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Abstract

Mixture-of-Experts (MoE) architectures enable efficient scaling of large language
models but face prohibitive memory demands due to massive parameterization.
Existing pruning methods rely on heuristic metrics or impractical enumeration of
expert subsets, leading to suboptimal performance or scalability. In this paper, we
propose Shapley-MoE, an efficient pruning method for MoE models inspired by
cooperative game theory. By quantifying each expert’s contribution via Shapley
value, our method identifies important experts without exhaustive combination
evaluations. To overcome the NP-hard complexity of exact Shapley computation,
we introduce a Monte Carlo sampling strategy for efficient approximation that
reduces complexity to quadratic time. However, vanilla Monte Carlo sampling still
faces issues of insufficient estimation accuracy and low sampling efficiency. To
address these issues, we further propose two novel methods to improve sampling
accuracy and efficiency: (1) Early Truncation, which early terminates unstable
sampling steps caused by overly small expert subsets, and (2) Router-Guided Im-
portance Sampling, which prioritize sampling important expert subsets using gating
activation probabilities. Both theoretical and experimental analyses show that both
methods can accelerate Shapley value estimation and improve accuracy. Extensive
empirical evaluations demonstrate that our pruned MoE models outperform existing
expert pruning methods. Notably, when applied to the Qwen2-57B-A14B model,
our method reduces the number of experts by 25% with only a 0.92 increase in
perplexity and over 96.4% of the average zero-shot accuracy is maintained.

1 Introduction

Mixture-of-Experts (MoE) [40, 16, 79] architectures have emerged as a popular architecture for large
language models (LLMs) [67, 13, 74], enabling efficient scaling and superior performance on complex
tasks [22, 5, 36]. However, its sparse activation paradigm introduces massive parameterization, posing
prohibitive memory demands. To address the above issues, various MoE model compression strategies
have been developed, including pruning [56, 6, 24, 10], quantization [17, 30, 41], and knowledge
distillation [37, 72, 65].

Among these methods, network pruning [51, 75, 66, 49, 33, 31, 70, 32, 52] can remove less important
parameters from MoE models, allowing reducing the memory footprint and computational complexity
of MoE models without significantly sacrificing performance. Recent studies have shown that there
is significant redundancy among experts in MoE models [9, 49], and MoE models can still maintain
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Figure 1: Shapley-MoE prunes experts by calculating their Shapley values via router-guided Monte
Carlo sampling. It analyzes expert activation frequencies to prioritize important experts during
sampling, iteratively removes experts to compute their marginal contributions, and applies early
truncation for insignificant performance. Experts are then pruned based on their ranked Shapley
values.

superior performance after redundant experts are removed. Therefore, many expert pruning methods
have been proposed to remove unimportant experts from MoE models. These expert pruning methods
can mainly be divided into the following two categories:

Metric based methods. These methods determine the importance of experts in MoE models based
on manually designed metrics. For example, SEER-MoE [56] proposes pruning MoE models based
on the activation frequency of experts, removing those with lower activation frequencies. He et al.
[24] proposed to calculate the averaged routing score of each expert, then retain the expert with
the highest score and remove the rest. Although these metric-based methods have demonstrated
their effectiveness through experiments, extensive validation is required to ensure that the manually
designed metrics are indeed effective. More importantly, most of these heuristic methods lack
theoretical analysis, which can easily lead to suboptimal performance.

Enumeration based methods. These methods determine the pruned MoE model by enumerating
retained expert subsets. For example, NAEE [49] enumerates all possible combinations of retained
experts and selects the combination that minimizes the Frobenius norm of the output difference
before and after pruning. CD-MoE [6] uses a greedy search method to obtain the pruned model. It
starts with an empty subset of retained experts and iteratively adds the expert that minimizes the
Jensen-Shannon divergence between the outputs of the pruned and original models, repeating this
process until the desired number of experts is retained. However, for fine-grained large-scale MoE
models with hundreds of experts, these methods are impractical in practice, as they require tens of
thousands or even trillions of enumerations, which is obviously infeasible.

In this paper, we propose a MoE pruning method (Shapley-MoE) inspired by cooperative game
theory [15, 39], which does not require enumerating all possible expert combinations and can obtain a
high-performance pruned MoE model in just tens of minutes. We observe that in MoE models, experts
are dynamically involved in collective decision-making through a gating mechanism that enables
conditional activation. These experts function not only as independent computational units but also as
collaborative combinations interacting with each other. To handle the complex relationships among
experts, we leverage the Shapley value [63, 1], a key solution concept in cooperative game theory for
allocating contributions to participants. By considering all possible combinations, the Shapley value
quantifies each expert’s contribution, thereby effectively identifying those experts that are highly
relevant to task performance.

Since the exact computation of Shapley values is an NP-hard problem, we employ a Monte Carlo
sampling [19, 20] approach to efficiently approximate Shapley values by sampling from the set
of possible expert permutations. This successfully reduces the computational complexity from
exponential to quadratic, making it feasible to compute Shapley values for experts in large-scale
MoE models. However, using vanilla Monte Carlo sampling to estimate the Shapley values of MoE
experts still suffers from insufficient estimation accuracy and low sampling efficiency. To enhance
the accuracy and efficiency of Monte Carlo sampling, we propose the early truncation and router-
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guided importance sampling (RGIS) methods. In the early truncation, we observe that sampling
steps involving subsets with too few experts can lead to drastic model performance degradation,
resulting in unstable sampling outcomes. We propose to terminate such sampling steps early to
reduce unnecessary computation and ensure accurate Shapley value estimation. Additionally, we
introduce the RGIS method. This method leverages the activation probabilities of experts from the
gating mechanism, prioritizing key expert subsets with higher activation frequencies during Monte
Carlo sampling, and accelerates sampling through importance weighting. With the same number
of sampling steps, this method can estimate the Shapley values more accurately. We conducted
theoretical analysis and ablation experiments on the two proposed methods, both of which demonstrate
that these methods significantly improve the estimation accuracy and increase the sampling efficiency.

To evaluate the effectiveness of our proposed Shapley-MoE method, we conducted systematic
experiments based on several mainstream open-source MoE model architectures, including the Qwen
[3], DeepSeek [13], and Mixtral [35] series. The evaluation metrics cover perplexity, average zero-
shot accuracy on seven tasks as well as performance on domain-specific tasks such as knowledge
reasoning, arithmetic, and code generation. Experimental results show that Shapley-MoE has obvious
advantages over existing MoE expert pruning methods. Specifically, when applied to the Qwen2-57B-
A14B [74] model with a 25% reduction in the number of experts, its perplexity increases by only 0.92
and the average zero-shot accuracy is maintained at up to 96.4%. Furthermore, the pruned model can
achieve a 1.25-2.46× reduction in GPU memory usage and a 1.26-2.92× increase in inference speed
with the pruning rate ranged from 25% to 75%, while the pruning process only takes 36 minutes.
Additionally, we further explored the application of the Shapley-MoE method on multimodal MoE
models and performed further performance optimization on the pruned models by integrating LoRA
[29] fine-tuning and quantization techniques.

2 Related Work

Pruning the Expert of MoE Models. Researchers have proposed numerous MoE pruning algo-
rithms to remove unimportant experts. There are some works that achieve the effect of pruning MoE
models through expert merging [42, 47, 78]. Other works achieve the effect of pruning MoE models
by directly discarding experts. For instance, SEER-MoE [56] proposes to prune the MoE model based
on the activation frequency of experts. He et al. [24] proposed to calculate the averaged routing score
of each expert and retain the expert with the highest score. NAEE [49] determines the subset of re-
tained experts by enumerating all possible combinations of experts. CD-MoE [6] introduces a greedy
search algorithm that selects experts to retain based on the smallest Jensen-Shannon divergence [53].
Existing MoE pruning methods rely on heuristics or impractical enumeration. We propose Shapley
value-based pruning, offering theoretical performance guarantees and efficient model pruning.

