
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HYBRID MODEL COLLABORATION FOR SIGN LAN-
GUAGE TRANSLATION WITH VQ-VAE AND RAG-
ENHANCED LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data shortages and the phonetic disparity between sign and spoken languages
have historically limited the quality of sign language translation. On another front,
endowed with substantial prior knowledge, large language models perform ex-
ceptionally well across diverse tasks, significantly diminishing the demand for
domain-specific training data. Building on these foundation, this paper presents
VRG-SLT, an innovative framework that translates sign language into spoken lan-
guage, facilitating communication between signing and non-signing communities.
In practice, VRG-SLT utilizes a hierarchical VQ-VAE to convert continuous sign
sequences into discrete representations, referred as sign codes, which are subse-
quently aligned with text by a fine-tuned pre-trained language model. Additionally,
retrieval-augmented generation (RAG) is employed to extend and enhance the
language model, producing more semantically coherent and precise spoken text.
Featuring a hierarchical VQ-VAE and pre-trained large language models, VRG-
SLT demonstrates state-of-the-art performance. It excels on modish benchmarks
like How2Sign and PHOENIX-2014T. Moreover, the incorporation of additional
factual knowledge through RAG further improves the accuracy of the generated
text. The implementation code will be released.

1 INTRODUCTION

Characterized by unique linguistic traits, sign languages play a crucial role in communication among
deaf individuals (Padden & Humphries, 1988; Stokoe Jr, 2005; Glickman & Hall, 2018). Unlike
spoken languages, they rely on visual cues like gestures, body movements, facial expressions, and
eye movements to convey semantic information (Liddell & Johnson, 1989; Johnson & Liddell, 2011;
Sandler, 2012). Sign language translation (SLT) involves converting sign gestures from video clips
into spoken descriptions (Camgöz et al., 2018; 2020; Zhou et al., 2021; 2022; De Coster et al.,
2023), facilitating communication freedom and accessibility of information for both sign and non-
sign language users. In practice, SLT highlights its versatility and significant value across various
scenarios (Harris et al., 2009), such as public service broadcasts, and personal assistants, etc.

Building effective and accurate sign language translation systems commonly encounters the following
obstacles: 1) Data scarcity: The collection of sign language data is particularly challenging, owing to
its limited user population and the considerable costs and complexities of data gathering and annota-
tion. For instance, the How2Sign dataset (Duarte et al., 2021) contains only 30, 000 pairs, hampering
effective model optimization. 2) Unique syntax: Sign language, inherently distinct from spoken
language, possesses its own grammar, word formation, and lexicon. These differences, especially in
word order, make transcription between the two languages complex. 3) Multimodal contexts: Sign
language is a multimodal form of communication that combines manual and non-manual actions,
such as facial expressions and body postures, to convey detailed and precise information. These traits
culminate in numerous signs that are visually similar but distinct in their semantic implications.

Previous research generally divides SLT into two distinct tasks (Chen et al., 2022): Sign2Notation
(or sign language recognition, SLR), the conversion of sign language videos to lexical represen-
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Figure 1: We propose VRG-SLT, a hybrid collaborative sign language translation framework that
integrates a hierarchical VQ-VAE (sign-tokenizer) with the pretrained language model FLAN-T5.
Furthermore, we employ a RAG strategy to calibrate and refine the initial outputs (§1).

