
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT MAKES LOOPED TRANSFORMERS PERFORM
BETTER THAN NON-RECURSIVE ONES (PROVABLY)

Anonymous authors
Paper under double-blind review

ABSTRACT

While looped transformers (termed as Looped-Attn) often outperform standard
transformers (termed as Single-Attn) on complex reasoning tasks, the theoretical
basis for this advantage remains underexplored. In this paper, we explain this
phenomenon through the lens of loss landscape geometry, inspired by empirical
observations of their distinct dynamics at both sample and Hessian levels. To
formalize this, we extend the River-Valley landscape model by distinguishing be-
tween U-shaped valleys (flat) and V-shaped valleys (steep). Based on empirical
observations, we conjecture that the recursive architecture of Looped-Attn induces
a landscape-level inductive bias towards River-V-Valley. Theoretical derivations
based on this inductive bias guarantee a better loss convergence along the river
due to valley hopping, and further encourage learning about complex patterns
compared to the River-U-Valley induced by Single-Attn. Building on this insight,
we propose SHIFT (Staged HIerarchical Framework for Progressive Training),
a staged training framework that accelerates the training process of Looped-Attn
while achieving comparable performances.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have emerged as a cornerstone across various fields (Devlin
et al., 2019; Radford et al., 2019; Liu et al., 2021; He et al., 2022), particularly in Large Language
Models (LLMs) (Brown et al., 2020; Achiam et al., 2023). Despite their success, transformers often
exhibit challenges in complex reasoning tasks involving arithmetic, commonsense, and symbolic
reasoning (Rae et al., 2021; Anil et al., 2022; Wei et al., 2022; Lightman et al., 2023; Ahn et al.,
2024). While prompting strategies such as Chain-of-Thought (CoT) have greatly enhanced the rea-
soning capabilities (Wei et al., 2022; Fu et al., 2022; Chowdhery et al., 2023), the corresponding
performances on tasks requiring long reasoning chains are inherently constrained by the fixed-depth
transformers (Chen et al., 2025). This limitation motivates the exploration of alternative architec-
tures designed for advanced multi-step reasoning.

It is well-established that standard, non-recursive transformers (Vaswani et al., 2017) (termed as
Single-Attn) often exhibit a performance plateau on complex problems. This is particularly evident
in length generalization issues, where performances of Single-Attn drop on sequences longer than
those seen during training (Anil et al., 2022; Xiao & Liu, 2023; Jin et al., 2024; Zhou et al., 2024). As
an alternative, looped transformers with recursive structure (Dehghani et al., 2018; Lan et al., 2019)
(termed as Looped-Attn) have demonstrated success on such complex reasoning tasks (Giannou
et al., 2023; Fan et al., 2024; Saunshi et al., 2025; Bae et al., 2025). Specifically, Looped-Attn
deploys recursive self-attention blocks to iteratively refine its internal representations, which helps
transformers overcome the performance bottlenecks observed in Single-Attn. Although empirical
evidence indicates the superiority of Looped-Attn over Single-Attn, the theoretical understanding of
this advantage remains underexplored. This performance gap evidently stems from the recursive
mechanism in Looped-Attn, but precisely how this structural modification translates into superior
reasoning capabilities is still an open question. This motivates the following question:

What makes looped transformers perform better than non-recursive ones? Specifically, how
does the inductive bias from recursion enhance reasoning capabilities?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) River-U-Valley (b) River-V-Valley

Rapid Valley Descent

Stage I: Train Single-Attn

Embedding

Output

Linear Self-Attention

Feed Forward Neural Network

Learnable

Valley Hopping and Deep River Exploration

Stage II: Train Looped-Attn

Embedding

Output

Learnable

Looping the Attention Block

Ultilize

Linear Self-Attention

Feed Forward Neural Network

(c) SHIFT

Figure 1: Loss Landscapes, Optimization Trajectories and SHIFT Strategy.

To theoretically answer this question, we start by empirically investigating the learning processes
of Single-Attn and Looped-Attn. Our investigation examines their behaviors at two levels: a macro-
level evaluation of model performance across samples of varying difficulties, and a micro-level
examination of the loss landscape’s local curvature via Hessian dynamics. These observations reveal
two key differences in how Single-Attn and Looped-Attn learn, which serve as the foundations for
our subsequent theoretical analysis. We outline these observations below and provide a detailed
discussion in Section 4.1.

Observation 1: Sample-Level Performance

(a) Single-Attn. The learning process stops progressing after mastering simple patterns.
(b) Looped-Attn. The learning process follows a two-phase curriculum, from simple patterns
to complex ones.

Observation 2: Hessian-Level Dynamics

(a) Single-Attn. The eigenspectrum remains relatively static.
(b) Looped-Attn. The eigenspectrum undergoes a three-phase evolution: Collapse, Diversifi-
cation, and Stabilization.

In this paper, we argue that the above two observations potentially originate from the distinct loss
landscapes induced by different attention architectures. To formalize this, we extend the River-
Valley landscape model (Wen et al., 2024) by distinguishing between U-shaped valleys (flat) and
V-shaped valleys (steep). Based on this framework, we hypothesize that the Single-Attn landscape is
dominated by U-shaped valleys, whereas the recursive structure of Looped-Attn creates a landscape
dominated by V-shaped valleys. This geometric difference accounts for the behaviors observed:

• V-shaped valleys induce a hopping path across valleys, which drives diversification before stabi-
lization of the Hessian eigenspectrum (Observation 2);

• V-shaped valleys might convert hopping to significant progress along the river, which encourages
to learn on the complex patterns (Observation 1).

This mechanism comes from the landscape-level inductive bias of Looped-Attn. Figure 1 provides
an intuitive illustration, and Sections 4.2∼4.3 detail the formal propositions and theorems.

Furthermore, based on the above understandings, we propose SHIFT (Staged HIerarchical
Framework for Progressive Training) that combines Single-Attn and Looped-Attn to improve the
computational efficiency of Looped-Attn. Above analysis reveals that both models share the initial
phase of mastering simple patterns, and we further demonstrate that their optimization landscapes
have a shared river upstream region containing solutions to these patterns. Therefore, SHIFT ini-
tially deploys the computationally efficient Single-Attn to learn simple patterns, and then switches
it to Looped-Attn, which enables to explore the river downstream and learn complex patterns. A
crucial question remains on when to switch from Single-Attn to Looped-Attn. We present a SHIFT
Criterion with Patience (SCP), established on the performance and optimization stability of Single-
Attn. Empirical results show that SHIFT achieves reasoning performance comparable to a pure
Looped-Attn with greater computational efficiency.

Our main contributions are summarized in Appendix A.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Looped Transformers. The principle of recursion in Transformers via cross-layer parameter shar-
ing has been explored in foundational works like Universal Transformers (Dehghani et al., 2018) and
ALBERT (Lan et al., 2019). Building on this, looped transformers have demonstrated significant
empirical success in complex reasoning (Gao et al., 2024; Bae et al., 2025), such as length general-
ization capabilities (Giannou et al., 2023; Fan et al., 2024; Saunshi et al., 2025). Theoretical research
aiming to understand the advantages of looped transformers can be roughly split into two lines. The
first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato, 2024), show-
ing that looped transformers are Turing complete with universal computational capabilities. The
second line analyzes the optimization properties (Gatmiry et al., 2024), proving convergence for lin-
ear regression tasks. However, a provable connection between the recursive architecture of looped
transformers and the superior reasoning capabilities remains underexplored. Our work addresses
this gap by analyzing how the recursive structure shapes the optimization landscape.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neu-
ral networks (Hochreiter & Schmidhuber, 1994; 1997; Li et al., 2021; Lyu et al., 2022; Liu et al.,
2023). More recent work has characterized the more complex geometry of the loss landscape, going
beyond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river
structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

Additional related work is discussed in Appendix C.

3 PRELIMINARIES

This section formalizes the next-token prediction task and specific model architectures.

Next-token Prediction Task. Let the vocabulary V = {1, · · · , V } be a finite index set of V
tokens (e.g. words, characters). We consider a training set TN = {(Xi, yi)}Ni=1 of input sequences
X = [x1, x2, · · · , xn] ∈ Vn and target tokens y ∈ V . Model parameters θ are trained by minimizing
the empirical cross-entropy loss: L̂(θ) = − 1

N

∑N
i=1 log

(
Syi(ŷi)

)
, where Sy(ŷ) is the softmax

probability of the ground-truth token y given the model’s logit output ŷ. The input sequence X
is first mapped to an embedding matrix E ∈ Rd×n. For theoretical convenience, we consider a
simplified setting where the core component for both Single-Attn and Looped-Attn is a single-layer
linear self-attention function fθ:

fθ(E, z) = WV EE⊤W⊤
KWQz,

where z ∈ Rd is a query vector (typically the embedding of the last token) and WV ,WK ,WQ ∈
Rd×d are the value, key, query matrices, respectively.

Single-Attn and Looped-Attn models. The two models are distinguished by how they apply this
attention layer. The Single-Attn model applies the attention operation once to produce its final state:
z1 = z0+ fθ(E0, z0), where z0 is the initial query vector from the input embedding E0. In contrast,
the Looped-Attn model refines the representation iteratively over T loops. At each step t ∈ [T], both
the query state z and the embedding matrix E for all tokens are updated. We define Et−1 as the
embedding matrix resulting from the (t− 1)-th loop. Starting with the initial query state z0 and the
input embedding matrix E0, the state update is as follows:

zt = zt−1 + fθ(Et−1, zt−1).

For both models, a final linear head Wh maps the final state (z1 or zT) to the output logits: ŷ = Whz1
for Single-Attn and ŷ = WhzT for Looped-Attn. More details are presented to Appendix D.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

6 8 10 12 14
Information Content (IC)

0

20

40

60

80

100

120

N
um

be
r

of
 S

eq
ue

nc
es

Average: IC=5.99
50% Quantile: IC=5.53

(a)

0 100 200 300 400
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

69.25%

100.00%

44.65%

72.25%

100.00%

54.72%

Single-Attn: Total Accuracy
Single-Attn: Low Information
Single-Attn: High Information
Looped-Attn: Total Accuracy
Looped-Attn: Low Information
Looped-Attn: High Information

(b)

0 100 200 300 400 500 600
Epoch

1.6

1.8

2.0

2.2

2.4

2.6

M
at

ri
x

En
tr

op
y

Single-Attn
Looped-Attn
Epoch=70
Epoch=150

(c)

0 100 200 300 400 500 600
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

M
ut

ua
l I

nf
or

m
at

io
n

Single-Attn
Looped-Attn
Epoch=70
Epoch=150

(d)

Figure 3: Data Distribution, Task-Level Performance and Hessian-Level Dynamic. (a) Long-tail
distribution of the dataset shown by Information Content. (b) Training accuracy on low information,
high information and total sequences. (c) Matrix entropy metric. (d) Mutual information metric.

4 WHAT MAKES LOOPED TRANSFORMERS PERFORM BETTER

This section addresses the fundamental question posed in Section 1. Specifically, we begin by em-
pirical observations of sample-level performances and Hessian-level dynamics (Section 4.1). Moti-
vated by these findings, we introduce two theoretical landscape models, River-U-Valley and River-
V-Valley, to characterize landscape-level inductive biases of Single-Attn and Looped-Attn (Section
4.2). We then present formal theorems and corollaries showing that the River-V-Valley landscape
of Looped-Attn leads to superior optimization performance (Section 4.3). Finally, we discuss the
implications of our theoretical framework for length generalization (Section 4.4).

4.1 KEY OBSERVATIONS ON TASK-LEVEL AND HESSIAN-LEVEL

Experimental Setup. We analyze the learning dynamics of two toy models aligned with our the-
oretical formulation (Section 3): a non-recursive transformer with a single attention layer (Single-
Attn), a looped transformer consisting of iterating a single attention layer for three loops (Looped-
Attn). The learning task for both models is to predict the final token x3, given the first three
(x0, x1, x2) as input. Detailed experiments are provided in the Appendix E.1. More experimen-
tal results on practical models and reasoning tasks are provided in Appendix E.2.

To establish a controllable task difficulty, we design a synthetic Markov language dataset, where
each sequence X is generated following a Markov process (Figure 2). The difficulty of predicting a
given sequence is quantified by its information content (IC), where IC(X) = − logP (X).

aa a

b b

c c c
P(x2|x1)

x0

P(x1|x0)

x1 x2

b

a

b

c
P(x3|x2)

x3

Figure 2: Generation of Markov
Language Sequences.

Sample-Level Performances. To evaluate sample-level per-
formances, sequences are categorized by difficulty using the IC
metric into ‘low information’ (simple; lowest 40%) and ‘high in-
formation’ (complex; highest 40%). The training performances
of both Single-Attn and Looped-Attn are presented in Figure 3(b),
with a summary in Observation 1.

(a) Single-Attn. The learning process stops progressing af-
ter mastering simple patterns. Single-Attn exhibits a perfor-
mance bottleneck. The model rapidly achieves perfect accuracy
on low-information sequences. However, its performance on
high-information sequences stagnates early in training, showing
no subsequent improvement.

(b) Looped-Attn. The learning process follows a two-phase curriculum, from simple patterns
to complex ones. Looped-Attn demonstrates a distinct two-phase learning process. In the first 150
epochs, the model masters low-information sequences similar to Single-Attn. After epoch 150, it
makes significant progress on the high-information sequences, with accuracy rising from 44.65% to
54.72%. This dynamic suggests that the recursive architecture exhibits a two-phase learning process,
enabling the model to learn more complex patterns.

Hessian-Level Dynamics. To characterize the optimization process, we examine the loss land-
scape’s local curvature through the eigenspectrum {λ} of Hessian matrix H . The evolution of this
spectrum is quantified using two information-theoretic metrics: Hessian Matrix Entropy E(H),

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

which measures landscape diversity or complexity, and Mutual Information I(Hs;Hs+1), which
measures landscape stability between consecutive epoch s and s+ 1.

E(H) = −
∑
i

p(|λi|) log p(|λi|), I(Hs;Hs+1) =
∑
i,j

p(|λi|s, |λj |s+1) log
p(|λi|s, |λj |s+1)

p(|λi|s)p(|λj |s+1)
.

A combined analysis of these two metrics and eigenspectra reveals fundamentally different Hessian-
level dynamics for Single-Attn and Looped-Attn. These findings are presented in Figures 3(c)∼3(d)
and Figures 7∼8, with a summary in Observation 2.

(a) Single-Attn. The eigenspectrum remains relatively static. The Hessian eigenspectrum of
Single-Attn stabilizes almost immediately after training begins. The model rapidly converges to
a region where the eigenspectrum is dominated by a spike of near-zero eigenvalues, indicating a
relatively flat local geometry (Figures 7(f)∼7(j)). Meanwhile, both Matrix Entropy and Mutual
Information metrics keep static (Figures 3(c)∼3(d)). This rapid convergence to a simple geometry
suggests that the model fails to explore more regions of the loss landscape after mastering simple
patterns, explaining its performance bottleneck.

(b) Looped-Attn. Three-phase in eigenspectrum: Collapse, Diversification, and Stabilization.

Phase I. The initial phase involves a collapse of the eigenspectrum, as many eigenvalues shrink
toward zero to form a dominant spike (Figures 8(a)∼8(e)). It is also reflected by a significant drop
in Matrix Entropy (Figure 3(c)). In this phase, the model moves into a flat region of the landscape,
which is a low-dimensional subspace associated with simple patterns. A concurrent decrease in
Mutual Information indicates the landscape’s variation during this phase (Figure 3(d)).

Phase II. Subsequently, the eigenspectrum diversifies as new, larger eigenvalues emerge (Figures
8(f)∼8(j)). It also corresponds to an increase and fluctuation in Matrix Entropy (Figure 3(c)). This
activity suggests an exploration of more complex regions along the river. Despite no immediate
accuracy gains, the rise in Mutual Information suggests this exploration is a stable search rather than
a random process (Figure 3(d)), which makes Looped-Attn fundamentally different from Single-Attn.

Phase III. In the final phase, the eigenspectrum stabilizes (Figures 8(k)∼8(o)). Matrix Entropy
converges, indicating that the landscape’s geometry has settled (Figure 3(c)). Concurrently, Mutual
Information increases to a high plateau, confirming that the landscape’s evolution has become stable
(Figure 3(d)). This geometric stabilization signifies the arrival at a flatter region, which enables the
model to learn complex patterns and ultimately improve its accuracy.

4.2 LANDSCAPE-LEVEL INDUCTIVE BIAS

This section extends the River-Valley landscape model by Wen et al. (2024), which formally charac-
terizes the loss landscapes and optimization dynamics suggested by our empirical observations. For
a loss function L̂(θ) over model parameters θ, the local geometry of loss landscape is captured by
its Hessian matrix H(θ) = ∇2L̂(θ). Our analysis focuses on the Hessian eigenspectrum, where λi

denotes its i-th largest eigenvalue and ri or vi denotes the corresponding eigenvector.
Definition 1 (River-Valley Loss Landscape). We define a River-Valley Landscape by specifying two
subspaces constructed from the Hessian eigenspectrum with a small threshold ϵ > 0:

• River: The river subspace SRiver is spanned by eigenvectors with eigenvalues below the small
threshold: SRiver = span{ri | λi ≤ ϵ}.

• Valley: The valley subspace SValley is spanned by eigenvectors with eigenvalues above the small
threshold: SValley = span{vi | λi > ϵ}.

The geometry of valley is further classified by the spectral properties of Hessian restricted to this
subspace, denoted HValley, with eigenvalues {λ1, . . . , λdV

}.

• U-shaped Valley (Flat Valley 1): A valley is U-shaped if the condition number of the restricted
Hessian is close to one. With a small constant δ ≥ 0: κ(HValley) = λ1/λdV

≤ 1 + δ.