Shapley Value. Shapley value [23, 69] is a game theory concept that quantifies each participant’s
average marginal contribution across all possible coalition combinations in cooperative scenarios.
Shapley value are often used to assess the importance of model components [20, 2, 71]. Neuron
Shapley [20] proposed using Shapley value to quantify the contribution of individual neurons to the
predictions and performance of deep networks. Ancona et al. [2] proposed Shapley value as a metric
for structured pruning in convolutional neural networks. Moreover, since accurately calculating
Shapley value is an NP-hard problem, many methods have been proposed to approximate Shapley
value, such as Monte Carlo sampling [19, 20], kernel-based approximation algorithms [50], and
stratified sampling techniques [77]. In this paper, we innovatively extend Shapley value to evaluate
the importance of experts and we propose a Monte Carlo sampling approach for approximating
Shapley value, which incorporates early truncation and router-guided importance sampling.

3 Methodology

Notation. In this study, we adopt the following notation conventions: bold typeface indicates
vectors (e.g., x, y) and matrices (e.g., X , Y ), while calligraphic font denotes loss function and set
(e.g., L, E).
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3.1 Mixture of Experts

Given a MoE model [40, 16] comprising L expert layers, let the l-th expert layer (l ∈ {1, 2, . . . , L})
contain n routing experts {El

1, E
l
2, . . . , E

l
n}.2 Each expert constitutes an independent feedforward

neural network (FFN). For an input vector x ∈ Rd with hidden dimension d, the output computation
at the l-th expert layer follows:

n∑
i=1

Gl(x)iE
l
i(x), (1)

where Gl(x)i ∈ [0, 1] denotes the output of gating network for expert i, and El
i(x) represents the

i-th expert’s output. The gating network is formally defined as:

Gl(x) = Softmax
(

TopK
(
xW l

g

))
, (2)

where W l
g ∈ Rd×n denotes the routing matrix, and TopK(·) operator generates a sparse routing

pattern by preserving only the top-k values while setting others to −∞, thereby activating k out of n
experts per input token.

3.2 Shapley Value of MoE Experts

Motivation. In MoE architectures, experts participate in collective decision-making through con-
ditional activation governed by gating mechanism. These experts not only function as independent
computational units but also form interdependent subsystems, and there is a collaborative relationship
among them. To rigorously quantify individual expert contributions within this complex cooperative
system, we employ Shapley Value [63, 60, 1] analysis from cooperative game theory [15, 39]. Shapley
Value is a widely used mathematical tool for allocation problems, capable of fairly quantifying the
marginal contribution of each participant in a collaborative process.

Shapley Value Formulation. The process of experts dynamically participate in decision-making
through gating mechanism can be formally conceptualized as a cooperative game Γ = (E , V )
where E denotes the expert set and V : 2E → R represents the model performance. Perplexity
is commonly used to measure the performance of LLMs and a lower perplexity indicates better
model performance. Therefore, we use the reciprocal of perplexity as the metric for evaluating the
performance of the MoE model, that is, V = 1/PPL. Each expert El

i acts as a player whose Shapley
Value [63] quantifies its average marginal contribution to model performance. Consider a MoE
model with L expert layers containing n routing experts per layer. Let the complete expert set be
E = {El

i|1 ≤ l ≤ L, 1 ≤ i ≤ n} with cardinality N = L× n. The Shapley Value ϕEl
i

for expert El
i

is defined as:

ϕEl
i
(V ) =

1

N

∑
S⊆E\{El

i}

V (S ∪ {El
i})− V (S)(

N−1
|S|

) (3)

where V (S) measures model performance when retaining subset S . The Shapley Value ϕEl
i

computes
the weighted average of El

i’s marginal contributions V (S∪{El
i})−V (S) over all S ⊆ E\{El

i}. This
precisely quantifies how each expert affects model performance through all possible collaborative
scenarios. In addition, we present the properties of the Shapley value in Sec. C, which ensure that the
contributions of MoE experts are fairly quantified across all coalition interactions.

3.3 Approximation of Shapley Value

Computational Challenges. While the Shapley value theoretically provides a metric for quantifying
expert contributions, exact computation through Eq. 3 requires evaluating all 2N expert subsets,
which is a prohibitive proposition for modern MoE architectures where total expert count N often
exceeds 103. This exponential complexity motivates the development of efficient approximation
methods.

2Some advanced MoE architectures (e.g., DeepSeekMoE-16B [13] and Qwen2-57B-A14B [73]) incorporate
shared experts alongside routing experts. Our pruning strategy specifically removes less important routing
experts while preserving all shared experts. For notational simplicity, we omit explicit representation of shared
experts in this formulation.
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Monte Carlo Estimation. We employ the Monte Carlo sampling approach [7] to estimate Shapley
value through empirical expectation over expert permutations. For expert El

i ∈ E , the estimator is
constructed as:

ϕ̂El
i
(V ) =

1

M

M∑
m=1

[
V (S(m) ∪ {El

i})− V (S(m))
]

(4)

where M denotes the number of Monte Carlo samples. Each subset S(m) ⊆ E \ {El
i} is generated

by sampling a random permutation π(m) of all experts and taking S(m) = Pref(π(m)), which is the
set of experts preceding El

i in permutation π(m). This stratified sampling strategy ensures uniform
coverage of coalition spaces while maintaining estimator unbiasedness [62, 28]. By averaging over M
permutations, this method reduces the computational complexity from O(2N ) to O(MN), making it
feasible for large-scale MoE models.

Early Truncation. During Monte Carlo sampling, we observe that subsets S(m) with insuffi-
cient expert participation (i.e., |S(m)| ≪ N ) frequently lead to catastrophic performance collapse
(V (S(m))→ 0), introducing high variance in Shapley value estimation. Using this fact, for a sampled
permutation π(m), we can avoid computing the marginal contributions of the earlier elements. There-
fore, we implement an early truncation [19] mechanism during Monte Carlo estimation. Formally,
the evaluation terminates prematurely when:

V (S(m)) < τ · V (E), (5)

where τ ∈ (0, 1) is the threshold. This adaptive truncation achieves dual benefits: 1) It eliminates
uninformative sampling steps where model functionality has collapsed, thereby reducing estimator
variance. 2) It preserves computational resources by early-exiting. Our ablation studies in Sec. 4.6
show that this technique reduces the pruning cost of Shapley-MoE by nearly half and improves the
accuracy of Shapley-MoE.. In addition, the error bound of early truncation is given by the following
theorem:
Theorem 1 (Error Bound of Early Truncation Shapley Estimation). Let ϕEl

i
denote the true Shapley

value for expert El
i and ϕ̂trunc

El
i

denote its Monte Carlo estimator with early truncation threshold τ .

Assume that for any subset S ⊆ E \ {El
i} satisfying V (S) < τV (E), the marginal contribution is

bounded as |V (S ∪ {El
i}) − V (S)| ≤ ϵ. Then, for any δ > 0, with probability at least 1 − δ, the

estimation error satisfies:

|ϕEl
i
− ϕ̂trunc

El
i
| ≤ ϵ · P(V (S) < τV (E)) +

√
log(2/δ)

2M
(6)

where M is the number of Monte Carlo samples, and the probability P(V (S) < τV (E)) is taken
over the uniform distribution of expert permutations.

