computationally efficient Single-Attn to learn simple patterns, and then switches
it to Looped-Attn, which enables to explore the river downstream and learn complex patterns. A
crucial question remains on when to switch from Single-Attn to Looped-Attn. We present a SHIFT
Criterion with Patience (SCP), established on the performance and optimization stability of Single-
Attn. Empirical results show that SHIFT achieves reasoning performance comparable to a pure
Looped-Attn with greater computational efficiency.

Our main contributions are summarized in Appendix A.
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2 RELATED WORK

Looped Transformers. The principle of recursion in Transformers via cross-layer parameter shar-
ing has been explored in foundational works like Universal Transformers (Dehghani et al., 2018) and
ALBERT (Lan et al., 2019). Building on this, looped transformers have demonstrated significant
empirical success in complex reasoning (Gao et al., 2024; Bae et al., 2025), such as length general-
ization capabilities (Giannou et al., 2023; Fan et al., 2024; Saunshi et al., 2025). Theoretical research
aiming to understand the advantages of looped transformers can be roughly split into two lines. The
first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato, 2024), show-
ing that looped transformers are Turing complete with universal computational capabilities. The
second line analyzes the optimization properties (Gatmiry et al., 2024), proving convergence for lin-
ear regression tasks. However, a provable connection between the recursive architecture of looped
transformers and the superior reasoning capabilities remains underexplored. Our work addresses
this gap by analyzing how the recursive structure shapes the optimization landscape.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neu-
ral networks (Hochreiter & Schmidhuber, 1994; 1997; Li et al., 2021; Lyu et al., 2022; Liu et al.,
2023). More recent work has characterized the more complex geometry of the loss landscape, going
beyond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river
structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

Additional related work is discussed in Appendix C.

3 PRELIMINARIES

This section formalizes the next-token prediction task and specific model architectures.

Next-token Prediction Task. Let the vocabulary V = {1, · · · , V } be a finite index set of V
tokens (e.g. words, characters). We consider a training set TN = {(Xi, yi)}Ni=1 of input sequences
X = [x1, x2, · · · , xn] ∈ Vn and target tokens y ∈ V . Model parameters θ are trained by minimizing
the empirical cross-entropy loss: L̂(θ) = − 1

N

∑N
i=1 log

(
Syi(ŷi)

)
, where Sy(ŷ) is the softmax

probability of the ground-truth token y given the model’s logit output ŷ. The input sequence X
is first mapped to an embedding matrix E ∈ Rd×n. For theoretical convenience, we consider a
simplified setting where the core component for both Single-Attn and Looped-Attn is a single-layer
linear self-attention function fθ:

fθ(E, z) = WV EE⊤W⊤
KWQz,

where z ∈ Rd is a query vector (typically the embedding of the last token) and WV ,WK ,WQ ∈
Rd×d are the value, key, query matrices, respectively.

Single-Attn and Looped-Attn models. The two models are distinguished by how they apply this
attention layer. The Single-Attn model applies the attention operation once to produce its final state:
z1 = z0+ fθ(E0, z0), where z0 is the initial query vector from the input embedding E0. In contrast,
the Looped-Attn model refines the representation iteratively over T loops. At each step t ∈ [T ], both
the query state z and the embedding matrix E for all tokens are updated. We define Et−1 as the
embedding matrix resulting from the (t− 1)-th loop. Starting with the initial query state z0 and the
input embedding matrix E0, the state update is as follows:

zt = zt−1 + fθ(Et−1, zt−1).

For both models, a final linear head Wh maps the final state (z1 or zT ) to the output logits: ŷ = Whz1
for Single-Attn and ŷ = WhzT for Looped-Attn. More details are presented to Appendix D.
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Figure 3: Data Distribution, Task-Level Performance and Hessian-Level Dynamic. (a) Long-tail
distribution of the dataset shown by Information Content. (b) Training accuracy on low information,
high information and total sequences. (c) Matrix entropy metric. (d) Mutual information metric.

4 WHAT MAKES LOOPED TRANSFORMERS PERFORM BETTER

This section addresses the fundamental question posed in Section 1. Specifically, we begin by em-
pirical observations of sample-level performances and Hessian-level dynamics (Section 4.1). Moti-
vated by these findings, we introduce two theoretical landscape models, River-U-Valley and River-
V-Valley, to characterize landscape-level inductive biases of Single-Attn and Looped-Attn (Section
4.2). We then present formal theorems and corollaries showing that the River-V-Valley landscape
of Looped-Attn leads to superior optimization performance (Section 4.3). Finally, we discuss the
implications of our theoretical framework for length generalization (Section 4.4).

4.1 KEY OBSERVATIONS ON TASK-LEVEL AND HESSIAN-LEVEL

Experimental Setup. We analyze the learning dynamics of two toy models aligned with our the-
oretical formulation (Section 3): a non-recursive transformer with a single attention layer (Single-
Attn), a looped transformer consisting of iterating a single attention layer for three loops (Looped-
Attn). The learning task for both models is to predict the final token x3, given the first three
(x0, x1, x2) as input. Detailed experiments are provided in the Appendix E.1. More experimen-
tal results on practical models and reasoning tasks are provided in Appendix E.2.

To establish a controllable task difficulty, we design a synthetic Markov language dataset, where
each sequence X is generated following a Markov process (Figure 2). The difficulty of predicting a
given sequence is quantified by its information content (IC), where IC(X) = − logP (X).

aa a

b b

c c c
P(x2|x1)

x0

P(x1|x0)

x1 x2

b

a

b

c
P(x3|x2)

x3

Figure 2: Generation of Markov
Language Sequences.

Sample-Level Performances. To evaluate sample-level per-
formances, sequences are categorized by difficulty using the IC
metric into ‘low information’ (simple; lowest 40%) and ‘high in-
formation’ (complex; highest 40%). The training performances
of both Single-Attn and Looped-Attn are presented in Figure 3(b),
with a summary in Observation 1.

(a) Single-Attn. The learning process stops progressing af-
ter mastering simple patterns. Single-Attn exhibits a perfor-
mance bottleneck. The model rapidly achieves perfect accuracy
on low-information sequences. However, its performance on
high-information sequences stagnates early in training, showing
no subsequent improvement.

(b) Looped-Attn. The learning process follows a two-phase curriculum, from simple patterns
to complex ones. Looped-Attn demonstrates a distinct two-phase learning process. In the first 150
epochs, the model masters low-information sequences similar to Single-Attn. After epoch 150, it
makes significant progress on the high-information sequences, with accuracy rising from 44.65% to
54.72%. This dynamic suggests that the recursive architecture exhibits a two-phase learning process,
enabling the model to learn more complex patterns.

Hessian-Level Dynamics. To characterize the optimization process, we examine the loss land-
scape’s local curvature through the eigenspectrum {λ} of Hessian matrix H . The evolution of this
spectrum is quantified using two information-theoretic metrics: Hessian Matrix Entropy E(H),
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which measures landscape diversity or complexity, and Mutual Information I(Hs;Hs+1), which
measures landscape stability between consecutive epoch s and s+ 1.

E(H) = −
∑
i

p(|λi|) log p(|λi|), I(Hs;Hs+1) =
∑
i,j

p(|λi|s, |λj |s+1) log
p(|λi|s, |λj |s+1)

p(|λi|s)p(|λj |s+1)
.

A combined analysis of these two metrics and eigenspectra reveals fundamentally different Hessian-
level dynamics for Single-Attn and Looped-Attn. These findings are presented in Figures 3(c)∼3(d)
and Figures 7∼8, with a summary in Observation 2.

(a) Single-Attn. The eigenspectrum remains relatively static. The Hessian eigenspectrum of
Single-Attn stabilizes almost immediately after training begins. The model rapidly converges to
a region where the eigenspectrum is dominated by a spike of near-zero eigenvalues, indicating a
relatively flat local geometry (Figures 7(f)∼7(j)). Meanwhile, both Matrix Entropy and Mutual
Information metrics keep static (Figures 3(c)∼3(d)). This rapid convergence to a simple geometry
suggests that the model fails to explore more regions of the loss landscape after mastering simple
patterns, explaining its performance bottleneck.

(b) Looped-Attn. Three-phase in eigenspectrum: Collapse, Diversification, and Stabilization.

Phase I. The initial phase involves a collapse of the eigenspectrum, as many eigenvalues shrink
toward zero to form a dominant spike (Figures 8(a)∼8(e)). It is also reflected by a significant drop
in Matrix Entropy (Figure 3(c)). In this phase, the model moves into a flat region of the landscape,
which is a low-dimensional subspace associated with simple patterns. A concurrent decrease in
Mutual Information indicates the landscape’s variation during this phase (Figure 3(d)).

Phase II. Subsequently, the eigenspectrum diversifies as new, larger eigenvalues emerge (Figures
8(f)∼8(j)). It also corresponds to an increase and fluctuation in Matrix Entropy (Figure 3(c)). This
activity suggests an exploration of more complex regions along the river. Despite no immediate
accuracy gains, the rise in Mutual Information suggests this exploration is a stable search rather than
a random process (Figure 3(d)), which makes Looped-Attn fundamentally different from Single-Attn.

Phase III. In the final phase, the eigenspectrum stabilizes (Figures 8(k)∼8(o)). Matrix Entropy
converges, indicating that the landscape’s geometry has settled (Figure 3(c)). Concurrently, Mutual
Information increases to a high plateau, confirming that the landscape’s evolution has become stable
(Figure 3(d)). This geometric stabilization signifies the arrival at a flatter region, which enables the
model to learn complex patterns and ultimately improve its accuracy.

4.2 LANDSCAPE-LEVEL INDUCTIVE BIAS

This section extends the River-Valley landscape model by Wen et al. (2024), which formally charac-
terizes the loss landscapes and optimization dynamics suggested by our empirical observations. For
a loss function L̂(θ) over model parameters θ, the local geometry of loss landscape is captured by
its Hessian matrix H(θ) = ∇2L̂(θ). Our analysis focuses on the Hessian eigenspectrum, where λi

denotes its i-th largest eigenvalue and ri or vi denotes the corresponding eigenvector.
Definition 1 (River-Valley Loss Landscape). We define a River-Valley Landscape by specifying two
subspaces constructed from the Hessian eigenspectrum with a small threshold ϵ > 0:

• River: The river subspace SRiver is spanned by eigenvectors with eigenvalues below the small
threshold: SRiver = span{ri | λi ≤ ϵ}.

• Valley: The valley subspace SValley is spanned by eigenvectors with eigenvalues above the small
threshold: SValley = span{vi | λi > ϵ}.

The geometry of valley is further classified by the spectral properties of Hessian restricted to this sub-
space, denoted HValley, with eigenvalues {λ1, . . . , λdV

}. Define condition number as κ(HValley) =

λ1/λdV
and Inverse Hessian Average Energy as E(HValley) ≜ 1/dV ∥H−1

Valley∥2F = 1/dV
∑dV

i=1 1/λ
2
i .

• U-shaped Valley (Flat Valley 1): A valley is U-shaped if it is well-conditioned and has small
average energy. With constants δ, ζ ≥ 0: κ(HValley) ≤ 1 + δ and 0 < E(HValley) ≤ ζ.

1Here we use ‘flat’ to represent valleys with uniformly relatively small eigenvalues (U-shaped), and ‘steep’
to represent valleys with both relatively large and small eigenvalues (V-shaped).
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• V-shaped Valley (Steep Valley 1): A valley is V-shaped if it is ill-conditioned and has large
average energy. With a constant ζ ≥ 0: κ(HValley) ≫ 1 and E(HValley) ≫ ζ.

Definition 1 provides a formal characterization of the landscape’s features. The river corresponds to
directions with near-zero eigenvalues, forming a flat manifold where the loss value changes slowly,
while the valley corresponds to directions with large eigenvalues. The geometry within the valley
is determined by the condition number of the valley Hessian and inverse Hessian average energy.
Specifically, a U-shaped valley is characterized by a broad and flat floor through which the river
flows. This valley is surrounded by uniformly steep cliffs, ensuring that movement in any direction
within this subspace leads to a comparable loss. In contrast, a V-shaped valley is characterized by a
narrow river channel, with cliffs of highly varied steepness. An intuitive illustration is presented in
Figure 1. We discuss the hyperparameters and representative loss examples in Appendix E.2.2.

The spectral experiments presented in Figure 27 (with ϵ = 0.02) reveal that Looped-Attn exhibits
a larger E(HValley) than Single-Attn. Building on Definition 1, we then formalize the distinct opti-
mization landscapes and specific dynamics in Single-Attn and Looped-Attn models.
Conjecture 1 (Single-Attn: Flat Valley Trapping). The Single-Attn model creates a River-U-
Valley landscape. After a rapid descent, the optimizer becomes trapped in the valley’s broad and flat
floor, stopping further exploration within this low-gradient region.

Empirical Justifications for Conjecture 1. The River-U-Valley model is empirically supported
by the Hessian-level dynamics in Single-Attn (Observation 2). The river component is evidenced
by a dominant spike of near-zero eigenvalues from the early epochs, which confirms the existence
of a flat subspace. Surrounding this river, large eigenvalues of similar magnitudes form uniformly
steep cliffs that enclose a broad and flat floor, characterizing the valley as U-shaped. This land-
scape geometry is captured by Matrix Entropy and Mutual Information metrics, which indicate a
simple and static landscape structure. Such a geometry determines a specific optimization dynamic:
the optimizer initially descends rapidly along the steep cliffs. However, the broad and flat valley
floor constitutes an optimization trap where weak gradient signals provide insufficient guidance for
exploration along the river, resulting in flat valley trapping.
Conjecture 2 (Looped-Attn: From Steep Valley Hopping to River Convergence). The Looped-
Attn model creates a River-V-Valley landscape. The optimizer exhibits significant hopping between
the valley’s varied and steep cliffs, guiding its trajectory along the river toward convergence.

Empirical Justifications for Conjecture 2. The River-V-Valley model is empirically justified by
the three-phase evolution of Hessian-level dynamics in Looped-Attn (Observation 2). The model
initially enters the river subspace from a complex valley, evidenced by the gradually dominant spike
of near-zero eigenvalues. A diversifying set of large eigenvalues forms the V-shaped valley’s varied
and steep cliffs, where a narrow river channel exists at the valley floor. The complex and evolving
geometry is also captured by Matrix Entropy and Mutual Information. Such a geometry leads to
a specific optimization dynamic: the optimizer initially descends by hopping between the valleys.
After reaching the valley floor, the narrow river channel enables sustained exploration, avoiding
getting trapped in the broad U-shaped valley of Single-Attn.

4.3 RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

In this section, we prove that the River-V-Valley landscape in Looped-Attn provides a superior per-
formance than Single-Attn. Before the formal theoretical analysis, we provide an intuition for the
connection between loss landscapes and sample-level performances (Observation 1).

Intuition for Superior Performance. The River-U-Valley landscape of Single-Attn induces Flat
Valley Trapping, which might account for its performance bottleneck. The initial rapid descent along
the cliffs converts into progress along the river, corresponding to mastering simple patterns. How-
ever, the optimizer subsequently becomes trapped in the flat valley floor, preventing it from discov-
ering the path to more complex patterns. In contrast, the River-V-Valley landscape of Looped-Attn
facilitates Steep Valley Hopping dynamics, which might drive its two-phase learning curriculum.
After an initial descent for learning simple patterns, its enhanced performance might stem from two
key factors: (a) The hopping dynamic converts descent into more forward progress along the river;
(b) The narrow river channel prevents the optimizer from becoming trapped. These together ensure
deep exploration in the river downstream, enabling the model to learn complex patterns.

6
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We now proceed with a formal analysis to mathematically demonstrate how these hopping dynamics
lead to more effective optimization. Our analysis begins by modeling the loss landscape using a
structured quadratic form that captures its essential geometry (The general loss is later in Setting 2).
The parameter space is decomposed into two orthogonal subspaces: the valley subspace SValley =
span{v1, . . . , vdV

} and the river subspace SRiver = span{r1, . . . , rdR
}, with dimensions dV , dR, and

parameters θV , θR respectively.
Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the
quadratic loss:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR,

where [HValley]ij = ∂2L̂
∂vi∂vj

, [HV R]ij = ∂2L̂
∂vi∂rj

, [HRV ]ij = ∂2L̂
∂ri∂vj

(Definition 2 in Appendix G.1).
We assume the coupling strength along the valley eigenvectors vi satisfies h ≤ ∥HRV vi∥ ≤ h̄
for constants h, h̄ > 0, and the valley parameters are initialized as θV,0 ∼ N (0, ᾱ2I/dV ) with
∥θV,0∥ ≤ ᾱ for a constant ᾱ > 0.

Setting 1 formalizes a structured quadratic loss, which is characterized by three key components.
Specifically, this includes (a) The valley Hessian HValley: This matrix captures the valley’s curvature.
Its condition number quantitatively distinguishes between the well-conditioned U-shaped valley of
Single-Attn and the ill-conditioned V-shaped valley of Looped-Attn; (b) The Coupling Matrix HRV :
This matrix quantifies the critical interaction that allows movement in the valley to induce a gradient
in the river; (c) The river gradient −h⊤

R: This term represents the intrinsic optimization drive along
the river. More details are deferred to Remark 5 in Appendix G.1.
Theorem 1 (Cumulative Force under Quadratic Loss). Under Setting 1, we define C as the upper
bound of cumulative force ∥CK∥ generated by the valley dynamics on the river subspace after K
optimization steps, then it holds that

∥CK∥ ≈

∥∥∥∥∥η
K−1∑
k=0

HRV Φ
kθV,0

∥∥∥∥∥ ≤
√

dV h̄ ᾱ

dV∑
i=1

1

|λi|
≜ C,

where Φ = I − ηHValley with a learning rate η, and {λi} is the spectrum of valley Hessian HValley.

Theorem 1 establishes the relationship between the potential/maximal cumulative force on the river
parameters and the valley’s geometry, as encoded in the valley eigenvalues λi. The theorem indicates
that this force is determined by the nuclear norm of inverse Hessian, alongside a scaling factor of
valley dimension.
Corollary 1 (Greater Maximal Cumulative Force of Looped-Attn). Under Theorem 1 and Defi-
nition 1, the maximal cumulative force generated by Looped-Attn (C(2)) is significantly greater than
that of Single-Attn (C(1)): C(2) ≫ C(1).