• V-shaped Valley (Steep Valley 1): A valley is V-shaped if the condition number of the restricted
Hessian is large: κ(HValley) = λ1/λdV

≫ 1.

1Here we use ‘flat’ to represent valleys with uniformly relatively small eigenvalues (U-shaped), and ‘steep’
to represent valleys with both relatively large and small eigenvalues (V-shaped).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 1 provides a formal characterization of the landscape’s features. The river corresponds to
directions with near-zero eigenvalues, forming a flat manifold where the loss value changes slowly,
while the valley corresponds to directions with large eigenvalues. The geometry within the valley
is determined by the condition number of the valley Hessian. Specifically, a U-shaped valley is
characterized by a broad and flat floor through which the river flows. This valley is surrounded
by uniformly steep cliffs, ensuring that movement in any direction within this subspace leads to a
comparable loss. In contrast, a V-shaped valley is characterized by a narrow river channel, with
cliffs of highly varied steepness. An intuitive illustration is presented in Figure 1.

Based on Definition 1, we formalize the distinct optimization landscapes and specific dynamics in
Single-Attn and Looped-Attn models.
Conjecture 1 (Single-Attn: Flat Valley Trapping). The Single-Attn model creates a River-U-
Valley landscape. After a rapid descent, the optimizer becomes trapped in the valley’s broad and flat
floor, stopping further exploration within this low-gradient region.

Empirical Justifications for Conjecture 1. The River-U-Valley model is empirically supported
by the Hessian-level dynamics in Single-Attn (Observation 2). The river component is evidenced
by a dominant spike of near-zero eigenvalues from the early epochs, which confirms the existence
of a flat subspace. Surrounding this river, large eigenvalues of similar magnitudes form uniformly
steep cliffs that enclose a broad and flat floor, characterizing the valley as U-shaped. This land-
scape geometry is captured by Matrix Entropy and Mutual Information metrics, which indicate a
simple and static landscape structure. Such a geometry determines a specific optimization dynamic:
the optimizer initially descends rapidly along the steep cliffs. However, the broad and flat valley
floor constitutes an optimization trap where weak gradient signals provide insufficient guidance for
exploration along the river, resulting in flat valley trapping.
Conjecture 2 (Looped-Attn: From Steep Valley Hopping to River Convergence). The Looped-
Attn model creates a River-V-Valley landscape. The optimizer exhibits significant hopping between
the valley’s varied and steep cliffs, guiding its trajectory along the river toward convergence.

Empirical Justifications for Conjecture 2. The River-V-Valley model is empirically justified by
the three-phase evolution of Hessian-level dynamics in Looped-Attn (Observation 2). The model
initially enters the river subspace from a complex valley, evidenced by the gradually dominant spike
of near-zero eigenvalues. A diversifying set of large eigenvalues forms the V-shaped valley’s varied
and steep cliffs, where a narrow river channel exists at the valley floor. The complex and evolving
geometry is also captured by Matrix Entropy and Mutual Information. Such a geometry leads to
a specific optimization dynamic: the optimizer initially descends by hopping between the valleys.
After reaching the valley floor, the narrow river channel enables sustained exploration, avoiding
getting trapped in the broad U-shaped valley of Single-Attn.

4.3 RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

In this section, we prove that the River-V-Valley landscape in Looped-Attn provides a superior per-
formance than Single-Attn. Before the formal theoretical analysis, we provide an intuition for the
connection between loss landscapes and sample-level performances (Observation 1).

Intuition for Superior Performance. The River-U-Valley landscape of Single-Attn induces Flat
Valley Trapping, which might account for its performance bottleneck. The initial rapid descent along
the cliffs converts into progress along the river, corresponding to mastering simple patterns. How-
ever, the optimizer subsequently becomes trapped in the flat valley floor, preventing it from discov-
ering the path to more complex patterns. In contrast, the River-V-Valley landscape of Looped-Attn
facilitates Steep Valley Hopping dynamics, which might drive its two-phase learning curriculum.
After an initial descent for learning simple patterns, its enhanced performance might stem from two
key factors: (a) The hopping dynamic converts descent into more forward progress along the river;
(b) The narrow river channel prevents the optimizer from becoming trapped. These together ensure
deep exploration in the river downstream, enabling the model to learn complex patterns.

We now proceed with a formal analysis to mathematically demonstrate how these hopping dynamics
lead to more effective optimization. Our analysis begins by modeling the loss landscape using a
structured quadratic form that captures its essential geometry (The general loss is later in Setting 2).
The parameter space is decomposed into two orthogonal subspaces: the valley subspace SValley =

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

span{v1, . . . , vdV
} and the river subspace SRiver = span{r1, . . . , rdR

}, with dimensions dV , dR, and
parameters θV , θR respectively.
Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the
quadratic loss:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR,

where [HValley]ij =
∂2L̂

∂vi∂vj
, [HV R]ij =

∂2L̂
∂vi∂rj

, [HRV]ij =
∂2L̂

∂ri∂vj
(Definition 2 in Appendix F.1). We

assume the coupling matrix HRV and initialization of valley parameters θV,0 are bounded, namely,
∥HRV ∥ ≤ h̄, ∥θV,0∥ ≤ ᾱ for some constants h̄, ᾱ > 0.

Setting 1 formalizes a structured quadratic loss, which is characterized by three key components.
Specifically, this includes (a) The valley Hessian HValley: This matrix captures the valley’s curvature.
Its condition number quantitatively distinguishes between the well-conditioned U-shaped valley of
Single-Attn and the ill-conditioned V-shaped valley of Looped-Attn; (b) The Coupling Matrix HRV :
This matrix quantifies the critical interaction that allows movement in the valley to induce a gradient
in the river; (c) The river gradient −h⊤

R: This term represents the intrinsic optimization drive along
the river. More details are deferred to Remark 4 in Appendix F.1.

Assumption 1 (Spectral Properties of Valley Hessian). Let {λ(1)
i } and {λ(2)

i } be the valley Hes-
sian eigenvalues for Single-Attn and Looped-Attn, and let {λ̃(1)

j } and {λ̃(2)
j } be the corresponding

eigenvalues sorted non-decreasingly. For a threshold τ > 0, define mk = |{i | λ
(k)
i ≤ τ}|,

k ∈ {1, 2} as the size of low-curvature eigenvalue sets for both models. Assume for Looped-Attn:

(a) Dimension. The number of low-curvature eigenvalues is greater: m2 > m1.

(b) Dominance. The sorted eigenvalues are component-wise smaller: λ̃(2)
j < λ̃

(1)
j ,∀j ∈ [m1].

Assumption 1 formalizes two critical properties about the valley Hessian spectrum, which are em-
pirically observed in Figure 7(j) and 8(o). Together, these properties form the foundation of the
following theorems and corollaries. More details are deferred to Remark 5 in Appendix F.1.
Theorem 1 (Cumulative Force under Quadratic Loss). Under Setting 1, we define C as the upper
bound of cumulative force generated by the valley dynamics on the river subspace, then it holds that

η

K−1∑
k=0

HRV Φ
kθV,0 ≤

√
dV h̄ ᾱ

dV∑
i=1

1

|λi|
≜ C,

where Φ = I − ηHValley with a learning rate η, and {λi} is the spectrum of valley Hessian HValley.

Theorem 1 establishes a relationship between the potential cumulative force on the river parameters
and the valley’s geometry, as encoded in the eigenvalues λi. The theorem indicates that this force is
dominated by the flattest directions within the valley subspace.
Corollary 1 (Greater Cumulative Force of Looped-Attn). Under Theorem 1 and Assumption 1,
the cumulative force generated by Looped-Attn (C(2)) is significantly greater than that of Single-Attn
(C(1)): C(2) ≫ C(1).

Corollary 2 (Superior Optimization Performance of Looped-Attn). Under Theorem 1 and Corol-
lary 1, for the same initialization and a large K, after K optimization steps, the loss values for
Looped-Attn (L̂(2)

K) is smaller than for Single-Attn (L̂(1)
K): L̂(2)

K < L̂
(1)
K .

Based on Assumption 1, the V-shaped valley of Looped-Attn possesses a richer low-curvature spec-
trum, which creates a larger potential force than that of Single-Attn (Corollary 1). Furthermore,
this force is ultimately reflected in the training loss (Corollary 2). The larger force in Looped-Attn
facilitates sustained river progress via valley hopping, enabling the model to learn both simple and
complex patterns. The detailed proof is deferred to Appendix F.2 and Appendix F.3.
Setting 2 (General Loss). A general Loss of River-Valley landscape (Definition 1) is defined as:

L̂(θV , θR) = L̂Valley(θV) + L̂River(θR) + L̂Coupling(θV , θR).

We assume the initialization of valley parameters θV,0 is bounded, namely, ∥θV,0∥ ≤ ᾱ for a constant
ᾱ > 0. Further technical assumptions are detailed in Appendix F.1 (Assumptions 2∼3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80 100 120 140
Shift Point (Epoch)

95

100

105

110

115

To
ta

l T
ra

in
in

g
Ti

m
e

(s
ec

on
ds

)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Sp
ee

du
p

Fa
ct

or

Max Speedup: 1.26×

SHIFT Training Time
Looped-Attn Baseline (117.10s)
Speedup vs. Looped-Attn

(a) Speedup Factor

0 100 200 300 400 500 600
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0.6

0.8

1.0

1.2

1.4

Tr
ai

ni
ng

 L
os

s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(b) Performance with Shift Point 120

Figure 4: SHIFT Efficiency and Performance on Markov Dataset.

Setting 2 considers a general loss, which is an extension to Setting 1.

Theorem 2 (Superior Optimization Performance of Looped-Attn under General Loss). Under
Setting 2, the following results hold:

(a) Cumulative Force. The potential cumulative force Cgen generated by the valley dynamics on
the river subspace is given by: Cgen =

√
dV h̄gen ᾱ

∑dV

i=1 1/|λB
i |, where {λB

i } is the spectrum
of the lower-bound valley Hessian HB (Assumption 3).

(b) Greater Cumulative Force. The cumulative force generated by Looped-Attn (C(2)) is signifi-
cantly greater than that of Single-Attn (C(1)): C(2) ≫ C(1).

(c) Lower Training Loss. For the same initialization and a large K, after K optimization steps,
the training loss for Looped-Attn (L̂(2)

K) is lower than for Single-Attn (L̂(1)
K): L̂(2)

K < L̂
(1)
K .

Theorem 2 extends the provably superior optimization performance of Looped-Attn to a general loss
function. The detailed proof of Theorem 2 is deferred to Appendix F.4.

4.4 DISCUSSION IN LENGTH GENERALIZATION

This section introduces how our theoretical framework relates to Looped-Attn’s success in length
generalization. Figure 5 illustrates the Information Content (IC) distributions for the test datasets
with different sequence lengths. As length increases, the total space of possible sequences expands,
which causes two primary effects on the IC distribution: its mean value shifts to the right (indicating
a higher average complexity), and its variance increases (the distribution becomes broader). A
direct consequence is that the low-IC sequences during training may become rare or non-existent in
longer test sequences, which frames the core challenge of length generalization: a model must find
a generalizable solution capable of mastering sufficiently complex patterns.

5 10 15 20 25 30
Information Content (IC)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

Training Length = 4
Test Length = 8
Test Length = 11
Test Length = 14
Test Length = 17

Figure 5: Length Generalization.

Empirical performances are provided in Figure 9 and Table 1,
and theoretical results provide an explanation for how Looped-
Attn achieves this. As established in Corollaries 1∼2 and The-
orem 2, the River-V-Valley landscape of Looped-Attn enables
exploration deeper into the downstream river (a manifold of flat
minima). Thus it guides Looped-Attn towards solutions that in-
herently generalize better. We connect this to the finding that
the superior optimization dynamic brings better performance
on length generalization tasks for the Looped-Attn model. De-
tailed experiments are provided in the Appendix E.1.3 and E.2.

5 STAGED HIERARCHICAL FRAMEWORK FOR PROGRESSIVE TRAINING

This section proposes SHIFT (Staged HIerarchical Framework for Progressive Training), a computa-
tionally efficient two-stage training strategy motivated by our theoretical analysis of River-U-Valley
and River-V-Valley landscapes. The strategy utilizes distinct model architectures at different learn-
ing stages, as illustrated in Figure 1(c).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Stage I: Rapid Valley Descent with Single-Attn. Training begins with the Single-Attn architecture.
The objective is to move efficiently from a random initialization (the clifftop) to a low-loss region
(the valley floor). We thus adopt Single-Attn which facilitates initial convergence on simple tasks
with computational efficiency.

Stage II: Valley Hopping and Deep River Exploration with Looped-Attn. Training is transitioned
to Looped-Attn when Single-Attn reaches loss plateaus. This transition reshapes the optimization
within a V-shaped valley. As established in Corollaries 1∼2 and Theorem 2, the V-shaped valley
induces a hopping descent mechanism, enabling further exploration in the river direction. This
allows the model to find solutions to complex tasks that are less accessible to Single-Attn.

A key component of SHIFT is determining the moment to transition between architectures. To this
end, we introduce the SHIFT Criterion with Patience (SCP), which consists of two steps.

(a) Plateau Detection. First, SCP detects a performance plateau. The validation loss for Single-Attn
reaches plateaus after initial epochs (Figure 10(a)). The plateau point Eplateau is identified when the
validation loss fails to decrease by a threshold δ1 over several consecutive epochs.

(b) Gradient Stabilization Wait. Second, SCP incorporates a patience period W for gradient stabi-
lization. The gradient norm initially exhibits high variance, which would make an unstable transition
(Figure 10(b)). This period ensures the optimizer has settled by a threshold δ2. Consequently, the
shift point is calculated as Eshift = Eplateau +W .

Figure 4(a) reveals that an immediate transition is suboptimal on Markov dataset. A delayed transi-
tion yields greater speedup, but an excessive delay prevents Looped-Attn from converging in Stage
II. To address this trade-off, SCP selects a shift point between 100 and 150 epochs. This achieves a
training speedup of approximately 1.26× without compromising final performance (Figure 4(b)).

We next provide the theoretical foundation for this architectural transition in Theorem 3, by estab-
lishing a connection between their landscapes.

Theorem 3 (Shared River Upstream). Let ∇W L̂1(θ) and ∇W L̂2(θ) be the gradients of the Single-
Attn and Looped-Attn models with a weight matrix W ∈ {WK ,WQ}. Under Assumption 4∼5
(Appendix G.1.1), the gradients of the two models are positively aligned:

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ ≥ 0, ⟨∇WQ
L̂1(θ),∇WQ

L̂2(θ)⟩ ≥ 0.

Justification for SHIFT. Theorem 3 ensures the feasibility of this architectural transition. It es-
tablishes that the gradients of both architectures are positively aligned, implying that optimization
within their respective valleys corresponds to progress along a shared upstream river in the loss
landscape. This shared foundation guarantees that the parameters learned by Single-Attn in Stage I
provide a effective initialization for the deeper exploration by Looped-Attn in Stage II. A detailed
proof is available in Appendix G. Furthermore, Theorem 1∼2 and Corollary 1∼2 guarantee the
superiority of this two-stage strategy. These results prove that the V-shaped valley of Looped-Attn
generates a greater cumulative optimization force along the river. Therefore, SHIFT combines the
training speed of Single-Attn with the superior optimization performance of Looped-Attn. In prac-
tice, SHIFT is implemented that progressively increases computational depth (i.e., loop iterations
from T = 1 to T > 1). This approach can be viewed as a form of curriculum learning (Bengio
et al., 2009; Wang et al., 2021), where an efficient model (Single-Attn) first learns simple patterns
before a more powerful model (Looped-Attn) is deployed for further refinement.

6 CONCLUSION

This paper theoretically answers what makes looped transformers perform better than non-recursive
ones. We investigate their distinct dynamics and formalize these by extending the River-Valley
model to distinguish between U-shaped valleys and V-shaped valleys. We provably demonstrate
that the landscape-level inductive bias of River-V-Valley facilitates superior convergence on com-
plex patterns. Building on this, we propose SHIFT, a framework that achieves comparable reasoning
performance compared to Looped-Attn but with greater computational efficiency. Overall, our work
provides a new perspective and a theoretical framework for understanding the advantages of looped
transformers, potentially inspiring more effective and principled training paradigms. More discus-
sions and future work are provided in Appendix B.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper presents a fundamental research focusing on the theoretical and empirical analysis of
neural network architectures. Our work is methodological, investigating the mathematical proper-
ties of loss landscapes for different types of transformer models. The experiments are conducted
on two categories of datasets: (a) a synthetic Markov language dataset, created specifically for con-
trolled analysis of learning dynamics, and (b) publicly available algorithmic reasoning datasets. Our
research does not involve the use of human subjects, personally identifiable information, or any
form of sensitive data. Therefore, this work does not raise ethical concerns related to data privacy,
algorithmic bias in social contexts, or potential societal harm.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. To this end, we have provided
detailed descriptions of our theoretical frameworks and experimental procedures.

Theoretical Results. The theoretical formalization of the River-Valley landscape (Section 4.2) is
motivated by empirical observations (Section 4.1). The superiority of Looped-Attn (Section 4.3)
is supported by mathematical proofs. Detailed derivations for Theorem 1, Corollaries 1∼2 and
Theorem 2 are available in Appendix F. The foundation for the SHIFT framework is established in
Theorem 3 with proof in Appendix G.

Experimental Setup. We provide a comprehensive description of our experimental design. The
experimental setup in the synthetic dataset with toy models, including the data generation process,
model details, and hyperparameters, is described in Section 4.1 and further detailed in Appendix
E.1. The experimental setup for the practical models and the standard algorithmic reasoning tasks is
detailed in Appendix E.2.