The proof of the above theorem is provided in Sec. D. The theorem guarantees that early truncation
preserves estimation accuracy through two mechanisms: 1) The first term ϵ · P(V (S) < τV (E))
bounds errors from truncated subsets by their contribution probability and bounded marginal impact ϵ.
2) The second term

√
log(2/δ)/(2M) controls Monte Carlo sampling error, which diminishes with

sample size M . The above theorem shows that the error of the early truncation is bounded, which
justifies the truncation: it discards minimally influential computations while preserving estimator
consistency, enabling efficient approximation.

Router-Guided Importance Sampling. To further accelerate the calculation of the Shapley values
of the MoE experts, we further propose a Router-Guided Importance Sampling (RGIS) method based
on the characteristics of the router network. This method leverages expert activation probabilities
from the gating mechanism to prioritize critical coalitions during Monte Carlo estimation, achieving
sampling acceleration through importance weighting. First, we profile each expert’s activation
frequency over a calibration dataset D:

pli =
1

|D|
∑
x∈D

Gl(x)i (7)

where pli represents the empirical activation probability for expert El
i . These probabilities establish

a prior distribution reflecting expert importance. Next, we generate expert permutations through
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a Plackett-Luce model [58] parameterized by {pli}. For each Monte Carlo sample m, we sample
permutation π(m) by sequentially selecting experts without replacement with probability:

P
(
π(m)[t] = El

i | A
(m)
t

)
=

pli∑
Ek

j ∈A(m)
t

pkj
(8)

where A(m)
t ⊆ E denotes the available expert set at step t, and π(m)[t] is the t-th selected expert.

This sampling prioritizes high-activation experts. Finally, we compute importance weights to correct
sampling bias. Let Q(π(m)) denote the permutation probability under Plackett-Luce model:

Q(π(m)) =

N∏
t=1

pπ(m)[t]∑N
s=t pπ(m)[s]

(9)

The importance weight becomes w(m) = 1/N
Q(π(m))

. The RGIS Shapley estimator is:

ϕ̂RGIS
El

i
=

1

M

M∑
m=1

[(
V (S(m)

i ∪ {El
i})− V (S(m)

i )
)
· w(m) · I(m)

i

]
(10)

where S(m)
i contains experts preceding El

i in π(m), and I(m)
i ∈ {0, 1} indicates whether El

i was
evaluated before truncation in sample m.

We propose the following theorem to demonstrate the theoretical properties of the RGIS estimator.
First, it guarantees that our router-guided sampling strategy does not introduce systematic estimation
bias through careful importance weighting. Second, it demonstrates that leveraging router activation
patterns as importance priors fundamentally reduces estimation variance compared to naive Monte
Carlo sampling.
Theorem 2 (Unbiasedness and Variance Reduction of RGIS). The Router-Guided Importance
Sampling (RGIS) estimator ϕ̂RGIS

El
i

defined in Eq. 10 satisfies the following properties:

• Unbiasedness: For any expert El
i ∈ E , E

[
ϕ̂RGIS
El

i

]
≈ ϕEl

i
, where the expectation is taken

over the Plackett-Luce sampling distribution Q.

• Variance Reduction: If the activation probabilities {pli} are positively correlated with the true

Shapley values {ϕEl
i
}, then for the same number of samples M ,Var

(
ϕ̂RGIS
El

i

)
≤ Var

(
ϕ̂MC
El

i

)
,

where ϕ̂MC
El

i
denotes the standard Monte Carlo estimator in Eq. 4.

We have provided the proof of the above theorem in Sec. E. Theorem 2 establishes that RGIS provides
an unbiased Shapley value estimation while achieving variance reduction when expert activation
frequencies reflect their true contributions. This occurs because the router’s gating mechanism
naturally prioritizes important experts, and frequently activated experts tend to have larger marginal
impacts on model performance. By aligning the sampling distribution with these empirical importance
measures, RGIS concentrates computational resources on evaluating the most impactful coalitions,
thereby improving estimation efficiency. As shown in the ablation experiments in Sec. 4.6, RGIS
improves the accuracy of Shapley-MoE. This means that it accelerates Monte Carlo sampling when
given the same sampling number.

3.4 Shapley-MoE algorithm for MoE Pruning

We have presented our proposed Shapley-MoE for MoE expert pruning in Algorithm 1. Specifically,
our Shapley-MoE algorithm prunes MoE models by estimating expert Shapley value through router-
guided Monte Carlo sampling. It first profiles expert activation frequencies to prioritize critical
experts during permutation sampling. For each sampled permutation, it incrementally adds experts,
computes marginal performance gains, and applies early truncation when performance drops below
a threshold. Finally, experts are ranked by their Shapley Values, and the lowest-ranked routing
experts are pruned. Extensive experiments in Sec. 4 demonstrate that Shapley-MoE significantly
outperforms current MoE pruning methods. Our method effectively reduces the memory footprint
and computational cost of MoE models while maximizing the preservation of their performance.
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Algorithm 1 Shapley-MoE algorithm for MoE models Pruning

Require: MoE model with expert set E , calibration dataset D, Monte Carlo samples M , truncation
threshold τ , pruning ratio γ

Ensure: Pruned MoE model
1: Compute full model performance Vfull ← V (E) on D
2: Profile expert activation probabilities {pli} over the D (Eq. 7)
3: for each expert El

i ∈ E do
4: Initialize ϕ̂El

i
← 0

5: end for
6: for m = 1 to M do ▷ Monte Carlo loop
7: Sample permutation π(m) via Plackett-Luce model with probabilities {pli} (Eq. 8)

▷ Router-guided importance sampling
8: Compute permutation probability Q(π(m)) and weight w(m) ← 1/N

Q(π(m))
(Eq. 9)

9: Initialize V0 ← Vfull
10: for k = 1 to N do ▷ Permutation traversal
11: if Vk−1 ≥ τVfull then
12: Evaluate Vk ← V ({π(m)[k + 1], π(m)[k + 2], ..., π(m)[N ]}) on D
13: else
14: Vk ← Vk−1 ▷ Early truncation
15: end if
16: ϕ̂π(m)[k] ← ϕ̂π(m)[k] + (Vk−1 − Vk) · w(m) (Eq. 10)
17: end for
18: end for
19: for each expert El

i ∈ E do
20: ϕ̂El

i
← ϕ̂El

i
/M (Eq. 10) ▷ Final approximate Shapley value

21: end for
22: Sort routing experts by ϕ̂El

i
, remove the γ ratio experts with the lowest ranking

23: return Pruned MoE model

3.5 Performance Preservation Theorem

In this section, we propose the following theorem, which establishes a performance preservation
bound for our Shapley-MoE method.

Theorem 3 (Performance Preservation Bound). Let E denote the complete set of experts in the MoE
model, and Epruned = E \ {El

i | ϕ̂El
i
< ϵ}(l ∈ {1, 2, . . . , L}, i ∈ {1, 2, . . . , n}) be the pruned expert

set with Shapley value threshold ϵ > 0. Under the following conditions:

• The Shapley value estimator satisfies |ϕ̂El
i
− ϕEl

i
| ≤ η for all El

i ∈ E with probability
≥ 1− δ.

• The cooperative game is additive, i.e., V (S) =
∑

El
i∈S ϕEl

i
for any S ⊆ E .

Then with probability at least 1− δ, the performance degradation after pruning satisfies: V (E)−
V (Epruned) ≤ N(ϵ+ η), where N = |E| is the total number of experts.