Theorem 2 (Expected Squared Cumulative Force under Quadratic Loss). Under Setting 1, after
a sufficient large K optimization steps, the expected squared cumulative force E

[
∥CK∥2

]
holds that

ᾱ2

dV
h2

dV∑
i=1

1

λ2
i

≤ E
[
∥CK∥2

]
≤ ᾱ2

dV
h̄2

dV∑
i=1

1

λ2
i

,

where {λi} is the spectrum of valley Hessian HValley.
Corollary 2 (Superior Asymptotic Optimization Performance of Looped-Attn). Under Theorem
2, Definition 1 and Assumption 1, for the same initialization, after a sufficiently large K optimization
steps, the expected squared loss values for Looped-Attn (L̂(2)

K ) is smaller than for Single-Attn (L̂(1)
K ):

E[(L̂
(2)
K )2] < E[(L̂

(1)
K )2].

Based on Definition 1, the V-shaped valley of Looped-Attn possesses a larger average energy, which
creates a larger potential force C than that of Single-Attn (Corollary 1). Furthermore, when taking
expectation over initialization, the cumulative force is ultimately reflected in the asymptotic training
loss (Corollary 2). The larger force in Looped-Attn facilitates sustained river progress via valley
hopping, enabling the model to learn both simple and complex patterns. The detailed proof is
deferred to Appendix G.2 and Appendix G.3.
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Figure 4: SHIFT Efficiency and Performance on Markov Dataset.

Setting 2 (General Loss). A general Loss of River-Valley landscape (Definition 1) is defined as:

L̂(θV , θR) = L̂Valley(θV ) + L̂River(θR) + L̂Coupling(θV , θR).

We assume the valley parameters are initialized as θV,0 ∼ N (0, ᾱ2I/dV ) with ∥θV,0∥ ≤ ᾱ for a
constant ᾱ > 0. Further technical assumptions are detailed in Appendix G.1 (Assumptions 2∼4).

Setting 2 considers a general loss, which is an extension to Setting 1.

Theorem 3 (Superior Optimization Performance of Looped-Attn under General Loss). Under
Setting 2 and Definition 1, the following results hold:

(a) Cumulative Force. The maximal cumulative force Cgen generated by the valley dynamics on
the river subspace is given by: Cgen =

√
dV h̄gen ᾱ

∑dV

i=1 1/|λB
i |, where {λB

i } is the spectrum
of the lower-bound valley Hessian HB (Assumption 2).

(b) Greater Maximal Cumulative Force. The maximal cumulative force generated by Looped-Attn
(C(2)) is significantly greater than that of Single-Attn (C(1)): C(2) ≫ C(1).

(c) Lower Asymptotic Training Loss. For the same initialization and a sufficiently large K, after
K optimization steps, the expected squared training loss for Looped-Attn (L̂(2)

K ) is lower than
for Single-Attn (L̂(1)

K ): E[(L̂
(2)
K )2] < E[(L̂

(1)
K )2].

Theorem 3 extends the provably superior optimization performance of Looped-Attn to a general loss
function. The detailed proof of Theorem 3 is deferred to Appendix G.4.

4.4 DISCUSSION IN LENGTH GENERALIZATION

This section introduces how our theoretical framework relates to Looped-Attn’s success in length
generalization. Figure 5 illustrates the Information Content (IC) distributions for the test datasets
with different sequence lengths. As length increases, the total space of possible sequences expands,
which causes two primary effects on the IC distribution: its mean value shifts to the right (indicating
a higher average complexity), and its variance increases (the distribution becomes broader). A
direct consequence is that the low-IC sequences during training may become rare or non-existent in
longer test sequences, which frames the core challenge of length generalization: a model must find
a generalizable solution capable of mastering sufficiently complex patterns.

5 10 15 20 25 30
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Figure 5: Length Generalization.

Empirical performances are provided in Figure 18 and Table 1,
and theoretical results provide an explanation for how Looped-
Attn achieves this. As established in Corollaries 1∼2 and The-
orem 3, the River-V-Valley landscape of Looped-Attn enables
exploration deeper into the downstream river (a manifold of flat
minima). Thus it guides Looped-Attn towards solutions that in-
herently generalize better. We connect this to the finding that
the superior optimization dynamic brings better performance
on length generalization tasks for the Looped-Attn model. De-
tailed experiments are provided in the Appendix E.1.3 and E.2.
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5 STAGED HIERARCHICAL FRAMEWORK FOR PROGRESSIVE TRAINING

This section proposes SHIFT (Staged HIerarchical Framework for Progressive Training), a computa-
tionally efficient two-stage training strategy motivated by our theoretical analysis of River-U-Valley
and River-V-Valley landscapes. The strategy utilizes distinct model architectures at different learn-
ing stages, as illustrated in Figure 1(c).

Stage I: Rapid Valley Descent with Single-Attn. Training begins with the Single-Attn architecture.
The objective is to move efficiently from a random initialization (the clifftop) to a low-loss region
(the valley floor). We thus adopt Single-Attn which facilitates initial convergence on simple tasks
with computational efficiency.

Stage II: Valley Hopping and Deep River Exploration with Looped-Attn. Training is transitioned
to Looped-Attn when Single-Attn reaches loss plateaus. This transition reshapes the optimization
within a V-shaped valley. As established in Corollaries 1∼2 and Theorem 3, the V-shaped valley
induces a hopping descent mechanism, enabling further exploration in the river direction. This
allows the model to find solutions to complex tasks that are less accessible to Single-Attn.

A key component of SHIFT is determining the moment to transition between architectures. To this
end, we introduce the SHIFT Criterion with Patience (SCP), which consists of two steps.

(a) Plateau Detection. First, SCP detects a performance plateau. The validation loss for Single-Attn
reaches plateaus after initial epochs (Figure 19(a)). The plateau point Eplateau is identified when the
validation loss fails to decrease by a threshold δ1 over P consecutive epochs.

(b) Gradient Stabilization Wait. Second, SCP incorporates a patience period W for gradient
stabilization. The gradient norm initially exhibits high variance, which would make an unstable
transition (Figure 19(b)). This period ensures the optimizer norm has settled by a threshold δ2.
Consequently, the shift point is calculated as Eshift = Eplateau +W .

Figure 4(a) reveals that an immediate transition is suboptimal on Markov dataset. A delayed transi-
tion yields greater speedup, but an excessive delay prevents Looped-Attn from converging in Stage
II. To address this trade-off, SCP selects a shift point between 100 and 150 epochs. This achieves
a training speedup of approximately 1.26× without compromising final performance (Figure 4(b)).
The hyperparameter sensitivity analysis of δ1, P , δ2 and W are provided in Appendix E.1.4.

We next provide the theoretical foundation for this architectural transition in Theorem 4, by estab-
lishing a connection between their landscapes.

Theorem 4 (Shared River Upstream). Let ∇W L̂1(θ) and ∇W L̂2(θ) be the gradients of the Single-
Attn and Looped-Attn models with a weight matrix W ∈ {WK ,WQ}. Under Assumption 5∼6
(Appendix H.1.1), the gradients of the two models are positively aligned:

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ ≥ 0, ⟨∇WQ
L̂1(θ),∇WQ

L̂2(θ)⟩ ≥ 0.

Justification for SHIFT. Theorem 4 ensures the feasibility of this architectural transition. It es-
tablishes that the gradients of both architectures are positively aligned, implying that optimization
within their respective valleys corresponds to progress along a shared upstream river in the loss
landscape. This shared foundation guarantees that the parameters learned by Single-Attn in Stage I
provide a effective initialization for the deeper exploration by Looped-Attn in Stage II. A detailed
proof is available in Appendix H. Furthermore, Theorem 1∼3 and Corollary 1∼2 guarantee the
superiority of this two-stage strategy. These results prove that the V-shaped valley of Looped-Attn
generates a greater cumulative optimization force along the river. Therefore, SHIFT combines the
training speed of Single-Attn with the superior optimization performance of Looped-Attn. In prac-
tice, SHIFT is implemented that progressively increases computational depth (i.e., loop iterations
from T = 1 to T > 1). This approach can be viewed as a form of curriculum learning (Bengio
et al., 2009; Wang et al., 2021), where an efficient model (Single-Attn) first learns simple patterns
before a more powerful model (Looped-Attn) is deployed for further refinement.

6 CONCLUSION

This paper theoretically answers what makes looped transformers perform better than non-recursive
ones. We investigate their distinct dynamics and formalize these by extending the River-Valley

9
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model to distinguish between U-shaped valleys and V-shaped valleys. We provably demonstrate
that the landscape-level inductive bias of River-V-Valley facilitates superior convergence on com-
plex patterns. Building on this, we propose SHIFT, a framework that achieves comparable reasoning
performance compared to Looped-Attn but with greater computational efficiency. Overall, our work
provides a new perspective and a theoretical framework for understanding the advantages of looped
transformers, potentially inspiring more effective and principled training paradigms. More discus-
sions and future work are provided in Appendix B.

ETHICS STATEMENT

This paper presents a fundamental research focusing on the theoretical and empirical analysis of
neural network architectures. Our work is methodological, investigating the mathematical proper-
ties of loss landscapes for different types of transformer models. The experiments are conducted
on two categories of datasets: (a) a synthetic Markov language dataset, created specifically for con-
trolled analysis of learning dynamics, and (b) publicly available algorithmic reasoning datasets. Our
research does not involve the use of human subjects, personally identifiable information, or any
form of sensitive data. Therefore, this work does not raise ethical concerns related to data privacy,
algorithmic bias in social contexts, or potential societal harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we have provided
detailed descriptions of our theoretical frameworks and experimental procedures.

Theoretical Results. The theoretical formalization of the River-Valley landscape (Section 4.2) is
motivated by empirical observations (Section 4.1). The superiority of Looped-Attn (Section 4.3)
is supported by mathematical proofs. Detailed derivations for Theorem 1, Corollaries 1∼2 and
Theorem 3 are available in Appendix G. The foundation for the SHIFT framework is established in
Theorem 4 with proof in Appendix H.

Experimental Setup. We provide a comprehensive description of our experimental design. The
experimental setup in the synthetic dataset with toy models, including the data generation process,
model details, and hyperparameters, is described in Section 4.1 and further detailed in Appendix
E.1. The experimental setup for the practical models and the standard algorithmic reasoning tasks is
detailed in Appendix E.2.

Source Code. To facilitate the verification of our findings and support further research in this area,
the source code used for all experiments will be made publicly available upon publication.
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A CONTRIBUTIONS

Our main contributions are summarized as follows.

(a) A Refined Geometric View of Loss Landscape. Inspired by distinct empirical observations
in sample-level performance and Hessian-level dynamics (Section 4.1), we enrich the River-Valley
landscape model by introducing a geometric characterization of U-shaped and V-shaped Valleys
(formal definition in Section 4.2). This characterization is essential for attributing these observations
to the landscape-level inductive biases of Single-Attn and Looped-Attn models.

(b) Distinct Landscape-Level Inductive Biases. To our knowledge, we are the first to formally
hypothesize inductive bias of Looped-Attn from the perspective of loss landscape. Specifically, in
Section 4.2, we reveal that the River-U-Valley landscape of Single-Attn leads to flat valley trapping.
In contrast, the River-V-Valley landscape of Looped-Attn creates an effective path characterized by
steep valley hopping and river convergence.

(c) Theoretical Illustration of Superior Performance in Looped-Attn. Building upon our find-
ings on inductive bias, we theoretically illustrate the superior performance that would arise from the
conjectured River-V-Valley landscape in Looped-Attn under the landscape framework (Section 4.3
and Appendix G). Furthermore, we leverage this optimization analysis to explain its strong length
generalization ability, empirically demonstrating that the effective optimization path leads to gener-
alizable solutions (Section 4.4).

(d) An Effective Progressive Training Framework. Based on the aforementioned landscape-
level inductive biases, we design SHIFT, an intuitive framework that combines Single-Attn and
Looped-Attn (Section 5). The framework’s feasibility is grounded in a provable shared river up-
stream between the two landscapes (detailed proof in Appendix H). We present a shifting criterion
with patience (SCP) and demonstrate that SHIFT achieves a balance between computational effi-
ciency and final performance.

B DISCUSSIONS AND FUTURE WORK

We present more necessary discussions on our work, which might be helpful for understanding our
contributions and existing limitations, and highlight valuable directions for future research.

Model Simplification. Our analysis employs a simplified model with a single linear attention layer
for two key purposes: (a) It provides a controlled setting for our experiments to investigate the Hes-
sian dynamics. (b) It ensures the gradient calculations for Theorem 4 (Section 5) are mathematically
tractable, which is the theoretical foundation of our SHIFT framework.

It is curial to note that our core theoretical framework is general and does not rely on this specific
model architecture. This landscape framework characterizes loss landscapes using River-U-Valley
and River-V-Valley to show the optimization advantage of Looped-Attn (Sections 4.2 and 4.3). These
insights are corroborated by our experiments on GPT-2 based models in Appendix E.2. Although
it is hard to directly analyze the Hessian in these practical settings, the superior performance of
Looped-Attn aligns with the optimization advantage predicted by our River-V-Valley conjecture. We
can also explain the training dynamics within our landscape framework, reinforcing its applicability
to more complex, non-linear models.

Nevertheless, extending the formal proof of gradient alignment from the simplified model to deep,
nonlinear transformers remains a promising direction for future work.

Landscape Conjectures. Conjectures 1∼2 formalize the loss landscapes for Single-Attn and
Looped-Attn by proposing the River-U-Valley and River-V-Valley models. These conjectures are
empirically motivated. We justify these with the analysis of Hessian dynamics (Section 4.1), which
reveals different evolutionary eigenspectrum of the two architectures. Given the complexity of opti-
mization process, grounding theoretical analysis in empirically-inspired landscape model is a crucial
step toward formal understanding (Wen et al., 2024). A key direction for future work is to move be-
yond empirical motivation and establish a formal proof for these landscape conjectures. This would
involve theoretically deriving the geometric properties of the Hessian from the recursive architec-
ture, potentially by extending emerging mathematical tools such as Dong et al. (2025). Proving this
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formally is highly challenging beyond our current scope, which remains a promising direction for
future study.

Landscape Transition Dynamics of SHIFT. Our landscape model provides a geometric perspec-
tive on why the SHIFT framework achieves performance comparable to Looped-Attn. Stage I begins
with Single-Attn in a River-U-Valley landscape, where the optimizer rapidly descends from a high-
loss clifftop to a low-loss valley floor near the river. The architectural switch to Looped-Attn then
induces a geometric transformation: the flat valley floor suddenly becomes the steep slopes of a
V-shaped valley. This landscape change forces the optimizer to perform valley hopping which is
unique for Looped-Attn. This temporary hopping enables it to escape the flat valley floor and reach
the narrow river channel. Once in the river, it can proceed with deep downstream exploration. While
both models share an upstream river (Theorem 4), their distinct architectures determine the final
performance. Single-Attn traps in the flat valley floor, whereas SHIFT (Looped-Attn in Stage II)
successfully navigates downstream, leading to different solutions.

Practical Implications of SHIFT. The principles behind SHIFT suggest a promising paradigm for
enhancing pre-trained foundation models. We begin with a well-trained standard, non-recursive
model (equivalent to Stage I). To improve its performance on tasks requiring complex, multi-step
reasoning, we could introduce recursion into some of its blocks and continue to train (equivalent
to Stage II). This approach leverages the base model’s existing knowledge while reshaping the op-
timization landscape to unlock more powerful reasoning abilities, guided by the principles of the
River-V-Valley. It represents a computationally efficient alternative to training a large recursive
model from scratch and offers a valuable direction for future empirical investigation.

C ADDITIONAL RELATED WORK

This section provides a more detailed discussion of the related work for Section 2 in the main text.

Looped Transformers. The principle of recurrence in Transformers, achieved via cross-layer pa-
rameter sharing, has been explored in foundational works like Universal Transformers (Dehghani
et al., 2018) and ALBERT (Lan et al., 2019). Building on this, looped transformers have demon-
strated significant empirical success in diverse applications, from in-context learning (ICL) (Yang
et al., 2023; Chen et al., 2024; Gatmiry et al., 2024) to length generalization that enables them to
process sequences much longer than those seen during training (Giannou et al., 2023; Fan et al.,
2024; Gao et al., 2024; Saunshi et al., 2025; Bae et al., 2025).

Theoretical research aiming to understand these empirical advantages can be roughly split into two
lines. The first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato,
2024), showing that looped transformers are Turing complete with universal computational capa-
bilities. The second line analyzes the optimization properties (Gatmiry et al., 2024), proving opti-
mization convergence for linear regression tasks within the ICL framework. However, a provable
connection between the recursive architectural prior of looped transformers, optimization landscape,
and superior reasoning capabilities remains missing, particularly under the general next-token pre-
diction paradigm. Our work addresses this gap by analyzing how the recursive structure shapes the
optimization landscape, ultimately seeking to combine the length generalization benefits of looped
transformers with the efficiency of standard, non-recursive models.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neural
networks. Empirically, Hochreiter & Schmidhuber (1994; 1997) first demonstrate that SGD can typ-
ically find flat minima among various solutions. Theoretically, much research has provided strong
evidence supporting this idea, reporting that models converging to flat minima exhibit better gener-
alization performance across various tasks and architectures (Keskar et al., 2016; Wu et al., 2017;
Neyshabur et al., 2017; Kleinberg et al., 2018; Xie et al., 2020; Li et al., 2021; Lyu et al., 2022;
Andriushchenko et al., 2023; Liu et al., 2023).

More recent work has characterized the more complex geometry of the loss landscape, going be-
yond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
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dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river
structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

These two perspectives, flat minima and river-valley landscapes, are highly compatible. We argue
that the river downstream locates flatter minima, which is potentially corresponding to better gener-
alization (Hochreiter & Schmidhuber, 1994; 1997).