tations (e.g., Glosses*); and Notation2Text, the translation of these representations into the target
text language, a process akin to machine translation but dealing with complex, multimodal sign
inputs (Fig. 1). SLR (Padden, 2016; Cui et al., 2017; Pu et al., 2019; Li et al., 2020b; Zhou et al., 2022)
endeavors to decipher successive signs as discrete gloss lexicon. However, it disregards the differing
grammar and linguistic structure of sign language from spoken language. As a result, translations of-
ten lack semantic coherence and sentence fluidity. Notation2Text (Camgöz et al., 2018; 2020; Li et al.,
2020a; Duarte et al., 2021; Zhou et al., 2021; 2022) struggles to fully capture non-verbal elements of
sign language like facial expressions. It relies on extensive bilingual corpora, posing a significant
challenge for resource-scarce sign languages. SLT seeks to convert sign language videos into spoken
sentences, ensuring accuracy and comprehensibility by accounting for grammatical and word order
differences. With the rise of deep learning, SLT has shifted from traditional feature engineering to
adopting various neural network approaches, such as convolutional networks, LSTM (Hochreiter &
Schmidhuber, 1997) and transformers (Vaswani et al., 2017), to enhance translation accuracy. Recent
efforts treat sign language translation as a unified task and introduce domain-specific knowledge
or extensive auxiliary training data (Chen et al., 2022; Zhao et al., 2023; Rust et al., 2024), yet the
accuracy and generalization remain inadequate for real-world applications. Recently, large language
models (LLMs) (Devlin et al., 2019; Yang et al., 2019; Brown et al., 2020; Lan et al., 2020; Lewis
et al., 2020a) exhibit strong comprehension and possess extensive prior knowledge, lessening their
dependency for large-scale data. LLMs are highly effective across various contexts, maintaining
accuracy and robustness, showcasing their versatility in various applications. This can greatly benefit
the SLT field, known for limited corpora availability. However, despite early trials (Wong et al.,
2024), the application of LLMs in sign language translation is still not sufficiently explored.

In this paper, we concentrate on incorporating sign language gestures into large language models to
translate them into spoken text (Fig. 1). To achieve this, we propose VRG-SLT, a two-stage pipeline.
Initially, a sign-specific VQ-VAE (sign-tokenizer) quantizes raw sign segments into discrete codes.
These codes are then converted into spoken sentences by FLAN-T5. Presently, the prevailing LLMs
are text-centric and lack the capability to directly translate sequences of sign language into text. How
to jointly train sign videos with text? The answer lies in developing a sign-tokenizer that embeds sign
clips into discrete tokens and aligns them with text during the finetuning of LLMs. Our approach
integrates insights from VQ-VAE-2 (Razavi et al., 2019) and text-to-motion technologies (Zhang et al.,
2023b; Jiang et al., 2023), utilizing a hierarchical VQ-VAE (van den Oord et al., 2017) and a pretrained
language model FLAN-T5 (Chung et al., 2024) to efficiently convert signs into spoken sequences.
Furthermore, the translations are enhanced by a retrieval-augmented generation (RAG) (Lewis et al.,
2020b) strategy, further improving the performance of VRG-SLT beyond preliminary results. In
particular, sign-tokenizer compresses sign clips by encoding them into latent representations, which
are then quantized into discrete codes and stored as indices in a codebook, referred to as “sign
vocabulary” (van den Oord et al., 2017). Traditional VQ-VAEs prioritize upper body motion, making
them less suitable for sign language that emphasizes hand and torso features. Inspired by VQ-VAE-2,

*Glosses are the practice of describing sign language actions with written words to express their meanings.
For instance, the sign for a dog may be denoted with the gloss ‘DOG’.
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we design sign-tokenizer as a two-level network: the top level captures body information, such as
the motion trajectories of the shoulders and elbows, while the bottom level focuses on modeling the
movements of hands. The body features is then infused into the bottom level’s hand information for
precise sign reconstruction. This hierarchical and multi-scale representation allows the sign-tokenizer
to detect and capture details across different levels of granularity. A “text-sign dictionary” can be
constructed from the sign and conventional text corpus. Subsequently, FLAN-T5 is finetuned to
jointly learn and bridge the syntax and grammar of the “text-sign language”. One notable limitation
is that LLMs such as T5 may lack sufficient or in-depth domain knowledge, tending to produce
inaccurate or unrealistic responses (known as ‘hallucination’). Thus, to rectify incorrect answers, we
adopt RAG strategy that retrieves pertinent knowledge and polishes the initial translations. The hybrid
collaboration integrates sign-tokenizer for encoding sign motions, FLAN-T5 for text generation, and
RAG to enhance accuracy and cultural relevance. Each component contributes its strengths, working
synergistically to tackle complex sign language translation challenges.