We have provided the proof of the above theorem in Sec. F. The above theorem provides a crucial
theoretical guarantee for our method. It formally establishes that the performance degradation of the
model after pruning is controllably bounded. This bound is directly linked to two practical factors:
the pruning threshold (ϵ) we choose and the estimation accuracy of our Shapley value calculation
(η). The theorem demonstrates that by removing only experts with verifiably low contributions and
ensuring a precise estimation, the overall performance loss can be provably limited, thus validating
the reliability and effectiveness of our pruning methodology.
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4 Experiments

4.1 Experimental Setup

Models. We conducted experiments on popular open-source MoE models, including the Qwen
series (Qwen1.5-MoE-A2.7B [3], Qwen2-57B-A14B [73], and Qwen3-30B-A3B [68]), the DeepSeek
series (DeepSeekMoE-16B [13] and DeepSeek-V2-Lite [45]), and the Mixtral series (Mixtral-8x7B
[35]). The basic architecture information of these models are summarized in Sec. G.

Baselines. We compare strong baselines for MoE expert pruning directly related to this study,
including Random [49], Gating Score [14], Frequency [56], NAEE [49], Expert Trim [24] and
CD-MoE [6]. Additionally, since NAEE [49] and CD-MoE [6] determine the pruned expert set
through enumeration, they are not suitable for MoE models with dozens to hundreds of experts (see
analysis in Sec. H). Therefore, we only compare these two methods on Mixtral-8x7B [35].

Benchmarks. We follow the evaluation settings of previous MoE pruning methods to assess the
zero-shot learning and language modeling capabilities of pruned MoE models. Specifically, we
evaluate the zero-shot performance on seven downstream tasks: HellaSwag [76], WinoGrande [61],
PIQA [4], OpenbookQA [55], ARC Easy and Challenge [12], and BoolQ [11]. The above accuracies
were obtained using the EleutherAI language model evaluation framework [18]. Additionally, we
evaluate the perplexity of the pruned models on the WikiText-2 [54] validation set. Furthermore, we
assess the pruned MoE models’ knowledge reasoning, arithmetic, and code generation capabilities,
reporting 5-shot accuracy on the MMLU dataset [25], 8-shot accuracy on the GSM8K dataset [64],
and 0-shot accuracy on the HumanEval dataset [8].

Implementation Details. We follow the settings of NAEE [49] and CD-MoE [6] method, randomly
sampling 128 examples from the C4 training dataset [59] as calibration data. Additionally, we set the
number of Monte Carlo sampling M to 20 and the early truncation threshold τ to 0.5.

More Models, Baselines and Benchmarks. In Sec. I, we present additional experimental results,
including pruning multimodal MoE models using our Shapley-MoE method, integrating pruned
MoE models with quantization technique, further enhancing the performance of pruned MoE models
through LoRA fine-tuning.

4.2 Zero-shot Tasks

Table 1 presents the average accuracy of pruned MoE models across seven zero-shot tasks after
pruning 25% and 50% of the experts. The results clearly demonstrate that our proposed Shapley-MoE
method significantly outperforms existing MoE pruning approaches. For instance, in the case of the
Qwen1.5-MoE-A2.7B model with a pruning rate of 50%, the accuracy achieved by the Shapley-MoE
method is 2.17% higher than that of the best Frequency method. This substantial improvement
underscores the effectiveness and superiority of our approach.

Table 1: The average zero-shot accuracy across 7 tasks of pruned MoE models.

Qwen DeepSeekPruning
ratio Method 1.5-MoE-A2.7B 2-57B-A14B 3-30B-A3B MoE-16B V2-Lite

0% None 61.70 65.39 66.36 61.92 64.16

Random 54.79 61.76 57.69 53.37 54.57
Gating Score 55.42 62.16 58.27 54.23 55.35

Frequency 55.63 62.29 58.68 54.58 55.90
Expert Trim 55.16 62.06 58.27 53.75 55.44

25%

Shapley-MoE 57.10 63.05 60.02 56.31 57.29
Random 45.25 58.44 44.96 41.50 44.20

Gating Score 46.30 58.98 46.22 42.51 45.60
Frequency 46.84 59.33 46.54 42.84 45.96

Expert Trim 46.35 59.15 46.27 42.67 45.85
50%

Shapley-MoE 49.01 60.65 48.28 44.89 47.08
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4.3 Language Modeling

Quantitative Evaluation. Table 2 shows the WikiText-2 perplexity of MoE models after pruning
25% and 50% of experts, respectively. The results indicate that all the pruned models obtained by
our proposed Shapley-MoE method have significantly lower perplexity than existing MoE pruning
methods. For example, for the DeepSeek-MoE-16B model with a pruning rate of 50%, the perplexity
of the Shapley-MoE method is 3.17 lower than that of the best Frequency method. The above results
indicate that our Shapley-MoE method not only preserves the zero-shot performance of the model
well but also effectively retains the model’s language modeling capability.

Table 2: The WikiText-2 perplexity of pruned MoE models.

Qwen DeepSeekPruning
ratio Method 1.5-MoE-A2.7B 2-57B-A14B 3-30B-A3B MoE-16B V2-Lite

0% None 7.01 5.86 8.45 6.55 6.35

Random 11.01 7.85 13.72 10.61 10.52
Gating Score 10.39 7.15 12.39 9.57 9.65

Frequency 10.08 7.11 11.97 9.46 9.56
Expert Trim 10.28 7.12 12.29 9.67 9.76

25%

Shapley-MoE 9.69 6.78 11.02 9.12 9.01
Random 21.87 9.93 35.74 37.18 24.92

Gating Score 20.10 8.58 32.03 35.12 23.10
Frequency 19.78 8.35 31.23 34.27 22.25

Expert Trim 19.98 8.65 32.26 35.20 23.01
50%

Shapley-MoE 17.57 7.98 28.10 31.10 19.96

Varying Sparsity Rates. In Table 3, we present the WikiText-2 perplexity performance of the
pruned Mixtral-8x7B model under a wider range of pruning rates, from 12.5% to 75%. The experi-
mental results show that across different pruning rate settings, the perplexity of the pruned models
obtained by our Shapley-MoE method consistently remains lower than that of pruned models obtained
by other methods, which fully demonstrates the robustness of our Shapley-MoE method.

Table 3: WikiText-2 perplexity at different pruning rates.
Method 12.5% 25% 37.5% 50% 62.5% 75%

Random 5.32 6.45 8.15 13.42 15.21 27.25
Gating Score 5.13 6.35 7.80 13.03 14.97 26.38
Frequency 5.10 6.20 7.75 12.90 14.83 26.31
Expert Trim 5.23 6.18 7.70 12.98 14.67 26.16
NAEE 5.02 6.02 7.71 12.87 14.46 26.03
CD-MoE 5.01 5.98 7.69 12.76 14.35 25.70
Shapley-MoE 4.82 5.60 7.11 12.01 13.26 23.86

Table 4: Ablation study of the effective-
ness of early truncation and RGIS.

Early
Truncation RGIS PPL Pruning Cost

(mins)
- - 21.06 93
- ✓ 19.24 92
✓ - 18.65 35
✓ ✓ 17.57 36

4.4 Knowledge Reasoning, Arithmetic and Code Generation Task

Table 5: Accuracy of the pruned model on the
GSM8K, MMLU and HumanEval datasets.