Inductive Bias. Implicit bias and inductive bias are fundamental concepts in deep learning the-
ory. Implicit bias is an emergent property of the optimization algorithm (e.g., gradient descent)
that guides the model toward a particular minimum that does generalize well (Soudry et al., 2018;
Gunasekar et al., 2018a; Ji & Telgarsky, 2019; Woodworth et al., 2020; HaoChen et al., 2021;
Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2023; Thrampoulidis, 2024). In contrast, induc-
tive bias is induced by the model architecture. For example, weight sharing and locality inherently
bias convolutional neural networks (CNNs) over fully-connected networks (FCN) by breaking the
learning algorithm’s symmetry (Gunasekar et al., 2018b; Li et al., 2020; Jagadeesan et al., 2022;
Wang & Wu, 2023). Jelassi et al. (2024) reveal an inductive bias in transformers that makes it eas-
ier for them to copy from the context. Saunshi et al. (2024) uncover an inductive bias of stacking
for improving downstream reasoning tasks, but without a theoretical basis. Gatmiry et al. (2024)
also study looped transformers, showing their inductive biases in optimization convergence for lin-
ear regression tasks. Distinct from above, we introduce landscape-level inductive bias, where the
model architecture fundamentally reshapes the optimization landscape (River-U-Valley and River-
V-Valley). These different landscapes induce unique training dynamics. From this perspective, we
reveal the advantages of Looped-Attn over Single-Attn supported by both empirical observations and
theoretical analysis (Section 4).
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D DETAILED PRELIMINARIES

This section provides more details for Section 3 in the main text.

We formalize the next-token prediction task, specify the objective function, and present the mathe-
matical characterizations of Single-Attn and Looped-Attn models.

Let the vocabulary V = {1, · · · , V } be a finite index set of V tokens (e.g. words, characters). An
input sequence is denoted by X = [x1, x2, · · · , xn] ∈ Vn, where each token xs ∈ V . The task is
to predict the next token, y ∈ V , given the context X . We consider a training set of N sequences
TN := {(Xi, yi)}Ni=1, where Xi ∈ Vn and yi ∈ V for all i ∈ [N ]. A model with parameter θ is
trained by minimizing the empirical cross-entropy loss. Let ŷ ∈ RV be the logit vector output by
the model, then the loss function is defined as:

L̂(θ) = − 1

N

N∑
i=1

log
(
Syi(ŷi)

)
= Ê [− log (Sy(ŷ))] ,

where Sy(ŷ) = exp(ŷy)/
∑V

j=1 exp(ŷj) denotes the softmax probability for the ground-truth token
y, with ŷy being the y-th component of the logit vector ŷ.

Input Embeddings and Self-Attention Module. The input sequence X is mapped to d-
dimensional embedding matrix E via an embedding map g : Vn → Rd×n parameterized by θemb,
so that E = g(X; θemb). We assume that g is fixed (i.e., not trainable) and focus our analysis on the
self-attention module.

Both Single-Attn and Looped-Attn utilize a fundamental self-attention function fθ, implemented as
a single-layer linear attention block (without residual connections), defined as:

fθ(E, z) = WV EE⊤W⊤
KWQz, fθ(E) = WV EE⊤W⊤

KWQE,

where E ∈ Rd×n is the embedding matrix, z ∈ Rd is the query vector, i.e., the n-th column of E,
and WV ,WK ,WQ ∈ Rd×d are the value, key, query matrices, respectively.

Single-Attn Model and Looped-Attn Model. The Single-Attn model applies the self-attention
operation once, then

z1 = z0 + fθ(E0, z0),

where z0 is the n-th column of the input embedding matrix E0 and z1 is the final state.

The Looped-Attn model iteratively refines representations over T steps. For each loop t ∈ [T ], the
representations are updated via residual connections and gating mechanisms:

zt = zt−1 + fθ(Et−1, zt−1), Et = Et−1 + fθ(Et−1).

We have the recursive definition for the final state zT after T loop iterations, i.e.,

zT = z0 +

T∑
t=1

fθ(Et−1, zt−1).

Prediction Head. The final logit output ŷ ∈ RV is generated by a linear projection head h : Rd →
RV , parameterized by Wh ∈ RV×d. Finally, the output logits are ŷ = Whz1 for Single-Attn and
ŷ = WhzT for Looped-Attn.
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E DETAILED EXPERIMENTS

E.1 EXPERIMENTS ON TOY MODELS AND SYNTHETIC MARKOV LANGUAGE DATASET

E.1.1 EXPERIMENTAL SETUP

Toy Models and Hyperparameter Details. To conduct the motivating experiments and investi-
gate the learning dynamics of different architectures, we employ simplified toy models. Specifically,
we adopt a non-recursive transformer with a single attention layer (Single-Attn), and a looped trans-
former consisting of iterating a single attention layer for three loops (Looped-Attn). These toy mod-
els are aligned with our theoretical formulation in Section 3. We train both models for 600 epochs,
using Adam optimizer with the learning rate 0.001. Each experiment is conducted on a single 24GB
NVIDIA GeForce RTX 3090.

Markov Language Dataset. We utilize a synthetic Markov language dataset, specifically de-
signed to provide a controllable spectrum of task difficulty. As illustrated in Figure 2, each sample
is a sequence of four tokens, X = (x0, x1, x2, x3) (e.g., ‘aaaa’,‘aaab’,‘abbc’), drawn from a vocab-
ulary of three discrete symbols {a, b, c}. The sequences are generated according to a homogeneous
Markov process, where the probability of a full sequence is given by

P (X) = P (x0)P (x1|x0)P (x2|x1)P (x3|x2).

The initial state probabilities P (x0) are uniform, while the transition probabilities at each step are
governed by three distinct, randomly generated transition matrices.

The learning task for both Single-Attn and Looped-Attn is to predict the final token x3, given the first
three (x0, x1, x2) as input. We quantify the difficulty of each prediction by the information content
(IC) of its corresponding ground-truth sequence:

IC(X) = − logP (X).

To create a dataset with a mixture of simple and complex tasks, we begin by generating all 34 possi-
ble sequences. The initial set is then expanded to a larger dataset size of N = 500 through a weighted
oversampling process. This sampling probability for each sequence is proportional to its ground-
truth probability raised to the power of 2. This ensures that high-probability (low-information,
or simple) sequences are sampled more frequently, resulting in a long-tail training distribution, as
shown in Figure 6. Consequently, simple patterns are abundant while complex patterns are rare,
posing a generalization challenge.
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Figure 6: Data Distribution. (a,b) Long-tail distribution of the dataset shown by IC and CP.

E.1.2 EMPIRICAL OBSERVATIONS

By combining two information-theoretic metrics (Hessian Matrix Entropy and Mutual Information)
with a direct analysis of the eigenspectrum, we investigate different Hessian-level dynamics for
Single-Attn and Looped-Attn.
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More Discussion on Hessian-Level Dynamics. The metrics of matrix entropy and mutual infor-
mation based on Hessian w.r.t. the value matrix WV , are presented in Figures 3(c)∼3(d). Regarding
Figure 3(d), it is important to understand that we cannot directly compare the absolute values of
Mutual Information (MI) for Single-Attn and Looped-Attn. This is because they have a different
baseline level of Matrix Entropy. In information theory, the mutual information between two ran-
dom variables is fundamentally bounded by the entropy of each variable. Specifically, we have
I(Hs;Hs+1) ≤ min(E(Hs), E(Hs+1)). This means that the absolute values of MI is limited by
the complexity of landscape itself, as measured by Matrix Entropy.

This helps explain the low final MI value for Single-Attn. Even though the state at epoch s + 1 is
similar to the state at epoch s, the overall landscape is simple (low entropy) thus the absolute MI
value remains small. However, notice that both models ultimately reach a stable state of high MI
within the limits set by its own entropy. It represents a stagnation, not exploration.

Eigenspectra of Hessian w.r.t. the Value Matrix WV . We present the eigenspectra of Hessian
with respect to (w.r.t.) the value matrix WV in Figure 7∼11 for three models: Single-Attn, Looped-
Attn and Deep-Attn (a non-recursive transformer with three attention layers).

We find that the spectral shape and evolution of Single-Attn (Figure 7) and Deep-Attn (Figure 9∼11)
are nearly identical. Both converge to a simple and static landscape, and their valley eigenspec-
tra contain uniformly relatively small eigenvalues, with maximum eigenvalues of a similar small
magnitude (e.g., λmax ≈ 0.83 for Single-Attn and λmax ≈ 0.28 for Deep-Attn Layer 1). Based on
Definition 2, both Single-Attn and Deep-Attn create River-U-Valley landscapes. In contrast, Looped-
Attn (Figure 8) exhibits the distinct three-phase evolution. Its valley eigenspectra contain both rela-
tively large and small eigenvalues, with a significantly larger λmax ≈ 2.84. Based on Definition 2,
Looped-Attn creates a River-V-Valley landscape.

This comparison demonstrates that the River-V-Valley landscape is a unique inductive bias of the
recursive architecture, not simply a product of computational depth.

Eigenspectra of Hessian w.r.t. the Key Matrix WK . The metrics of matrix entropy and mutual
information based on Hessian w.r.t. the key matrix WK , are presented in Figure 12. We present
the eigenspectra of Hessian with respect to (w.r.t.) the key matrix WK in Figure 13∼17 for three
models: Single-Attn, Looped-Attn and Deep-Attn.
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Figure 7: Single-Attn Eigenspectra (Hessian w.r.t. the Value Matrix WV ).
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Figure 8: Looped-Attn Eigenspectra (Hessian w.r.t. the Value Matrix WV ).
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Figure 9: Deep-Attn Eigenspectra (Hessian w.r.t. the Value Matrix WV in Layer 1).
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Figure 10: Deep-Attn Eigenspectra (Hessian w.r.t. the Value Matrix WV in Layer 2).
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Figure 11: Deep-Attn Eigenspectra (Hessian w.r.t. the Value Matrix WV in Layer 3).
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Figure 12: (a) Matrix Entropy metric. (b) Mutual Information Metric.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

-0.
02

03
0.0

01
0

0.0
04

6
0.0

08
1

0.0
11

7
0.1

53
6

Eigenvalues

100

101

102

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)
Epoch 1

(a)

0.0
02

6
0.0

08
0

0.0
13

4
0.0

62
3
0.0

73
2

0.2
68

7

Eigenvalues

100

101

102

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 2

(b)

-0.
00

76
0.0

00
6
0.0

17
1

0.0
58

3
0.0

66
6

0.1
82

0
0.3

96
3

Eigenvalues

100

101

102

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 3

(c)

-0.
00

36
0.0

02
2

0.0
08

0
0.0

19
6

0.1
06

3
0.1

70
0

0.2
79

9

Eigenvalues

100

101

102

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 4

(d)

-0.
00

25

-0.
00

01
0.0

04
7
0.0

11
9

0.0
48

0
0.0

79
2

0.1
15

3

Eigenvalues

100

101

102

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 5

(e)

0.0
00

3
0.0

01
0
0.0

02
3

0.0
05

6
0.0

20
0

0.0
25

9
0.0

32
5

Eigenvalues

101

102

103

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 10

(f)

0.0
00

2
0.0

01
9

0.0
05

0
0.0

09
3

0.0
14

4
0.0

21
3

Eigenvalues

101

102

103

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 15

(g)

0.0
00

1
0.0

00
4

0.0
01

9
0.0

05
4
0.0

06
2

0.0
10

0
0.0

14
3

Eigenvalues

101

102

103

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 20

(h)

0.0
00

5
0.0

01
6

0.0
54

2

Eigenvalues

101

102

103

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 100

(i)

0.0
00

5
0.0

01
4
0.0

03
2

0.0
45

4

Eigenvalues

101

102

103

Fr
eq

ue
nc

y 
(l

og
 s

ca
le

)

Epoch 150

(j)

Figure 13: Single-Attn Eigenspectra (Hessian w.r.t. the Key Matrix WK).
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Figure 14: Looped-Attn Eigenspectra (Hessian w.r.t. the Key Matrix WK).
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Figure 15: Deep-Attn Eigenspectra (Hessian w.r.t. the Key Matrix WK in Layer 1).
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Figure 16: Deep-Attn Eigenspectra (Hessian w.r.t. the Key Matrix WK in Layer 2).
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Figure 17: Deep-Attn Eigenspectra (Hessian w.r.t. the Key Matrix WK in Layer 3).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

8 10 12 14 16
Testing Length

0.50

0.55

0.60

0.65

0.70

0.75

To
ta

l A
cc

ur
ac

y

69.25%

72.29%

Single-Attn
Looped-Attn
Training Accuracy of Single-Attn
Training Accuracy of Looped-Attn

Figure 18: Length Generalization Performances.

Table 1: Accuracy on Relatively Simple Sequences.

Datasets Sequence Length # Simple Sequences Single-Attn Looped-Attn

Training L = 4 100% 69.25% 72.29%

Testing

L = 8 99.5% 52.83% 62.78%
L = 11 64.5% 55.57% 70.28%
L = 14 0 N/A N/A
L = 18 0 N/A N/A

E.1.3 LENGTH GENERALIZATION

To bridge optimization with generalization, we design a controlled experiment on the synthetic
Markov language dataset to evaluate the length generalization capabilities of the Single-Attn and
Looped-Attn models.

Testing Datasets. We generate a series of test datasets with sequence lengths L ∈ {8, 11, 14, 17}.
To specifically isolate the challenge of generalizing a learned rule to longer sequences, rather
than adapting to entirely new dynamics (where our designed simplified Single-Attn and Looped-
Attn might be completely failed), we generate all test datasets using the same transition dynamics
{T1, T2, T3} employed for the training data. For sequence lengths L > 4, the transition matrices
are applied cyclically. Furthermore, to ensure consistent evaluation across lengths, each dataset is
generated by sampling a fixed number of Ntest = 5000 sequences, following the same long-tail sam-
pling rules (α = 2) as the training dataset. With these rules, we present the Information Content
(IC) distributions for the test datasets with different sequence lengths in Figure 5.

Evaluation Metrics. We analyze model performance based on the IC of each sequence. This
allows us to distinguish between simple (low-IC) and complex (high-IC) tasks. Based on the IC
distribution of the training data (L = 4), we establish a fixed complexity threshold IC = 14.57,
which represents the maximum IC in the training sequences. We then evaluate both models on the
following metrics:

• Total Accuracy: The accuracy on the total test datasets.
• Accuracy on Relatively Simple Sequences: The accuracy on the subset of test sequences with

an IC below the fixed threshold (IC ≤ 14.57).

Figure 18 and Table 1 present the length generalization performance of the Single-Attn and Looped-
Attn models. We find that:

(a) Total Accuracy. As shown in Figure 18, Looped-Attn significantly outperforms Single-Attn
on out-of-distribution testing datasets with sequence lengths greater than the training length. This
performance gap confirms that the inductive bias of Looped-Attn leads to a more generalizable so-
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lution, aligning with our theoretical findings that its optimization landscape guides toward a more
flatter minimum.

An interesting observation from Figure 18 is that the accuracy of both models does not strictly
decrease as testing length increases (and even increases slightly). This phenomenon originates from
our specific design which employs cyclic transitions. In this setup, a longer sequence provides
the model with more in-context examples of the underlying repeating rule. This may temporarily
counteract the performance drops from increasing complexity. However, we point out on more
general datasets, a clearer trend of performance dropping with increasing sequence length would
be observed (Fan et al., 2024). Here, we focus more on the consistently superior performance of
Looped-Attn over Single-Attn.

(b) Accuracy on Relatively Simple Sequences. The ‘# Simple Sequences’ column reveals a critical
length generalization challenge: the low-IC sequences during training become rare or non-existent
in longer test sequences. This confirms that longer sequences are inherently more complex.

We consider the accuracy on these relatively simple sequences. Specifically, at L = 11 where a
significant portion of simple sequences still exists, Looped-Attn maintains a higher accuracy com-
pared to Single-Attn. This indicates that Single-Attn struggles to apply its knowledge even to tasks of
comparable complexity when the sequence is longer. In contrast, Looped-Attn generalizes better to
longer sequences. This aligns with our theory that Looped-Attn finds a more generalizable solution
by exploring further into the river downstream with flat minima.

E.1.4 SHIFT CRITERION WITH PATIENCE

Motivation for SCP Design. As discussed in Section 5, Figure 4 empirically validates the mo-
tivation behind SCP by illustrating the trade-off between computational efficiency and reasoning
accuracy. Specifically, Figure 4(a) reveals that while a delayed transition increases the speedup
factor, an excessive delay prevents Looped-Attn from converging in Stage II. In Figure 4(b), we vi-
sualize the training dynamics at a specific shift point (Epoch 120) to compare SHIFT, Single-Attn,
and Looped-Attn. These experiments indicate that relying solely on the loss plateau is insufficient
for determining the optimal transition timing. Since Single-Attn exhibits a long loss plateau, it is dif-
ficult to identify a precise moment that balances accuracy and efficiency based on loss alone. This
observation motivates the design of the second stage of SCP.

Hyperparameter Sensitivity of δ1, P , δ2 and W . We conduct a detailed sensitivity analy-
sis of the SCP criterion’s hyperparameters. Specifically, the baseline configuration is estab-
lished at δ1 = 0.001, P = 10, δ2 = 0.03 and W = 5, with experimental ranges in
δ1 ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5}, P ∈ {5, 6, 7, 8, 9, 10, 15, 20}, δ2 ∈
{0.025, 0.03, 0.035, 0.04, 0.045, 0.05} and W ∈ {3, 4, 5, 6, 7}.

As shown in Figure 20, for the Plateau Detection phase, the model exhibits robustness with the shift
point consistently stabilizing around epoch 119 regardless of variations in the loss threshold δ1 and
patience P . For the Gradient Stabilization Wait phase, a larger gradient norm threshold δ2 relaxes
the stability constraint, resulting in earlier transitions. To maximize total training efficiency, we
recommend selecting δ2 slightly above the intrinsic gradient norm rather than using arbitrarily loose
thresholds. The window W serves primarily to filter out single-step stochastic outliers. We advise
against setting W too large unless the gradient curve is exceptionally smooth.
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Figure 20: Hyperparameter Sensitivity in SCP.
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E.2 EXPERIMENTS ON PRACTICAL MODELS AND DATASETS

E.2.1 EXPERIMENTAL SETUP

This section details the experimental setup for evaluating three training paradigms on practical mod-
els and datasets: Single-Attn, Looped-Attn, and our proposed SHIFT framework. Our experimental
design follows the methodology for length generalization in looped transformers established by Fan
et al. (2024).

Architectures and Training Paradigms. To ensure a fair comparison, all experiments are con-
ducted under the equal parameter count principle. We employ a decoder-only GPT-2 architecture as
the foundational building block for all models.

• Single-Attn: This model is a standard, non-recursive Transformer trained via Full-Output Pre-
diction to generate the entire output sequence in a single forward pass.