We are pioneering the integration of hierarchical VQ-VAE and LLMs into SLT, bolstered by RAG for
enhanced translation. The main contributions are summarized as follows:(1) A collaborative hybrid
model, VRG-SLT, is introduced for sign language translation, where sign movements are treated as a
unique language and combined with LLMs for joint training with text. (2) A sign-tokenizer, which
captures both overall upper body and hand trajectory characteristics, is presented. By utilizing a
hierarchical structure, it can adeptly handle intricate detailed complexities and diverse contextual
movements. (3) RAG strategy is integrated into VRG-SLT, enabling the retrieval and combination
of relevant knowledge for more accurate and content-rich output. VRG-SLT notably surpasses
competitors on benchmarks such as How2Sign (Duarte et al., 2021) and PHOENIX-2014T (Camgöz
et al., 2018), including those employing semi-supervised learning. For instance, VRG-SLT achieves
remarkable gains on the How2Sign dataset, with ROUGE and BLEU-1 scores increasing by 2.23 and
4.34, respectively. Our code will be released.

2 RELATED WORK

Sign Language Understanding and Translation aims to precisely recognize and explain sign
language components such as the shapes, positions, and movements, translating them into equivalent
verbal language. Isolated SLR and the more challenging continuous SLR are two fundamental tasks
for understanding sign language. One aims to identify single annotated word labels in short video
clips (Albanie et al., 2020; Li et al., 2020b), while the other seeks to convert continuous sign videos
into gloss sequences using only weak sentence-level annotations (Cui et al., 2017; Koller et al., 2020;
Pu et al., 2019; Zhou et al., 2022). While some previous studies (Padden, 2016) equate SLR with SLT,
the former merely classifies signs, neglecting their grammatical and morphological structures into
spoken language. Jiang et al. (2021) propose a fresh multimodal framework featuring a globally
integrated model for skeleton-aware multimodal learning in discrete SLR. To date, SLR has been
simplified to a basic gesture recognition issue, thereby overlooking the linguistic aspects of sign
language and presuming a direct correlation between sign and spoken words. While the encoder-
decoder network in NMT boosts translation, it grapples with an info bottleneck from condensing
source sequences to fixed vectors and managing long-term dependencies across source and target
texts. Generally, SLR serves as an intermediate step in the translation process, annotating sign
language videos before converting them into spoken language through a sequence-to-sequence
method (Notation2Text) (Camgöz et al., 2018; 2020; Li et al., 2020a; Duarte et al., 2021; Zhou
et al., 2021; 2022). For instance, Camgöz et al. (2020) integrate the training of SLT to regularize the
translation encoder. Zhou et al. (2021) introduce a data augmentation approach that uses annotations
as pivots to back-translate text into visual features. Cico (Cheng et al., 2023) models the relationship
between signs and text from a cross-lingual retrieval perspective. Chen et al. (2022) develop a unified
framework for SLT, dividing it into visual and linguistic modules bridged through a visual-linguistic
mapper for training. Influenced by action recognition (Ji et al., 2013; Tran et al., 2015; Arnab et al.,
2021), some studies (Camgöz et al., 2017; Niu & Mak, 2020; Cheng et al., 2020; Min et al., 2021;
Hao et al., 2021) explore directly modeling RGB videos to understand sign language. However, these
methods still struggle with sentence-level translation. Our approach utilizes sign-tokenizer to treat
raw sign motions as equivalent to textual words for whole-sentence translation, co-training with
spoken text to transcend the linguistic barriers.