Method MMLU GSM8K HumanEval
None 62.50 61.50 34.20

Random 46.20 24.18 17.34
Gating Score 47.20 27.14 18.21
Frequency 50.30 28.89 18.43
Expert Trim 49.60 27.09 17.89
Shapley-MoE 53.80 31.02 19.24

We further evaluate the broader capability retention of
the pruned MoE model. This includes assessing the
pruned models’ performance on multi-task and cross-
disciplinary language understanding and reasoning,
arithmetic, and code generation. We prune 25% of
the experts in the Qwen1.5-MoE-A2.7B model, and
the results are presented in Table 5. Our method sig-
nificantly outperforms other MoE pruning methods,
further demonstrating its effectiveness in preserving
the various capabilities of pruned MoE models.

4.5 More Results

We provide additional experimental results in appendix. In Sec. I.1, we show the performance of
pruned multimodal MoE models. In Sec. I.2, we demonstrate the performance improvements of
pruned MoE models with LoRA fine-tuning. Additionally, in Sec. I.3, we combine the pruned MoE
models with quantization techniques to further compress pruned model.
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4.6 Ablation Study

Effectivenes of Early Truncation and RGIS. We present an ablation study in Table 4 to evaluate
the effectiveness of early truncation and RGIS, assessing the contributions of these two components to
Monte Carlo sampling. Specifically, we report the WikiText-2 perplexity of the Qwen1.5-MoE-A2.7B
model pruned by 50% experts using Shapley-MoE. We observe that removing either early truncation
or RGIS leads to degraded performance of the final pruned model. Additionally, removing early
truncation increases the pruning cost. This is because early truncation eliminates sampling steps
when the model function collapses, reducing the variance of the estimator and saving computational
resources by exiting early, thereby accelerating the Monte Carlo sampling process. RGIS leverages
the expert activation probabilities in the gating mechanism to prioritize key coalitions during Monte
Carlo estimation, and achieves accelerated sampling. Under the same number of sampling steps, this
allows for more accurate Shapley value estimation.

Influence of Sampling Number M and Truncation Threshold τ . We also demonstrate the
impact of the number of Monte Carlo samples M and the early truncation threshold τ on the final
accuracy of the pruned model. Fig. 2 shows WikiText-2 perplexity and pruning cost (minutes) of
Shapley-MoE under different settings of M and τ . Although reducing M can effectively decrease
pruning cost, it may lead to performance degradation due to insufficient sampling, which affects the
accuracy of Shapley value estimation. However, when the number of samples M exceeds 20, the final
performance of the pruned model becomes insensitive to changes in M . Considering both search
efficiency and model performance, we ultimately set M = 20 as the number of samples. In addition,
a moderate truncation threshold τ achieves a better trade-off between accuracy and computational
complexity, as it both suppresses the variance in sampling results and further reduces pruning cost.
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Figure 2: Influence of sampling number M and truncation thresh-
old τ .
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Figure 3: Memory footprint
and inference speed of pruned
Qwen1.5-MoE-A2.7B.

Inference Speedup. We measure the memory reduction and inference acceleration performance of
the pruned Qwen1.5-MoE-A2.7B model, with results shown in Figure 3. The results in the table are
measured using the vLLM inference engine [38] on an NVIDIA A100 80GB GPU. Compared to the
original model, when the pruning rate ranged from 25% to 75%, the inference speedup is improved
by 1.26× to 2.92 ×, and the memory usage on the GPU is also reduced by 1.25× to 2.46 ×.

4.7 More Ablation Study

We have provided additional ablation results in the appendix. Specifically, in Sec. J.1, we show the
time required by Shapley-MoE to obtain different pruned models. In Sec. J.2, we analyze the impact
of the calibration dataset on the accuracy of the pruned models, including the number of calibration
samples and the use of domain-specific calibration datasets. Additionally, in Sec. J.3, we demonstrate
the robustness of Shapley-MoE method under different random seeds.

5 Conclusion

This paper introduces Shapley-MoE, an efficient pruning method for MoE models that leverages
Shapley value to quantify expert contributions. By integrating Monte Carlo sampling with early
truncation and router-guided importance sampling, it achieves scalable and accurate pruning. Em-
pirical results demonstrate superior performance over existing methods, enabling resource-efficient
deployment of high-quality pruned MoE models.
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paper’s contributions and scope?
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Justification: The abstract and introduction of this paper accurately reflect the contributions
and scope of this paper, which is supported by the proposed methods and experimental
results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of this paper and future work in Section A.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16



Answer: [Yes]
Justification: We have provided a full set of assumptions in each theorem section and provide
a complete (and correct) proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided all the detailed information needed to reproduce the main
experimental results of this paper in the experimental setup section in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in this paper are all publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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rameters in Section 4.1.
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• The answer NA means that the paper does not include experiments.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the detailed description of the computational resources
required to reproduce the experiments in Section 4.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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didn’t make it into the paper).

9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the social impacts, see the Section B for details.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not present such risks because it does not publish risky data or
models.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
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13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The LLM models involved in this paper are all open source and available to
the public. Our approach is used to prune the open-source MoE large language models, and
we describe their use in Section 4.1.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations and Future Work

In this paper, we propose a novel MoE pruning framework based on the Shapley value, which
effectively prunes unimportant experts, reduces memory usage, and improves inference speed.
However, under high pruning ratio settings, the accuracy of the pruned MoE model drops significantly,
resulting in a performance gap compared to the original model. Although using LoRA fine-tuning
helps narrow this gap, there is still room for improvement to achieve high-ratio lossless pruning
for MoE models. In the future, we plan to explore more efficient MoE compression techniques to
further close the performance gap between compressed model and the original model under high
compression ratio settings.

B Impact Statements

This paper proposes a Shapley value-based framework for pruning MoE models. We have not
found any direct negative social impacts caused by the algorithm itself. In fact, we believe that
introducing our method to the community has tremendous social value. By pruning unimportant
MoE experts, we can significantly reduce the number of parameters in MoE models while retaining
their functionality. Therefore, this helps to reduce the computational resource consumption of MoE
models and contributes to lowering carbon emissions caused by GPU computation.
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C Properties of Shapley Value

The Shapley value satisfies four axiomatic requirements [63]:

• Efficiency: Total Shapley Value equal the model’s full-set performance gain:
∑

El
i∈E ϕEl

i
=

V (E)− V (∅).
• Symmetry: Experts contributing equally to all coalitions receive identical values: ϕEl

i
= ϕEk

j

if ∀S ⊆ E \ {El
i, E

k
j }, V (S ∪ {El

i}) = V (S ∪ {Ek
j }).

• Null Player: Experts with zero marginal impact get a Shapley value of 0: ϕEl
i
= 0 if

∀S ⊆ E , V (S ∪ {El
i}) = V (S).

• Linearity: Values are preserved under linear combinations: ϕEl
i
(αV + βW ) = αϕEl

i
(V ) +

βϕEl
i
(W ).

The above Shapley Value’s axiomatic guarantees ensure expert contributions are quantified fairly
across all coalitional interactions. This enables precise identification of redundant or underperforming
experts (via Null Player property) while preserving critical collaborative experts (via Efficiency,
Symmetry and Linearity property), forming a theoretically grounded basis for expert pruning in MoE
models.