Source Code. To facilitate the verification of our findings and support further research in this area,
the source code used for all experiments will be made publicly available upon publication.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Maksym Andriushchenko, Aditya Vardhan Varre, Loucas Pillaud-Vivien, and Nicolas Flammarion.
Sgd with large step sizes learns sparse features. In International Conference on Machine Learn-
ing, pp. 903–925. PMLR, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. Advances in neural information processing systems, 36:48314–
48362, 2023.

Sangmin Bae, Yujin Kim, Reza Bayat, Sungnyun Kim, Jiyoun Ha, Tal Schuster, Adam Fisch, Hrayr
Harutyunyan, Ziwei Ji, Aaron Courville, et al. Mixture-of-recursions: Learning dynamic recur-
sive depths for adaptive token-level computation. arXiv preprint arXiv:2507.10524, 2025.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Bo Chen, Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. Bypassing the exponential de-
pendency: Looped transformers efficiently learn in-context by multi-step gradient descent. arXiv
preprint arXiv:2410.11268, 2024.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Damek Davis, Dmitriy Drusvyatskiy, and Liwei Jiang. Gradient descent with adaptive stepsize
converges (nearly) linearly under fourth-order growth. arXiv preprint arXiv:2409.19791, 2024.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal
transformers. arXiv preprint arXiv:1807.03819, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Zhaorui Dong, Yushun Zhang, Zhi-Quan Luo, Jianfeng Yao, and Ruoyu Sun. Towards quantifying
the hessian structure of neural networks. arXiv preprint arXiv:2505.02809, 2025.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. arXiv preprint arXiv:2409.15647, 2024.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Yihang Gao, Chuanyang Zheng, Enze Xie, Han Shi, Tianyang Hu, Yu Li, Michael K Ng, Zhenguo
Li, and Zhaoqiang Liu. On the expressive power of a variant of the looped transformer. CoRR,
2024.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? arXiv
preprint arXiv:2410.08292, 2024.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–
1841. PMLR, 2018a.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in neural information processing systems, 31, 2018b.

Jeff Z HaoChen, Colin Wei, Jason Lee, and Tengyu Ma. Shape matters: Understanding the implicit
bias of the noise covariance. In Conference on Learning Theory, pp. 2315–2357. PMLR, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
Advances in neural information processing systems, 7, 1994.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Meena Jagadeesan, Ilya Razenshteyn, and Suriya Gunasekar. Inductive bias of multi-channel linear
convolutional networks with bounded weight norm. In Conference on Learning Theory, pp. 2276–
2325. PMLR, 2022.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on learning theory, pp. 1772–1798. PMLR, 2019.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International conference on machine learning, pp. 2698–2707. PMLR, 2018.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Zhiyuan Li, Yi Zhang, and Sanjeev Arora. Why are convolutional nets more sample-efficient than
fully-connected nets? arXiv preprint arXiv:2010.08515, 2020.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?–a math-
ematical framework. arXiv preprint arXiv:2110.06914, 2021.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models. In International Conference on Machine
Learning, pp. 22188–22214. PMLR, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ziming Liu, Yizhou Liu, Jeff Gore, and Max Tegmark. Neural thermodynamic laws for large lan-
guage model training. arXiv preprint arXiv:2505.10559, 2025.

Kaifeng Lyu, Zhiyuan Li, and Sanjeev Arora. Understanding the generalization benefit of normal-
ization layers: Sharpness reduction. Advances in Neural Information Processing Systems, 35:
34689–34708, 2022.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Nikunj Saunshi, Stefani Karp, Shankar Krishnan, Sobhan Miryoosefi, Sashank Jakkam Reddi, and
Sanjiv Kumar. On the inductive bias of stacking towards improving reasoning. Advances in
Neural Information Processing Systems, 37:71437–71464, 2024.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers. arXiv preprint arXiv:2502.17416,
2025.

Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does sgd really happen in tiny subspaces? arXiv
preprint arXiv:2405.16002, 2024.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The im-
plicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19(70):
1–57, 2018.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
as support vector machines. arXiv preprint arXiv:2308.16898, 2023.

Christos Thrampoulidis. Implicit optimization bias of next-token prediction in linear models. Ad-
vances in Neural Information Processing Systems, 37:22624–22656, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE transactions on
pattern analysis and machine intelligence, 44(9):4555–4576, 2021.

Zihao Wang and Lei Wu. Theoretical analysis of the inductive biases in deep convolutional networks.
Advances in Neural Information Processing Systems, 36:74289–74338, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective
of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.

Changnan Xiao and Bing Liu. Conditions for length generalization in learning reasoning skills.
arXiv preprint arXiv:2311.16173, 2023.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495,
2020.

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd. arXiv preprint
arXiv:1802.08770, 2018.

Kevin Xu and Issei Sato. On expressive power of looped transformers: Theoretical analysis and
enhancement via timestep encoding. arXiv preprint arXiv:2410.01405, 2024.

Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
better at learning learning algorithms. arXiv preprint arXiv:2311.12424, 2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Contributions 15

B Discussions and Future Work 15

C Additional Related Work 16

D Detailed Preliminaries 18

E Detailed Experiments 19

E.1 Experiments on Toy Models and Synthetic Markov Language Dataset 19

E.2 Experiments on Practical Models and Datasets . 23

F River-V-Valley Brings Superior Optimization Performance 26

F.1 Definitions and Assumptions . 26

F.2 Proof for Theorem 1 and Corollary 1 . 29

F.3 Proof for Corollary 2 . 32

F.4 Proof for Theorem 2 . 34

G Shared River Upstream 39

G.1 Assumptions and Useful Lemmas . 39

G.2 Proof for Theorem 3 . 46

H Usage of Large Language Models 51

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A CONTRIBUTIONS

Our main contributions are summarized as follows.

(a) A Refined Geometric View of Loss Landscape. Inspired by distinct empirical observations
in sample-level performance and Hessian-level dynamics (Section 4.1), we enrich the River-Valley
landscape model by introducing a geometric characterization of U-shaped and V-shaped Valleys
(formal definition in Section 4.2). This characterization is essential for attributing these observations
to the landscape-level inductive biases of Single-Attn and Looped-Attn models.

(b) Distinct Landscape-Level Inductive Biases. To our knowledge, we are the first to formally
analyze inductive bias of Looped-Attn from the perspective of loss landscape. Specifically, in Section
4.2, we reveal that the River-U-Valley landscape of Single-Attn leads to flat valley trapping. In
contrast, the River-V-Valley landscape of Looped-Attn creates an effective path characterized by
steep valley hopping and river convergence.

(c) Provably Superior Performance in Looped-Attn. Building upon our findings on inductive bias,
we theoretically prove the superior performance induced by the River-V-Valley landscape in Looped-
Attn under the landscape framework (Section 4.3 and Appendix F). Furthermore, we leverage this
optimization analysis to explain its strong length generalization ability, empirically demonstrating
that the effective optimization path leads to generalizable solutions (Section 4.4).

(d) An Effective Progressive Training Framework. Based on the aforementioned landscape-
level inductive biases, we design SHIFT, an intuitive framework that combines Single-Attn and
Looped-Attn (Section 5). The framework’s feasibility is grounded in a provable shared river up-
stream between the two landscapes (detailed proof in Appendix G). We present a shifting criterion
with patience (SCP) and demonstrate that SHIFT achieves a balance between computational effi-
ciency and final performance.

B DISCUSSIONS AND FUTURE WORK

We present more necessary discussions on our work, which might be helpful for understanding our
contributions and existing limitations, and highlight valuable directions for future research.

Model Simplification. Our analysis employs a simplified model with a single linear attention layer
for two key purposes: (a) It provides a controlled setting for our experiments to investigate the Hes-
sian dynamics. (b) It ensures the gradient calculations for Theorem 3 (Section 5) are mathematically
tractable, which is the theoretical foundation of our SHIFT framework.

It is curial to note that our core theoretical framework is general and does not rely on this specific
model architecture. This landscape framework characterizes loss landscapes using River-U-Valley
and River-V-Valley to show the optimization advantage of Looped-Attn (Sections 4.2 and 4.3). These
insights are corroborated by our experiments on GPT-2 based models in Appendix E.2. Although
it is hard to directly analyze the Hessian in these practical settings, the superior performance of
Looped-Attn aligns with the optimization advantage predicted by our River-V-Valley conjecture. We
can also explain the training dynamics within our landscape framework, reinforcing its applicability
to more complex, non-linear models.

Nevertheless, extending the formal proof of gradient alignment from the simplified model to deep,
nonlinear transformers remains a promising direction for future work.

Landscape Conjectures. Conjectures 1∼2 formalize the loss landscapes for Single-Attn and
Looped-Attn by proposing the River-U-Valley and River-V-Valley models. These conjectures are
empirically motivated. We justify these with the analysis of Hessian dynamics (Section 4.1), which
reveals different evolutionary eigenspectrum of the two architectures. Given the complexity of opti-
mization process, grounding theoretical analysis in empirically-inspired landscape model is a crucial
step toward formal understanding (Wen et al., 2024). A key direction for future work is to move be-
yond empirical motivation and establish a formal proof for these landscape conjectures. This would
involve theoretically deriving the geometric properties of the Hessian from the recursive architec-
ture, potentially by extending emerging mathematical tools such as Dong et al. (2025). Proving this
formally is highly challenging beyond our current scope, which remains a promising direction for
future study.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Landscape Transition Dynamics of SHIFT. Our landscape model provides a geometric perspec-
tive on why the SHIFT framework achieves performance comparable to Looped-Attn. Stage I begins
with Single-Attn in a River-U-Valley landscape, where the optimizer rapidly descends from a high-
loss clifftop to a low-loss valley floor near the river. The architectural switch to Looped-Attn then
induces a geometric transformation: the flat valley floor suddenly becomes the steep slopes of a
V-shaped valley. This landscape change forces the optimizer to perform valley hopping which is
unique for Looped-Attn. This temporary hopping enables it to escape the flat valley floor and reach
the narrow river channel. Once in the river, it can proceed with deep downstream exploration. While
both models share an upstream river (Theorem 3), their distinct architectures determine the final
performance. Single-Attn traps in the flat valley floor, whereas SHIFT (Looped-Attn in Stage II)
successfully navigates downstream, leading to different solutions.

Practical Implications of SHIFT. The principles behind SHIFT suggest a promising paradigm for
enhancing pre-trained foundation models. We begin with a well-trained standard, non-recursive
model (equivalent to Stage I). To improve its performance on tasks requiring complex, multi-step
reasoning, we could introduce recursion into some of its blocks and continue to train (equivalent
to Stage II). This approach leverages the base model’s existing knowledge while reshaping the op-
timization landscape to unlock more powerful reasoning abilities, guided by the principles of the
River-V-Valley. It represents a computationally efficient alternative to training a large recursive
model from scratch and offers a valuable direction for future empirical investigation.

C ADDITIONAL RELATED WORK

This section provides a more detailed discussion of the related work for Section 2 in the main text.

Looped Transformers. The principle of recurrence in Transformers, achieved via cross-layer pa-
rameter sharing, has been explored in foundational works like Universal Transformers (Dehghani
et al., 2018) and ALBERT (Lan et al., 2019). Building on this, looped transformers have demon-
strated significant empirical success in diverse applications, from in-context learning (ICL) (Yang
et al., 2023; Chen et al., 2024; Gatmiry et al., 2024) to length generalization that enables them to
process sequences much longer than those seen during training (Giannou et al., 2023; Fan et al.,
2024; Gao et al., 2024; Saunshi et al., 2025; Bae et al., 2025).

Theoretical research aiming to understand these empirical advantages can be roughly split into two
lines. The first line focuses on expressiveness (Giannou et al., 2023; Gao et al., 2024; Xu & Sato,
2024), showing that looped transformers are Turing complete with universal computational capa-
bilities. The second line analyzes the optimization properties (Gatmiry et al., 2024), proving opti-
mization convergence for linear regression tasks within the ICL framework. However, a provable
connection between the recursive architectural prior of looped transformers, optimization landscape,
and superior reasoning capabilities remains missing, particularly under the general next-token pre-
diction paradigm. Our work addresses this gap by analyzing how the recursive structure shapes the
optimization landscape, ultimately seeking to combine the length generalization benefits of looped
transformers with the efficiency of standard, non-recursive models.

Optimization Landscape and Generalization. The geometry of the optimization/loss landscape
is fundamental to understanding the training dynamics and generalization capabilities of deep neural
networks. Empirically, Hochreiter & Schmidhuber (1994; 1997) first demonstrate that SGD can typ-
ically find flat minima among various solutions. Theoretically, much research has provided strong
evidence supporting this idea, reporting that models converging to flat minima exhibit better gener-
alization performance across various tasks and architectures (Keskar et al., 2016; Wu et al., 2017;
Neyshabur et al., 2017; Kleinberg et al., 2018; Xie et al., 2020; Li et al., 2021; Lyu et al., 2022;
Andriushchenko et al., 2023; Liu et al., 2023).

More recent work has characterized the more complex geometry of the loss landscape, going be-
yond flat minima. Xing et al. (2018) find that SGD moves in valley-like regions of the loss surface
to quickly travel far away from the initialization point. Davis et al. (2024) propose that low-loss solu-
tions are not isolated points but lie within connected manifolds, which are defined as ravines. Song
et al. (2024) characterize the training loss as having an ill-conditioned-valley-like structure with a
dominant subspace (high curvature) and a bulk subspace (low curvature). This progression culmi-
nates in the general river-valley theoretical model formulated by Wen et al. (2024), where the river

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

structure is a specific instance of the ravine (Davis et al., 2024) and rooted in the bulk subspace (Song
et al., 2024). Building upon this general model, Liu et al. (2025) offer a novel perspective, applying
neural thermodynamic laws to understand the river-valley loss landscape. Our work extends the
geometry of valleys by U-shaped and V-shaped, and analyzes these distinct landscapes and training
dynamics induced by different architectures.

These two perspectives, flat minima and river-valley landscapes, are highly compatible. We argue
that the river downstream locates flatter minima, which is potentially corresponding to better gener-
alization (Hochreiter & Schmidhuber, 1994; 1997).

Inductive Bias. Implicit bias and inductive bias are fundamental concepts in deep learning the-
ory. Implicit bias is an emergent property of the optimization algorithm (e.g., gradient descent)
that guides the model toward a particular minimum that does generalize well (Soudry et al., 2018;
Gunasekar et al., 2018a; Ji & Telgarsky, 2019; Woodworth et al., 2020; HaoChen et al., 2021;
Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2023; Thrampoulidis, 2024). In contrast, induc-
tive bias is induced by the model architecture. For example, weight sharing and locality inherently
bias convolutional neural networks (CNNs) over fully-connected networks (FCN) by breaking the
learning algorithm’s symmetry (Gunasekar et al., 2018b; Li et al., 2020; Jagadeesan et al., 2022;
Wang & Wu, 2023). Jelassi et al. (2024) reveal an inductive bias in transformers that makes it eas-
ier for them to copy from the context. Saunshi et al. (2024) uncover an inductive bias of stacking
for improving downstream reasoning tasks, but without a theoretical basis. Gatmiry et al. (2024)
also study looped transformers, showing their inductive biases in optimization convergence for lin-
ear regression tasks. Distinct from above, we introduce landscape-level inductive bias, where the
model architecture fundamentally reshapes the optimization landscape (River-U-Valley and River-
V-Valley). These different landscapes induce unique training dynamics. From this perspective, we
reveal the advantages of Looped-Attn over Single-Attn supported by both empirical observations and
theoretical analysis (Section 4).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D DETAILED PRELIMINARIES

This section provides more details for Section 3 in the main text.

We formalize the next-token prediction task, specify the objective function, and present the mathe-
matical characterizations of Single-Attn and Looped-Attn models.

Let the vocabulary V = {1, · · · , V } be a finite index set of V tokens (e.g. words, characters). An
input sequence is denoted by X = [x1, x2, · · · , xn] ∈ Vn, where each token xs ∈ V . The task is
to predict the next token, y ∈ V , given the context X . We consider a training set of N sequences
TN := {(Xi, yi)}Ni=1, where Xi ∈ Vn and yi ∈ V for all i ∈ [N]. A model with parameter θ is
trained by minimizing the empirical cross-entropy loss. Let ŷ ∈ RV be the logit vector output by
the model, then the loss function is defined as:

L̂(θ) = − 1

N

N∑
i=1

log
(
Syi(ŷi)

)
= Ê [− log (Sy(ŷ))] ,

where Sy(ŷ) = exp(ŷy)/
∑V

j=1 exp(ŷj) denotes the softmax probability for the ground-truth token
y, with ŷy being the y-th component of the logit vector ŷ.

Input Embeddings and Self-Attention Module. The input sequence X is mapped to d-
dimensional embedding matrix E via an embedding map g : Vn → Rd×n parameterized by θemb,
so that E = g(X; θemb). We assume that g is fixed (i.e., not trainable) and focus our analysis on the
self-attention module.

Both Single-Attn and Looped-Attn utilize a fundamental self-attention function fθ, implemented as
a single-layer linear attention block (without residual connections), defined as:

fθ(E, z) = WV EE⊤W⊤
KWQz, fθ(E) = WV EE⊤W⊤

KWQE,

where E ∈ Rd×n is the embedding matrix, z ∈ Rd is the query vector, i.e., the n-th column of E,
and WV ,WK ,WQ ∈ Rd×d are the value, key, query matrices, respectively.

Single-Attn Model and Looped-Attn Model. The Single-Attn model applies the self-attention
operation once, then

z1 = z0 + fθ(E0, z0),

where z0 is the n-th column of the input embedding matrix E0 and z1 is the final state.

The Looped-Attn model iteratively refines representations over T steps. For each loop t ∈ [T], the
representations are updated via residual connections and gating mechanisms:

zt = zt−1 + fθ(Et−1, zt−1), Et = Et−1 + fθ(Et−1).