VQ-VAE, an unsupervised learning technique, excels in compressing and reconstructing high-fidelity
images, videos, and audio by mapping them into a lower-dimensional latent space (van den Oord
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et al., 2017). Its recent applications extend to realistic image and video generation with GANs, diverse
vocal representations in speech processing, and feature extraction in unsupervised learning (Esser
et al., 2021; Chang et al., 2022; Lee et al., 2022; Zheng et al., 2022). The classic VQ-VAE structure
consists of an encoder, a vector quantizer, and a decoder. VQ-VAE encodes the input into a discrete
latent representation. This is achieved by mapping the encoder outputs to a nearest vector in a
predefined, learnable codebook. The process involves several key steps: (1) Encoding: The encoder
converts the raw input data into a latent representation. (2) Quantization: The core of VQ-VAE lies
in its vector quantization, where the continuous representation of the encoder is mapped to the nearest
code in the codebook, improving model performance on complex data distributions and sample
fidelity. (3) Reconstruction: The quantized vectors are then passed to the decoder, which attempts
to reconstruct the original input data. The training objective of VQ-VAE includes a reconstruction
loss to minimize the difference between the input and the reconstructed output. In text-to-motion
generation (Zhang et al., 2023b; Jiang et al., 2023), VQ-VAE delivers compelling outcomes in
semantic coherence and motion precision. Despite VQ-VAE achieving accuracy comparable to that
of continuous vector counterparts, it also exhibits the typical autoencoder drawback of image blurring.
The following VQ-VAE-2 (Razavi et al., 2019) employs a multi-level hierarchical structure to produce
images of superior quality while maintaining diversity and preventing mode collapse. This paper,
inspired by VQ-VAE-2, carefully crafts a sign-tokenizer that uses top and bottom level quantizers to
model the upper body and hand regions, thereby capturing more detailed and comprehensive motion
trajectories. To our knowledge, this is the pioneering effort to utilize multi-level VQ-VAE specifically
for the realm of sign language translation.

Large Language Models revolutionize natural language processing with their ability to generate
human-like text (Peters et al., 2018; Devlin et al., 2019; Dong et al., 2019; Liu et al., 2019; Lan et al.,
2020). Predominantly utilized for text generation, language translation, and automated customer
service, LLMs stand out due to their extensive pre-training on diverse data. Recent improvements
have scaled the model up, boosting its coherence and contextual relevance, particularly in chatbots
and creative writing (Clark et al., 2020; Sun et al., 2020; Lewis et al., 2020a). Additionally, GPT is
branching into multimodal applications, like AI art and data analysis. Current research focuses on
improving understanding, reducing biases, and enhancing computational efficiency, cementing GPT’s
role as a pivotal AI tool. T5 model (Raffel et al., 2020) employs a unified text-to-text framework,
transforming diverse NLP tasks into text generation issues. Moreover, T5, trained on diverse language
corpora, exhibits extensive prior knowledge and robust cross-lingual capabilities. FLAN-T5 (Chung
et al., 2024) boosts the multi-task proficiency of T5 by natural language training and command
response refinement. Our framework uniquely merges FLAN-T5 and VQ-VAE-2, equating sign
tokens with text tokens as “word”, thus boosting cross-lingual alignment in full-sentence translation.

Retrieval-Augmented Generation is a language enhancement technique that merges information
retrieval with generation models. RAG begins by pulling relevant information from a knowledge base
and fuses it with a generative model to produce more precise and comprehensive text output (Lewis
et al., 2020b; Mallen et al., 2023; Shi et al., 2023; Morris et al., 2023; Asai et al., 2024). It
usually provides several benefits: (1) RAG substantially improves the fidelity of generated responses,
especially in scenarios requiring accurate answers to factual queries. (2) It diminishes the frequency
of hallucinations by the generation model. By integrating RAG, we utilize a knowledge base to
enhance the translation of sign language into text.