• Looped-Attn: This model uses the same Transformer block as Single-Attn but applies it itera-
tively. We adopt a recursive variant “FOP-Loop-Adaptive” from Fan et al. (2024). Unlike our
toy model with a fixed number of loops (Section E.1), this more advanced setup allows the
model to adapt its computational depth. During training, the model is trained to produce the
output after exactly T loops for a training sequence of length T , with the loss computed only
at the T -th loop. During inference, it uses an adaptive stopping criterion to select the number
of loops for test sequences of different lengths.

• SHIFT: This is our proposed two-stage training strategy that transitions from Single-Attn to
Looped-Attn at a shift point guided by SCP (Section 5).

Datasets and Tasks. The datasets and tasks are adapted from Fan et al. (2024). We mainly eval-
uate models on five algorithmic reasoning tasks: Parity, Addition, Copy, Binary Sum, and Unique
Set. These tasks require multi-step reasoning, sequential computation and serve as benchmarks for
assessing a model’s ability to learn underlying patterns and generalize to sequence lengths not seen
during training (length generalization).

Hyperparameters and Implementation Details. Across all experiments, the model block is con-
figured with an embedding dimension of 256. The number of attention heads and block depth are
task-specific, following the settings in Fan et al. (2024). We use the AdamW optimizer with a learn-
ing rate of 1e-4. All models are trained for a total of 50,001 steps. Each experiment is conducted on
a single 24GB NVIDIA GeForce RTX 3090.

E.2.2 EXPERIMENTAL RESULTS

In the following, we present the experimental results on the above five datasets in Figure 22∼26.
For each dataset, we compare the training, validation, and length generalization performances of
the three models. Figure 21 summarizes the computational efficiency of the SHIFT framework
compared to the Looped-Attn baseline.

Performances of Single-Attn and Looped-Attn. We observe two interesting different behaviors
on training accuracy curves compared to the experiments on our synthetic Markov language datasets
(Figures 22∼26). However, our central findings remain consistent: Looped-Attn creates a River-
V-Valley landscape and thus demonstrates superior performance compared to the River-U-Valley
landscape in Single-Attn.

(a) On practical models and tasks, the training accuracy for all models achieves near 100% early,
which contrasts with the distinct two-phase accuracy curve observed on the toy dataset (Figure 3(b)).
This difference stems from the intrinsic structures of the tasks. Specifically,

• An algorithmic task like Parity is governed by a single, recursive underlying rule (e.g., a sequential
XOR operation) for all training samples, regardless of length. The initial descent in the valley
corresponds to the model learning this core operation, which is sufficient to solve nearly all in-
distribution short sequences and causes the training accuracy to quickly plateau. However, this
plateau masks a critical divergence in the optimization dynamics. Even after the accuracy metric
no longer improves, Looped-Attn continues its optimization by exploring river downstream, which
is essential for refining the learned core operation into a truly generalizable algorithm. In contrast,
Single-Attn gets trapped in the flat valley floor which explains its failure in length generalization.
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Figure 21: SHIFT Computational Efficiency on Algorithmic Datasets.

• Our synthetic Markov dataset is designed to contain a diverse set of distinct generative rules with
varying complexities. This naturally separates the training process: during the valley descent, the
model masters the simple rules, while the subsequent downstream exploration is required to learn
the more complex rules, resulting in a clear two-phase accuracy progression (if the model learns
the complex ones).

(b) On practical models and tasks, the accuracy drop upon shifting is significant, but minimal in our
toy model experiments (Figure 4(b)). This phenomenon does not contradict the validity of the Stage
I initialization in SHIFT, as the accuracy recovers rapidly. It reveals a crucial interaction between
the complexity of base architecture and the change of loss landscape.

In both experimental setups, the SHIFT transition reshapes the landscape from a U-shaped valley
to a V-shaped valley. However, the magnitude of this geometric shift appears to depend on the
complexity of the base architecture.

• On practical tasks, Looped-Attn and Single-Attn are built upon GPT-2. Applying the recursive
principle to this complex base architecture creates a V-shaped valley that is greatly different from
the U-shaped valley of its non-recursive ones. This causes the optimizer to significantly push the
parameters far from the stable region, leading to the observed temporary collapse in accuracy.

• On our synthetic dataset, Looped-Attn and Single-Attn are built from a single attention layer. For
these simplified models, the geometric distinction between the U-shaped valley and V-shaped
valley leads to a relatively smooth architectural transition and a stable accuracy trajectory.

This initial instability is the short-term cost of transitioning to a more powerful optimization path.

Effectiveness of SHIFT. Figures 22∼26 consistently validate the performance effectiveness of our
proposed SHIFT framework across all evaluated tasks. As shown in the (c) subfigures, Single-Attn
fails to generalize to longer sequences, while capable of achieving high accuracy on in-distribution
training data. In contrast, Looped-Attn demonstrates great length generalization capabilities by
maintaining high accuracy on longer test sequences. Our SHIFT framework successfully combines
the rapid initial convergence of Single-Attn with a final performance comparable to the Looped-
Attn baseline. Furthermore, as shown in Figure 21, SHIFT achieves this strong performance with
significantly greater computational efficiency, reducing training time across evaluated algorithmic
tasks.
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(c) Length Generalization

Figure 22: Parity Dataset (Shift Step 30k).

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

1

2

3

4
Tr

ai
ni

ng
 L

os
s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n 
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

9 10 11 12 13 14
Test Length

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 23: Addition Dataset (Shift Step 16k).
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Figure 24: Copy Dataset (Shift Step 17k).
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Figure 25: Binary Sum Dataset (Shift Step 31k).
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Figure 26: Unique Set Dataset (Shift Step 38k).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F ADDITIONAL DISCUSSIONS ON DEFINITION 1
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Figure 27: Eigenvalues of Valley Hessian (ϵ = 0.02).

Hyperparameters. The constants ϵ, δ, and ζ in Definition 1 serve as descriptive symbols to char-
acterize the intrinsic landscape geometry. Specifically, ϵ partitions the parameter space into the river
(the optimum exists in the river downstream) and valley (it generates driving force on river). Its
selection needs to respect the intrinsic spectral gap of the model. A reasonable ϵ is essential for
our theoretical results: setting ϵ too large would misclassify small eigenvalues as river components.
This artificially excludes the primary contributors to the valley’s energy E , thereby hiding the driving
force inherent in the V-shaped valley on river. Conversely, setting ϵ too close to zero risks including
numerical noise into the valley analysis. Furthermore, δ and ζ quantify geometric distinctions: δ dis-
tinguishes between the well-conditioned and ill-conditioned geometries, and ζ serves as a baseline
for energy magnitude.

Representative Examples. We assume a small threshold ϵ (e.g., ϵ = 0.02) separates the River and
Valley subspaces. Let {λ1, λ2, λ3} denote the eigenvalues and {v1, v2, v3} denote the corresponding
eigenvectors. We analyze four representative functions to illustrate the standard River-U-Valley,
River-V-Valley, and other special landscapes beyond the scope of Definition 1.

Case A: River-U-Valley (κ and E are small).

fA = 0.001x2
1 + x2

2 + x2
3.

The eigenvalues are λ1 = 0.002 ≤ ϵ, λ2, λ3 = 2 > ϵ. With Definition 1, the subspaces are
SRiver = span{v1} and SValley = span{v2, v3}. For the valley subspace, the condition number of
valley Hessian is κ = 1 (well-condition), and the inverse Hessian average energy is E = 0.25 (small
energy). This geometry corresponds to a U-shaped Valley: an isotropic bowl with uniformly steep
cliffs. In total, the landscape of fA is River-U-Valley.

Case B: River-V-Valley (κ and E are large).

fB = 0.001x2
1 + 0.02x2

2 + 2x2
3.

The eigenvalues are λ1 = 0.002 ≤ ϵ, λ2 = 0.04 > ϵ, λ3 = 4 > ϵ. With Definition 1, the subspaces
are SRiver = span{v1} and SValley = span{v2, v3}. For the valley subspace, the condition number of
valley Hessian is κ = 100 (ill-condition), the inverse Hessian average energy is E = 312.625 (large
energy). This geometry corresponds to a V-shaped Valley, characterized by varied and steep cliffs.
In total, the landscape of fB is River-V-Valley.

Case C: Anisotropic Valley with Low Energy (Large κ, Small E).

fC = 0.001x2
1 + x2

2 + 100x2
3.

The eigenvalues are λ1 = 0.002 ≤ ϵ, λ2 = 2 > ϵ, λ3 = 200 > ϵ. With Definition 1, the subspaces
are SRiver = span{v1} and SValley = span{v2, v3}. For the valley subspace, the condition number
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of valley Hessian is κ = 100 (ill-condition), the inverse Hessian average energy is E ≈ 0 (small
energy). Consequently, this geometry fits neither the U-shaped nor the V-shaped definition. For
the optimization dynamic, the large condition number induces hopping within the valley. However,
unlike the V-shaped valley, this hopping does not convert into effective river exploration because the
valley lacks a sufficiently small eigenvalue to drive the update. This case represents a suboptimal
anisotropic optimization landscape where the model endures instability without facilitating river
exploration. In total, this case is beyond the scope of this paper (Definition 1). In other words,
Single-Attn and Looped-Attn does not possess such landscapes.

Case D: Isotropic Valley with High Energy (Small κ, Large E).

fD = 0.001x2
1 + 0.02x2

2 + 0.02x2
3.

The eigenvalues are λ1 = 0.002 ≤ ϵ, λ2, λ3 = 0.04 > ϵ. With Definition 1, the subspaces are
SRiver = span{v1} and SValley = span{v2, v3}. For the valley subspace, the condition number of
valley Hessian is κ = 1 (well-condition), the inverse Hessian average energy is E = 625 (large
energy). Consequently, this geometry fits neither the U-shaped nor the V-shaped definition. For the
optimization dynamic, although the high energy implies a large potential driving force, the small
condition number induces a rapid smooth descent to the valley floor (θV → 0). Unlike the V-shaped
valley where oscillation keeps the valley parameters active, the rapid decay of θV causes the coupling
force on the river (HRV θV ) to vanish quickly. Therefore, despite the high energy, the model quickly
becomes trapped at the valley floor, failing to explore river downstream. In total, this case is beyond
the scope of this paper (Definition 1). In other words, Single-Attn and Looped-Attn does not possess
such landscapes.
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G RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

G.1 DEFINITIONS AND ASSUMPTIONS

Definition 2 (Block-Structured Hessian). Let the Hessian matrix H be represented in the or-
thonormal basis of the Valley {vi} and River {rj} subspaces. Its block components are defined by
the second directional derivatives of the loss L̂ as follows:

[HValley]ij =
∂2L̂

∂vi∂vj
, [HV R]ij =

∂2L̂

∂vi∂rj
, [HRV ]ij =

∂2L̂

∂ri∂vj
, [HRiver]ij =

∂2L̂

∂ri∂rj
.

Proof. This block structure is formally derived through a change of basis, transforming the standard
Hessian into the coordinate system defined by the River-Valley subspaces.

From standard basis to the River-Valley subspaces. Let Hold be the Hessian of the loss function
L̂(θ) with respect to the standard basis of Rd, where

[Hold]ij =
∂2L̂

∂θi∂θj
.

We introduce a new orthonormal basis aligned with the geometry of the landscape, formed by the
basis vectors of the valley subspace, SValley = span{v1, . . . , vdV

}, and the river subspace, SRiver =
span{r1, . . . , rdR

}.

The change of basis from the River-Valley coordinates to the standard coordinates is given by the
orthonormal matrix U :

U = (V,R) = (v1, · · · , vdV
, r1, · · · , rdR

) ∈ Rd×(dV +dR),

where V ∈ Rd×dV and R ∈ Rd×dR are matrices whose columns are the basis vectors of the
respective subspaces.

The Hessian in the new basis. The representation of the Hessian H in this new basis is

H = U⊤HoldU.

Substituting the block form of U yields the block structure of H:

H =

(
V ⊤

R⊤

)
Hold (V R) =

(
V ⊤HoldV V ⊤HoldR
R⊤HoldV R⊤HoldR

)
.

From this, we can identify each block:

• HValley = V ⊤HoldV : The projection of the Hessian onto the Valley subspace.

• HV R = V ⊤HoldR: The coupling term from the River to the Valley subspace.

• HRV = R⊤HoldV : The coupling term from the Valley to the River subspace.

• HRiver = R⊤HoldR: The projection of the Hessian onto the River subspace.

Thus, we have

[HValley]ij = v⊤i Holdvj =
∂2L̂

∂vi∂vj
,

[HV R]ij = v⊤i Holdrj =
∂2L̂

∂vi∂rj
,

[HRV ]ij = r⊤i Holdvj =
∂2L̂

∂ri∂vj
,

[HRiver]ij = r⊤i Holdrj =
∂2L̂

∂ri∂rj
.
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Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the
quadratic loss:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR,

where [HValley]ij = ∂2L̂
∂vi∂vj

, [HV R]ij = ∂2L̂
∂vi∂rj

, [HRV ]ij = ∂2L̂
∂ri∂vj

(Definition 2 in Appendix G.1).
We assume the coupling strength along the valley eigenvectors vi satisfies h ≤ ∥HRV vi∥ ≤ h̄
for constants h, h̄ > 0, and the valley parameters are initialized as θV,0 ∼ N (0, ᾱ2I/dV ) with
∥θV,0∥ ≤ ᾱ for a constant ᾱ > 0.
Remark 5. The structure of this loss model is a principled abstraction of our theoretical model
and empirical observations. Each component of the function corresponds to a specific geometric
hypothesis.

The valley component L̂Valley(θV ). The valley is a subspace with high curvature. Any movement
away from the valley floor should result in a significant increase in the loss value. We adopt a
simplest quadratic function to capture this behavior and landscape:

L̂Valley(θV ) =
1

2
θ⊤V HValleyθV .

The matrix HValley is the valley Hessian. Its spectral properties (condition number) directly model
the shape of the valley: U-shape and V-shape defined in Definition 1.

The river component L̂River(θR). The river corresponds to the subspace with near-zero eigenvalues,
forming a flat manifold. While the true landscape may possess non-zero curvature in these direc-
tions, empirical observations in Figures 7∼8 reveal a massive spectral gap between valley and river
directions (i.e., λValley ≫ λRiver). This suggests that along the full optimization trajectory (including
regions outside the idealized flat manifold), the quadratic confinement provided by the curvature in
the river direction is negligible compared to the driving force of the gradient. Consequently, opti-
mization dynamics within the river are dominated by the first-order gradient term. We thus adopt
the approximation HRiver ≈ 0 and model the river using a linear term:

L̂River(θR) = −h⊤
RθR.

Here, the vector hR represents the intrinsic gradient flow along the River. The negative sign indicates
that moving in the direction of hR decreases the loss. It effectively captures the slow dynamics along
the river relative to the fast dynamics in the valley.

The coupling component L̂Coupling(θV , θR). The optimization in valley and river subspaces are not
perfectly independent. To model their interaction, we adopt HRV to construct a simple quadratic
form:

L̂Coupling(θV , θR) = θ⊤RHRV θV = θ⊤V HV RθR,

since Hessian is symmetric, i.e., HRV = H⊤
V R. The matrix HRV is the Coupling Matrix that

quantifies the strength of the interaction between the subspaces. Specifically, HRV describes how a
movement in the valley induces a gradient in the river.

Assembling the final model. By combining these three principled components, we arrive at our
final quadratic loss function:

L̂(θV , θR) =
1

2
θ⊤V HValleyθV − h⊤

RθR + θ⊤RHRV θV .

This can be expressed compactly in the block-matrix form:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR.

In addition, for the initialization θV,0, we derive that

E
[
∥θV,0∥2

]
= E

[
dV∑
i=1

θ2i

]
= dV

ᾱ2

dV
= ᾱ2.
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According to the Law of Large Numbers, as dV is large, the norm of θV,0 is concentrated around
its expected value ᾱ. This initialization guarantees that θV,0 possesses non-zero projections onto the
eigenvectors associated with small valley eigenvalues. These components are essential for activating
the significant cumulative driving force of Looped-Attn.

Assumption 1 (Dominant Effect in Average Energy). Let E(1) and E(2) denote the Inverse
Hessian Average Energy (Definition 1) for Single-Attn and Looped-Attn, respectively. With h ≤
∥HRV vi∥ ≤ h̄ (Setting 1), assume that E(2)/E(1) ≫ h̄2/h2.

Remark 6. Assumption 1 ensures that the landscape advantage of Looped-Attn compared to Single-
Attn, characterized by the significant magnitude of inverse eigenvalues (E(2) ≫ E(1)), dominates
the scaling effects in the coupling strength. Specifically, the ratio h̄2/h2 is of a constant order, since
h̄ and h correspond to the projection strengths of HRV onto different valley eigenvectors, which
typically share the same magnitude. In contrast, the energy ratio E(2)/E(1) exceeds this constant
order due to the significant structural differences between Single-Attn and Looped-Attn models.

Assumption 2 (Bounded Time-Varying Valley Hessian). Let {HValley(θk)}k≥0 be the sequence
of Valley Hessians during the optimization trajectory. There exist constant, positive semi-definite
matrices HB and HT sharing a common stable basis with {HValley(θk)}k≥0, such that for all steps
k: HB ⪯ HValley(θk) ⪯ HT , where ⪯ denotes the Loewner order.

Remark 7. Assumption 2 posits a structurally stable valley subspace where the eigenvectors of
HValley(θk) do not rotate significantly, while the eigenvalues vary during the optimization phase.
We use matrices HB and HT to bound this evolving eigenspectrum. Specifically, with HB ⪯
HValley(θk) ⪯ HT , we have that the sorted eigenvalues satisfy λi(H

B) ≤ λi(HValley(θk)) ≤
λi(H

T ), ∀i = 1, · · · , d. Intuitively, the lower bound λi(H
B) guarantees that the valley direc-

tions do not become infinitely flat, ensuring the landscape possesses sufficient curvature to drive
optimization. The upper bound λi(H

T ) ensures that the steepest directions do not become infinitely
steep, i.e., the Hessian satisfies Lipschitz smoothness.