We have the recursive definition for the final state zT after T loop iterations, i.e.,

zT = z0 +

T∑
t=1

fθ(Et−1, zt−1).

Prediction Head. The final logit output ŷ ∈ RV is generated by a linear projection head h : Rd →
RV , parameterized by Wh ∈ RV×d. Finally, the output logits are ŷ = Whz1 for Single-Attn and
ŷ = WhzT for Looped-Attn.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E DETAILED EXPERIMENTS

E.1 EXPERIMENTS ON TOY MODELS AND SYNTHETIC MARKOV LANGUAGE DATASET

E.1.1 EXPERIMENTAL SETUP

Toy Models and Hyperparameter Details. To conduct the motivating experiments and investi-
gate the learning dynamics of different architectures, we employ simplified toy models. Specifically,
we adopt a non-recursive transformer with a single attention layer (Single-Attn), and a looped trans-
former consisting of iterating a single attention layer for three loops (Looped-Attn). These toy mod-
els are aligned with our theoretical formulation in Section 3. We train both models for 600 epochs,
using Adam optimizer with the learning rate 0.001. Each experiment is conducted on a single 24GB
NVIDIA GeForce RTX 3090.

Markov Language Dataset. We utilize a synthetic Markov language dataset, specifically de-
signed to provide a controllable spectrum of task difficulty. As illustrated in Figure 2, each sample
is a sequence of four tokens, X = (x0, x1, x2, x3) (e.g., ‘aaaa’,‘aaab’,‘abbc’), drawn from a vocab-
ulary of three discrete symbols {a, b, c}. The sequences are generated according to a homogeneous
Markov process, where the probability of a full sequence is given by

P (X) = P (x0)P (x1|x0)P (x2|x1)P (x3|x2).

The initial state probabilities P (x0) are uniform, while the transition probabilities at each step are
governed by three distinct, randomly generated transition matrices.

The learning task for both Single-Attn and Looped-Attn is to predict the final token x3, given the first
three (x0, x1, x2) as input. We quantify the difficulty of each prediction by the information content
(IC) of its corresponding ground-truth sequence:

IC(X) = − logP (X).

To create a dataset with a mixture of simple and complex tasks, we begin by generating all 34 possi-
ble sequences. The initial set is then expanded to a larger dataset size of N = 500 through a weighted
oversampling process. This sampling probability for each sequence is proportional to its ground-
truth probability raised to the power of 2. This ensures that high-probability (low-information,
or simple) sequences are sampled more frequently, resulting in a long-tail training distribution, as
shown in Figure 6. Consequently, simple patterns are abundant while complex patterns are rare,
posing a generalization challenge.

6 8 10 12 14
Information Content (IC)

0

20

40

60

80

100

120

N
um

be
r

of
 S

eq
ue

nc
es

Average: IC=5.99
50% Quantile: IC=5.53

(a)

0 100 200 300 400 500
Sequence Index

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ili

ty
 (

CP
)

Difficulty Segments
Easiest 10%
10%-30%
30%-50%
50%-70%
Hardest 30%
Cumulative Probability (CP)

CP=19.9%

CP=50.9%

CP=75.2%

CP=90.2%

(b)

Figure 6: Data Distribution. (a,b) Long-tail distribution of the dataset shown by IC and CP.

E.1.2 EMPIRICAL OBSERVATIONS

By combining two information-theoretic metrics (Hessian Matrix Entropy and Mutual Information)
with a direct analysis of the eigenspectrum, we investigate different Hessian-level dynamics for
Single-Attn and Looped-Attn. The metrics are presented in Figures 3(c)∼3(d). The eigenspectra for
Single-Attn and Looped-Attn are presented in Figures 7∼8, respectively.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0.0
03

5
0.0

45
4

0.0
66

4
0.0

94
4
0.1

36
4

0.2
41

3
0.3

46
2

Eigenvalues

100

101

102

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 1

(a)

0.0
04

7
0.0

71
5

0.1
00

1
0.1

28
7

0.1
66

9
0.3

38
5

0.4
72

1

Eigenvalues

100

101

102

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 2

(b)

0.0
07

9
0.1

18
9

0.1
50

6
0.1

82
4

0.2
45

8
0.3

25
1

0.7
85

2

Eigenvalues

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 3

(c)

0.0
09

4
0.1

22
9
0.1

79
7

0.2
55

3
0.2

93
2

0.4
06

7
0.9

36
4

Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 4

(d)

0.0
09

8
0.1

08
9
0.1

68
3

0.2
47

5
0.3

46
5

0.4
85

2
0.9

80
3

Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 5

(e)

0.0
09

9
0.0

89
4

0.1
68

9
0.2

28
5

0.3
47

8
0.4

86
9

0.9
83

8

Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 10

(f)

0.0
08

4
0.0

75
6

0.1
76

6
0.2

43
9

0.3
28

0
0.4

79
3

0.8
32

6

Eigenvalues

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 15

(g)

0.0
08

8
0.0

97
4

0.1
68

2
0.2

39
1

0.3
45

4
0.5

04
8

0.8
76

9

Eigenvalues

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 20

(h)

0.0
08

7
0.0

95
8

0.1
30

7
0.2

17
9
0.2

70
2

0.4
96

8
0.8

62
9

Eigenvalues

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 100

(i)

0.0
08

3
0.0

92
3

0.1
25

9
0.2

09
8

0.2
76

9
0.4

78
4

0.8
30

9

Eigenvalues

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 150

(j)

Figure 7: Single-Attn Eigenspectra.

0.5 0.0 0.5 1.0 1.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 1

(a)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 2

(b)

0.0 0.5 1.0 1.5 2.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 5

(c)

0.0 0.5 1.0 1.5 2.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 10

(d)

0.0 0.5 1.0 1.5 2.0 2.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 50

(e)

0.0 0.5 1.0 1.5 2.0 2.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 60

(f)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 80

(g)

0.0 0.5 1.0 1.5 2.0 2.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 100

(h)

0.0 0.5 1.0 1.5 2.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 120

(i)

0.0 0.5 1.0 1.5 2.0
Eigenvalues

10 1

100

101
Fr

eq
ue

nc
y

(l
og

 s
ca

le
)

Epoch 150

(j)

0.0 0.5 1.0 1.5 2.0 2.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 170

(k)

0.0 0.5 1.0 1.5 2.0 2.5
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 190

(l)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 250

(m)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 300

(n)

0.0
10

1
0.0

68
0

0.1
25

9
0.1

83
8

0.2
41

7
0.2

99
6
0.4

15
4

0.4
73

3
0.7

62
7

0.8
20

6
0.9

36
4

1.5
73

2
1.8

04
8

2.7
31

1
2.8

46
8

Eigenvalues

10 1

100

101

Fr
eq

ue
nc

y
(l

og
 s

ca
le

)

Epoch 400

(o)

Figure 8: Looped-Attn Eigenspectra.

More Discussion on Hessian-Level Dynamics. Regarding Figure 3(d), it is important to under-
stand that we cannot directly compare the absolute values of Mutual Information (MI) for Single-Attn
and Looped-Attn. This is because they have a different baseline level of Matrix Entropy. In infor-
mation theory, the mutual information between two random variables is fundamentally bounded by
the entropy of each variable. Specifically, we have I(Hs;Hs+1) ≤ min(E(Hs), E(Hs+1)). This
means that the absolute values of MI is limited by the complexity of landscape itself, as measured
by Matrix Entropy.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

8 10 12 14 16
Testing Length

0.50

0.55

0.60

0.65

0.70

0.75

To
ta

l A
cc

ur
ac

y

69.25%

72.29%

Single-Attn
Looped-Attn
Training Accuracy of Single-Attn
Training Accuracy of Looped-Attn

Figure 9: Length Generalization Performances.

Table 1: Accuracy on Relatively Simple Sequences.

Datasets Sequence Length # Simple Sequences Single-Attn Looped-Attn

Training L = 4 100% 69.25% 72.29%

Testing

L = 8 99.5% 52.83% 62.78%
L = 11 64.5% 55.57% 70.28%
L = 14 0 N/A N/A
L = 18 0 N/A N/A

This helps explain the low final MI value for Single-Attn. Even though the state at epoch s + 1 is
similar to the state at epoch s, the overall landscape is simple (low entropy) thus the absolute MI
value remains small. However, notice that both models ultimately reach a stable state of high MI
within the limits set by its own entropy. It represents a stagnation, not exploration.

E.1.3 LENGTH GENERALIZATION

To bridge optimization with generalization, we design a controlled experiment on the synthetic
Markov language dataset to evaluate the length generalization capabilities of the Single-Attn and
Looped-Attn models.

Testing Datasets. We generate a series of test datasets with sequence lengths L ∈ {8, 11, 14, 17}.
To specifically isolate the challenge of generalizing a learned rule to longer sequences, rather
than adapting to entirely new dynamics (where our designed simplified Single-Attn and Looped-
Attn might be completely failed), we generate all test datasets using the same transition dynamics
{T1, T2, T3} employed for the training data. For sequence lengths L > 4, the transition matrices
are applied cyclically. Furthermore, to ensure consistent evaluation across lengths, each dataset is
generated by sampling a fixed number of Ntest = 5000 sequences, following the same long-tail sam-
pling rules (α = 2) as the training dataset. With these rules, we present the Information Content
(IC) distributions for the test datasets with different sequence lengths in Figure 5.

Evaluation Metrics. We analyze model performance based on the IC of each sequence. This
allows us to distinguish between simple (low-IC) and complex (high-IC) tasks. Based on the IC
distribution of the training data (L = 4), we establish a fixed complexity threshold IC = 14.57,
which represents the maximum IC in the training sequences. We then evaluate both models on the
following metrics:

• Total Accuracy: The accuracy on the total test datasets.
• Accuracy on Relatively Simple Sequences: The accuracy on the subset of test sequences with

an IC below the fixed threshold (IC ≤ 14.57).

Figure 9 and Table 1 present the length generalization performance of the Single-Attn and Looped-
Attn models. We find that:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500 600
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.7

0.8

0.9

1.0

1.1

Lo
ss

Single-Attn Training Accuracy (Total)
Single-Attn Validation Accuracy (Total)
Single-Attn Training Loss
Single-Attn Validation Loss

(a) Performance Plateau

0 50 100 150 200 250 300
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

G
ra

di
en

t
N

or
m

(b) Gradient Stability

Figure 10: SHIFT Criterion with Patience (SCP).

(a) Total Accuracy. As shown in Figure 9, Looped-Attn significantly outperforms Single-Attn on
out-of-distribution testing datasets with sequence lengths greater than the training length. This per-
formance gap confirms that the inductive bias of Looped-Attn leads to a more generalizable solution,
aligning with our theoretical findings that its optimization landscape guides toward a more flatter
minimum.

An interesting observation from Figure 9 is that the accuracy of both models does not strictly de-
crease as testing length increases (and even increases slightly). This phenomenon originates from
our specific design which employs cyclic transitions. In this setup, a longer sequence provides
the model with more in-context examples of the underlying repeating rule. This may temporar-
ily counteract the performance drops from increasing complexity. However, we point out on more
general datasets, a clearer trend of performance dropping with increasing sequence length would
be observed (Fan et al., 2024). Here, we focus more on the consistently superior performance of
Looped-Attn over Single-Attn.

(b) Accuracy on Relatively Simple Sequences. The ‘# Simple Sequences’ column reveals a critical
length generalization challenge: the low-IC sequences during training become rare or non-existent
in longer test sequences. This confirms that longer sequences are inherently more complex.

We consider the accuracy on these relatively simple sequences. Specifically, at L = 11 where a
significant portion of simple sequences still exists, Looped-Attn maintains a higher accuracy com-
pared to Single-Attn. This indicates that Single-Attn struggles to apply its knowledge even to tasks of
comparable complexity when the sequence is longer. In contrast, Looped-Attn generalizes better to
longer sequences. This aligns with our theory that Looped-Attn finds a more generalizable solution
by exploring further into the river downstream with flat minima.

E.1.4 SHIFT CRITERION WITH PATIENCE

As shown in Figure 10, we introduce a shift criterion consisting of performance plateau detection
and gradient stabilization wait.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E.2 EXPERIMENTS ON PRACTICAL MODELS AND DATASETS

E.2.1 EXPERIMENTAL SETUP

This section details the experimental setup for evaluating three training paradigms on practical mod-
els and datasets: Single-Attn, Looped-Attn, and our proposed SHIFT framework. Our experimental
design follows the methodology for length generalization in looped transformers established by Fan
et al. (2024).

Architectures and Training Paradigms. To ensure a fair comparison, all experiments are con-
ducted under the equal parameter count principle. We employ a decoder-only GPT-2 architecture as
the foundational building block for all models.

• Single-Attn: This model is a standard, non-recursive Transformer trained via Full-Output Pre-
diction to generate the entire output sequence in a single forward pass.

• Looped-Attn: This model uses the same Transformer block as Single-Attn but applies it itera-
tively. We adopt a recursive variant “FOP-Loop-Adaptive” from Fan et al. (2024). Unlike our
toy model with a fixed number of loops (Section E.1), this more advanced setup allows the
model to adapt its computational depth. During training, the model is trained to produce the
output after exactly T loops for a training sequence of length T , with the loss computed only
at the T -th loop. During inference, it uses an adaptive stopping criterion to select the number
of loops for test sequences of different lengths.

• SHIFT: This is our proposed two-stage training strategy that transitions from Single-Attn to
Looped-Attn at a shift point guided by SCP (Section 5).

Datasets and Tasks. The datasets and tasks are adapted from Fan et al. (2024). We mainly eval-
uate models on five algorithmic reasoning tasks: Parity, Addition, Copy, Binary Sum, and Unique
Set. These tasks require multi-step reasoning, sequential computation and serve as benchmarks for
assessing a model’s ability to learn underlying patterns and generalize to sequence lengths not seen
during training (length generalization).

Hyperparameters and Implementation Details. Across all experiments, the model block is con-
figured with an embedding dimension of 256. The number of attention heads and block depth are
task-specific, following the settings in Fan et al. (2024). We use the AdamW optimizer with a learn-
ing rate of 1e-4. All models are trained for a total of 50,001 steps. Each experiment is conducted on
a single 24GB NVIDIA GeForce RTX 3090.

E.2.2 EXPERIMENTAL RESULTS

In the following, we present the experimental results on the above five datasets in Figure 12∼16.
For each dataset, we compare the training, validation, and length generalization performances of
the three models. Figure 11 summarizes the computational efficiency of the SHIFT framework
compared to the Looped-Attn baseline.

Performances of Single-Attn and Looped-Attn. We observe two interesting different behaviors
on training accuracy curves compared to the experiments on our synthetic Markov language datasets
(Figures 12∼16). However, our central findings remain consistent: Looped-Attn creates a River-
V-Valley landscape and thus demonstrates superior performance compared to the River-U-Valley
landscape in Single-Attn.

(a) On practical models and tasks, the training accuracy for all models achieves near 100% early,
which contrasts with the distinct two-phase accuracy curve observed on the toy dataset (Figure 3(b)).
This difference stems from the intrinsic structures of the tasks. Specifically,

• An algorithmic task like Parity is governed by a single, recursive underlying rule (e.g., a sequential
XOR operation) for all training samples, regardless of length. The initial descent in the valley
corresponds to the model learning this core operation, which is sufficient to solve nearly all in-
distribution short sequences and causes the training accuracy to quickly plateau. However, this
plateau masks a critical divergence in the optimization dynamics. Even after the accuracy metric
no longer improves, Looped-Attn continues its optimization by exploring river downstream, which
is essential for refining the learned core operation into a truly generalizable algorithm. In contrast,
Single-Attn gets trapped in the flat valley floor which explains its failure in length generalization.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

parity addition copy sum dict
Dataset

0

2

4

6

8

To
ta

l T
ra

in
in

g
Ti

m
e

(h
)

1.6

4.4

6.8

7.9
7.5

0.6

2.6

4.8
5.3

4.4

Looped-Attn
SHIFT

Figure 11: SHIFT Computational Efficiency on Algorithmic Datasets.

• Our synthetic Markov dataset is designed to contain a diverse set of distinct generative rules with
varying complexities. This naturally separates the training process: during the valley descent, the
model masters the simple rules, while the subsequent downstream exploration is required to learn
the more complex rules, resulting in a clear two-phase accuracy progression (if the model learns
the complex ones).

(b) On practical models and tasks, the accuracy drop upon shifting is significant, but minimal in our
toy model experiments (Figure 4(b)). This phenomenon does not contradict the validity of the Stage
I initialization in SHIFT, as the accuracy recovers rapidly. It reveals a crucial interaction between
the complexity of base architecture and the change of loss landscape.

In both experimental setups, the SHIFT transition reshapes the landscape from a U-shaped valley
to a V-shaped valley. However, the magnitude of this geometric shift appears to depend on the
complexity of the base architecture.

• On practical tasks, Looped-Attn and Single-Attn are built upon GPT-2. Applying the recursive
principle to this complex base architecture creates a V-shaped valley that is greatly different from
the U-shaped valley of its non-recursive ones. This causes the optimizer to significantly push the
parameters far from the stable region, leading to the observed temporary collapse in accuracy.

• On our synthetic dataset, Looped-Attn and Single-Attn are built from a single attention layer. For
these simplified models, the geometric distinction between the U-shaped valley and V-shaped
valley leads to a relatively smooth architectural transition and a stable accuracy trajectory.

This initial instability is the short-term cost of transitioning to a more powerful optimization path.