3 METHOD

We propose VRG-SLT, a framework for translating sign language into spoken text. As illustrated
in Fig. 2, VRG-SLT comprises a sign-tokenizer, a sign-aware language model, and a RAG module.
Sign-tokenizer (§3.1) employs a hierarchical VQ-VAE-2 to encode raw sign sequences into discrete
codes in a codebook. These codes, along with spoken texts, establish a new “text-sign dictionary”
for cross-lingual learning. Next, the sign-aware large language model SignLLM (§3.2) focuses on
aligning sign motions with corresponding textual descriptions. Furthermore, RAG (§3.3) accesses
relevant knowledge to refine output text and alleviate hallucinations. In practice, sign-tokenizer
consists of 2 sign encoders, Eu and Eh, and a sign decoder D. Sign-tokenizer first maps a sign motion
sequence m1:M of M frames into L motion codes e1:L, and decodes e1:L back into a reconstructed
motion sequence m̂1:M = D(e1:L). Here, L = M/l, l denotes the temporal downsampling rate.
The goal of SignLLM is to generate corresponding verbal text t̂1:N with N words conditioned on the
sign code sequence e, denoted as t̂1:N = SignLLM(e1:L).
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Figure 2: VRG-SLT mainly comprises a sign-tokenizer (§3.1) and a sign-aware language model, Sign-
LLM (§3.2). The sign-tokenizer encodes sign actions into a sign codebook and, together with the text
tokenizer, creates a unified vocabulary V . Using SignLLM, we perform joint learning of sign and
spoken languages for sign language translation. The two encoders of the sign-tokenizer encode global
body movements and detailed hand features, respectively, achieving a comprehensive and precise
understanding of sign motion. Finally, we refine the initial output using a RAG strategy (§3.3).

3.1 SIGN TOKENIZER

To begin with, we revisit the workflow of VQ-VAE. VQ-VAE typically consists of three main
components: an encoder, a quantizer, and a decoder. The process begins with the encoder converting
input data (e.g., images or audio) into a latent representation. Following this, the quantizer maps this
representation to a set of nearest discrete codes. These codes are then forwarded to the decoder for
input reconstruction. In this paper, sign-tokenizer, designed to represent sign language in discrete
codes, is pre-trained based on the principles of VQ-VAE (van den Oord et al., 2017; Siyao et al.,
2022; Zhang et al., 2023b). The quantizer assigns z to the nearest vector ei in the codebook.Thus,
sign motions m can be represented as an integer index k: 0 ≤ k < K, with a vocabulary size K.
The sign-tokenizer, featuring a hierarchical architecture with two encoders Eu, Eh and a decoder D,
is tailored to capture sign characteristics comprehensively. The encoders and quantizers generate
highly informative discrete sign codes, while the decoder reconstructs these codes into sign sequences
m̂1:M . Sign-tokenizer can effectively represent sign movements as code sequences, facilitating the
integration of sign and spoken sentences in SignLLM. Then, the sign-tokenizer applies quantizers
to the upper (zu) and lower (zh) vectors for each input. The quantized representations, eu and
eh, are utilized by the VQ-VAE to establish a joint probability density for overarching semantic
features pu and the conditional probability density for detailed local mappings ph. The generation
process concludes by sampling quantized codebook vectors from pu for global consistency and ph
for local detail, which are then fed into the decoder D to generate reconstructed sign sequences.

Specifically, both the sign encoders first applies 1D convolutions to the frame-wise sign motions m1:M

along the time dimension, generating latent vectors zu and zh. These latent vectors are then
discretized into codebook entries euk and ehk. Both the codebook Eu = {euk|k = 1, . . . ,K} and
Eh = {ehk|k = 1, . . . ,K} contain K embedding vectors, each of dimension d. The quantizers
Qu and Qh maps each vector with its nearest codebook entry in Eu and Eh, respectively (Eq. 1).
After quantization, the sign decoder D projects e1:Lh back to raw motion space as m̂1:M .

euk = Qu(ẑu) := argmineuk∈Eu
∥ẑu − euk∥2 ;

ehk = Qb(ẑh) := argminehk∈Eh
∥ẑh − ehk∥2 .

(1)

VQ-VAE Learning. VQ-VAE employs a unique learning strategy that updates the embeddings
in the codebook by using an exponential moving average of the encoder outputs, which helps in
stabilizing the training process. We train our motion tokenizer using the method outlined in (Guo
et al., 2022b; Zhang et al., 2023b) to synchronize the vector space of the codebook , with three distinct
loss functions for optimization. The codebook loss applies only to codebook variables, drawing
the selected codebook vector closer to the encoder outputs. The commitment loss applies solely to
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Figure 3: Following the classic RAG workflow, we first integrates a retrieval step into the generative
model, pulling relevant documents from knowledge base to inform and refine the initial output (§3.3).

the encoder weights, ensuring the encoder output remains close to the chosen codebook vector to
minimize frequent shifts between code vectors. The overall objective is described in Eq. 2, where
eu and eh represent the quantized code for training sample m. sg denotes a stop-gradient operation
that prevents gradients from flowing into its argument. β1 and β2 is a hyperparameter that controls
resistance to changes in the encoder’s code output.