Assumption 3 (Bounded Time-Varying Coupling Hessian). Let HRV (θk) be the time-varying
coupling matrix at step k. There exist constant matrices H and H , such that H⊤H ⪯ H⊤

RV HRV ⪯
H

⊤
H , The coupling strength along the stable valley eigenvectors (Assumption 2) satisfy hgen ≤

∥HvTi ∥, ∥HvBi ∥ ≤ hgen for constants hgen, hgen > 0.

Remark 8. With Assumption 2, the eigenvectors {vTi } or {vBi } are stable, where {vTi } denote the
eigenvalues of Hessian upper bound HT , and {vBi } denote the eigenvalues of Hessian lower bound
HB . Assumption 3 bounds the coupling energy H⊤

RV HRV and coupling strength along these stable
eigenvectors. Specifically, it guarantees that the interaction between the valley and river subspaces
is well-behaved. The upper bounds ensure Lipschitz smoothness and the lower bounds ensure that
the gradient conversion from valley to river does not vanish.

Assumption 4 (Dominant Effect in Average Energy). Let E(1) and E(2) denote the Inverse Hes-
sian Average Energy (Definition 1) for Single-Attn and Looped-Attn, respectively. With ∥HvTi ∥ ≥
hgen, ∥HvBi ∥ ≤ hgen (Assumption 3), assume that E(2)/E(1) ≫ h̄2

gen/h
2
gen.

Remark 9. Assumption 4 ensures that the landscape advantage of Looped-Attn compared to Single-
Attn, characterized by the significant magnitude of inverse eigenvalues (E(2) ≫ E(1)), dominates the
scaling effects in the coupling strength.
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G.2 PROOF FOR THEOREM 1 AND COROLLARY 1

We aim to prove that over K iterations (the stage where the valley’s dynamics largely drive progress
in the river, i.e., before reaching the river), the total progress made in the river subspace is signifi-
cantly greater for Looped-Attn than for Single-Attn. In our theoretical model, superior convergence
performance is defined as the ability to explore further along the river, thus reaching a better opti-
mization performance.

With the quadratic loss model from Setting 1, L̂(θV , θR) = 1
2θ

⊤
V HValleyθV − h⊤

RθR + θ⊤RHRV θV ,
we derive the gradients:

∂L̂(θV , θR)

∂θV
= HValleyθV,k +HV RθR,k,

∂L̂(θV , θR)

∂θR
= HRV θV,k − hR.

Therefore the GD update rules for the two subspaces are:

θV,k+1 = θV,k − η (HValleyθV,k +HV RθR,k) = (I − ηHValley)θV,k − ηHV RθR,k, (1)
θR,k+1 = θR,k − η (HRV θV,k − hR) . (2)

Derivation of the cumulative change in the river subspace. Our goal is to quantify the total
progress made within the river subspace during K iterations. From Equation 2, the total change in
θR after K steps is:

∆θR,K ≜ θR,K − θR,0 =

K−1∑
k=0

(θR,k+1 − θR,k)

=

K−1∑
k=0

(ηhR − ηHRV θV,k)

= KηhR − η

K−1∑
k=0

HRV θV,k. (3)

The first term represents progress driven by the river’s intrinsic constant gradient. The second term
represents the influence from the valley. We define CK to be the cumulative effect induced by the
valley dynamics on the river, i.e., movement in the valley θV,k induces a gradient in the river:

CK ≜ η

K−1∑
k=0

HRV θV,k.

Spectral analysis of the dominant dynamics. The cumulative effect CK depends on the trajectory
of θV,k. The recurrence for θV,k in Equation 1 can be solved as

θV,k = ΦkθV,0 − η

k−1∑
j=0

Φk−1−jHV RθR,j , (4)

where Φ ≜ I − ηHValley. The trajectory of θV is composed of two parts: (a) the unforced update,
ΦkθV,0, represents the intrinsic decay of the valley component; and (b) the summation term repre-
sents the cumulative influence on the valley from the river. During the early and intermediate stages
of optimization (bouncing between the valleys), the magnitude of θV grows rapidly and remains sig-
nificantly larger than that of θR. Consequently, the term −ηHRV θV generates a significant driving
force on the river, while the term −ηHV RθR acts only as a minor perturbation on the valley. Thus,
the dynamics of the valley dominate and drive the exploration of the river, while the dynamics of the
river can be regarded as a secondary perturbation to the valley. We mainly consider the dominant
part (a) in the following.
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Let HValley = QΛQ⊤ be the spectral decomposition, where Q = [v1, . . . , vdV
] is the orthonormal

matrix of eigenvectors and Λ = diag(λ1, . . . , λdV
) is the diagonal matrix of corresponding eigen-

values. The dominant dynamics of θV are governed by the unforced update ΦkθV,0, which can be
expressed in the eigen-space as:

ΦkθV,0 = (I − ηQΛQ⊤)kθV,0

= (QIQ⊤ − ηQΛQ⊤)kθV,0

= Q(I − ηΛ)kQ⊤θV,0

=

dV∑
i=1

(1− ηλi)
kv⊤i θV,0vi (5)

Dominant cumulative effect for Single-Attn and Looped-Attn. We denote the dominant part of
the cumulative effect, arising from the unforced update, as ĈK :

ĈK ≜ η

K−1∑
k=0

HRV Φ
kθV,0. (6)

Let ρi ≜ 1 − ηλi be the decay rate of the i-th component. Substituting Equation 5 into Equation 6
yields:

ĈK = η

K−1∑
k=0

HRV Φ
kθV,0 = η

K−1∑
k=0

HRV

(
dV∑
i=1

ρki v
⊤
i θV,0vi

)

= η

dV∑
i=1

HRV v
⊤
i θV,0vi

(
K−1∑
k=0

ρki

)

= η

dV∑
i=1

HRV v
⊤
i θV,0vi

(
1− ρKi
1− ρi

)

=

dV∑
i=1

v⊤i θV,0
λi

HRV vi
(
1− ρKi

)
.

As K → ∞, ĈK is asymptotic to C∞:

C∞ = lim
K→∞

ĈK = lim
K→∞

dV∑
i=1

1

λi
HRV v

⊤
i θV,0vi

(
1− ρKi

)
=

dV∑
i=1

1

λi
HRV v

⊤
i θV,0vi.

With ∥HRV ∥ ≤ h̄ and ∥θV,0∥ ≤ ᾱ in Setting 1, we consider the norm of asymptotic value C∞:

∥C∞∥ =

∥∥∥∥∥
dV∑
i=1

1

λi
HRV v

⊤
i θV,0vi

∥∥∥∥∥
≤

dV∑
i=1

1

|λi|
|v⊤i θV,0| · ∥HRV vi∥

≤ ∥HRV ∥
dV∑
i=1

1

|λi|
|v⊤i θV,0|

≤
√
dV ∥HRV ∥ ∥θV,0∥

dV∑
i=1

1

|λi|

≤
√
dV h̄ ᾱ

dV∑
i=1

1

|λi|
≜ C (7)
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It means that after K iterations, the driving force from valley is limited to C. In other words, C
quantifies the total potential driving force the valley can generate, which is primarily related to the
inverse of the eigenvalues of the valley subspace.

With the expression of cumulative force, C =
√
dV h̄ ᾱ

∑dV

i=1
1

|λi| , we then compare two models.

The spectral experiments presented in Figure 27 (with ϵ = 0.02) reveal that Looped-Attn exhibits a
larger E(HValley) than Single-Attn. Thus with Definition 1, we summarize the characteristics of two
models in Conjecture 1∼2.

For Single-Attn with River-U-Valley, we have 1

d
(1)
V

∑d
(1)
V

i=1
1

(λ
(1)
i )2

≤ ζ. With inequality ∥x∥1 ≤
√
d∥x∥2 for vector x ∈ Rd, the maximal cumulative force satisfies

C(1) = h̄ᾱ

√
d
(1)
V

d
(1)
V∑

i=1

1

|λ(1)
i |

≤ h̄ᾱ

√
d
(1)
V

√
d
(1)
V

√√√√√d
(1)
V∑

i=1

1

(λ
(1)
i )2

≤ h̄ᾱ(d
(1)
V )3/2

√
ζ.

For Looped-Attn with River-V-Valley, we have 1

d
(2)
V

∑d
(2)
V

i=1
1

(λ
(2)
i )2

≫ ζ. With inequality ∥x∥1 ≥

∥x∥2 for vector x ∈ Rd, the maximal cumulative force satisfies

C(2) = h̄ᾱ

√
d
(2)
V

d
(2)
V∑

i=1

1

|λ(2)
i |

≥ h̄ᾱ

√
d
(2)
V

√√√√√d
(2)
V∑

i=1

1

(λ
(2)
i )2

≫ h̄ᾱd
(2)
V

√
ζ.

The valley dimensions of two model are typically of the same order, thus we conclude that

C(2) ≫ C(1).

This proves that the ill-conditioned nature of the V-shaped valley provides a larger potential for
driving exploration in the river subspace. This continued and powerful exploration allows Looped-
Attn to navigate further down the river, overcoming performance plateaus and achieving a superior
optimization performance compared to the rapidly trapped Single-Attn model.
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G.3 PROOF FOR COROLLARY 2

The quadratic loss in Setting 1 is:

L̂(θV , θR) =
1

2
θ⊤V HValleyθV − h⊤

RθR + θ⊤RHRV θV .

From Theorem 1, as K → ∞, the cumulative force converges to:

C∞ =

dV∑
i=1

1

λi
HRV v

⊤
i θV,0vi =

dV∑
i=1

ci
λi

ui,

where ci ≜ v⊤i θV,0 and ui ≜ HRV vi ∈ RdR .

With θV,0 ∼ N (0, ᾱ2I/dV ) in Setting 1, we have

E[cicj ] = E[v⊤i θV,0θ
⊤
V,0vj ] = v⊤i E[θV,0θ

⊤
V,0]vj .

If i = j, E[c2i ] = ᾱ2/dV . If i ̸= j, E[c2i ] = 0. Then the expected norm is

E
[
∥C∞∥2

]
= E

〈 dV∑
i=1

ci
λi

ui,

dV∑
j=1

cj
λj

uj

〉
=

dV∑
i=1

dV∑
j=1

E[cicj ]

λiλj
⟨ui, uj⟩

=

dV∑
i=1

E[c2i ]

λ2
i

∥ui∥2 =
ᾱ2

dV

dV∑
i=1

∥ui∥2

λ2
i

.

With h ≤ ∥HRV vi∥ ≤ h̄ in Setting 1, we have

ᾱ2

dV
h2

dV∑
i=1

1

λ2
i

≤ E
[
∥C∞∥2

]
≤ ᾱ2

dV
h̄2

dV∑
i=1

1

λ2
i

.

Thus,

E
[
∥C(2)

∞ ∥2
]
≥ ᾱ2

d
(2)
V

h2

d
(2)
V∑

i=1

1

(λ
(2)
i )2

,
ᾱ2

d
(1)
V

h̄2

d
(1)
V∑

i=1

1

(λ
(1)
i )2

≥ E
[
∥C(1)

∞ ∥2
]
.

With Definition 1 and Assumption 1, it leads to

E
[
∥C(2)

∞ ∥2
]
≫ E

[
∥C(1)

∞ ∥2
]
.

i.e., as K → ∞, E
[
∥C(2)

K ∥2
]
≫ E

[
∥C(1)

K ∥2
]
.

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Attn leads to converge rapidly in the valley subspace
(within K1 steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K2 steps, where K2 > K1). We consider K = K2.

At iteration K, for both models, the valley parameters are effectively zero:

θ
(1)
V,K ≈ 0 and θ

(2)
V,K ≈ 0.

Given θV,K ≈ 0, the valley and coupling terms become negligible for both models:

L̂Valley,K =
1

2
θ⊤V,KHValleyθV,K ≈ 0.
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L̂Coupling,K = θ⊤R,KHRV θV,K ≈ 0.

Therefore, the total loss for each model at step K is dominated by its river component:

L̂
(1)
K ≈ L̂

(1)
River,K = −h⊤

Rθ
(1)
R,K .

L̂
(2)
K ≈ L̂

(2)
River,K = −h⊤

Rθ
(2)
R,K .

From Equation 3,

∆θR,K = KηhR − η

K−1∑
k=0

HRV θV,k = KηhR − CK ,

where CK represents the cumulative effect from the valley dynamics over K iterations.

Loss Comparison. We analyze the change in the river loss, ∆L̂River,K = L̂River,K − L̂River,0.

E

[∣∣∣∆L̂
(1)
River,K

∣∣∣2 − ∣∣∣∆L̂
(2)
River,K

∣∣∣2]
=E

[∣∣∣−h⊤
R(θ

(1)
R,K − θ

(1)
R,0)

∣∣∣2 − ∣∣∣−h⊤
R(θ

(2)
R,K − θ

(2)
R,0)

∣∣∣2]
=E

[
K2η2∥hR∥4 + ∥hR∥2∥C(1)

K ∥2 −K2η2∥hR∥4 − ∥hR∥2∥C(2)
K ∥2

]
=∥hR∥2E

[
∥C(1)

K ∥2 − ∥C(2)
K ∥2

]
.

As K → ∞, we have E
[
∥C(2)

K ∥2
]
≫ E

[
∥C(1)

K ∥2
]
, then

E

[∣∣∣∆L̂
(1)
River,K

∣∣∣2 − ∣∣∣∆L̂
(2)
River,K

∣∣∣2] = ∥hR∥2E
[
∥C(2)

K ∥2 − ∥C(1)
K ∥2

]
≪ 0,

which yields E[|∆L̂
(1)
River,K |2] ≪ E[|∆L̂

(2)
River,K |2] and demonstrates that Looped-Attn achieves a

significantly greater loss reduction. Starting from the same initialization, a greater loss reduction
implies a lower final loss value:

E[(L̂
(2)
K )2] ≪ E[(L̂

(1)
K )2].

During the phase K = K2, Looped-Attn has exhibited significant advantages over Single-Attn.
Furthermore, for subsequent steps K > K2, Looped-Attn continues to explore the river downstream
while Single-Attn remains trapped in the flat valley.
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G.4 PROOF FOR THEOREM 3

We extend the analysis in Theorem 1 and Corollary 1∼2 to the more general loss model introduced
in Setting 2:

L̂(θV , θR) = L̂Valley(θV ) + L̂River(θR) + L̂Coupling(θV , θR).

Time-Varying Hessian and Dynamics Analysis. To analyze the optimization dynamics for the
general loss, we approximate the landscape locally around each iterate θk = (θV,k, θR,k) using a
second-order Taylor expansion. This approximation is justified since each step of GD η∂L̂(θk) is
typically small, the subsequent parameter θk+1 remains within this neighborhood.

The Taylor expansion of L̂(θ) around θk is given by:

L̂(θ) ≈ L̂(θk) + ∂θL̂(θk)
⊤(θ − θk) +

1

2
(θ − θk)

⊤H(θk)(θ − θk), (8)

where ∂θL̂(θk) and H(θk) are the gradient and Hessian evaluated at θk. And we have:

θ − θk =

(
θV − θV,k
θR − θR,k

)
, ∂θL̂(θk) =

(
∂θV L̂(θk)

∂θRL̂(θk)

)
, H(θk) =

(
HValley(θk) HV R(θk)
HRV (θk) HRiver(θk)

)
.

Substituting these into Equation 8 yields the local quadratic approximation:

L̂(θV , θR) ≈ L̂(θV,k, θR,k) +
(
∂θV L̂(θk)

)⊤
(θV − θV,k) +

(
∂θRL̂(θk)

)⊤
(θR − θR,k)

+
1

2
(θV − θV,k)

⊤HValley(θk)(θV − θV,k)

+
1

2
(θR − θR,k)

⊤HRiver(θk)(θR − θR,k)

+ (θR − θR,k)
⊤HRV (θk)(θV − θV,k).

From this approximation, we have

∂θV L̂(θV , θR) ≈ ∂θV L̂(θk) +HValley(θk)(θV − θV,k) +HV R(θk)(θR − θR,k),

∂θRL̂(θV , θR) ≈ ∂θRL̂(θk) +HRV (θk)(θV − θV,k),

where we assume HRiver(θk) ≈ 0 since river is an extremely flat region.

We find that the river update at the point near θk, is approximately linearly dependent θV and the
linear coefficient is HRV (θk). Thus we assume that the river gradient at θk is also following:

∂θRL̂(θV,k, θR,k) ≈ HRV (θk)θV,k − hR,k, (9)

where hR,k is the inherent driving force of the river itself, independent of the valley position. This
term is similar to the residual term in linear model. Similarly, we assume that the valley gradient at
θk is following:

∂θV L̂(θV,k, θR,k) ≈ HValley(θk)θV,k +HV R(θk)θR,k. (10)

We here assume the valley and river gradient as a linear function of θV or θR. Equation 9 cor-
responds to a first-order Taylor expansion of the gradient function expanded at the river manifold
θ̃ = (0, θR,k), i.e.,

∂θRL̂(θV,k, θR,k) = ∂θRL̂(0, θR,k) +HRV (θk)θV,k +R1(θV,k),

where ∂θRL̂(0, θR,k) ≜ −hR,k is the intrinsic driver force along the river, and R1(θV,k) =
1
2 [∂θV HRV ]θ

⊤
V,kθV,k is the Taylor remainder. The approximation in Equation 9 corresponds to re-

taining the first two terms and neglecting the remainder. Assuming the Hessian HRV is ρ1-Lipschitz
continuous w.r.t. θV , the remainder satisfies

∥R1(θV,k)∥ ≤ ρ1
2
∥θV,k∥2.
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We find that the linear term is of order O(∥θV,k∥), while the remainder is of order O(∥θV,k∥2).
Therefore, as the valley parameters ∥θV,k∥ decay during optimization, the error term vanishes at a
significantly faster rate than the linear term, ensuring the validity of Equation 9.

Equation 10 corresponds to a first-order Taylor expansion of the gradient function expanded at θ̃ =
(0,0), i.e.,

∂θV L̂(θV,k, θR,k) = ∂θV L̂(0, 0) +HValley(θk)(θV,k − 0) +HV R(θk)(θR,k − 0) +R2(θk),

where R2(θR,k) = 1
2 [∂θHRV ]θ

⊤
R,kθR,k is the Taylor remainder. Assuming the Hessian HRV is

ρ2-Lipschitz continuous w.r.t. θ, the remainder satisfies

∥R2(θV,k)∥ ≤ ρ2
2
∥θk∥2.