Effectiveness of SHIFT. Figures 12∼16 consistently validate the performance effectiveness of our
proposed SHIFT framework across all evaluated tasks. As shown in the (c) subfigures, Single-Attn
fails to generalize to longer sequences, while capable of achieving high accuracy on in-distribution
training data. In contrast, Looped-Attn demonstrates great length generalization capabilities by
maintaining high accuracy on longer test sequences. Our SHIFT framework successfully combines
the rapid initial convergence of Single-Attn with a final performance comparable to the Looped-Attn
baseline. Furthermore, as shown in Figure 11, SHIFT achieves this strong performance with sig-
nificantly greater computational efficiency, reducing training time across our evaluated algorithmic
tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 L
os

s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0
Test Length

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 12: Parity Dataset (Shift Step 30k).

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

1

2

3

4
Tr

ai
ni

ng
 L

os
s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

9 10 11 12 13 14
Test Length

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 13: Addition Dataset (Shift Step 16k).

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

20 22 24 26 28 30
Test Length

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 14: Copy Dataset (Shift Step 17k).

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
Test Length

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 15: Binary Sum Dataset (Shift Step 31k).

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 A
cc

ur
ac

y

0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy
Single-Attn Loss
Looped-Attn Loss
SHIFT Loss

(a) Training Performance

0 10000 20000 30000 40000 50000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
Ac

cu
ra

cy

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(b) Validation Performance

20 22 24 26 28 30 32 34
Test Length

0.0

0.2

0.4

0.6

0.8

1.0

To
ta

l A
cc

ur
ac

y

Single-Attn Accuracy
Looped-Attn Accuracy
SHIFT Accuracy

(c) Length Generalization

Figure 16: Unique Set Dataset (Shift Step 38k).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F RIVER-V-VALLEY BRINGS SUPERIOR OPTIMIZATION PERFORMANCE

F.1 DEFINITIONS AND ASSUMPTIONS

Definition 2 (Block-Structured Hessian). Let the Hessian matrix H be represented in the or-
thonormal basis of the Valley {vi} and River {rj} subspaces. Its block components are defined by
the second directional derivatives of the loss L̂ as follows:

[HValley]ij =
∂2L̂

∂vi∂vj
, [HV R]ij =

∂2L̂

∂vi∂rj
, [HRV]ij =

∂2L̂

∂ri∂vj
, [HRiver]ij =

∂2L̂

∂ri∂rj
.

Proof. This block structure is formally derived through a change of basis, transforming the standard
Hessian into the coordinate system defined by the River-Valley subspaces.

From standard basis to the River-Valley subspaces. Let Hold be the Hessian of the loss function
L̂(θ) with respect to the standard basis of Rd, where

[Hold]ij =
∂2L̂

∂θi∂θj
.

We introduce a new orthonormal basis aligned with the geometry of the landscape, formed by the
basis vectors of the valley subspace, SValley = span{v1, . . . , vdV

}, and the river subspace, SRiver =
span{r1, . . . , rdR

}.

The change of basis from the River-Valley coordinates to the standard coordinates is given by the
orthonormal matrix U :

U = (V,R) = (v1, · · · , vdV
, r1, · · · , rdR

) ∈ Rd×(dV +dR),

where V ∈ Rd×dV and R ∈ Rd×dR are matrices whose columns are the basis vectors of the
respective subspaces.

The Hessian in the new basis. The representation of the Hessian H in this new basis is

H = U⊤HoldU.

Substituting the block form of U yields the block structure of H:

H =

(
V ⊤

R⊤

)
Hold (V R) =

(
V ⊤HoldV V ⊤HoldR
R⊤HoldV R⊤HoldR

)
.

From this, we can identify each block:

• HValley = V ⊤HoldV : The projection of the Hessian onto the Valley subspace.

• HV R = V ⊤HoldR: The coupling term from the River to the Valley subspace.

• HRV = R⊤HoldV : The coupling term from the Valley to the River subspace.

• HRiver = R⊤HoldR: The projection of the Hessian onto the River subspace.

Thus, we have

[HValley]ij = v⊤i Holdvj =
∂2L̂

∂vi∂vj
,

[HV R]ij = v⊤i Holdrj =
∂2L̂

∂vi∂rj
,

[HRV]ij = r⊤i Holdvj =
∂2L̂

∂ri∂vj
,

[HRiver]ij = r⊤i Holdrj =
∂2L̂

∂ri∂rj
.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Setting 1 (Quadratic Loss). One simple example of a River-Valley landscape (Definition 1) is the
quadratic loss:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR,

where [HValley]ij =
∂2L̂

∂vi∂vj
, [HV R]ij =

∂2L̂
∂vi∂rj

, [HRV]ij =
∂2L̂

∂ri∂vj
(Definition 2 in Appendix F.1). We

assume the coupling matrix HRV and initialization of valley parameters θV,0 are bounded, namely,
∥HRV ∥ ≤ h̄, ∥θV,0∥ ≤ ᾱ for some constants h̄, ᾱ > 0.
Remark 4. The structure of this loss model is a principled abstraction of our theoretical model
and empirical observations. Each component of the function corresponds to a specific geometric
hypothesis.

The valley component L̂Valley(θV). The valley is a subspace with high curvature. Any movement
away from the valley floor should result in a significant increase in the loss value. We adopt a
simplest quadratic function to capture this behavior and landscape:

L̂Valley(θV) =
1

2
θ⊤V HValleyθV .

The matrix HValley is the valley Hessian. Its spectral properties (condition number) directly model
the shape of the valley: U-shape and V-shape defined in Definition 1.

The river component L̂River(θR). The River is a flat channel (HRR ≈ 0), which implies no
quadratic dependence on θR. Thus for simplicity, we adopt a linear term to characterize the river
landscape:

L̂River(θR) = −h⊤
RθR.

The vector hR represents the direction and magnitude of the River’s flow. The negative sign indicates
that moving in the direction of hR decreases the loss.

The coupling component L̂Coupling(θV , θR). The optimization in valley and river subspaces are not
perfectly independent. To model their interaction, we adopt HRV to construct a simple quadratic
form:

L̂Coupling(θV , θR) = θ⊤RHRV θV = θ⊤V HV RθR,

since Hessian is symmetric, i.e., HRV = H⊤
V R. The matrix HRV is the Coupling Matrix that

quantifies the strength of the interaction between the subspaces. Specifically, HRV describes how a
movement in the valley induces a gradient in the river.

Assembling the final model. By combining these three principled components, we arrive at our
final quadratic loss function:

L̂(θV , θR) =
1

2
θ⊤V HValleyθV − h⊤

RθR + θ⊤RHRV θV .

This can be expressed compactly in the block-matrix form:

L̂(θV , θR) =
1

2

(
θV
θR

)⊤(
HValley HV R

HRV 0

)(
θV
θR

)
− h⊤

RθR.

Assumption 1 (Spectral Properties of Valley Hessian). Let {λ(1)
i } and {λ(2)

i } be the valley Hes-
sian eigenvalues for Single-Attn and Looped-Attn, and let {λ̃(1)

j } and {λ̃(2)
j } be the corresponding

eigenvalues sorted non-decreasingly. For a threshold τ > 0, define mk = |{i | λ
(k)
i ≤ τ}|,

k ∈ {1, 2} as the size of low-curvature eigenvalue sets for both models. Assume for Looped-Attn:

(a) Dimension. The number of low-curvature eigenvalues is greater: m2 > m1.

(b) Dominance. The sorted eigenvalues are component-wise smaller: λ̃(2)
j < λ̃

(1)
j ,∀j ∈ [m1].

Remark 5. For a given threshold τ > 0, the corresponding low-curvature eigenvalue sets, Λ(1)
small

and Λ
(2)
small, are defined by

Λ
(1)
small = {λ(1)

i | λ(1)
i ≤ τ}, Λ

(2)
small = {λ(2)

i | λ(2)
i ≤ τ}.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

thus we separate the flat part of the valley from the steep part. Based on our empirical spectral
distribution, the threshold like τ = 0.5 is reasonable. When rearranging eigenvalues from smallest
to largest in sets Λ

(1)
small and Λ

(2)
small (Notice that λ̃k represents the k-th smallest eigenvalue, while

before λk represents the k-th largest eigenvalue), we have

Λ
(1)
small = {λ̃(1)

1 , λ̃
(1)
2 , · · · , λ̃(1)

m1
},

Λ
(2)
small = {λ̃(2)

1 , λ̃
(2)
2 , · · · , λ̃(2)

m1
, · · · λ̃(2)

m2
}.

From the spectral experiments in Figure 7(j) and 8(o), we observe that the valley of Looped-Attn has
richer spectrum with low values. In addition, the sorted eigenvalues of Looped-Attn are component-
wise smaller than those of Single-Attn.
Assumption 2 (Bounded Time-Varying Coupling Hessian). Let HRV (θk) be the time-varying
coupling matrix at step k. There exists a constant h̄gen > 0, such that supk ∥HRV (θk)∥ ≤ h̄gen.

Assumption 3 (Bounded Time-Varying Valley Hessian). Let {HValley(θk)}k≥0 be the sequence of
Valley Hessians during the optimization trajectory. There exists a constant, positive semi-definite
matrix HB , such that for all steps k: HB ⪯ HValley(θk), where ⪯ denotes the Loewner order.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

F.2 PROOF FOR THEOREM 1 AND COROLLARY 1

We aim to prove that over K iterations (the stage where the valley’s dynamics largely drive progress
in the river, i.e., before reaching the river), the total progress made in the river subspace is signifi-
cantly greater for Looped-Attn than for Single-Attn. In our theoretical model, superior convergence
performance is defined as the ability to explore further along the river, thus reaching a better opti-
mization performance.

With the quadratic loss model from Setting 1, L̂(θV , θR) = 1
2θ

⊤
V HValleyθV − h⊤

RθR + θ⊤RHRV θV ,
we derive the gradients:

∂L̂(θV , θR)

∂θV
= HValleyθV,k +HV RθR,k,

∂L̂(θV , θR)

∂θR
= HRV θV,k − hR.

Therefore the GD update rules for the two subspaces are:

θV,k+1 = θV,k − η (HValleyθV,k +HV RθR,k) = (I − ηHValley)θV,k − ηHV RθR,k, (1)
θR,k+1 = θR,k − η (HRV θV,k − hR) . (2)

Derivation of the cumulative change in the river subspace. Our goal is to quantify the total
progress made within the river subspace during K iterations. From Equation 2, the total change in
θR after K steps is:

∆θR,K ≜ θR,K − θR,0 =

K−1∑
k=0

(θR,k+1 − θR,k)

=

K−1∑
k=0

(ηhR − ηHRV θV,k)

= KηhR − η

K−1∑
k=0

HRV θV,k. (3)

The first term represents progress driven by the river’s intrinsic constant gradient. The second term
represents the influence from the valley. We define CK to be the cumulative effect induced by the
valley dynamics on the river, i.e., movement in the valley θV,k induces a gradient in the river:

CK ≜ η

K−1∑
k=0

HRV θV,k.

Spectral analysis of the dominant dynamics. The cumulative effect CK depends on the trajectory
of θV,k. The recurrence for θV,k in Equation 1 can be solved as

θV,k = ΦkθV,0 − η

k−1∑
j=0

Φk−1−jHV RθR,j , (4)

where Φ ≜ I − ηHValley. The trajectory of θV is composed of two parts: (a) the unforced update,
ΦkθV,0, representing the intrinsic decay of the valley component; and (b) the unforced update, the
summation term, representing the cumulative influence on the valley from the river. During the
early and intermediate stages of optimization (bouncing between the valleys), the magnitude of θV
grows rapidly and remains significantly larger than that of θR. Consequently, the term −ηHRV θV
generates a significant driving force on the river, while the term −ηHV RθR acts only as a minor
perturbation on the valley. Thus, the dynamics of the valley dominate and drive the exploration of
the river, while the dynamics of the river can be regarded as a secondary perturbation to the valley.
We mainly consider the dominant part (a) in the following.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Let HValley = QΛQ⊤ be the spectral decomposition, where Q = [v1, . . . , vdV
] is the orthonormal

matrix of eigenvectors and Λ = diag(λ1, . . . , λdV
) is the diagonal matrix of corresponding eigen-

values. The dominant dynamics of θV are governed by the unforced update ΦkθV,0, which can be
expressed in the eigen-space as:

ΦkθV,0 = (I − ηQΛQ⊤)kθV,0

= (QIQ⊤ − ηQΛQ⊤)kθV,0

= Q(I − ηΛ)kQ⊤θV,0

=

dV∑
i=1

(1− ηλi)
kv⊤i θV,0vi (5)

Dominant cumulative effect for Single-Attn and Looped-Attn. We denote the dominant part of
the cumulative effect, arising from the unforced update, as ĈK :

ĈK ≜ η

K−1∑
k=0

HRV Φ
kθV,0. (6)

Let ρi ≜ 1 − ηλi be the decay rate of the i-th component. Substituting Equation 5 into Equation 6
yields:

ĈK = η

K−1∑
k=0

HRV Φ
kθV,0 = η

K−1∑
k=0

HRV

(
dV∑
i=1

ρki v
⊤
i θV,0vi

)

= η

dV∑
i=1

HRV v
⊤
i θV,0vi

(
K−1∑
k=0

ρki

)

= η

dV∑
i=1

HRV v
⊤
i θV,0vi

(
1− ρKi
1− ρi

)

=

dV∑
i=1

v⊤i θV,0
λi

HRV vi
(
1− ρKi

)
.

With ∥HRV ∥ ≤ h̄ and ∥θV,0∥ ≤ ᾱ in Setting 1, we consider the norm of matrix ĈK , as K → ∞,∥∥∥ĈK

∥∥∥ =

∥∥∥∥∥
dV∑
i=1

1

λi
HRV v

⊤
i θV,0vi

(
1− ρKi

)∥∥∥∥∥
≤

dV∑
i=1

∣∣1− ρKi
∣∣

|λi|
|v⊤i θV,0| · ∥HRV vi∥

≤
dV∑
i=1

∣∣1− ρKi
∣∣

|λi|
|v⊤i θV,0| · ∥HRV ∥

≤ ∥HRV ∥
dV∑
i=1

1

|λi|
|v⊤i θV,0|

≤
√
dV ∥HRV ∥ ∥θV,0∥

dV∑
i=1

1

|λi|

≤
√
dV h̄ ᾱ

dV∑
i=1

1

|λi|
≜ C (7)

It means that after K iterations, the driving force from valley is limited to C. In other words, C
quantifies the total potential driving force the valley can generate, which is primarily related to the
inverse of the eigenvalues of the valley subspace.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

With Assumption 1, we split the capacity limit C into contributions from the small eigenvalue set
and the large eigenvalue set:

C =
√

dV h̄ ᾱ
∑

λi∈Ssmall

1

|λi|
+
√
dV h̄ ᾱ

∑
λi /∈Ssmall

1

|λi|
≜ Cdom + Cres,

where the dominant contribution Cdom comes from the small eigenvalues and the residual contribu-
tion Cres from the large eigenvalues is negligible, as 1/λi is small for λi > τ .

In the following, we compare the dominant capacities Cdom:

For Single-Attn with River-U-Valley: The dominant force is determined by the sum over its m1

small eigenvalues.

C(1)
dom = h̄ᾱ

√
dV

∑
j∈[m1]

1

λ
(1)
j

.

For Looped-Attn with River-V-Valley: The dominant force is determined by the sum over its m2

small eigenvalues.

C(2)
dom = h̄ᾱ

√
dV

∑
j∈[m2]

1

λ
(2)
j

.

With Assumption 1, the V-shaped valley possesses more and smaller eigenvalues in its low-curvature
valley spectrum, which leads to the conclusion that:

C(2)
dom ≫ C(1)

dom.

Thus, the total potential is significantly greater for Looped-Attn:

C(2) ≫ C(1).

This proves that the ill-conditioned nature of the V-shaped valley provides a larger potential for
driving exploration in the river subspace. This continued and powerful exploration allows Looped-
Attn to navigate further down the river, overcoming performance plateaus and achieving a superior
optimization performance compared to the rapidly trapped Single-Attn model.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

F.3 PROOF FOR COROLLARY 2

The quadratic loss in Setting 1 is:

L̂(θV , θR) =
1

2
θ⊤V HValleyθV − h⊤

RθR + θ⊤RHRV θV ,

where these three terms correspond to the general loss form in Setting 2,

L̂(θV , θR) = L̂Valley(θV) + L̂River(θR) + L̂Coupling(θV , θR).

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Attn leads to converge rapidly in the valley subspace
(within K1 steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K2 steps, where K2 > K1). We consider K = K2.

At iteration K, for both models, the valley parameters are effectively zero:

θ
(1)
V,K ≈ 0 and θ

(2)
V,K ≈ 0.

Given θV,K ≈ 0, the valley and coupling terms become negligible for both models:

L̂Valley,K =
1

2
θ⊤V,KHValleyθV,K ≈ 0.

L̂Coupling,K = θ⊤R,KHRV θV,K ≈ 0.

Therefore, the total loss for each model at step K is dominated by its river component:

L̂
(1)
K ≈ L̂

(1)
River,K = −h⊤

Rθ
(1)
R,K .

L̂
(2)
K ≈ L̂

(2)
River,K = −h⊤

Rθ
(2)
R,K .

From Equation 3,

∆θR,K = KηhR − η

K−1∑
k=0

HRV θV,k = KηhR − CK ,

where CK represents the cumulative effect from the valley dynamics over K iterations with an upper
bound C (capacity limits).

For Single-Attn: The parameters θ(1)V,k decay to zero rapidly (for k ≥ K1). Thus, the summation in

C
(1)
K stops accumulating new contributions after K1 steps.

C
(1)
K = η

K1−1∑
k=0

HRV θ
(1)
V,k.

For Looped-Attn: The parameters θ(2)V,k decay slowly. These non-zero valley parameters continue to
generate a gradient in the river direction for a much longer period (up to K2 steps).

C
(2)
K = η

K2−1∑
k=0

HRV θ
(2)
V,k.