LV =∥m−D(eh)∥2 + ∥sg[Eu(m)]− eu∥2 +
∥sg[Eh(m)]− eh∥2 + β1∥sg[eu]− Eu(m)∥2 + β2∥sg[eh]− Eh(m)∥2.

(2)

We empirically set β1 and β2 to 1, respectively. To enhance the quality of the generated motion, we
also employ velocity regularization, and codebook reset (Razavi et al., 2019). Further details on the
architecture and training of the sign tokenizer are provided in the supplement.

3.2 SIGNLLM

With the sign-tokenizer, sign motions m1:M can be converted into a sign token sequence e1:L, which
facilitates joint representation with similar text embeddings in language models (Kudo & Richardson,
2018; Raffel et al., 2020; Ouyang et al., 2022). The unified vocabulary allows for simultaneous
learning from sign and spoken languages, supporting hybrid collaboration between the sign tokenizer
and SignLLM. Unlike previous text-to-motion approaches (Guo et al., 2022b; Chen et al., 2023;
Zhang et al., 2023b) that adopt separate modules for text and sign sequence processing, our approach
aims to integrate text and sign motion processing in a unified manner. To achieve this, we merge the
original text vocabulary Vt = {vt} with the sign vocabulary Vm = {vm}, which preserves the order
in our sign codebook Eh. The sign vocabulary Vm contains special tokens like boundary indicators,
such as </sos> and </eos> for the start and end of sign, respectively. With the unified text-sign
vocabulary V =< Vt,Vm >, we can handle sign and text data in a general format, where both
input and output “words” are tokens drawn from the same vocabulary. These tokens can represent
spoken language, sign motion, or a combination of both. As a result, our method enables flexible
representation of diverse sign-related outputs within a single SignLLM .

We combine the sign codes and prompts into the input sequence xs, each element of which belongs
to the unified vocabulary V . Then, xs serves as the context or conditioning for SignLLM to
produce the output spoken text t̂. As depicted in Fig. 2, the source tokens xs enter SignLLM
encoder, and SignLLM decoder predicts the probability distribution of the next token at each step,
pθ(t | xs) =

∏
i pθ

(
ti | t<i,xs

)
. The objective is to maximize the log-likelihood as follows:

LLM = −
∑L−1

i=0
log pθ

(
ti | t<i,xs

)
. (3)

By optimizing this objective, VRG-SLT can capture the underlying patterns and relationships from
data distribution, thereby facilitating the accurate predict of target tokens. During inference, the target
tokens are sampled recursively from the predicted distribution pθ

(
t̂i | t̂<i,xs

)
until the end token

(i.e., </s>) is reached. Since each token in the target sequence is generated based on both preceding
tokens and the original input, SignLLM effectively maintains semantic consistency. FLAN-T5 is
proficient in multi-task fine-tuning, offering strong adaptability across diverse natural language
processing tasks. Thus, we chose FLAN-T5 as the backbone for large model.

3.3 RAG

RAG (Lewis et al., 2020b) has become a paradigm in the LLM field for enhancing the capabilities of
generative tasks. Unlike purely generative models, RAG decreases errors and irrelevant outputs by
incorporating relevant background information. Specifically, RAG incorporates a distinct initial step.
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Figure 4: Training Scheme. VRG-SLT comprises three steps (§3.4): First, sign-tokenizer learns a
codebook for discrete sign representations. Next, we train the language model SignLLM using a mix
of spoken and sign data to understand the semantic coupling between text and sign motion. Finally,
we polish the initial output using RAG.