We find that the linear term is of order O(∥θk∥), while the remainder is of order O(∥θk∥2). There-
fore, as the parameters ∥θk∥ decay to minimum during optimization, the error term vanishes at a
significantly faster rate than the linear term, ensuring the validity of Equation 10.

Therefore the GD update rules for the two subspaces under general loss are:

θV,k+1 = θV,k − η∂θV L̂(θV,k, θR,k) ≈ (I − ηHValley(θk)) θV,k − ηHV R(θk)θR,k, (11)

θR,k+1 = θR,k − η∂θRL̂(θV,k, θR,k) ≈ θR,k − η (HRV (θk)θV,k − hR,k) . (12)
Comparing Equation 11∼12 with Equation 1∼2, we find that the optimization dynamics under
general loss can be viewed as evolving on a sequence of local quadratic landscapes, each defined by
a time-varying Hessian H(θk).

Derivation of the cumulative change in the river subspace. Following the same procedure as in
the quadratic case, we analyze the cumulative change in the river subspace over K iterations:

∆θR,K = θR,K − θR,0 =

K−1∑
k=0

(θR,k+1 − θR,k)

≈
K−1∑
k=0

(−ηHRV (θk)θV,k + ηhR,k)

≈ η

K−1∑
k=0

hR,k − η

K−1∑
k=0

HRV (θk)θV,k. (13)

We define CK,gen to be the cumulative effect induced by the valley dynamics:

CK,gen ≜ η

K−1∑
k=0

HRV (θk)θV,k.

The cumulative effect CK,gen depends on the trajectory of θV,k. The recurrence for θV,k in Equation
11 can be solved as

θV,k ≈

k−1∏
j=0

Φj

 θV,0 − η

k−1∑
j=0

 k−1∏
i=j+1

Φi

 bj ,

where Φk = I − ηHValley(θk) and bk = HV R(θk)θR,k. Similarly to Appendix G.2, we assume that
the unforced update (the first term) is dominant, then

θV,k ≈

k−1∏
j=0

Φj

 θV,0.

To analyze this, we introduce a effective Hessian HB with eigenvalues {λB
i } and eigenvectors {vBi },

which satisfies HB ⪯ HValley(θj) for all j (Assumption 2). Let ΦB = I − ηHB . This implies that
∥Φjv∥ ≤ ∥ΦBv∥ for any vector v. Thus,

∥θV,k∥ ≈

∥∥∥∥∥∥
k−1∏

j=0

Φj

 θV,0

∥∥∥∥∥∥ ≤
∥∥(ΦB)kθV,0

∥∥ .
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Let HB = QBΛB(QB)⊤ be the spectral decomposition of this bounding Hessian, where QB =
[vB1 , . . . , vBdV

] is the orthonormal matrix of eigenvectors and ΛB = diag(λB
1 , . . . , λ

B
dV

) is the diago-
nal matrix of corresponding eigenvalues. Let ρBi ≜ 1−ηλB

i be the decay rate of the i-th component,

∥θV,k∥ ≤
∥∥(ΦB)kθV,0

∥∥ =

∥∥∥∥∥
dV∑
i=1

(1− ηλB
i )

k(vBi )⊤θV,0v
B
i

∥∥∥∥∥ =

∥∥∥∥∥
dV∑
i=1

(ρBi )
k(vBi )⊤θV,0v

B
i

∥∥∥∥∥ .
Thus, under Assumption 3 and ∥θV,0∥ ≤ ᾱ,

∥CK,gen∥ ≈ η

K−1∑
k=0

∥HRV (θk)θV,k∥ ≤ η

K−1∑
k=0

∥∥∥∥∥
dV∑
i=1

HRV (θk)(ρ
B
i )

k(vBi )⊤θV,0v
B
i

∥∥∥∥∥
≤ η

K−1∑
k=0

dV∑
i=1

∥∥HRV (θk)v
B
i

∥∥∥∥(ρBi )k(vBi )⊤θV,0
∥∥

≤ η

K−1∑
k=0

dV∑
i=1

h̄gen
∥∥(ρBi )k(vBi )⊤θV,0

∥∥
≤ η h̄gen

K−1∑
k=0

(
dV∑
i=1

|ρBi |k|(vBi )⊤θV,0|

)

= η h̄gen

dV∑
i=1

|(vBi )⊤θV,0|

(
K−1∑
k=0

|ρBi |k
)

= h̄gen

dV∑
i=1

|(vBi )⊤θV,0|
(
|1− (ρBi )

K |
|λB

i |

)

≤ h̄gen

dV∑
i=1

|(vBi )⊤θV,0|
|λB

i |

≤
√
dV h̄gen ᾱ

dV∑
i=1

1

|λB
i |

≜ Cgen.

It means that after K iterations, the driving force from valley is limited to Cgen, determined by two
factors: (a) h̄gen, the supremum of the coupling strength which represents the most efficient effect of
valley on the river; (b) {λB

i }, the eigenspecturm of valley subspace.

With the expression of cumulative force Cgen =
√
dV h̄gen ᾱ

∑dV

i=1
1

|λB
i | , we compare two models.

The spectral experiments presented in Figure 27 (with ϵ = 0.02) reveal that Looped-Attn exhibits a
larger E(HValley) than Single-Attn. Thus with Definition 1, we summarize the characteristics of two
models in Conjecture 1∼2.

For Single-Attn with River-U-Valley, we have 1

d
(1)
V

∑d
(1)
V

i=1
1

(λ
B(1)
i )2

≤ ζ. With inequality ∥x∥1 ≤
√
d∥x∥2 for vector x ∈ Rd, the maximal cumulative force satisfies

C(1)
gen = h̄genᾱ

√
d
(1)
V

d
(1)
V∑

i=1

1

|λB(1)
i |

≤ h̄genᾱ

√
d
(1)
V

√
d
(1)
V

√√√√√d
(1)
V∑

i=1

1

(λ
B(1)
i )2

≤ h̄genᾱ(d
(1)
V )3/2

√
ζ.

For Looped-Attn with River-V-Valley, we have 1

d
(2)
V

∑d
(2)
V

i=1
1

(λ
B(2)
i )2

≫ ζ. With inequality ∥x∥1 ≥

∥x∥2 for vector x ∈ Rd, the maximal cumulative force satisfies

C(2)
gen = h̄genᾱ

√
d
(2)
V

d
(2)
V∑

i=1

1

|λB(2)
i |

≥ h̄genᾱ

√
d
(2)
V

√√√√√d
(2)
V∑

i=1

1

(λ
B(2)
i )2

≫ h̄genᾱd
(2)
V

√
ζ.
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The valley dimensions of two model are typically of the same order, thus we conclude that

C(2)
gen ≫ C(1)

gen .

In summary, under general loss, we prove that the V-shaped valley in Looped-Attn provides a larger
potential for driving exploration in the river subspace.

In the following, similar to Corollary 2, we can also connect with loss values.

With the general loss form in Setting 2,

L̂(θV , θR) = L̂Valley(θV ) + L̂River(θR) + L̂Coupling(θV , θR).

Recall that, as K → ∞ ∥CK,gen∥ ≤ h̄gen
∑dV

i=1
|(vB

i )⊤θV,0|
|λB

i | , let cBi = (vBi )⊤θV,0. With θV,0 ∼
N (0, ᾱ2I/dV ) in Setting 2, we have

E[cBi c
B
j ] = E

[
(vBi )

⊤
θV,0θ

⊤
V,0v

B
j

]
= (vBi )

⊤
E
[
θV,0θ

⊤
V,0

]
vBj .

If i = j, E[(cBi )
2] = ᾱ2/dV . If i ̸= j, E[(cBi )

2] = 0. Then taking expectation over initialization,
we have

E
[
∥CK,gen∥2

]
≤ E

h̄2
gen

〈
dV∑
i=1

|(vBi )⊤θV,0|
|λB

i |
,

dV∑
j=1

|(vBj )⊤θV,0|
|λB

j |

〉
= E

h̄2
gen

〈
dV∑
i=1

|(cBi )|
|λB

i |
,

dV∑
j=1

|cBj |
|λB

j |

〉
= h̄2

gen

dV∑
i=1

dV∑
j=1

E
[
cBi c

B
j

]
λB
i λ

B
j

= h̄2
gen

dV∑
i=1

E
[
(cBi )

2
]

(λB
i )

2

=
ᾱ2

dV
h̄2

gen

dV∑
i=1

1

(λB
i )

2
.

We introduce Hessian HT with eigenvalues {λT
i } and eigenvectors {vTi }, which satisfies

HValley(θj) ⪯ HT for all j (Assumption 2).

∥θV,k∥ ≥
∥∥(ΦT )kθV,0

∥∥ =

∥∥∥∥∥
dV∑
i=1

(1− ηλT
i )

k(vTi )
⊤θV,0v

T
i

∥∥∥∥∥ =

∥∥∥∥∥
dV∑
i=1

(ρTi )
k(vTi )

⊤θV,0v
T
i

∥∥∥∥∥ .
With Assumption 3, we can derive the lower bound of E

[
∥CK,gen∥2

]
.

E
[
∥CK,gen∥2

]
= E

∥∥∥∥∥η
K−1∑
k=0

HRV (θk)θV,k

∥∥∥∥∥
2


= η2E

[〈
K−1∑
k=0

HRV (θk)θV,k,

K−1∑
t=0

HRV (θt)θV,t

〉]

= η2E

[
K−1∑
k=0

K−1∑
t=0

θ⊤V,kH
⊤
RV (θk)HRV (θt)θV,t

]

≥ η2E

[
K−1∑
k=0

θ⊤V,k(H)⊤HθV,k

]

≥ η2E

K−1∑
k=0

(
dV∑
i=1

(ρTi )
k(vTi )

⊤θV,0v
T
i

)⊤

(H)⊤H

 dV∑
j=1

(ρTj )
k(vTj )

⊤θV,0v
T
j

 ,
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where the last inequality holds due to the stable valley eigenvectors in Assumption 2. As K → ∞,
we have

E
[
∥CK,gen∥2

]
≥ E

( dV∑
i=1

1

λT
i

(vTi )
⊤θV,0v

T
i

)⊤

(H)⊤H

 dV∑
j=1

1

λT
j

(vTj )
⊤θV,0v

T
j


= E

( dV∑
i=1

1

λT
i

H(vTi )
⊤θV,0v

T
i

)⊤ dV∑
j=1

1

λT
j

H(vTj )
⊤θV,0v

T
j


=

(
dV∑
i=1

ci
λT
i

ui

)⊤ dV∑
j=1

cj
λT
j

uj

 ,

where ci = (vTi )
⊤θV,0 ∈ R and ui = HvTi ∈ RdR . Furthermore,

E
[
∥CK,gen∥2

]
=

dV∑
i=1

E[c2i ]

(λT
i )

2
∥ui∥2 =

ᾱ2

dV

dV∑
i=1

∥ui∥2

(λT
i )

2

≥ ᾱ2

dV
h2

gen

dV∑
i=1

1

(λT
i )

2
.

Thus,

E
[
∥C(2)

K,gen∥
2
]
≥ ᾱ2

d
(2)
V

h2
gen

d
(2)
V∑

i=1

1

(λ
T (2)
i )2

,
ᾱ2

dV
h̄2

gen

dV∑
i=1

1

(λ
B(1)
i )2

≥ E
[
∥C(1)

K,gen∥
2
]
.

With Definition 1 and Assumption 4, it leads to

E
[
∥C(2)

K,gen∥
2
]
≫ E

[
∥C(1)

K,gen∥
2
]
.

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Attn leads to converge rapidly in the valley subspace
(within K1 steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K2 steps, where K2 > K1). We consider K = K2.

At iteration K, for both models, the valley parameters are θ
(1)
V,K ≈ 0 and θ

(2)
V,K ≈ 0. Thus, L̂(1)

K ≈
L̂
(1)
River,K and L̂

(2)
K ≈ L̂

(2)
River,K .

We then analyze the change in the river loss, ∆L̂River,K = L̂River,K − L̂River,0. With the Taylor
expansion of L̂(θ) around θk,

L̂(θ) ≈ L̂(θk) + ∂θL̂(θk)
⊤(θ − θk) +

1

2
(θ − θk)

⊤H(θk)(θ − θk). (14)

Substitute θ = θk+1 and θk+1 = θk − η∂θL̂(θk), we have

L̂(θk+1) ≈ L̂(θk)− η∂θL̂(θk)
⊤∂θL̂(θk) +

η2

2
L̂(θk)

⊤H(θk)L̂(θk). (15)

With a small learning rate, we approximate the above as L̂(θk+1) ≈ L̂(θk) − η∂θL̂(θk)
⊤∂θL̂(θk).

Thus

∆L̂River,K =

K−1∑
k=0

(
L̂River(θR,k+1)− L̂River(θR,k)

)
≈ −η

K−1∑
k=0

∥∥∥∂θRL̂(θk)∥∥∥2 .
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From Equation 12, ∂θRL̂(θV,k, θR,k) ≈ HRV (θk)θV,k − hR,k, we have

∆L̂River,K ≈ −η

K−1∑
k=0

∥HRV (θk)θV,k − hR,k∥2

= −η

K−1∑
k=0

∥HRV (θk)θV,k∥2 − η

K−1∑
k=0

∥hR,k∥2 + 2η

K−1∑
k=0

(hR,k)
⊤(HRV (θk)θV,k).

Assume that the river inherent gradient hR is the same during training for both models,

E

[(
∆L̂

(1)
River,K

)2
−
(
∆L̂

(2)
River,K

)2]
=E

[
η2

K−1∑
k=0

(∥∥∥H(1)
RV (θ

(1)
k )θ

(1)
V,k

∥∥∥4 − ∥∥∥H(2)
RV (θ

(2)
k )θ

(2)
V,k

∥∥∥4)]

+ 4η2
K−1∑
k=0

(
[(h

(1)
R,k)

⊤(H
(1)
RV (θ

(1)
k )θ

(1)
V,k)]

2 − [(h
(2)
R,k)

⊤(H
(2)
RV (θ

(2)
k )θ

(2)
V,k)]

2
)

=E
[
∥C(1)

K,gen∥
2 − ∥C(2)

K,gen∥
2
]

E
[
∥C(1)

K,gen∥
2 + ∥C(2)

K,gen∥
2
]
+ 4∥hR∥2E

[
∥C(1)

K,gen∥
2 − ∥C(2)

K,gen∥
2
]
.

As K → ∞, we have E
[
∥C(1)

K,gen∥2
]
≪ E

[
∥C(2)

K,gen∥2
]
, then

E

[(
∆L̂

(1)
River,K

)2
−
(
∆L̂

(2)
River,K

)2]
≪ 0,

which yields E[(∆L̂
(1)
River,K)2] ≪ E[(∆L̂

(2)
River,K)2] and demonstrates that Looped-Attn achieves a

significantly greater loss reduction. Starting from the same initialization, a greater loss reduction
implies a lower final loss value E[(L̂

(2)
River,K)2] ≪ E[(L̂

(1)
River, K)

2], then

E[(L̂
(2)
K )2] ≪ E[(L̂

(1)
K )2].

During the phase K = K2, Looped-Attn has exhibited significant advantages over Single-Attn.
Furthermore, for subsequent steps K > K2, Looped-Attn continues to explore the river downstream
while Single-Attn remains trapped in the flat valley.
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H SHARED RIVER UPSTREAM

H.1 ASSUMPTIONS AND USEFUL LEMMAS

H.1.1 ASSUMPTIONS

Assumption 5 (Diagonally Dominant and PSD Weight Matrices). Assume that the key, query, and
value weight matrices (WK ,WQ,WV ) are diagonally dominant with Positive Semidefinite (PSD)
diagonal matrices DK , DQ, DV , we have

WK = DK + ϵK ,

WQ = DQ + ϵQ,

WV = DV + ϵV ,

where ϵK , ϵQ, ϵV are dense matrices with significantly smaller spectral norm.
Remark 10 (Justification of Assumption 5). This assumption provides mathematical tractability
for the formal analysis of composite matrix transformations, which is necessary for proving the posi-
tive alignment of gradients. Intuitively, it may approximate the behavior of the attention mechanism
during the early stages of training, where the model first learns simple local dependencies before
capturing more complex global interactions.

This assumption represents a relative idealization. In practice, the weight matrices of a well-trained,
deep Transformer are typically dense and are not guaranteed to be PSD. In a practical setting, we
posit that the gradients are more likely to be broadly aligned or at least non-negatively correlated,
particularly during the initial phase of training. This weaker form of alignment is sufficient to
support the theoretical basis for our SHIFT framework, ensuring that the parameters learned by
Single-Attn provide a beneficial starting point for Looped-Attn.
Assumption 6 (Approximate PSD Property of Composite Transformations). Let DA and DB be
Positive Semidefinite (PSD) diagonal matrices, and let P be a general PSD matrix. We assume that
their product, M = DAPDB , is approximately PSD. This means the matrix M can be decomposed
as:

M = MPSD + ϵ,

where MPSD is a PSD matrix that captures the dominant, direction-preserving behavior of the trans-
formation, and ϵ is a perturbation matrix with a small norm relative to MPSD.
Remark 11 (Justification for Assumption 6). A matrix is strictly PSD only if it is symmetric and
its quadratic form is non-negative for all vectors. The composite transformation M = DAPDB

generally fails the first symmetric condition, and in rare extreme cases, may fail the second. The
perturbation term ϵ accounts for these two sources of deviation from strict PSD properties.

(a) Minor Fluctuation from Non-Symmetry. The primary deviation arises from the non-
commutativity of matrix multiplication, which breaks symmetry. The transpose of M is M⊤ =
DBPDA, which is generally not equal to M . Therefore, M is not symmetric. In a well-behaved
system, we assume that this non-symmetry only introduce minor fluctuations rather than fundamen-
tally altering the transformation’s property.

(b) Non-PSD Behavior from Extreme Anisotropic Scaling. Another possible deviation can occur
even in the symmetric part of M , i.e., Msym = 1

2 (DAPDB +DBPDA). While the composition of
direction-preserving operators (DA, P,DB) is intuitively expected to remain direction-preserving, it
is possible to construct extreme counterexamples. Such cases arises when the diagonal matrices DA

and DB induce extreme anisotropic scaling (i.e., some diagonal entries are very large while others
are near-zero). This can significantly alter the direction of an arbitrary vector before and after the
application of P , leading to a negative quadratic form. Our assumption posits that during the initial
stage of training attention models, such extreme conditions are not common. We model these rare
non-PSD behaviors as part of the small perturbation ϵ, allowing our analysis to focus on the system’s
dominant, approximately PSD behavior captured by MPSD.