Thus, at large K, the cumulative effects of both models reach their asymptotic values. According to
Theorem 2, the potential force C is derived with K → ∞ (where 1 − (1 − ηλi)

K reaches to 1), is
consistent with the convergence points. In other words,

∥C(1)
K ∥ ≈ C(1), ∥C(2)

K ∥ ≈ C(2).

With Corollary 1, we conclude that the actually cumulative effect is larger for Looped-Attn:

∥C(2)
K ∥ ≫ ∥C(1)

K ∥.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Loss Comparison. We analyze the change in the river loss, ∆L̂River,K = L̂River,K − L̂River,0.

∆L̂River,K = −h⊤
R(θR,K − θR,0) = −h⊤

R(KηhR − CK) = −Kη∥hR∥2 + h⊤
RCK .

The term h⊤
RCK represents the total reduction in the river loss induced by the valley dynamics. Since

the overall process follows GD to minimize loss, which implies h⊤
RCK < 0, i.e., CK is aligned with

the direction −hR.

Given that ∥C(2)
K ∥ ≫ ∥C(1)

K ∥,
h⊤
RC

(2)
K ≪ h⊤

RC
(1)
K < 0.

Therefore,

∆L̂
(1)
River,K −∆L̂

(2)
River,K =

(
−Kη∥hR∥2 + h⊤

RC
(1)
K

)
−
(
−Kη∥hR∥2 + h⊤

RC
(2)
K

)
= h⊤

RC
(1)
K − h⊤

RC
(2)
K ≫ 0.

which yields ∆L̂
(1)
River,K ≫ ∆L̂

(2)
River,K .

Since both loss changes are negative, we have |∆L̂
(1)
River,K | ≪ |∆L̂

(2)
River,K |, which demonstrates that

Looped-Attn achieves a significantly greater loss reduction. Starting from the same initialization, a
greater loss reduction implies a lower final loss value. Finally, we conclude that:

L̂
(2)
K < L̂

(1)
K ,

which shows that Looped-Attn achieves a smaller loss over K steps. During the phase K = K2,
Looped-Attn has exhibited significant advantages over Single-Attn. Furthermore, for subsequent
steps K > K2, Looped-Attn continues to explore the river downstream while Single-Attn remains
trapped in the flat valley.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F.4 PROOF FOR THEOREM 2

We extend the analysis in Theorem 1 and Corollary 1∼2 to the more general loss model introduced
in Setting 2:

L̂(θV , θR) = L̂Valley(θV) + L̂River(θR) + L̂Coupling(θV , θR).

Time-Varying Hessian and Dynamics Analysis. To analyze the optimization dynamics for the
general loss, we approximate the landscape locally around each iterate θk = (θV,k, θR,k) using a
second-order Taylor expansion. This approximation is justified since each step of GD η∂L̂(θk) is
typically small, the subsequent parameter θk+1 remains within this neighborhood.

The Taylor expansion of L̂(θ) around θk is given by:

L̂(θ) ≈ L̂(θk) + ∂θL̂(θk)
⊤(θ − θk) +

1

2
(θ − θk)

⊤H(θk)(θ − θk), (8)

where ∂θL̂(θk) and H(θk) are the gradient and Hessian evaluated at θk. And we have:

θ − θk =

(
θV − θV,k
θR − θR,k

)
, ∂θL̂(θk) =

(
∂θV L̂(θk)

∂θRL̂(θk)

)
, H(θk) =

(
HValley(θk) HV R(θk)
HRV (θk) HRiver(θk)

)
.

Substituting these into Equation 8 yields the local quadratic approximation:

L̂(θV , θR) ≈ L̂(θV,k, θR,k) +
(
∂θV L̂(θk)

)⊤
(θV − θV,k) +

(
∂θRL̂(θk)

)⊤
(θR − θR,k)

+
1

2
(θV − θV,k)

⊤HValley(θk)(θV − θV,k)

+
1

2
(θR − θR,k)

⊤HRiver(θk)(θR − θR,k)

+ (θR − θR,k)
⊤HRV (θk)(θV − θV,k).

From this approximation, we have

∂θV L̂(θV , θR) ≈ ∂θV L̂(θk) +HValley(θk)(θV − θV,k) +HV R(θk)(θR − θR,k),

∂θRL̂(θV , θR) ≈ ∂θRL̂(θk) +HRV (θk)(θV − θV,k),

where we assume HRiver(θk) ≈ 0 since river is an extremely flat region.

We find that the river update at the point near θk, is approximately linearly dependent θV and the
linear coefficient is HRV (θk). Thus we assume that the river gradient at θk is also following:

∂θRL̂(θV,k, θR,k) ≈ HRV (θk)θV,k − hR,k,

where hR,k is the inherent driving force of the river itself, independent of the valley position. This
term is similar to the residual term in linear model. Similarly, we assume that the valley gradient at
θk is following:

∂θV L̂(θV,k, θR,k) ≈ HValley(θk)θV,k +HV R(θk)θR,k.

Therefore the GD update rules for the two subspaces under general loss are:

θV,k+1 = θV,k − η∂θV L̂(θV,k, θR,k) ≈ (I − ηHValley(θk)) θV,k − ηHV R(θk)θR,k, (9)

θR,k+1 = θR,k − η∂θRL̂(θV,k, θR,k) ≈ θR,k − η (HRV (θk)θV,k − hR,k) . (10)

Comparing Equation 9∼10 with Equation 1∼2, we find that the optimization dynamics under gen-
eral loss can be viewed as evolving on a sequence of local quadratic landscapes, each defined by a
time-varying Hessian H(θk).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Derivation of the cumulative change in the river subspace. Following the same procedure as in
the quadratic case, we analyze the cumulative change in the river subspace over K iterations:

∆θR,K = θR,K − θR,0 =

K−1∑
k=0

(θR,k+1 − θR,k)

≈
K−1∑
k=0

(−ηHRV (θk)θV,k + ηhR,k)

≈ η

K−1∑
k=0

hR,k − η

K−1∑
k=0

HRV (θk)θV,k. (11)

We define CK,gen to be the cumulative effect induced by the valley dynamics:

CK,gen ≜ η

K−1∑
k=0

HRV (θk)θV,k.

We examine the norm of the cumulative effect:

∥CK,gen∥ =

∥∥∥∥∥η
K−1∑
k=0

HRV (θk)θV,k

∥∥∥∥∥ ≤ η

K−1∑
k=0

∥HRV (θk)∥ ∥θV,k∥ . (12)

The cumulative effect CK,gen depends on the trajectory of θV,k. The recurrence for θV,k in Equation
9 can be solved as

θV,k ≈

k−1∏
j=0

Φj

 θV,0 − η

k−1∑
j=0

 k−1∏
i=j+1

Φi

 bj ,

where Φk = I − ηHValley(θk) and bk = HV R(θk)θR,k. Similarly to Appendix F.2, we assume that
the unforced update (the first term) is dominant, then

θV,k ≈

k−1∏
j=0

Φj

 θV,0.

To analyze this, we introduce a effective Hessian HB with eigenvalues {λB
i } and eigenvectors {vBi },

which satisfies HB ⪯ HValley(θj) for all j (Assumption 3). Let ΦB = I − ηHB . This implies that
∥Φjv∥ ≤ ∥ΦBv∥ for any vector v. Thus,

∥θV,k∥ ≈

∥∥∥∥∥∥
k−1∏

j=0

Φj

 θV,0

∥∥∥∥∥∥ ≤
∥∥(ΦB)kθV,0

∥∥ .
Let HB = QBΛB(QB)⊤ be the spectral decomposition of this bounding Hessian, where QB =
[vB1 , . . . , vBdV

] is the orthonormal matrix of eigenvectors and ΛB = diag(λB
1 , . . . , λ

B
dV

) is the diago-
nal matrix of corresponding eigenvalues. Let ρBi ≜ 1−ηλB

i be the decay rate of the i-th component,

∥θV,k∥ ≤
∥∥(ΦB)kθV,0

∥∥ ≤

∥∥∥∥∥
dV∑
i=1

(1− ηλB
i)

k(vBi)⊤θV,0v
B
i

∥∥∥∥∥ =

∥∥∥∥∥
dV∑
i=1

(ρBi)
k(vBi)⊤θV,0v

B
i

∥∥∥∥∥ .
35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Thus, under Assumption 2 and ∥θV,0∥ ≤ ᾱ, Equation 12 is translated into

∥CK,gen∥ ≤ η

K−1∑
k=0

∥HRV (θk)∥ ∥θV,k∥ ≤ η

K−1∑
k=0

h̄gen

∥∥∥∥∥
dV∑
i=1

(ρBi)
k(vBi)⊤θV,0v

B
i

∥∥∥∥∥
≤ η h̄gen

K−1∑
k=0

(
dV∑
i=1

|ρBi |k|(vBi)⊤θV,0|

)

= η h̄gen

dV∑
i=1

|(vBi)⊤θV,0|

(
K−1∑
k=0

|ρBi |k
)

= h̄gen

dV∑
i=1

|(vBi)⊤θV,0|
(
|1− (ρBi)

K |
|λB

i |

)

≤ h̄gen

dV∑
i=1

|(vBi)⊤θV,0|
|λB

i |

≤
√
dV h̄gen ᾱ

dV∑
i=1

1

|λB
i |

≜ Cgen.

It means that after K iterations, the driving force from valley is limited to Cgen, determined by two
factors: (a) h̄gen, the supremum of the coupling strength which represents the most efficient effect of
valley on the river; (b) {λB

i }, the eigenspecturm of valley subspace.

With Assumption 1, we split the capacity limit Cgen into contributions from the small eigenvalue set
and the large eigenvalue set:

Cgen =
√
dV h̄gen ᾱ

∑
λi∈Ssmall

1∣∣λB
i

∣∣ +√dV h̄gen ᾱ
∑

λi /∈Ssmall

1∣∣λB
i

∣∣ ≜ Cdom,gen + Cres,gen,

where the dominant contribution Cdom,gen comes from the small eigenvalues and the residual contri-
bution Cres,gen from the large eigenvalues is negligible, as 1/λB

i is small for λB
i > τ .

In the following, we compare the dominant capacities Cdom,gen:

For Single-Attn with River-U-Valley: The dominant force is determined by the sum over its m1

small eigenvalues.

C(1)
dom,gen =

√
dV h̄gen ᾱ

∑
j∈[m1]

1

(λB
j)

(1)
.

For Looped-Attn with River-V-Valley: The dominant force is determined by the sum over its m2

small eigenvalues.

C(2)
dom,gen =

√
dV h̄gen ᾱ

∑
j∈[m2]

1

(λB
j)

(2)
.

With Assumption 1, the V-shaped valley possesses more and smaller eigenvalues in its low-curvature
valley spectrum, which leads to the conclusion that:

C(2)
dom,gen ≫ C(1)

dom,gen.

Thus, the total potential is significantly greater for Looped-Attn:

C(2)
gen ≫ C(1)

gen .

In summary, under general loss, we prove that the V-shaped valley in Looped-Attn provides a larger
potential for driving exploration in the river subspace.

In the following, similar to Corollary 2, we can also connect with loss values.

With the general loss form in Setting 2,

L̂(θV , θR) = L̂Valley(θV) + L̂River(θR) + L̂Coupling(θV , θR).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Let K be a number of iterations large enough such that the valley parameters for both models have
converged to the bottom of their respective valleys.

The well-conditioned U-shaped valley of Single-Attn leads to converge rapidly in the valley subspace
(within K1 steps). The ill-conditioned V-shaped valley of Looped-Attn leads to slower convergence
in the valley (within K2 steps, where K2 > K1). We consider K = K2.

At iteration K, for both models, the valley parameters are θ
(1)
V,K ≈ 0 and θ

(2)
V,K ≈ 0. Thus, L̂(1)

K ≈
L̂
(1)
River,K and L̂

(2)
K ≈ L̂

(2)
River,K .

From Equation 11,

∆θR,K ≈ η

K−1∑
k=0

hR,k − CK,gen,

where CK,gen = η
∑K−1

k=0 HRV (θk)θV,k represents the cumulative effect from the valley dynamics
over K iterations with an upper bound Cgen (capacity limits).

For Single-Attn: The parameters θ(1)V,k decay to zero rapidly (for k ≥ K1). Thus, the summation in

C
(1)
K stops accumulating new contributions after K1 steps.

C
(1)
K = η

K1−1∑
k=0

HRV (θ
(1)
V,k)θ

(1)
V,k.

For Looped-Attn: The parameters θ(2)V,k decay slowly. These non-zero valley parameters continue to
generate a gradient in the river direction for a much longer period (up to K2 steps).

C
(2)
K = η

K2−1∑
k=0

HRV (θ
(2)
V,k)θ

(2)
V,k.

As K becomes large, the cumulative effects for both models reach their capacity limits C (derived
with K → ∞, 1− (1− ηλi)

K → 1). In other words,

∥C(1)
K,gen∥ ≈ C(1)

gen , ∥C(2)
K,gen∥ ≈ C(2)

gen .

We conclude that the actually cumulative effect is larger for Looped-Attn:

∥C(2)
K,gen∥ ≫ ∥C(1)

K,gen∥.

We then analyze the change in the river loss, ∆L̂River,K = L̂River,K − L̂River,0. With the Taylor
expansion of L̂(θ) around θk,

L̂(θ) ≈ L̂(θk) + ∂θL̂(θk)
⊤(θ − θk) +

1

2
(θ − θk)

⊤H(θk)(θ − θk). (13)

Substitute θ = θk+1 and θk+1 = θk − η∂θL̂(θk), we have

L̂(θk+1) ≈ L̂(θk)− η∂θL̂(θk)
⊤∂θL̂(θk) +

η2

2
L̂(θk)

⊤H(θk)L̂(θk). (14)

With a small learning rate, we approximate the above as L̂(θk+1) ≈ L̂(θk) − η∂θL̂(θk)
⊤∂θL̂(θk).

Thus

∆L̂River,K =

K−1∑
k=0

(
L̂River(θR,k+1)− L̂River(θR,k)

)
≈ −η

K−1∑
k=0

∥∥∥∂θRL̂(θk)∥∥∥2 .
From Equation 10, ∂θRL̂(θV,k, θR,k) ≈ HRV (θk)θV,k − hR,k, we have

∆L̂River,K ≈ −η

K−1∑
k=0

∥HRV (θk)θV,k − hR,k∥2

= −η

K−1∑
k=0

∥HRV (θk)θV,k∥2 − η

K−1∑
k=0

∥hR,k∥2 + 2η

K−1∑
k=0

(hR,k)
⊤(HRV (θk)θV,k).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Assume that the river inherent gradient hR is the same during training for both models,

∆L̂
(1)
River,K −∆L̂

(2)
River,K

=− η

K−1∑
k=0

(∥∥∥H(1)
RV (θ

(1)
k)θ

(1)
V,k

∥∥∥2 − ∥∥∥H(2)
RV (θ

(2)
k)θ

(2)
V,k

∥∥∥2)

+ 2η

K−1∑
k=0

(
(h

(1)
R,k)

⊤(H
(1)
RV (θ

(1)
k)θ

(1)
V,k)− (h

(2)
R,k)

⊤(H
(2)
RV (θ

(2)
k)θ

(2)
V,k)

)
=− 1

η

(
∥C(1)

K ∥2 − ∥C(2)
K ∥2

)
+ 2h⊤

R(C
(1)
K − C

(2)
K) ≫ 0.

with ∥C(2)
K ∥ ≫ ∥C(1)

K ∥ and h⊤
RC

(2)
K ≪ h⊤

RC
(1)
K < 0.

Since both loss changes are negative, we have |∆L̂
(1)
River,K | ≪ |∆L̂

(2)
River,K |, which demonstrates that

Looped-Attn achieves a significantly greater loss reduction. Starting from the same initialization, a
greater loss reduction implies a lower final loss value. Finally, we conclude that:

L̂
(2)
K < L̂

(1)
K ,

which shows that Looped-Attn achieves a smaller loss over K steps. During the phase K = K2,
Looped-Attn has exhibited significant advantages over Single-Attn. Furthermore, for subsequent
steps K > K2, Looped-Attn continues to explore the river downstream while Single-Attn remains
trapped in the flat valley.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

G SHARED RIVER UPSTREAM

G.1 ASSUMPTIONS AND USEFUL LEMMAS

G.1.1 ASSUMPTIONS

Assumption 4 (Diagonally Dominant and PSD Weight Matrices). Assume that the key, query, and
value weight matrices (WK ,WQ,WV) are diagonally dominant with Positive Semidefinite (PSD)
diagonal matrices DK , DQ, DV , we have

WK = DK + ϵK ,

WQ = DQ + ϵQ,

WV = DV + ϵV ,

where ϵK , ϵQ, ϵV are dense matrices with significantly smaller spectral norm.
Remark 6 (Justification of Assumption 4). This assumption provides mathematical tractability for
the formal analysis of composite matrix transformations, which is necessary for proving the positive
alignment of gradients. Intuitively, it may approximate the behavior of the attention mechanism
during the early stages of training, where the model first learns simple local dependencies before
capturing more complex global interactions.

This assumption represents a relative idealization. In practice, the weight matrices of a well-trained,
deep Transformer are typically dense and are not guaranteed to be PSD. In a practical setting, we
posit that the gradients are more likely to be broadly aligned or at least non-negatively correlated,
particularly during the initial phase of training. This weaker form of alignment is sufficient to
support the theoretical basis for our SHIFT framework, ensuring that the parameters learned by
Single-Attn provide a beneficial starting point for Looped-Attn.
Assumption 5 (Approximate PSD Property of Composite Transformations). Let DA and DB be
Positive Semidefinite (PSD) diagonal matrices, and let P be a general PSD matrix. We assume that
their product, M = DAPDB , is approximately PSD. This means the matrix M can be decomposed
as:

M = MPSD + ϵ,

where MPSD is a PSD matrix that captures the dominant, direction-preserving behavior of the trans-
formation, and ϵ is a perturbation matrix with a small norm relative to MPSD.
Remark 7 (Justification for Assumption 5). A matrix is strictly PSD only if it is symmetric and
its quadratic form is non-negative for all vectors. The composite transformation M = DAPDB

generally fails the first symmetric condition, and in rare extreme cases, may fail the second. The
perturbation term ϵ accounts for these two sources of deviation from strict PSD properties.