The LLM first queries external data sources for relevant information. After gathering the necessary
knowledge, it then proceeds to generate text or answer questions. This strategy not only guides the
generation phase but also uses retrieved evidence to enhance the accuracy and relevance of responses,
reducing content errors known as hallucinations. The workflow consists of retrieving documents
relevant to an input from a large corpus, followed by generating the final response or content based
on these documents and the original query. Following the classic RAG workflow, we also engage in
the steps of indexing, retrieving, and generation:

• Indexing: Initially, documents are converted into vectors and stored within an indexed database.
Then,query data is segmented into manageable chunks and transformed into vectors using a well-
balanced embedding model. This process enhances similarity comparisons and supports efficient
search by storing these vectors and their associated text in an index.

• Retrieving: When a query is received, the system transcodes the query into vectors using the initial
encoding model, as shown in Fig. 3. It then calculates similarity scores with the indexed vectorized
chunks, retrieving the top-3 chunks with the highest similarity for extended context analysis.

• Generation: The model synthesizes the query and retrieved knowl edge into a prompt to generate
responses. Responses may vary by different motion codes or prompt text.

3.4 TRAINING PROCEDURES

FLAN-T5, originally pre-trained with a text-based vocabulary Vt, is aligned with sign language
through the sign-specific vocabulary Vm. Our training steps consist of three stages (Fig. 4): (1) train-
ing the sign-tokenizer to represent signs with discrete codes; (2) finetuning on sign language to bridge
sign motion and language; and (3) tuning the output with RAG. We provide the pseudocode for each
stage in the appendix (§B).

Training of Sign-tokenizer. Initially, sign-tokenizer is trained using the objective defined in Eq. 2,
enabling any sign sequence m1:M to be represented as a sequence of motion tokens, which integrates
seamlessly with textual information. After optimization, the sign-tokenizer remains unchanged
throughout the rest of the pipeline.

SignLLM Finetuning. The SignLLM are then trained and fine-tuned on the unified text-sign
vocabulary V =< Vt,Vm >. We utilize existing sign language datasets (such as How2Sign (Duarte
et al., 2021) and PHOENIX-2014T (Camgöz et al., 2018)) as a foundation to create a guided sign-
action dataset. As explored in prior works (Devlin et al., 2019; Radford et al., 2019; Raffel et al.,
2020; Ouyang et al., 2022), we also adopt an objective inspired by (Raffel et al., 2020) where 15% of
input tokens are randomly replaced with a sentinel token. The target sequence is then constructed by
extracting the dropped-out spans, delimited by the same sentinel tokens, with an additional sentinel
token marking the end of the sequence. We establish the relationship between motion and language
using paired text-sign datasets (Guo et al., 2022a; Plappert et al., 2016). Through training, our model
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is intended to comprehend the relationship between text and motion. For example, the prompt might
say: “Generate English text: <sign_tokens>” or “Generate German text: <sign_tokens>”. Here,
<sign_tokens> refers to the token form of sign codes from sign-tokenizer.

RAG Tuning. We utilize the SQuAD database (Devlin et al., 2019) for general knowledge expansion
and ECMWF (Hersbach et al., 2020) for weather data. After retrieving relevant information, we
combine the initial output with the retrieved knowledge and input them into an open-source large
model for refinement. BERT (Devlin et al., 2019) is employed for retrieving.

4 EXPERIMENTS

Dataset. We assess performance on How2Sign (Duarte et al., 2021) and PHOENIX-2014T (Camgöz
et al., 2018) datasets, which are prevailing benchmarks in sign language understanding.

• How2Sign is a comprehensive multimodal American Sign Language dataset, comprising approxi-
mately 80 hours of sign language videos with corresponding annotations. It consists of 31, 164,
1, 740, and 2, 356 sign-video-text triplets for training, validation, and testing, respectively.

• PHOENIX-2014T, a German Sign Language (DGS) dataset, consists of weather forecast segments
extracted from TV broadcasts. Each video is accompanied by detailed sign language annotations
and corresponding German spoken text. The dataset is split into 7, 096 train, 519 validation, and
642 test examples, respectively.