H.1.2 GRADIENT CALCULATIONS

In this section, we present two key lemmas regarding the gradients of the cross-entropy loss function
with respect to the key (WK) and query (WQ) matrices for the Single-Attn and Looped-Attn models.
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Lemma 1. For the Single-Attn model, the gradients of the empirical loss L̂(θ) with respect to the
key matrix WK and query matrix WQ are given by:

∇WK
L̂(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WQ
L̂(θ) = Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

where A = WV E0E
⊤
0 ∈ Rd×d, b = WQz0 ∈ Rd, and Ã = WV E0E

⊤
0 W⊤

K ∈ Rd×d, b̃ = z0 ∈ Rd.

Remark 12. Recall that, E0 ∈ Rd×n is the input embedding matrix, z0 ∈ Rd is the query vector,
which is the last column of embedding E0. WK ,WQ,WV ∈ Rd×d are the key, query, and value
weight matrices, respectively. Wh is the prediction head parameters. Furthermore, S(ŷ) represents
the softmax probability vector of the logits, and ey = [0, · · · , 1, · · · , 0]⊤, i.e., the value of the y-th
component is 1, and 0 otherwise. The operator ⊗ denotes the Kronecker product.

Proof. Our objective is to compute the gradients ∇WK
L̂(θ) and ∇WQ

L̂(θ) for the Single-Attn
model. We begin by recalling the definition of the empirical loss and the architecture of the Single-
Attn model. The loss for one sequence is given by l̂ = − log(Sy(ŷ)), where logits ŷ = Whfθ(E0, z0)
and the linear attention function is fθ(E0, z0) = WV E0E

⊤
0 W⊤

KWQz0. The overall empirical loss
L̂(θ) is averaging over the training set.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss l̂ is a function of the logit vector ŷ.

2. The logit vector ŷ is a function of the final state z1.

3. The final state z1 is function of the attention output fθ(E0, z0).

4. The attention output fθ(E0, z0) is a function of the model parameters WK and WQ.

We will compute the gradient for each component of the chain rule individually.

Step 1: Gradient with respect to the logit vector ŷ. We first compute the derivative of l̂ with
respect to an individual logit component ŷk. The softmax probability for the ground-truth token y is
defined as:

log (Sy(ŷ)) = log

(
eŷy∑V
j=1 e

ŷj

)
= ŷy − log

V∑
j=1

eŷj .

When k = y,
∂ log(Sy(ŷ))

∂ŷy
= 1− eŷy∑V

j=1 e
ŷj

= 1− Sy(ŷ).

When k ̸= y,
∂ log(Sy(ŷ))

∂ŷk
= 0− eŷk∑V

j=1 e
ŷj

= −Sk(ŷ).

Combining these results,
∇ŷ log(Sy(ŷ)) = ey − S(ŷ),

where ey is a one-hot vector with a 1 at the position corresponding to the ground-truth token y, S(ŷ)

represents the softmax probability vector of the logits. Therefore, the gradient of the loss l̂ with
respect to ŷ is:

∇ŷ l̂ = −(ey − S(ŷ)) = S(ŷ)− ey.

Step 2: Gradient with respect to the final state z1. We then compute the derivative of the logit
vector ŷ with respect to the state z1. With ŷ = Whz1, we have

∂ŷ

∂z1
=

∂Whz1
∂z1

= W⊤
h .
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Step 3: Gradient with respect to the key matrix WK . We now compute the derivative of the final
state z1 with respect to the key matrix WK .

With z1 = z0 + fθ(E0, z0), we have

∂z1
∂WK

=
∂fθ(E0, z0)

∂WK

∂z1
∂fθ(E0, z0)

=
∂fθ(E0, z0)

∂WK
∈ Rd2×d.

Define A = WV E0E
⊤
0 ∈ Rd×d and b = WQz0 ∈ Rd. The attention function fθ(E0, z0) =

WV E0E
⊤
0 W⊤

KWQz0 simplifies to fθ(E0, z0) = AW⊤
K b. We get

∂fθ(E0, z0)

∂WK
=

∂(AW⊤
K b)

∂WK
= A⊤ ⊗ b ∈ Rd2×d,

where ⊗ denotes the Kronecker product. Thus,

∂z1
∂WK

= A⊤ ⊗ b ∈ Rd2×d.

Combining the above steps using the chain rule, we have

∇WK
L̂(θ) = Ê [−∇WK

log (Sy(ŷ))]

= Ê

[
− ∂z1
∂WK

∂ŷ

∂z1
∇ŷ log(Sy(ŷ))

]
= Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

where A = WV E0E
⊤
0 ∈ Rd×d, b = WQz0 ∈ Rd.

Step 4: Gradient with respect to the query matrix WQ. The process for computing the gradient
with respect to WQ is similar.

Define Ã = WV E0E
⊤
0 W⊤

K ∈ Rd×d and b̃ = z0 ∈ Rd. The attention function fθ(E0, z0) =

WV E0E
⊤
0 W⊤

KWQz0 can be written as fθ(E0, z0) = ÃWQb̃. We have

∂fθ(E0, z0)

∂WQ
=

∂(ÃWQb̃)

∂WQ
= b̃⊗ Ã⊤ ∈ Rd2×d.

Thus,
∂z1
∂WQ

= b̃⊗ Ã⊤ ∈ Rd2×d.

Again, applying the chain rule by combining this result with Step 1 and Step 2, we have

∇WQ
L̂(θ) = Ê

[
−∇WQ

log (Sy(ŷ))
]

= Ê

[
− ∂z1
∂WQ

∂ŷ

∂z1
∇ŷ log(Sy(ŷ))

]
= Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

where Ã = WV E0E
⊤
0 W⊤

K ∈ Rd×d, b̃ = z0 ∈ Rd.

Lemma 2. For the Looped-Attn model, the gradients of the empirical loss L̂(θ) with respect to the
key matrix WK and the query matrix WQ are given by:

∇WK
L̂(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

∇WQ
L̂(θ) = Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
,

where At−1 = WV Et−1E
⊤
t−1 ∈ Rd×d, bt−1 = WQzt−1 ∈ Rd, and Ãt−1 = WV Et−1E

⊤
t−1W

⊤
K ∈

Rd×d, b̃t−1 = zt−1 ∈ Rd for each loop iteration t.
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Remark 13. Recall that, Et−1 and zt−1 are the intermediate representations during looping. The
representations are updated by zt = zt−1 + fθ(Et−1, zt−1) and Et = Et−1 + fθ(Et−1). Further-
more, WK ,WQ,WV ∈ Rd×d are the key, query, and value weight matrices, respectively. Wh is
the prediction head parameters. S(ŷ) represents the softmax probability vector of the logits, and
ey = [0, · · · , 1, · · · , 0]⊤, i.e., the value of the y-th component is 1, and 0 otherwise. The operator
⊗ denotes the Kronecker product.

Proof. We aim to compute the gradients ∇WK
L̂(θ) and ∇WQ

L̂(θ) for the Looped-Attn model. The
final logit vector ŷ is produced by applying the prediction head Wh to the final state zT , which is
obtained by T loops of the attention function.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss l̂ is a function of the logit vector ŷ.

2. The logit vector ŷ is a function of the final state zT .

3. The final state zT is a function of the attention outputs fθ(Et−1, zt−1) from all preceding steps
t = 1, . . . , T .

4. Each attention output fθ(Et−1, zt−1) is a function of the model parameters WK and WQ.

We proceed by computing the gradient for each component in this chain.

Step 1: Gradient with respect to the logit vector ŷ. This step is identical to the derivation for the
Single-Attn model. The gradient of the loss l̂ with respect to the logit vector ŷ is:

∇ŷ l̂ = S(ŷ)− ey,

where S(ŷ) is the softmax probability vector and ey is the one-hot vector for the ground-truth token.

Step 2: Gradient with respect to the final state zT . With ŷ = WhzT , we have

∂ŷ

∂zT
=

∂WhzT
∂zT

= W⊤
h .

Step 3: Gradient with respect to the key matrix WK . With the iteration zt = zt−1 +
fθ(Et−1, zt−1), we can derive a recursive defintion

zT = z0 +

T∑
t=1

fθ(Et−1, zt−1).

Then we have

∂zT
∂WK

=

T∑
t=1

∂fθ(Et−1, zt−1)

∂WK

∂zT
∂fθ(Et−1, zt−1)

=

T∑
t=1

∂fθ(Et−1, zt−1)

∂WK
∈ Rd2×d.

The derivative of the attention function fθ(Et−1, zt−1) = WV Et−1E
⊤
t−1W

⊤
KWQzt−1 with respect

to WK is structurally identical to the Single-Attn case, but with time-dependent inputs.

Define At−1 = WV Et−1E
⊤
t−1 and bt−1 = WQzt−1 for each loop t ∈ [T ], then

∂fθ(Et−1, zt−1)

∂WK
= A⊤

t−1 ⊗ bt−1.

Thus

∂zT
∂WK

=

T∑
t=1

(A⊤
t−1 ⊗ bt−1) ∈ Rd2×d.
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Combining the above results using the chain rule, we have

∇WK
L̂(θ) = Ê [−∇WK

log (Sy(ŷ))]

= Ê

[
− ∂zT
∂WK

∂ŷ

∂zT
∇ŷ log(Sy(ŷ))

]
= Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

where At−1 = WV Et−1E
⊤
t−1 ∈ Rd×d, bt−1 = WQzt−1 ∈ Rd.

Step 4: Gradient with respect to the query matrix WQ. The derivation for WQ is similar to that
for WK .

Define Ãt−1 = WV Et−1E
⊤
t−1W

⊤
K and b̃t−1 = zt−1 for each loop t ∈ [T ], then

∂fθ(Et−1, zt−1)

∂WQ
= b̃t−1 ⊗ Ã⊤

t−1.

Thus

∂zT
∂WQ

=

T∑
t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
∈ Rd2×d.

Finally, applying the chain rule gives the gradient for WQ:

∇WQ
L̂(θ) = Ê

[
−∇WQ

log (Sy(ŷ))
]

= Ê

[
− ∂zT
∂WQ

∂ŷ

∂zT
∇ŷ log(Sy(ŷ))

]
= Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(Ŷ )− ey)

]
,

where Ãt−1 = WV Et−1E
⊤
t−1W

⊤
K ∈ Rd×d, b̃ = zt−1 ∈ Rd.

H.1.3 THE PRECONDITIONING EFFECT FOR Looped-Attn

In Lemma 1 and 2, we have derived the gradients for both Single-Attn and Looped-Attn models, we
now directly compare them. This analysis reveals a crucial insight into the optimization dynamics
of Looped-Attn.

Lemma 3. Denote the empirical loss L̂1 for Single-Attn and L̂2 for Looped-Attn, then the gradient
of the Looped-Attn model can be expressed as the preconditioned gradient of the Single-Attn model:

∇WK
L̂2(θ) = PWK

∇WK
L̂1(θ),

∇WQ
L̂2(θ) = PWQ

∇WQ
L̂1(θ),

where the preconditioners PWK
and PWQ

are defined as:

PWK
= I + Ê

[
P2P

+
1

]
,

with P1 = A⊤ ⊗ b, P2 =
∑T

t=2

(
A⊤

t−1 ⊗ bt−1

)
, P+

1 P1 = I , and P+
1 is the Moore-Penrose pseu-

doinverse.
PWQ

= I + Ê
[
P̃2P̃

+
1

]
,

with P̃1 = b̃ ⊗ Ã⊤, P̃2 =
∑T

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
, P̃+

1 P̃1 = I , and P̃+
1 is the Moore-Penrose

pseudoinverse.

Remark 14. Recall that in Lemma 1 and 2, we define: At−1 = WV Et−1E
⊤
t−1, bt−1 = WQzt−1,

A = WV E0E
⊤
0 , and b = WQz0; Ãt−1 = WV Et−1E

⊤
t−1W

⊤
K , b̃t−1 = zt−1, Ã = WV E0E

⊤
0 W⊤

K ,
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and b̃ = z0. This Lemma shows that the gradient of the Looped-Attn model can be expressed as
the gradient of the Single-Attn model multiplied by a specific linear operator. The operator acts
as a preconditioner, effectively using information from the iterative refinement steps to adjust the
magnitude and direction of the base gradient calculated from a single attention pass.

In Lemma 3, the full-rank assumption for E0E
⊤
0 holds during the early stages of training. At

initialization, the input embeddings E0 = WembX utilize the full representation space and have not
collapsed into a low-dimensional intrinsic subspace. The rank deficiency typically arises in the late
training stage due to feature collapse where the dimension d exceeds the intrinsic dimension.

Lemma 4 discusses the rank-deficiency case in the late training stage, where the residual terms
emerge due to feature collapse. Specifically, the terms I − Π or I − Π̃ represent the null-space of
Single-Attn where the model fails to acquire gradient information. The lemma reveals that Looped-
Attn retains access to these directions via the residual terms RWK

and RWQ
. Consequently, the

recursive operations P2 and P̃2 process these null-space signals, effectively recovering information
lost by the non-recursive model.

While Lemma 4 addresses the rank-deficiency case in the late training stage, we utilize Lemma 3
for the derivation of Theorem 4. This is because Theorem 4 investigates gradient alignment in the
initial descent phase within the valley subspace.

Proof. We prove this lemma by direct algebraic computation, starting with the gradient with respect
to the key matrix WK .

Derivation for the key matrix WK . Recall the expressions for the Single-Attn gradient (∇WK
L̂1)

and the Looped-Attn gradient (∇WK
L̂2):

∇WK
L̂1(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WK
L̂2(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

The core of the proof is to decompose the summation in the Looped-Attn gradient. We separate the
first term of the series (for t = 1) from the subsequent terms (for t = 2 to T ):

∇WK
L̂2(θ) = Ê

[(
A⊤

0 ⊗ b0
)
W⊤

h (S(ŷ)− ey) +

T∑
t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

By the definitions, we have A0 = A, b0 = b. With our assumption, δ1 = 1d and Diag(δ1) = I .
Thus, the first term is exactly the gradient of the Single-Attn model:

∇WK
L̂2(θ) = ∇WK

L̂1(θ) + Ê

[
T∑

t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

Define P1 = A⊤ ⊗ b, P2 =
∑T

t=2

(
A⊤

t−1 ⊗ bt−1

)
, then we derive that

∇WK
L̂2(θ) = ∇WK

L̂1(θ) + Ê

[
T∑

t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(Ŷ )− ey)

]
= ∇WK

L̂1(θ) + Ê
[
P2P

+
1 P1W

⊤
h (S(Ŷ )− ey)

]
= ∇WK

L̂1(θ) + Ê
[
P2P

+
1

]
∇WK

L̂1(θ)

=
(
I + Ê

[
P2P

+
1

])
∇WK

L̂1(θ).

where P+
1 P1 = I , P+

1 is the Moore-Penrose pseudoinverse with b ̸= 0, rank(A⊤) = d.

We can therefore identify the preconditioner for WK as:

PWK
= I + Ê

[
P2P

+
1

]
.
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Derivation for the query matrix WQ. The derivation for the query matrix WQ follows an identical
procedure. We begin by stating the gradients:

∇WQ
L̂1(θ) = Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

∇WQ
L̂2(θ) = Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
.

Again, we split the summation and identify the first term as the Single-Attn gradient:

∇WQ
L̂2(θ) = Ê

[(
b̃0 ⊗ Ã⊤

0

)
W⊤

h (S(ŷ)− ey) +

T∑
t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]

= ∇WQ
L̂1(θ) + Ê

[
T∑

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
.

Define P̃1 = b̃⊗ Ã⊤, P̃2 =
∑T

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
, then we derive that

∇WQ
L̂2(θ) = ∇WQ

L̂1(θ) + Ê

[
T∑

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(Ŷ )− ey)

]
= ∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1 P̃1W

⊤
h (S(Ŷ )− ey)

]
= ∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1

]
∇WQ

L̂1(θ)

=
(
I + Ê

[
P̃2P̃

+
1

])
∇WQ

L̂1(θ),

where P̃+
1 P̃1 = I , P̃+

1 is the Moore-Penrose pseudoinverse with b̃ ̸= 0, rank(Ã⊤) = d.

We can therefore identify the preconditioner for WK as:

PWQ
= I + Ê

[
P̃2P̃

+
1

]
.

This completes the proof, demonstrating that the iterative updates in Looped-Attn introduce a pre-
conditioning term to the standard single-pass attention gradient.

Lemma 4. Denote the empirical loss L̂1 for Single-Attn and L̂2 for Looped-Attn, then the gradient
of the Looped-Attn model can be expressed as the preconditioned gradient of the Single-Attn model
in addition with a residual term:

∇WK
L̂2(θ) = PWK

∇WK
L̂1(θ) +RWK

,

∇WQ
L̂2(θ) = PWQ

∇WQ
L̂1(θ) +RWQ

,

where the preconditioners PWK
, PWQ

and residual terms RWK
, RWQ

are defined as:

PWK
= I + Ê

[
P2P

+
1

]
,RWK

= Ê
[
P2(I −Π)W⊤

h (S(Ŷ )− ey)
]
.

with P1 = A⊤ ⊗ b, P2 =
∑T

t=2

(
A⊤

t−1 ⊗ bt−1

)
, P+

1 P1 ≜ Π, and P+
1 is the Moore-Penrose

pseudoinverse.