(a) Minor Fluctuation from Non-Symmetry. The primary deviation arises from the non-
commutativity of matrix multiplication, which breaks symmetry. The transpose of M is M⊤ =
DBPDA, which is generally not equal to M . Therefore, M is not symmetric. In a well-behaved
system, we assume that this non-symmetry only introduce minor fluctuations rather than fundamen-
tally altering the transformation’s property.

(b) Non-PSD Behavior from Extreme Anisotropic Scaling. Another possible deviation can occur
even in the symmetric part of M , i.e., Msym = 1

2 (DAPDB +DBPDA). While the composition of
direction-preserving operators (DA, P,DB) is intuitively expected to remain direction-preserving, it
is possible to construct extreme counterexamples. Such cases arises when the diagonal matrices DA

and DB induce extreme anisotropic scaling (i.e., some diagonal entries are very large while others
are near-zero). This can significantly alter the direction of an arbitrary vector before and after the
application of P , leading to a negative quadratic form. Our assumption posits that during the initial
stage of training attention models, such extreme conditions are not common. We model these rare
non-PSD behaviors as part of the small perturbation ϵ, allowing our analysis to focus on the system’s
dominant, approximately PSD behavior captured by MPSD.

G.1.2 GRADIENT CALCULATIONS

In this section, we present two key lemmas regarding the gradients of the cross-entropy loss function
with respect to the key (WK) and query (WQ) matrices for the Single-Attn and Looped-Attn models.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Lemma 1. For the Single-Attn model, the gradients of the empirical loss L̂(θ) with respect to the
key matrix WK and query matrix WQ are given by:

∇WK
L̂(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WQ
L̂(θ) = Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

where A = WV E0E
⊤
0 ∈ Rd×d, b = WQz0 ∈ Rd, and Ã = WV E0E

⊤
0 W⊤

K ∈ Rd×d, b̃ = z0 ∈ Rd.

Remark 8. Recall that, E0 ∈ Rd×n is the input embedding matrix, z0 ∈ Rd is the query vector,
which is the last column of embedding E0. WK ,WQ,WV ∈ Rd×d are the key, query, and value
weight matrices, respectively. Wh is the prediction head parameters. Furthermore, S(ŷ) represents
the softmax probability vector of the logits, and ey = [0, · · · , 1, · · · , 0]⊤, i.e., the value of the y-th
component is 1, and 0 otherwise. The operator ⊗ denotes the Kronecker product.

Proof. Our objective is to compute the gradients ∇WK
L̂(θ) and ∇WQ

L̂(θ) for the Single-Attn
model. We begin by recalling the definition of the empirical loss and the architecture of the Single-
Attn model. The loss for one sequence is given by l̂ = − log(Sy(ŷ)), where logits ŷ = Whfθ(E0, z0)
and the linear attention function is fθ(E0, z0) = WV E0E

⊤
0 W⊤

KWQz0. The overall empirical loss
L̂(θ) is averaging over the training set.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss l̂ is a function of the logit vector ŷ.

2. The logit vector ŷ is a function of the final state z1.

3. The final state z1 is function of the attention output fθ(E0, z0).

4. The attention output fθ(E0, z0) is a function of the model parameters WK and WQ.

We will compute the gradient for each component of the chain rule individually.

Step 1: Gradient with respect to the logit vector ŷ. We first compute the derivative of l̂ with
respect to an individual logit component ŷk. The softmax probability for the ground-truth token y is
defined as:

log (Sy(ŷ)) = log

(
eŷy∑V
j=1 e

ŷj

)
= ŷy − log

V∑
j=1

eŷj .

When k = y,
∂ log(Sy(ŷ))

∂ŷy
= 1− eŷy∑V

j=1 e
ŷj

= 1− Sy(ŷ).

When k ̸= y,
∂ log(Sy(ŷ))

∂ŷk
= 0− eŷk∑V

j=1 e
ŷj

= −Sk(ŷ).

Combining these results,
∇ŷ log(Sy(ŷ)) = ey − S(ŷ),

where ey is a one-hot vector with a 1 at the position corresponding to the ground-truth token y, S(ŷ)

represents the softmax probability vector of the logits. Therefore, the gradient of the loss l̂ with
respect to ŷ is:

∇ŷ l̂ = −(ey − S(ŷ)) = S(ŷ)− ey.

Step 2: Gradient with respect to the final state z1. We then compute the derivative of the logit
vector ŷ with respect to the state z1. With ŷ = Whz1, we have

∂ŷ

∂z1
=

∂Whz1
∂z1

= W⊤
h .

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Step 3: Gradient with respect to the key matrix WK . We now compute the derivative of the final
state z1 with respect to the key matrix WK .

With z1 = z0 + fθ(E0, z0), we have

∂z1
∂WK

=
∂fθ(E0, z0)

∂WK

∂z1
∂fθ(E0, z0)

=
∂fθ(E0, z0)

∂WK
∈ Rd2×d.

Define A = WV E0E
⊤
0 ∈ Rd×d and b = WQz0 ∈ Rd. The attention function fθ(E0, z0) =

WV E0E
⊤
0 W⊤

KWQz0 simplifies to fθ(E0, z0) = AW⊤
K b. We get

∂fθ(E0, z0)

∂WK
=

∂(AW⊤
K b)

∂WK
= A⊤ ⊗ b ∈ Rd2×d,

where ⊗ denotes the Kronecker product. Thus,

∂z1
∂WK

= A⊤ ⊗ b ∈ Rd2×d.

Combining the above steps using the chain rule, we have

∇WK
L̂(θ) = Ê [−∇WK

log (Sy(ŷ))]

= Ê

[
− ∂z1
∂WK

∂ŷ

∂z1
∇ŷ log(Sy(ŷ))

]
= Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

where A = WV E0E
⊤
0 ∈ Rd×d, b = WQz0 ∈ Rd.

Step 4: Gradient with respect to the query matrix WQ. The process for computing the gradient
with respect to WQ is similar.

Define Ã = WV E0E
⊤
0 W⊤

K ∈ Rd×d and b̃ = z0 ∈ Rd. The attention function fθ(E0, z0) =

WV E0E
⊤
0 W⊤

KWQz0 can be written as fθ(E0, z0) = ÃWQb̃. We have

∂fθ(E0, z0)

∂WQ
=

∂(ÃWQb̃)

∂WQ
= b̃⊗ Ã⊤ ∈ Rd2×d.

Thus,
∂z1
∂WQ

= b̃⊗ Ã⊤ ∈ Rd2×d.

Again, applying the chain rule by combining this result with Step 1 and Step 2, we have

∇WQ
L̂(θ) = Ê

[
−∇WQ

log (Sy(ŷ))
]

= Ê

[
− ∂z1
∂WQ

∂ŷ

∂z1
∇ŷ log(Sy(ŷ))

]
= Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

where Ã = WV E0E
⊤
0 W⊤

K ∈ Rd×d, b̃ = z0 ∈ Rd.

Lemma 2. For the Looped-Attn model, the gradients of the empirical loss L̂(θ) with respect to the
key matrix WK and the query matrix WQ are given by:

∇WK
L̂(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

∇WQ
L̂(θ) = Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
,

where At−1 = WV Et−1E
⊤
t−1 ∈ Rd×d, bt−1 = WQzt−1 ∈ Rd, and Ãt−1 = WV Et−1E

⊤
t−1W

⊤
K ∈

Rd×d, b̃t−1 = zt−1 ∈ Rd for each loop iteration t.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Remark 9. Recall that, Et−1 and zt−1 are the intermediate representations during looping. The
representations are updated by zt = zt−1 + fθ(Et−1, zt−1) and Et = Et−1 + fθ(Et−1). Further-
more, WK ,WQ,WV ∈ Rd×d are the key, query, and value weight matrices, respectively. Wh is
the prediction head parameters. S(ŷ) represents the softmax probability vector of the logits, and
ey = [0, · · · , 1, · · · , 0]⊤, i.e., the value of the y-th component is 1, and 0 otherwise. The operator
⊗ denotes the Kronecker product.

Proof. We aim to compute the gradients ∇WK
L̂(θ) and ∇WQ

L̂(θ) for the Looped-Attn model. The
final logit vector ŷ is produced by applying the prediction head Wh to the final state zT , which is
obtained by T loops of the attention function.

The gradient calculations require the chain rule, which is summarized as follows:

1. The loss l̂ is a function of the logit vector ŷ.

2. The logit vector ŷ is a function of the final state zT .

3. The final state zT is a function of the attention outputs fθ(Et−1, zt−1) from all preceding steps
t = 1, . . . , T .

4. Each attention output fθ(Et−1, zt−1) is a function of the model parameters WK and WQ.

We proceed by computing the gradient for each component in this chain.

Step 1: Gradient with respect to the logit vector ŷ. This step is identical to the derivation for the
Single-Attn model. The gradient of the loss l̂ with respect to the logit vector ŷ is:

∇ŷ l̂ = S(ŷ)− ey,

where S(ŷ) is the softmax probability vector and ey is the one-hot vector for the ground-truth token.

Step 2: Gradient with respect to the final state zT . With ŷ = WhzT , we have

∂ŷ

∂zT
=

∂WhzT
∂zT

= W⊤
h .

Step 3: Gradient with respect to the key matrix WK . With the iteration zt = zt−1 +
fθ(Et−1, zt−1), we can derive a recursive defintion

zT = z0 +

T∑
t=1

fθ(Et−1, zt−1).

Then we have

∂zT
∂WK

=

T∑
t=1

∂fθ(Et−1, zt−1)

∂WK

∂zT
∂fθ(Et−1, zt−1)

=

T∑
t=1

∂fθ(Et−1, zt−1)

∂WK
∈ Rd2×d.

The derivative of the attention function fθ(Et−1, zt−1) = WV Et−1E
⊤
t−1W

⊤
KWQzt−1 with respect

to WK is structurally identical to the Single-Attn case, but with time-dependent inputs.

Define At−1 = WV Et−1E
⊤
t−1 and bt−1 = WQzt−1 for each loop t ∈ [T], then

∂fθ(Et−1, zt−1)

∂WK
= A⊤

t−1 ⊗ bt−1.

Thus

∂zT
∂WK

=

T∑
t=1

(A⊤
t−1 ⊗ bt−1) ∈ Rd2×d.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Combining the above results using the chain rule, we have

∇WK
L̂(θ) = Ê [−∇WK

log (Sy(ŷ))]

= Ê

[
− ∂zT
∂WK

∂ŷ

∂zT
∇ŷ log(Sy(ŷ))

]
= Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

where At−1 = WV Et−1E
⊤
t−1 ∈ Rd×d, bt−1 = WQzt−1 ∈ Rd.

Step 4: Gradient with respect to the query matrix WQ. The derivation for WQ is similar to that
for WK .

Define Ãt−1 = WV Et−1E
⊤
t−1W

⊤
K and b̃t−1 = zt−1 for each loop t ∈ [T], then

∂fθ(Et−1, zt−1)

∂WQ
= b̃t−1 ⊗ Ã⊤

t−1.

Thus

∂zT
∂WQ

=

T∑
t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
∈ Rd2×d.

Finally, applying the chain rule gives the gradient for WQ:

∇WQ
L̂(θ) = Ê

[
−∇WQ

log (Sy(ŷ))
]

= Ê

[
− ∂zT
∂WQ

∂ŷ

∂zT
∇ŷ log(Sy(ŷ))

]
= Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(Ŷ)− ey)

]
,

where Ãt−1 = WV Et−1E
⊤
t−1W

⊤
K ∈ Rd×d, b̃ = zt−1 ∈ Rd.

G.1.3 THE PRECONDITIONING EFFECT FOR Looped-Attn

In Lemma 1 and 2, we have derived the gradients for both Single-Attn and Looped-Attn models, we
now directly compare them. This analysis reveals a crucial insight into the optimization dynamics
of Looped-Attn.

Lemma 3. Denote the empirical loss L̂1 for Single-Attn and L̂2 for Looped-Attn, then the gradient
of the Looped-Attn model can be expressed as the preconditioned gradient of the Single-Attn model:

∇WK
L̂2(θ) = PWK

∇WK
L̂1(θ),

∇WQ
L̂2(θ) = PWQ

∇WQ
L̂1(θ),

where the preconditioners PWK
and PWQ

are defined as:

PWK
= I + Ê

[
P2P

+
1

]
,

with P1 = A⊤ ⊗ b, P2 =
∑T

t=2

(
A⊤

t−1 ⊗ bt−1

)
, P+

1 P1 = I , and P+
1 is the Moore-Penrose pseu-

doinverse.
PWQ

= I + Ê
[
P̃2P̃

+
1

]
,

with P̃1 = b̃⊗ Ã⊤, P̃2 =
∑T

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
, and P̃+

1 P̃1 = I .

Remark 10. Recall that in Lemma 1 and 2, we define: At−1 = WV Et−1E
⊤
t−1, bt−1 = WQzt−1,

A = WV E0E
⊤
0 , and b = WQz0; Ãt−1 = WV Et−1E

⊤
t−1W

⊤
K , b̃t−1 = zt−1, Ã = WV E0E

⊤
0 W⊤

K ,
and b̃ = z0. This Lemma shows that the gradient of the Looped-Attn model can be expressed as
the gradient of the Single-Attn model multiplied by a specific linear operator. The operator acts
as a preconditioner, effectively using information from the iterative refinement steps to adjust the
magnitude and direction of the base gradient calculated from a single attention pass.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Proof. We prove this lemma by direct algebraic computation, starting with the gradient with respect
to the key matrix WK .

Derivation for the key matrix WK . Recall the expressions for the Single-Attn gradient (∇WK
L̂1)

and the Looped-Attn gradient (∇WK
L̂2):

∇WK
L̂1(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WK
L̂2(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

The core of the proof is to decompose the summation in the Looped-Attn gradient. We separate the
first term of the series (for t = 1) from the subsequent terms (for t = 2 to T):

∇WK
L̂2(θ) = Ê

[(
A⊤

0 ⊗ b0
)
W⊤

h (S(ŷ)− ey) +

T∑
t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

By the definitions, we have A0 = A, b0 = b. With our assumption, δ1 = 1d and Diag(δ1) = I .
Thus, the first term is exactly the gradient of the Single-Attn model:

∇WK
L̂2(θ) = ∇WK

L̂1(θ) + Ê

[
T∑

t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
.

Define P1 = A⊤ ⊗ b, P2 =
∑T

t=2

(
A⊤

t−1 ⊗ bt−1

)
, then we derive that

∇WK
L̂2(θ) = ∇WK

L̂1(θ) + Ê

[
T∑

t=2

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(Ŷ)− ey)

]
= ∇WK

L̂1(θ) + Ê
[
P2P

+
1 P1W

⊤
h (S(Ŷ)− ey)

]
= ∇WK

L̂1(θ) + Ê
[
P2P

+
1

]
∇WK

L̂1(θ)

=
(
I + Ê

[
P2P

+
1

])
∇WK

L̂1(θ).

where P+
1 P1 = I , P+

1 is the Moore-Penrose pseudoinverse with b ̸= 0, rank(A⊤) = d.

We can therefore identify the preconditioner for WK as:

PWK
= I + Ê

[
P2P

+
1

]
.

Derivation for the query matrix WQ. The derivation for the query matrix WQ follows an identical
procedure. We begin by stating the gradients:

∇WQ
L̂1(θ) = Ê

[
(b̃⊗ Ã⊤)W⊤

h (S(ŷ)− ey)
]
,

∇WQ
L̂2(θ) = Ê

[
T∑

t=1

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
.

Again, we split the summation and identify the first term as the Single-Attn gradient:

∇WQ
L̂2(θ) = Ê

[(
b̃0 ⊗ Ã⊤

0

)
W⊤

h (S(ŷ)− ey) +

T∑
t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]

= ∇WQ
L̂1(θ) + Ê

[
T∑

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(ŷ)− ey)

]
.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Define P̃1 = b̃⊗ Ã⊤, P̃2 =
∑T

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
, then we derive that

∇WQ
L̂2(θ) = ∇WQ

L̂1(θ) + Ê

[
T∑

t=2

(
b̃t−1 ⊗ Ã⊤

t−1

)
W⊤

h (S(Ŷ)− ey)

]
= ∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1 P̃1W

⊤
h (S(Ŷ)− ey)

]
= ∇WQ

L̂1(θ) + Ê
[
P̃2P̃

+
1

]
∇WQ

L̂1(θ)

=
(
I + Ê

[
P̃2P̃

+
1

])
∇WQ

L̂1(θ),

where P̃+
1 P̃1 = I , P̃+

1 is the Moore-Penrose pseudoinverse with b̃ ̸= 0, rank(Ã⊤) = d.

We can therefore identify the preconditioner for WK as:

PWQ
= I + Ê

[
P̃2P̃

+
1

]
.

This completes the proof, demonstrating that the iterative updates in Looped-Attn introduce a pre-
conditioning term to the standard single-pass attention gradient.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

G.2 PROOF FOR THEOREM 3

This section provides a formal analysis to demonstrate that the gradients of the Single-Attn and
Looped-Attn models are positively aligned, a key theoretical foundation for the two-phase training
strategy (SHIFT) proposed in our work. We establish this by proving that the inner product of the
two gradient vectors is positive. This positive alignment ensures they point in a similar direction of
descent. As both models make progress in the river direction during the initial phase of learning,
this implies they explore a shared river upstream.