D Proof of Theorem 1

Proof. The Shapley value ϕEl
i

can be decomposed into contributions from two disjoint events:

ϕEl
i
= E[∆ | Ω] · P(Ω)︸ ︷︷ ︸

Non-truncated regions

+E[∆ | ¬Ω] · P(¬Ω)︸ ︷︷ ︸
Truncated regions

, (11)

where ∆ = V (S ∪{El
i})−V (S), and Ω denotes the event V (S) ≥ τV (E). The truncated estimator

ϕ̂trunc
El

i
approximates the first term through Monte Carlo sampling:

ϕ̂trunc
El

i
=

1

M

M∑
m=1

∆(m) · 1Ω(m) . (12)

The estimation error can be bounded by:

|ϕEl
i
− ϕ̂trunc

El
i
| ≤ |E[∆ | ¬Ω] · P(¬Ω)|︸ ︷︷ ︸

Bias term

+ |E[∆ | Ω] · P(Ω)− ϕ̂trunc
El

i
|︸ ︷︷ ︸

Variance term

. (13)

Bias Analysis: By the theorem’s assumption, |E[∆ | ¬Ω]| ≤ ϵ. Therefore,

|E[∆ | ¬Ω] · P(¬Ω)| ≤ ϵ · P(¬Ω). (14)

Variance Analysis: The variance term corresponds to the Monte Carlo estimation error of E[∆ |
Ω] · P(Ω). Since ∆ is bounded within [−ϵ, ϵ] in the truncated regions and potentially within a
larger range [−C,C] in non-truncated regions (where C = max |V (S ∪ {El

i})− V (S)|), we apply
Hoeffding’s inequality [27]. For M independent samples, with probability ≥ 1− δ:

|E[∆ | Ω] · P(Ω)− ϕ̂trunc
El

i
| ≤

√
C2 log(2/δ)

2M
. (15)

Assuming ∆ ∈ [−C,C] for a constant C (e.g., C = V (E)), the variance term is bounded by√
log(2/δ)

2M after normalizing C.

Combining both terms yields the stated error bound:

|ϕEl
i
− ϕ̂trunc

El
i
| ≤ ϵ · P(V (S) < τV (E)) +

√
log(2/δ)

2M
. (16)
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E Proof of Theorem 2

Proof. Proof of Unbiasedness. Let ΠN denote the set of all permutations of the expert set E . The
true Shapley value can be expressed as:

ϕEl
i
=

1

N

∑
π∈ΠN

[
V (S(i)π ∪ {El

i})− V (S(i)π )
]

(17)

where S(i)π is the set of experts preceding El
i in permutation π.

The RGIS estimator computes:

ϕ̂RGIS
El

i
=

1

M

M∑
m=1

[(
V (S(m) ∪ {El

i})− V (S(m))
)
· w(m) · I(m)

i

]
(18)

where w(m) = 1/N
Q(π(m))

is the importance weight for permutation π(m), and I(m)
i indicates whether

El
i was evaluated before truncation.

Taking expectation over the sampling distribution Q, and assuming truncation preserves unbiasedness
(truncation error bounded by Theorem 1, preserving unbiasedness through controlled approximation):

EQ

[
ϕ̂RGIS
El

i

]
= EQ

[(
V (S ∪ {El

i})− V (S)
)
· w · Ii

]
=

∑
π∈ΠN

Q(π) ·
[(

V (S(i)π ∪ {El
i})− V (S(i)π )

)
· 1/N
Q(π)

· Ii(π)
]

=
1

N

∑
π∈ΠN

[
V (S(i)π ∪ {El

i})− V (S(i)π )
]
· Ii(π). (19)

Under the truncation condition in Eq. 5, Ii(π) equals 1 for permutations where El
i is placed before

performance collapse. Since truncation only affects coalitions with negligible contributions (as shown
in Theorem 1), we have:

EQ

[
ϕ̂RGIS
El

i

]
≈ 1

N

∑
π∈ΠN

[
V (S(i)π ∪ {El

i})− V (S(i)π )
]
= ϕEl

i
. (20)

Thus, the RGIS estimator is unbiased.

Proof of Variance Reduction. The variance of the standard Monte Carlo estimator is:

Var
(
ϕ̂MC
El

i

)
=

1

M
Varπ∼Uniform

(
V (S(i)π ∪ {El

i})− V (S(i)π )
)
. (21)

For the RGIS estimator with importance sampling:

Var
(
ϕ̂RGIS
El

i

)
=

1

M
EQ

[((
V (S ∪ {El

i})− V (S)
)2 · w2

)
− 1

M
ϕ2
El

i

]

=
1

M

∑
π∈ΠN

(
V (S(i)π ∪ {El

i})− V (S(i)π )
)2

N ·Q(π)
·Q(π)− 1

M
ϕ2
El

i

=
1

M
· 1
N

∑
π∈ΠN

(
V (S(i)π ∪ {El

i})− V (S(i)π )
)2

Q(π)
− 1

M
ϕ2
El

i
. (22)

When activation probabilities {pli} correlate with Shapley values, the Plackett-Luce distribution
Q(π) assigns higher probability to permutations where important experts (with larger |ϕEl

i
|) appear

earlier. This makes Q(π) inversely proportional to
(
V (S(i)π ∪ {El

i})− V (S(i)π )
)2

for critical experts,

thereby reducing the summation term
∑

π
(V (S(i)

π ∪{El
i})−V (S(i)

π ))
2

Q(π) . Consequently:

Var
(
ϕ̂RGIS
El

i

)
≤ Var

(
ϕ̂MC
El

i

)
, (23)

completing the proof.
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F Proof of Theorem 3

Proof. Under the additivity assumption,

V (Epruned) =
∑

El
i∈Epruned

ϕEl
i
. (24)

Therefore, the performance degradation is

V (E)− V (Epruned) =
∑

El
i /∈Epruned

ϕEl
i
. (25)

For each pruned expert El
i /∈ Epruned (i.e., ϕ̂El

i
< ϵ), we have

ϕEl
i
≤ ϕ̂El

i
+ η < ϵ+ η, (26)

with probability at least 1− δ. Let R = |{El
i /∈ Epruned}| be the number of pruned experts. Then,∑

El
i /∈Epruned

ϕEl
i
< R(ϵ+ η) ≤ N(ϵ+ η). (27)

Therefore we complete the proof.

G Detailed Architecture Information of Different MoE Models

We have summarized the architecture information of different MoE models in Table 6, including the
total number of model parameters, the number of parameters activated per token during inference,
the number of routing experts in each layer, and the number of experts in each layer activated per
token during inference.

Table 6: Detailed architecture information of different MoE models
Model Total params Activated params Experts num Activated experts num
Qwen1.5-MoE-A2.7B 14.3B 2.7B 60 4
Qwen2-57B-A14B 57.4B 14.0B 64 8
Qwen3-30B-A3B 30.5B 3.3B 128 8
DeepSeekMoE-16B 16.4B 2.8B 64 6
DeepSeek-V2-Lite 15.7B 2.4B 64 6
Mixtral-8x7B 46.7B 13.0B 8 2

H Analysis of Enumeration-Based MoE Pruning Methods

The previous NAEE [49] and CD-MoE [6] methods proposed determining which experts to prune
based on the loss difference between the pruned MoE model and the original MoE model. They
identify the optimal subset of experts by enumerating all possible combinations to achieve the best
accuracy. However, in the NAEE method, it requires CN prune

N enumerations to determine the optimal
subset of experts, where N and N prune represent the number of experts in the original and the pruned
MoE models, respectively. For the CD-MoE method, it requires (N +N prune) ∗N/2 enumerations.
This is practically infeasible for large-scale MoE models with a large number of experts. For example,
for the Qwen3-30B-A3B model with 128 experts, when pruning the model to retain 64 experts,
this would require approximately 2.4× 1037 and 12, 288 enumerations for the NAEE and CD-MoE
methods, respectively. In contrast, our Shapley-MoE method can obtain the pruned MoE model
within just 36 minutes, which is highly efficient.
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I More Results

I.1 Multimodal Tasks

We further apply our Shapley-MoE method to prune multimodal MoE models, demonstrating the
applicability of our approach in multimodal scenarios. Specifically, we use our approach to prune
the MoE-LLaVA-Qwen-1.8B-4e model [43], a multimodal MoE model with 12 MoE layers, each
containing 4 experts, where only 2 experts are dynamically activated per token. The total parameter
count of the MoE-LLaVA-Qwen-1.8B-4e model is 3.1B, with 2.2B parameters dynamically activated
per token. We prune 25% of the model’s experts and evaluate the performance of the pruned model on
various visual question answering and reasoning benchmarks, including VQAv2 [21], GQA [34] and
ScienceQA-IMG [48]. The results in Table 7 show that our method outperforms other MoE pruning
methods, achieving improvements of 1.7%, 2.0%, and 2.4% over the best-performing method on the
VQAv2, GQA and ScienceQA-IMG datasets, respectively.