PWQ
= I + Ê

[
P̃2P̃

+
1

]
,RWQ

= Ê
[
P̃2(I − Π̃)W⊤

h (S(Ŷ )− ey)
]
.

with P̃1 = b̃ ⊗ Ã⊤, P̃2 =
∑T

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
, P̃+

1 P̃1 ≜ Π̃, and P̃+
1 is the Moore-Penrose

pseudoinverse.
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Proof. We proceed with the derivation for WK without assuming P1 is full rank. Recall the decom-
position of the summation:

∇WK
L̂2(θ)

=∇WK
L̂1(θ) + Ê

[
T∑

t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(Ŷ )− ey)

]
=∇WK

L̂1(θ) + Ê
[
P2(P

+
1 P1 + I − P+

1 P1)W
⊤
h (S(Ŷ )− ey)

]
=∇WK

L̂1(θ) + Ê
[
P2P

+
1 P1W

⊤
h (S(Ŷ )− ey)

]
+ Ê

[
P2(I − P+

1 P1)W
⊤
h (S(Ŷ )− ey)

]
=∇WK

L̂1(θ) + Ê
[
P2P

+
1

]
∇WK

L̂1(θ) + Ê
[
P2(I −Π)W⊤

h (S(Ŷ )− ey)
]

=
(
I + Ê

[
P2P

+
1

])
∇WK

L̂1(θ) +RWK
,

where P+
1 is the Moore-Penrose pseudoinverse and P+

1 P1 ≜ Π.

The derivation for the query matrix WQ follows an identical procedure:

∇WQ
L̂2(θ)

=∇WQ
L̂1(θ) + Ê

[
T∑

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(Ŷ )− ey)

]
=∇WQ

L̂1(θ) + Ê
[
P̃2(P̃

+
1 P̃1 + I − P̃+

1 P̃1)W
⊤
h (S(Ŷ )− ey)

]
=∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1 P̃1W

⊤
h (S(Ŷ )− ey)

]
+ Ê

[
P̃2(I − P̃+

1 P̃1)W
⊤
h (S(Ŷ )− ey)

]
=∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1

]
∇WQ

L̂1(θ) + Ê
[
P̃2(I − Π̃)W⊤

h (S(Ŷ )− ey)
]

=
(
I + Ê

[
P̃2P̃

+
1

])
∇WQ

L̂1(θ) +RQ,

where P̃+
1 is the Moore-Penrose pseudoinverse and P̃+

1 P̃1 ≜ Π̃.

Under the full-rank assumption (rank(A) = d, b ̸= 0), Π = I , and the residual term RWK
vanishes,

recovering Lemma 3.
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H.2 PROOF FOR THEOREM 4

This section provides a formal analysis to demonstrate that the gradients of the Single-Attn and
Looped-Attn models are positively aligned, a key theoretical foundation for the two-phase training
strategy (SHIFT) proposed in our work. We establish this by proving that the inner product of the
two gradient vectors is positive. This positive alignment ensures they point in a similar direction of
descent. As both models make progress in the river direction during the initial phase of learning,
this implies they explore a shared river upstream.

Proof. We begin by recalling the gradient expressions from Lemmas 1∼2, and the preconditioner
relationship from Lemma 3. We have

∇WK
L̂1(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WK
L̂2(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

∇WK
L̂2(θ) = PWK

∇WK
L̂1(θ).

We then analysis the directions of two gradients,

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ = Tr
((

∇WK
L̂2(θ)

)⊤
∇WK

L̂1(θ)

)
= Tr

((
PWK

∇WK
L̂1(θ)

)⊤
∇WK

L̂1(θ)

)
= Tr

(
∇⊤

WK
L̂1(θ)P

⊤
WK

∇WK
L̂1(θ)

)
.

The inner product is guaranteed to be non-negative if the matrix P⊤
WK

is Positive Semidefinite (PSD),
i.e., P⊤

WK
⪰ 0. Our goal is to derive a set of sufficient conditions under which this holds.

From Lemma 3, we have
P⊤
WK

= I + Ê[(P+
1 )⊤P⊤

2 ].

To ensure P⊤
WK

⪰ 0, we need to find conditions of Ê[(P+
1 )⊤P⊤

2 ] ⪰ 0. We analyze the term
(P+

1 )⊤P⊤
2 for a single data sample. Using the properties of Kronecker products and pseudo-

inverses, we have:

(P+
1 )⊤P⊤

2 = (A+ ⊗ b+⊤)

T∑
t=2

(
At−1 ⊗ b⊤t−1

)
=

T∑
t=2

(A+ ⊗ b+⊤)
[
(At−1 ⊗ b⊤t−1)

]
.

To analyze this expression, we first establish recursive updates for At−1 and bt−1.

Recursive Updates of At−1. The matrix At−1 = WV Et−1E
⊤
t−1 depends on the history of updates

to the embedding matrix E. With Et−1 = E0 +
∑t−1

s=1 f(Es−1), we can write:

At−1 =WV Et−1E
⊤
t−1 = WV

(
E0 +

t−1∑
s=1

f(Es−1)

)(
E0 +

t−1∑
s=1

f(Es−1)

)⊤

=WV

[
E0E

⊤
0 + E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤]

=A+WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤].

We denote

∆At−1 = WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤].
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Recursive Updates of bt−1. Similarly, the vector bt−1 = WQzt−1 depends on the history of
updates to the query vector z. With zt−1 = z0 +

∑t−1
s=1 f(Es−1, zs−1), we can write:

bt−1 = WQzt−1 = WQ

(
z0 +

t−1∑
s=1

f(Es−1, zs−1)

)
= b+WQ

t−1∑
s=1

f(Es−1, zs−1).

We denote ∆bt−1 = WQ

∑t−1
s=1 f(Es−1, zs−1).

Substitute At−1 and bt−1 into (P+
1 )⊤P⊤

2 . Let A+ = (WV E0E
⊤
0 )+ and b+⊤ = (WQz0)

+⊤. For
each term in the summation (t = 2 to T ), substitute At−1 = A + ∆At−1 and bt−1 = b + ∆bt−1,
where ∆At−1 and ∆bt−1 denote the recursive updates:

(A+ ⊗ b+⊤)(At−1 ⊗ b⊤t−1)

=(A+ ⊗ b+⊤)
[
(A+∆At−1)⊗ (b+∆bt−1)

⊤]
=(A+ ⊗ b+⊤)

[
(A⊗ b⊤) + (A⊗∆b⊤t−1) + (∆At−1 ⊗ b⊤) + (∆At−1 ⊗∆b⊤t−1)

]
.

For the first term,

(A+ ⊗ b+⊤)(A⊗ b⊤) = (A+ ⊗ b+⊤)

d∑
k=1

eke
⊤
k (A⊗ b⊤)

=

d∑
k=1

(A+ ⊗ b+⊤)eke
⊤
k (A⊗ b⊤)

=

d∑
k=1

(A+ ⊗ b+⊤)((eke
⊤
k A)⊗ b⊤)

=

d∑
k=1

(A+eke
⊤
k A)⊗ (b+⊤b⊤),

where ek = [0, · · · , 1, · · · , 0]⊤ ∈ Rd, the k-th element is 1, and others is 0. eke⊤k (A ⊗ b⊤) means
that keeping the k-th row of matrix A ⊗ b⊤ and others is 0. Similarly, eke⊤k A means that keeping
the k-th row of matrix A, thus eke⊤k (A⊗ b⊤) = (eke

⊤
k A)⊗ b⊤.

b is a vector and b ̸= 0, then b+ = b⊤/b⊤b,

(A+ ⊗ b+⊤)(A⊗ b⊤) =

d∑
k=1

(A+eke
⊤
k A)⊗ (b+⊤b⊤)

= (A+
d∑

k=1

eke
⊤
k A)⊗ (b+⊤b⊤)

= (A+A)⊗ (b+⊤b⊤)

=
1

b⊤b
(A+A)⊗ (bb⊤).

For the second term,

(A+ ⊗ b+⊤)(A⊗∆b⊤t−1) = (A+A)⊗ (b+⊤∆b⊤t−1)

=
1

b⊤b
(A+A)⊗ (b∆b⊤t−1).

For the third term,

(A+ ⊗ b+⊤)(∆At−1 ⊗ b⊤) = (A+∆At−1)⊗ (b+⊤b⊤)

=
1

b⊤b
(A+∆At−1)⊗ (bb⊤).
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For the fourth term,

(A+ ⊗ b+⊤)(∆At−1 ⊗∆b⊤t−1) = (A+∆At−1)⊗ (b+⊤∆b⊤t−1)

=
1

b⊤b
(A+∆At−1)⊗ (b∆b⊤t−1).

Summarizing the decomposition for (P+
1 )⊤P⊤

2 :

(P+
1 )⊤P⊤

2

=

T∑
t=2

[Term1 + Term2 + Term3 + Term4]

=
1

b⊤b

T∑
t=2

(A+A)⊗ (bb⊤) + (A+A)⊗ (b∆b⊤t−1) + (A+∆At−1)⊗ (bb⊤) + (A+∆At−1)⊗ (b∆b⊤t−1).

We now derive sufficient conditions for each term satisfies PSD.

Term Analysis. For Term1,

Term1 =
1

b⊤b
(A+A)⊗ (bb⊤).

bb⊤ is a rank-1 PSD matrix. We also have A+A = I ⪰ 0.

For Term2,

Term2 =
1

b⊤b
(A+A)⊗ (b∆b⊤t−1).

We have A+A = I ⪰ 0. For b∆b⊤t−1,

∆bt−1 = WQ

t−1∑
s=1

f(Es−1, zs−1)

f(Et−1, zt−1) = WV Et−1E
⊤
t−1W

⊤
KWQzt−1

f(Et−1) = WV Et−1E
⊤
t−1W

⊤
KWQEt−1

Et−1 = E0 +

t−1∑
s=1

f(Es−1)

zt−1 = z0 +

t−1∑
s=1

fθ(Es−1, zs−1).

We need to prove there exists α ≥ 0 such that ∆bt−1 = αb.

Base Case: When t = 2, s = 1,

∆b1 = WQf(E0, z0)

= WQ(WV E0E
⊤
0 W⊤

KWQz0)

= WQ(WV E0E
⊤
0 W⊤

K b)

= (WQWV E0E
⊤
0 W⊤

K )b

≜ Φ1b,

where E0E
⊤
0 ⪰ 0. With Assumption 5, WK , WQ, WV are approximately diagonal matrices,

WK = DK + ϵK ,

WQ = DQ + ϵQ,

WV = DV + ϵV ,
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where DK , DQ, DV are diagonal and ϵK , ϵQ, ϵV are dense matrices with extremely small elements.
Thus we have

Φ1 = WQWV E0E
⊤
0 W⊤

K

= (DQ + ϵQ)(DV + ϵV )E0E
⊤
0 (DK + ϵK)

= (DQDV +DQϵV + ϵQDV + ϵQϵV )E0E
⊤
0 (DK + ϵK)

= DQDV E0E
⊤
0 DK +O(ϵK , ϵQ, ϵV ).

With Assumption 6 (DA = DQDV , DB = Dk, P = E0E
⊤
0 ), we conclude that Φ1 is approximately

PSD, and ∆b1 is co-directional with b.

Inductive Hypothesis: Assume that for s = 1 to s = k − 1, ∆bk−1 = Φk−1b where Φk−1 ⪰ 0, i.e.,
∆bk−1 is co-directional with b.

∆bk−1 = WQ

k−1∑
s=1

f(Es−1, zs−1) = Φk−1b. (16)

Inductive Step: When s = k,

∆bk = WQ

k∑
s=1

f(Es−1, zs−1)

= WQ

k−1∑
s=1

f(Es−1, zs−1) +WQf(Ek−1, zk−1)

= Φk−1b+WQ(WV Ek−1E
⊤
k−1W

⊤
KWQzk−1)

= Φk−1b+WQWV Ek−1E
⊤
k−1W

⊤
KWQzk−1,

where

zk−1 = z0 +

k−1∑
s=1

δs ⊙ fθ(Es−1, zs−1)

= W−1
Q b+W−1

Q Φk−1b

= W−1
Q (I +Φk−1)b,

then zk−1 is co-directional with b. Denote Φ′
k ≜ WQDiag(δk)WV Ek−1E

⊤
k−1W

⊤
KWQW

−1
Q (I +

Φk−1), similarly with Assumption 5∼6, we have Φ′
k is approximately PSD, and then

∆bk = Φk−1b+Φ′
kb.

Thus, ∆bk is co-directional with b.

Summary of Sufficient Condition: WK ,WQ,WV are approximately diagonal matrices, DK , DQ,
DV are PSD. These are summarized in Assumption 5∼6.

For Term3,

Term3 =
1

b⊤b
(A+∆At−1)⊗ (bb⊤).

bb⊤ is a rank-1 PSD matrix. We need to derive that the condition of A+∆At−1 ⪰ 0. With the
definition of ∆At−1,

∆At−1 =WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤]

f(Et−1) =WV Et−1E
⊤
t−1W

⊤
KWQEt−1

Et−1 =E0 +

t−1∑
s=1

f(Es−1).
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We need to prove there exists Ψ ⪰ 0 such that ∆At−1 = ΨA, then A+∆At−1 ⪰ 0 can be derived.

Base Case: When t = 2, s = 1,

∆A1 = WV

[
E0(f(E0))

⊤ + f(E0)E
⊤
0 + f(E0)(f(E0))

⊤] .
(1) Substitute A = WV E0E

⊤
0 into f(E0) = WV E0E

⊤
0 W⊤

KWQE0. Let Ξ1 ≜ W⊤
KWQE0.

f(E0) = WV E0E
⊤
0 W⊤

KWQE0 = AW⊤
KWQE0 = AΞ1.

(2) Substitute

∆A1

=WV

[
E0(AΞ1)

⊤ + (AΞ1)E
⊤
0 + (AΞ1)(AΞ1)

⊤]
=WV E0Ξ

⊤
1 A

⊤ +WV AΞ1E
⊤
0 +WV AΞ1Ξ

⊤
1 A

⊤

=WV E0E
⊤
0 W⊤

QWKE0E
⊤
0 W⊤

V +WV WV E0E
⊤
0 W⊤

KWQE0E
⊤
0 +WV AW⊤

KWQE0E
⊤
0 W⊤

QWKA⊤

=AW⊤
QWK︸ ︷︷ ︸
:T ′

1

A⊤ +WV AW⊤
KWQW

−1
V︸ ︷︷ ︸

:T ′
2

A+WV AW⊤
KWQE0E

⊤
0 W⊤

QWK︸ ︷︷ ︸
:T ′

3

A⊤

=AW⊤
QWKA⊤A+︸ ︷︷ ︸

:T1

A+WV AW⊤
KWQW

−1
V︸ ︷︷ ︸

:T2

A+WV AW⊤
KWQE0E

⊤
0 W⊤

QWKA⊤A+︸ ︷︷ ︸
:T3

A

≜Ψ1A,

where A+ is the pseudoinverse matrix of A. Similarly with Assumption 5∼6, when assuming that
WK , WQ, WV are approximately diagonal matrices. DK , DQ, DV ⪰ 0, we have ∆A1 = Ψ1A
where Ψ1 is approximately PSD.

Inductive Hypothesis: Assume that for s = 1 to s = k − 1, ∆Ak−1 = Ψk−1A where Ψk−1 ⪰ 0.

∆Ak−1 =WV

[
E0

k−1∑
s=1

(∆s ⊙ f(Es−1))
⊤ +

k−1∑
s=1

(∆s ⊙ f(Es−1))E
⊤
0

+

k−1∑
s=1

k−1∑
s′=1

(∆s ⊙ f(Es−1))(∆s′ ⊙ f(Es′−1))
⊤] = Ψk−1A.

Inductive Step: When s = k,

∆Ak

=WV

[
E0

k∑
s=1

(f(Es−1))
⊤ +

k∑
s=1

f(Es−1)E
⊤
0 +

k∑
s=1

k∑
s′=1

f(Es−1)(f(Es′−1))
⊤

]
=Ψk−1A+WV

[
E0(f(Ek−1))

⊤ + f(Ek−1)E
⊤
0 + f(Ek−1)(f(Ek−1)

⊤)
]

=Ψk−1A+WV E0f(Ek−1)
⊤ +WV f(Ek−1)E

⊤
0 +WV f(Ek−1)f(Ek−1)

⊤

=Ψk−1A+WV E0E
⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V +WV WV Ek−1E

⊤
k−1W

⊤
KWQEk−1E

⊤
0

+WV WV Ek−1E
⊤
k−1W

⊤
KWQEk−1E

⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V

=Ψk−1A+
(
WV E0E

⊤
0 +WV E0∆E⊤

k−1

)
W⊤

QWKEk−1E
⊤
k−1W

⊤
V A+︸ ︷︷ ︸

:M1

A

+WV WV Ek−1E
⊤
k−1W

⊤
KWQ

(
E0E

⊤
0 +∆Ek−1E

⊤
0

)
A+︸ ︷︷ ︸

:M2

A

+WV WV Ek−1E
⊤
k−1W

⊤
KWQEk−1E

⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V A+︸ ︷︷ ︸

:M3

A

=Ψk−1A+M1A+M2A+M3A

=ΨkA,
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where Ek−1 = E0 +
∑k−1

s=1 f(Es−1), denote ∆Ek−1 =
∑k−1

s=1 f(Es−1), similarly to ∆b = Φb, we
have ∆Ek−1 = Ωk−1E0 and Ωk−1 ⪰ 0,

WV E0E
⊤
k−1 = WV E0E

⊤
0 +WV E0∆E⊤

k−1,

Ek−1E
⊤
0 = E0E

⊤
0 +∆Ek−1E

⊤
0 .

Similarly to ∆A1, we have Ψk = Ψk−1+M1+M2+M3 ⪰ 0, thus we conclude that ∆Ak = ΨkA.

Furthermore, using ∆Ak = ΨkA with Ψk ⪰ 0, we then have A+∆A ⪰ 0.

Summary of Sufficient Condition: WK , WQ, WV are approximately diagonal matrices,
DK , DQ, DV ⪰ 0. These are summarized in Assumption 5∼6.

For Term4,

Term4 =
1

b⊤b
(A+∆At−1)⊗ (b∆b⊤t−1).

Combining the analysis for Term2 and Term3, we need the conditions in Assumption 5∼6.

Similarly to WK , the conditions for preconditioner PWQ
⪰ 0 are also Assumption 5∼6.

Therefore, when with Assumption 5∼6, the gradient updates on key and query matrices are co-
directional between Single-Attn and Looped-Attn models:

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ ≥ 0, ⟨∇WQ
L̂1(θ),∇WQ

L̂2(θ)⟩ ≥ 0.

I USAGE OF LARGE LANGUAGE MODELS

In this work, we utilize Large Language Models (LLMs) for language polishing and grammar cor-
rection under our supervision. These suggestions are carefully reviewed and selectively adopted,
ensuring consistency with our intended meaning and academic integrity. In addition, we use LLMs
to generate the background visualizations for Figures 1(a)∼1(b). The optimization trajectories pre-
sented in these figures are manually plotted by us.
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