Proof. We begin by recalling the gradient expressions from Lemmas 1∼2, and the preconditioner
relationship from Lemma 3. We have

∇WK
L̂1(θ) = Ê

[
(A⊤ ⊗ b)W⊤

h (S(ŷ)− ey)
]
,

∇WK
L̂2(θ) = Ê

[
T∑

t=1

(
A⊤

t−1 ⊗ bt−1

)
W⊤

h (S(ŷ)− ey)

]
,

∇WK
L̂2(θ) = PWK

∇WK
L̂1(θ).

We then analysis the directions of two gradients,

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ = Tr
((

∇WK
L̂2(θ)

)⊤
∇WK

L̂1(θ)

)
= Tr

((
PWK

∇WK
L̂1(θ)

)⊤
∇WK

L̂1(θ)

)
= Tr

(
∇⊤

WK
L̂1(θ)P

⊤
WK

∇WK
L̂1(θ)

)
.

The inner product is guaranteed to be non-negative if the matrix P⊤
WK

is Positive Semidefinite (PSD),
i.e., P⊤

WK
⪰ 0. Our goal is to derive a set of sufficient conditions under which this holds.

From Lemma 3, we have
P⊤
WK

= I + Ê[(P+
1)⊤P⊤

2].

To ensure P⊤
WK

⪰ 0, we need to find conditions of Ê[(P+
1)⊤P⊤

2] ⪰ 0. We analyze the term
(P+

1)⊤P⊤
2 for a single data sample. Using the properties of Kronecker products and pseudo-

inverses, we have:

(P+
1)⊤P⊤

2 = (A+ ⊗ b+⊤)

T∑
t=2

(
At−1 ⊗ b⊤t−1

)
=

T∑
t=2

(A+ ⊗ b+⊤)
[
(At−1 ⊗ b⊤t−1)

]
.

To analyze this expression, we first establish recursive updates for At−1 and bt−1.

Recursive Updates of At−1. The matrix At−1 = WV Et−1E
⊤
t−1 depends on the history of updates

to the embedding matrix E. With Et−1 = E0 +
∑t−1

s=1 f(Es−1), we can write:

At−1 =WV Et−1E
⊤
t−1 = WV

(
E0 +

t−1∑
s=1

f(Es−1)

)(
E0 +

t−1∑
s=1

f(Es−1)

)⊤

=WV

[
E0E

⊤
0 + E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤]

=A+WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤].

We denote

∆At−1 = WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤].

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Recursive Updates of bt−1. Similarly, the vector bt−1 = WQzt−1 depends on the history of
updates to the query vector z. With zt−1 = z0 +

∑t−1
s=1 f(Es−1, zs−1), we can write:

bt−1 = WQzt−1 = WQ

(
z0 +

t−1∑
s=1

f(Es−1, zs−1)

)
= b+WQ

t−1∑
s=1

f(Es−1, zs−1).

We denote ∆bt−1 = WQ

∑t−1
s=1 f(Es−1, zs−1).

Substitute At−1 and bt−1 into (P+
1)⊤P⊤

2 . Let A+ = (WV E0E
⊤
0)+ and b+⊤ = (WQz0)

+⊤. For
each term in the summation (t = 2 to T), substitute At−1 = A + ∆At−1 and bt−1 = b + ∆bt−1,
where ∆At−1 and ∆bt−1 denote the recursive updates:

(A+ ⊗ b+⊤)(At−1 ⊗ b⊤t−1)

=(A+ ⊗ b+⊤)
[
(A+∆At−1)⊗ (b+∆bt−1)

⊤]
=(A+ ⊗ b+⊤)

[
(A⊗ b⊤) + (A⊗∆b⊤t−1) + (∆At−1 ⊗ b⊤) + (∆At−1 ⊗∆b⊤t−1)

]
.

For the first term,

(A+ ⊗ b+⊤)(A⊗ b⊤) = (A+ ⊗ b+⊤)

d∑
k=1

eke
⊤
k (A⊗ b⊤)

=

d∑
k=1

(A+ ⊗ b+⊤)eke
⊤
k (A⊗ b⊤)

=

d∑
k=1

(A+ ⊗ b+⊤)((eke
⊤
k A)⊗ b⊤)

=

d∑
k=1

(A+eke
⊤
k A)⊗ (b+⊤b⊤),

where ek = [0, · · · , 1, · · · , 0]⊤ ∈ Rd, the k-th element is 1, and others is 0. eke⊤k (A ⊗ b⊤) means
that keeping the k-th row of matrix A ⊗ b⊤ and others is 0. Similarly, eke⊤k A means that keeping
the k-th row of matrix A, thus eke⊤k (A⊗ b⊤) = (eke

⊤
k A)⊗ b⊤.

b is a vector and b ̸= 0, then b+ = b⊤/b⊤b,

(A+ ⊗ b+⊤)(A⊗ b⊤) =

d∑
k=1

(A+eke
⊤
k A)⊗ (b+⊤b⊤)

= (A+
d∑

k=1

eke
⊤
k A)⊗ (b+⊤b⊤)

= (A+A)⊗ (b+⊤b⊤)

=
1

b⊤b
(A+A)⊗ (bb⊤).

For the second term,

(A+ ⊗ b+⊤)(A⊗∆b⊤t−1) = (A+A)⊗ (b+⊤∆b⊤t−1)

=
1

b⊤b
(A+A)⊗ (b∆b⊤t−1).

For the third term,

(A+ ⊗ b+⊤)(∆At−1 ⊗ b⊤) = (A+∆At−1)⊗ (b+⊤b⊤)

=
1

b⊤b
(A+∆At−1)⊗ (bb⊤).

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

For the fourth term,

(A+ ⊗ b+⊤)(∆At−1 ⊗∆b⊤t−1) = (A+∆At−1)⊗ (b+⊤∆b⊤t−1)

=
1

b⊤b
(A+∆At−1)⊗ (b∆b⊤t−1).

Summarizing the decomposition for (P+
1)⊤P⊤

2 :

(P+
1)⊤P⊤

2

=

T∑
t=2

[Term1 + Term2 + Term3 + Term4]

=
1

b⊤b

T∑
t=2

(A+A)⊗ (bb⊤) + (A+A)⊗ (b∆b⊤t−1) + (A+∆At−1)⊗ (bb⊤) + (A+∆At−1)⊗ (b∆b⊤t−1).

We now derive sufficient conditions for each term satisfies PSD.

Term Analysis. For Term1,

Term1 =
1

b⊤b
(A+A)⊗ (bb⊤).

bb⊤ is a rank-1 PSD matrix. We also have A+A = I ⪰ 0.

For Term2,

Term2 =
1

b⊤b
(A+A)⊗ (b∆b⊤t−1).

We have A+A = I ⪰ 0. For b∆b⊤t−1,

∆bt−1 = WQ

t−1∑
s=1

f(Es−1, zs−1)

f(Et−1, zt−1) = WV Et−1E
⊤
t−1W

⊤
KWQzt−1

f(Et−1) = WV Et−1E
⊤
t−1W

⊤
KWQEt−1

Et−1 = E0 +

t−1∑
s=1

f(Es−1)

zt−1 = z0 +

t−1∑
s=1

fθ(Es−1, zs−1).

We need to prove there exists α ≥ 0 such that ∆bt−1 = αb.

Base Case: When t = 2, s = 1,

∆b1 = WQf(E0, z0)

= WQ(WV E0E
⊤
0 W⊤

KWQz0)

= WQ(WV E0E
⊤
0 W⊤

K b)

= (WQWV E0E
⊤
0 W⊤

K)b

≜ Φ1b,

where E0E
⊤
0 ⪰ 0. With Assumption 4, WK , WQ, WV are approximately diagonal matrices,

WK = DK + ϵK ,

WQ = DQ + ϵQ,

WV = DV + ϵV ,

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

where DK , DQ, DV are diagonal and ϵK , ϵQ, ϵV are dense matrices with extremely small elements.
Thus we have

Φ1 = WQWV E0E
⊤
0 W⊤

K

= (DQ + ϵQ)(DV + ϵV)E0E
⊤
0 (DK + ϵK)

= (DQDV +DQϵV + ϵQDV + ϵQϵV)E0E
⊤
0 (DK + ϵK)

= DQDV E0E
⊤
0 DK +O(ϵK , ϵQ, ϵV).

With Assumption 5 (DA = DQDV , DB = Dk, P = E0E
⊤
0), we conclude that Φ1 is approximately

PSD, and ∆b1 is co-directional with b.

Inductive Hypothesis: Assume that for s = 1 to s = k − 1, ∆bk−1 = Φk−1b where Φk−1 ⪰ 0, i.e.,
∆bk−1 is co-directional with b.

∆bk−1 = WQ

k−1∑
s=1

f(Es−1, zs−1) = Φk−1b. (15)

Inductive Step: When s = k,

∆bk = WQ

k∑
s=1

f(Es−1, zs−1)

= WQ

k−1∑
s=1

f(Es−1, zs−1) +WQf(Ek−1, zk−1)

= Φk−1b+WQ(WV Ek−1E
⊤
k−1W

⊤
KWQzk−1)

= Φk−1b+WQWV Ek−1E
⊤
k−1W

⊤
KWQzk−1,

where

zk−1 = z0 +

k−1∑
s=1

δs ⊙ fθ(Es−1, zs−1)

= W−1
Q b+W−1

Q Φk−1b

= W−1
Q (I +Φk−1)b,

then zk−1 is co-directional with b. Denote Φ′
k ≜ WQDiag(δk)WV Ek−1E

⊤
k−1W

⊤
KWQW

−1
Q (I +

Φk−1), similarly with Assumption 4∼5, we have Φ′
k is approximately PSD, and then

∆bk = Φk−1b+Φ′
kb.

Thus, ∆bk is co-directional with b.

Summary of Sufficient Condition: WK ,WQ,WV are approximately diagonal matrices, DK , DQ,
DV are PSD. These are summarized in Assumption 4∼5.

For Term3,

Term3 =
1

b⊤b
(A+∆At−1)⊗ (bb⊤).

bb⊤ is a rank-1 PSD matrix. We need to derive that the condition of A+∆At−1 ⪰ 0. With the
definition of ∆At−1,

∆At−1 =WV

[
E0

t−1∑
s=1

(f(Es−1))
⊤ +

t−1∑
s=1

f(Es−1)E
⊤
0 +

t−1∑
s=1

t−1∑
s′=1

f(Es−1)(f(Es′−1))
⊤]

f(Et−1) =WV Et−1E
⊤
t−1W

⊤
KWQEt−1

Et−1 =E0 +

t−1∑
s=1

f(Es−1).

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

We need to prove there exists Ψ ⪰ 0 such that ∆At−1 = ΨA, then A+∆At−1 ⪰ 0 can be derived.

Base Case: When t = 2, s = 1,

∆A1 = WV

[
E0(f(E0))

⊤ + f(E0)E
⊤
0 + f(E0)(f(E0))

⊤] .
(1) Substitute A = WV E0E

⊤
0 into f(E0) = WV E0E

⊤
0 W⊤

KWQE0. Let Ξ1 ≜ W⊤
KWQE0.

f(E0) = WV E0E
⊤
0 W⊤

KWQE0 = AW⊤
KWQE0 = AΞ1.

(2) Substitute

∆A1

=WV

[
E0(AΞ1)

⊤ + (AΞ1)E
⊤
0 + (AΞ1)(AΞ1)

⊤]
=WV E0Ξ

⊤
1 A

⊤ +WV AΞ1E
⊤
0 +WV AΞ1Ξ

⊤
1 A

⊤

=WV E0E
⊤
0 W⊤

QWKE0E
⊤
0 W⊤

V +WV WV E0E
⊤
0 W⊤

KWQE0E
⊤
0 +WV AW⊤

KWQE0E
⊤
0 W⊤

QWKA⊤

=AW⊤
QWK︸ ︷︷ ︸
:T ′

1

A⊤ +WV AW⊤
KWQW

−1
V︸ ︷︷ ︸

:T ′
2

A+WV AW⊤
KWQE0E

⊤
0 W⊤

QWK︸ ︷︷ ︸
:T ′

3

A⊤

=AW⊤
QWKA⊤A+︸ ︷︷ ︸

:T1

A+WV AW⊤
KWQW

−1
V︸ ︷︷ ︸

:T2

A+WV AW⊤
KWQE0E

⊤
0 W⊤

QWKA⊤A+︸ ︷︷ ︸
:T3

A

≜Ψ1A,

where A+ is the pseudoinverse matrix of A. Similarly with Assumption 4∼5, when assuming that
WK , WQ, WV are approximately diagonal matrices. DK , DQ, DV ⪰ 0, we have ∆A1 = Ψ1A
where Ψ1 is approximately PSD.

Inductive Hypothesis: Assume that for s = 1 to s = k − 1, ∆Ak−1 = Ψk−1A where Ψk−1 ⪰ 0.

∆Ak−1 =WV

[
E0

k−1∑
s=1

(∆s ⊙ f(Es−1))
⊤ +

k−1∑
s=1

(∆s ⊙ f(Es−1))E
⊤
0

+

k−1∑
s=1

k−1∑
s′=1

(∆s ⊙ f(Es−1))(∆s′ ⊙ f(Es′−1))
⊤] = Ψk−1A.

Inductive Step: When s = k,

∆Ak

=WV

[
E0

k∑
s=1

(f(Es−1))
⊤ +

k∑
s=1

f(Es−1)E
⊤
0 +

k∑
s=1

k∑
s′=1

f(Es−1)(f(Es′−1))
⊤

]
=Ψk−1A+WV

[
E0(f(Ek−1))

⊤ + f(Ek−1)E
⊤
0 + f(Ek−1)(f(Ek−1)

⊤)
]

=Ψk−1A+WV E0f(Ek−1)
⊤ +WV f(Ek−1)E

⊤
0 +WV f(Ek−1)f(Ek−1)

⊤

=Ψk−1A+WV E0E
⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V +WV WV Ek−1E

⊤
k−1W

⊤
KWQEk−1E

⊤
0

+WV WV Ek−1E
⊤
k−1W

⊤
KWQEk−1E

⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V

=Ψk−1A+
(
WV E0E

⊤
0 +WV E0∆E⊤

k−1

)
W⊤

QWKEk−1E
⊤
k−1W

⊤
V A+︸ ︷︷ ︸

:M1

A

+WV WV Ek−1E
⊤
k−1W

⊤
KWQ

(
E0E

⊤
0 +∆Ek−1E

⊤
0

)
A+︸ ︷︷ ︸

:M2

A

+WV WV Ek−1E
⊤
k−1W

⊤
KWQEk−1E

⊤
k−1W

⊤
QWKEk−1E

⊤
k−1W

⊤
V A+︸ ︷︷ ︸

:M3

A

=Ψk−1A+M1A+M2A+M3A

=ΨkA,

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

where Ek−1 = E0 +
∑k−1

s=1 f(Es−1), denote ∆Ek−1 =
∑k−1

s=1 f(Es−1), similarly to ∆b = Φb, we
have ∆Ek−1 = Ωk−1E0 and Ωk−1 ⪰ 0,

WV E0E
⊤
k−1 = WV E0E

⊤
0 +WV E0∆E⊤

k−1,

Ek−1E
⊤
0 = E0E

⊤
0 +∆Ek−1E

⊤
0 .

Similarly to ∆A1, we have Ψk = Ψk−1+M1+M2+M3 ⪰ 0, thus we conclude that ∆Ak = ΨkA.

Furthermore, using ∆Ak = ΨkA with Ψk ⪰ 0, we then have A+∆A ⪰ 0.

Summary of Sufficient Condition: WK , WQ, WV are approximately diagonal matrices,
DK , DQ, DV ⪰ 0. These are summarized in Assumption 4∼5.

For Term4,

Term4 =
1

b⊤b
(A+∆At−1)⊗ (b∆b⊤t−1).

Combining the analysis for Term2 and Term3, we need the conditions in Assumption 4∼5.

Similarly to WK , the conditions for preconditioner PWQ
⪰ 0 are also Assumption 4∼5.

Therefore, when with Assumption 4∼5, the gradient updates on key and query matrices are co-
directional between Single-Attn and Looped-Attn models:

⟨∇WK
L̂1(θ),∇WK

L̂2(θ)⟩ ≥ 0, ⟨∇WQ
L̂1(θ),∇WQ

L̂2(θ)⟩ ≥ 0.

H USAGE OF LARGE LANGUAGE MODELS

In this work, we utilize Large Language Models (LLMs) for language polishing and grammar cor-
rection under our supervision. These suggestions are carefully reviewed and selectively adopted,
ensuring consistency with our intended meaning and academic integrity. In addition, we use LLMs
to generate the background visualizations for Figures 1(a)∼1(b). The optimization trajectories pre-
sented in these figures are manually plotted by us.

51

	Introduction
	Related work
	Preliminaries
	What Makes Looped Transformers Perform Better
	Key Observations on Task-Level and Hessian-Level
	Landscape-Level Inductive Bias
	River-V-Valley Brings Superior Optimization Performance
	Discussion in Length Generalization

	Staged HIerarchical Framework for Progressive Training
	Conclusion
	Contributions
	Discussions and Future Work
	Additional Related Work
	Detailed Preliminaries
	Detailed Experiments
	Experiments on Toy Models and Synthetic Markov Language Dataset
	Experiments on Practical Models and Datasets

	River-V-Valley Brings Superior Optimization Performance
	Definitions and Assumptions
	Proof for Theorem 1 and Corollary 1
	Proof for Corollary 2
	Proof for Theorem 2

	Shared River Upstream
	Assumptions and Useful Lemmas
	Proof for Theorem 3

	Usage of Large Language Models