Table 7: Performance of the MoE-LLaVA-Qwen-1.8B-4e model with 25% experts pruned on VQA,
VQAv2 and ScienceQA-IMG datasets.

Method VQAv2 GQA ScienceQA-IMG
None 76.20 61.50 63.10

Random 66.90 51.20 52.70
Gating Score 68.10 53.90 54.70
Frequency 68.40 54.70 55.80
Expert Trim 67.80 54.30 55.10
Shapley-MoE 70.10 56.70 58.20

I.2 Using LoRA to Fine-tune the Pruned MoE Models

To address the notable accuracy degradation observed in pruned MoE model under high pruning
rates, we further validate the effectiveness of applying LoRA [29] fine-tuning to mitigate the accuracy
gap between highly pruned MoE model and their original counterpart. Specifically, we select 1000
samples from the Alpaca-GPT4 [57] dataset to fine-tune the Qwen1.5-MoE-A2.7B model, which has
undergone pruning with 50% of its experts removed. During fine-tuning, we set the LoRA rank to
8. We evaluate the perplexity and average zero-shot accuracy of pruned MoE model generated via
different pruning methods, both with and without LoRA fine-tuning. As shown in Table 8, LoRA
fine-tuning significantly enhances the accuracy of the pruned MoE model, effectively narrowing the
performance gap between the pruned model and the original model. Furthermore, since the pruned
model produced by our proposed Shapley-MoE method demonstrate superior accuracy, they exhibit
a greater capacity for performance recovery through LoRA fine-tuning. Notably, the performance
advantage of our Shapley-MoE method persists even after fine-tuning.

Table 8: The comparison of perplexity and average zero-shot accuracy of the Qwen1.5-MoE-A2.7B
model after pruning 50% experts and performing LoRA fine-tuning.

Method Fine-tuning Perplexity (↓) Accuracy (↑)
None N.A. 7.01 61.70

Random N.A. 21.87 45.25
Random LoRA 13.66 50.24

Gating Score N.A. 20.10 46.30
Gating Score LoRA 12.90 51.20

Frequency N.A. 19.78 46.84
Frequency LoRA 12.60 51.45

Expert Trim N.A. 19.98 46.35
Expert Trim LoRA 12.97 51.21

Shapley-MoE N.A. 17.57 49.01
Shapley-MoE LoRA 11.04 53.20
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I.3 Integrate with Quantization Technique

We further demonstrate the additional benefits of compression and acceleration brought by quantizing
the pruned MoE model. Specifically, we first prune 25% experts of the Qwen1.5-MoE-A2.7B model
and then apply the AWQ [44] method to quantize the pruned model to 4 bits. We also measure
the memory usage and inference speed of the compressed model on an NVIDIA A100 80GB GPU.
The results in Table 9 and Table 10 show that quantizing the pruned model to 4 bits further reduces
memory usage and improves inference speed. Additionally, it is worth noting that the pruned model
obtained by our method maintains optimal performance even after quantization, which indicates that
better-performing pruned models are more compatible with other compression techniques, resulting
in superior compression models.

Table 9: The WikiText-2 perplexity performance of the Qwen1.5-MoE-A2.7B model after combining
the pruning and quantization technique.

Pruning Method bits PPL
Random 16 11.01
W/AWQ 4 12.04

Gating Score 16 10.39
W/AWQ 4 11.12

Frequency 16 10.08
W/AWQ 4 10.89

Expert Trim 16 10.28
W/AWQ 4 11.02

Shapley-MoE 16 9.69
W/AWQ 4 10.34

Table 10: The GPU memory usage and inference speed of quantized pruned Qwen1.5-MoE-A2.7B
model.

bits Memory (GB) Reduction ↓ Throughput (tokens/s) Speedup ↑
Unpruned ×16 bit 29.30 1.00× 149.90 1.00×
Pruned × 16 bit 23.50 1.25× 188.50 1.26×
Pruned × 4 bit 7.70 4.13× 593.80 3.96×

J More Ablation Study

J.1 Pruning Efficiency

In Table 11, we report the time required to prune different MoE models using our Shapley-MoE
method. The results were obtained on NVIDIA A100 80GB GPUs. For MoE models with different
parameter sizes, Shapley-MoE method only takes tens of minutes to obtain the pruned model. This
demonstrates that our Shapley-MoE method is highly efficient and can quickly produce pruned MoE
models. Furthermore, we believe that the efficiency advantage of our pruning method will remain for
MoE models with even larger parameter sizes.

Table 11: Pruning cost of our Shapley-MoE method (in minutes).

Model Qwen1.5-MoE
-A2.7B

Qwen2-57B
-A14B

Qwen3-30B
-A3B

DeepSeekMoE
-16B

DeepSeek
-V2-Lite

Mixtral
-8x7B

Cost 36 112 172 50 40 42

J.2 Calibration Dataset

Number of Calibration Samples. We illustrate the impact of the number of calibration samples
on the WikiText-2 perplexity of the pruned MoE model in Figure 4. Specifically, we present the
perplexity of the Qwen1.5-MoE-A2.7B model with 25% of experts pruned. We observe that as the
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number of calibration samples increases, the perplexity of the pruned model decreases gradually.
However, when the number of calibration samples reaches 256, the perplexity of the model does not
decrease further. Considering that increasing calibration samples leads to longer pruning process
time and the perplexity gain brought by the increase in calibration samples, we choose 128 samples
for calibration.

8 16 32 64 128 256
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Figure 4: The WikiText-2 perplexity of the Qwen1.5-MoE-A2.7B model with 25% experts pruned
under different calibration samples.

Domain-specific Calibration Datasets. We investigate the impact of using domain-specific datasets
for calibration on the performance of pruned models in specialized domains. Specifically, We
construct a domain-specific calibration dataset containing 128 examples by randomly sampling
sentences from the MATH [26] and CodeQA [46] training sets. These datasets represent the arithmetic
and code-generation domains and are used to calibrate the pruned Qwen1.5-MoE-A2.7B model, in
which 25% of the experts have been pruned. The performance of the pruned model is subsequently
evaluated on the GSM8K dataset for 8-shot accuracy and the HumanEval dataset for 0-shot accuracy,
with the results summarized in Table 12. The results indicate that, compared to using the C4
dataset for pruning model calibration, employing domain-specific calibration datasets yields notable
improvements in the pruned model’s accuracy on the GSM8K and HumanEval tasks. This indicates
that when handling tasks in specific domains, using datasets designed for these specific tasks for
calibration can achieve better MoE model pruning results compared to using general pretraining
datasets.

Table 12: Accuracy of the Qwen1.5-MoE-A2.7B model with 25% experts pruned on the GSM8K
and HumanEval datasets when using domain-specific calibration datasets.

Calibration GSM8K Calibration HumanEval
Unpruned model 61.50 Unpruned model 34.20

C4 31.02 C4 19.24
MATH 43.76 CodeQA 26.56

J.3 Robustness of Shapley-MoE under Different Random Seeds

To demonstrate the robustness of our method, we report the WikiText2 perplexity of the Qwen1.5-
MoE-A2.7B model pruned by 50% experts using Shapley-MoE across five random seeds and different
calibration sets in Table 13. From the experimental results, we can observe that the variance among
different random seeds is very low, and Shapley-MoE consistently outperforms other MoE pruning
algorithms for different random seeds, indicating the robustness of Shapley-MoE.

K Detailed Results for Zero-shot Tasks

In this section, we present the detailed results of the zero-shot accuracy of the pruned MoE model on
seven tasks.
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Table 13: WikiText2 perplexity of the Qwen1.5-MoE-A2.7B model with 50% experts pruned across
five random seeds.

Method Perplexity
Random 21.87 (±) 0.13

Gating Score 20.10 (±) 0.12
Frequency 19.78 (±) 0.08

Expert Trim 19.98 (±) 0.08
Shapley-MoE 17.57 (±) 0.06

Table 14: Zero-shot task results of MoE models with 25% experts pruned.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

Qwen1.5-MoE-A2.7B

None 57.92 68.75 79.78 30.40 80.09 73.06 41.89 61.70

Random 51.20 62.38 71.35 25.60 72.88 63.98 36.11 54.79
Gating Score 52.10 63.01 72.41 25.80 73.01 64.35 37.24 55.42
Frequency 52.21 63.10 71.90 25.90 73.19 65.31 37.78 55.63
Expert Trim 51.89 63.12 71.90 25.00 73.20 63.90 37.14 55.16
Shapley-MoE 53.90 65.68 74.89 27.00 74.09 65.01 39.12 57.10

Qwen2-57B-A14B

None 62.86 74.03 86.39 32.60 80.96 74.75 46.16 65.39

Random 57.86 70.92 82.74 30.20 76.89 71.53 42.20 61.76
Gating Score 58.16 71.91 82.89 30.40 76.98 71.98 42.81 62.16
Frequency 58.02 72.25 83.10 30.50 77.05 72.45 42.65 62.29
Expert Trim 57.78 71.57 82.97 30.70 77.05 72.18 42.16 62.06
Shapley-MoE 59.15 72.97 84.56 31.00 78.12 72.56 43.02 63.05

Qwen3-30B-A3B

None 59.58 70.24 88.62 34.40 79.60 79.25 52.82 66.36

Random 49.52 62.77 81.87 28.60 69.46 69.24 42.43 57.69
Gating Score 50.23 62.98 82.18 29.20 70.03 70.23 43.01 58.27
Frequency 50.68 63.20 82.56 29.60 70.27 70.56 43.90 58.68
Expert Trim 50.64 63.37 82.01 29.10 69.89 69.79 43.09 58.27
Shapley-MoE 52.35 65.01 84.12 30.10 71.56 71.23 45.80 60.02

DeepSeekMoE-16B

None 58.09 70.40 72.91 32.20 78.67 75.84 45.31 61.92

Random 46.42 64.04 69.46 24.80 70.33 63.60 34.92 53.37
Gating Score 47.09 65.35 70.56 25.30 71.26 64.32 35.75 54.23
Frequency 47.67 66.09 71.05 25.40 71.87 64.09 35.90 54.58
Expert Trim 46.45 64.95 69.89 24.80 70.43 63.89 35.86 53.75
Shapley-MoE 50.13 67.15 71.45 28.00 72.09 66.45 38.90 56.31

DeepSeek-V2-Lite

None 58.68 71.35 79.72 34.20 80.14 78.37 46.67 64.16

Random 47.48 66.06 72.60 25.00 70.89 64.65 35.32 54.57
Gating Score 49.02 66.25 72.90 25.40 71.67 64.91 37.31 55.35
Frequency 50.21 67.24 73.00 25.10 71.98 65.78 38.02 55.90
Expert Trim 49.43 66.89 73.24 24.30 70.91 65.29 38.00 55.44
Shapley-MoE 51.20 67.29 76.01 26.30 73.10 67.67 39.45 57.29
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Table 15: Zero-shot task results of MoE models with 50% experts pruned.

Model Method HellaSwag Winogrande BoolQ OBQA PIQA ARC-e ARC-c Mean

Qwen1.5-MoE-A2.7B

None 57.92 68.75 79.78 30.40 80.09 73.06 41.89 61.70

Random 40.27 57.72 60.25 18.80 62.49 49.88 27.33 45.25
Gating Score 42.90 58.93 61.65 19.40 62.90 50.28 28.01 46.30
Frequency 43.88 59.46 61.90 19.80 63.37 50.80 28.69 46.84
Expert Trim 42.98 58.57 61.89 19.10 62.96 50.57 28.35 46.35
Shapley-MoE 45.78 60.90 65.09 21.50 64.97 53.96 30.89 49.01

Qwen2-57B-A14B

None 62.86 74.03 86.39 32.60 80.96 74.75 46.16 65.39

Random 53.57 68.13 78.78 27.20 73.97 67.51 39.87 58.44
Gating Score 54.13 69.14 79.34 27.60 74.23 68.14 40.26 58.98
Frequency 54.46 69.45 79.67 27.90 74.67 68.56 40.57 59.33
Expert Trim 54.36 69.01 79.02 27.30 74.87 68.65 40.87 59.15
Shapley-MoE 56.78 70.92 81.13 28.90 75.78 69.18 41.89 60.65

Qwen3-30B-A3B

None 59.58 70.24 88.62 34.40 79.60 79.25 52.82 66.36

Random 36.36 56.06 66.16 20.00 58.68 48.78 28.69 44.96
Gating Score 38.89 56.89 68.98 20.70 58.87 49.56 29.65 46.22
Frequency 39.45 57.90 67.90 20.80 58.98 49.79 30.98 46.54
Expert Trim 38.87 57.10 69.12 20.90 58.78 49.16 29.98 46.27
Shapley-MoE 41.95 59.12 71.23 22.30 60.14 51.24 31.98 48.28

DeepSeekMoE-16B

None 58.09 70.40 72.91 32.20 78.67 75.84 45.31 61.92

Random 33.67 55.35 58.93 16.00 59.55 43.49 23.49 41.50
Gating Score 34.67 56.36 60.01 17.10 60.12 44.23 25.09 42.51
Frequency 33.90 57.76 60.13 18.00 59.89 44.21 26.00 42.84
Expert Trim 34.56 57.01 59.79 18.10 59.81 43.13 26.29 42.67
Shapley-MoE 36.98 59.01 61.34 19.30 62.02 46.67 28.90 44.89

DeepSeek-V2-Lite

None 58.68 71.35 79.72 34.20 80.14 78.37 46.67 64.16

Random 34.72 57.41 63.31 21.80 60.53 47.11 24.51 44.20
Gating Score 36.10 59.10 64.57 22.30 61.94 49.01 26.19 45.60
Frequency 37.64 59.57 65.08 23.00 62.45 48.45 25.56 45.96
Expert Trim 38.58 59.21 65.12 23.10 61.23 48.67 25.06 45.85
Shapley-MoE 39.45 60.34 67.13 24.00 62.86 49.05 26.76 47.08
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