Evaluation Metric. Drawing from previous research (Camgöz et al., 2018; 2020; Zhou et al., 2021;
2022), we utilize the widely used ROUGE (Lin, 2004) and BLEU (Papineni et al., 2002) metrics to
evaluate precision and fluency of translated content. The assessments are conducted by comparing
machine-produced texts to human reference texts. Focused on accuracy, BLEU measures translation
quality through the overlap of n-grams between the machine output and reference texts. However, it
might not adequately capture the fluency and semantic precision of the translation. ROUGE evaluates
content coverage through the overlap between translation texts and human reference materials. In
summary, ROUGE primarily assesses the overlap between generated and reference text, focusing on
recall, whereas BLEU emphasizes precision through n-gram matching.

Implementation Details. Sign language motion data is represented in the form of keypoints. The
codebook of sign-tokenizer consists of 512 vectors, each of dimension 1024. The encoder applies a
temporal downsampling rate of 4, merging every four frames into a single sign code to effectively
capture fundamental dynamic features (Jiang et al., 2023). We utilize FLAN-T5-base (Raffel et al.,
2020) as the underlying architecture for our language model. Moreover, all our models employ
the AdamW (Loshchilov & Hutter, 2019) optimizer for training. The sign-tokenizer are trained
utilizing a 10−3 learning rate and a 512 mini-batch size, while our SignLLM have a 2×10−4 learning
rate for the finetuning stage and a 32 mini-batch size. Sign-tokenizer and SignLLM undergo 100k
and 200k training iterations, respectively. BERT is applied for querying and retrieving relevant
knowledge, producing higher-quality outputs based on the initial output from SignLLM and the
content of retrieved documents. All models are trained on 8 Nvidia GeForce RTX 4090 GPUs. We
will release our code to ensure reproducibility.

4.1 COMPARISONS WITH SOTA METHODS

VRG-SLT treats sign motion as a unique language, incorporating a hierarchical VQ-VAE and
SignLLM, with further accuracy enhancements through RAG. We utilize the 220M pre-trained
Flan-T5-Base (Raffel et al., 2020; Chung et al., 2024) model as the backbone, finetuning it through
the unified codebook (§3.2) for all subsequent comparisons. The results are calculated with a
95% confidence interval from 10 repeated runs. The results in Table 1 indicate that VRG-SLT
delivers strong performance across all metrics, demonstrating its cross-language learning ability and
semantic consistency †. Notably, it achieves a BLEU-4 score of 30.17 on PHOENIX-2014T dataset,
exceeding the nearest competitor by 1.70 points, and scores 53.92 in ROUGE, surpassing others
by 1.81 points. These outcomes highlight VRG-SLT can more effectively decode and render sign
language nuances into accurate and fluid translations. Our model prioritizes contextual coherence,
leveraging LLM’s strong capability for context modeling to produce coherent, semantically consistent

†Some comparisons are showcased on our webpage: https://vrg-slt.github.io/VRG-SLT-demos
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Table 1: Compared with state-of-the-art methods on How2Sign and PHOENIX-2014T. Methods
marked with an asterisk (*) first perform SLR and then Notation2Text (§4.1).

How2Sign PHOENIX-2014T
Methods

ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

SL-Luong (Camgöz et al., 2018) 18.75 19.46 9.53 4.67 3.21 31.80 32.24 19.03 12.83 9.58

TSPNet-Joint (Li et al., 2020a) 16.84 17.93 11.71 6.59 4.07 34.96 36.10 23.12 16.88 13.41

SL-Transf (Camgöz et al., 2020) 21.92 24.74 13.66 8.20 5.18 37.31 46.61 33.73 26.19 21.32

STMC-T (Zhou et al., 2022) 25.40 29.38 15.27 8.68 6.05 46.65 46.98 36.09 28.70 23.65

SIGN2GPT (Wong et al., 2024) 25.83 28.82 14.84 8.41 5.93 48.90 49.54 35.96 28.83 22.52

TIN-Trans* (Zhou et al., 2021) 26.33 28.20 15.02 9.24 6.28 49.54 50.80 37.75 29.72 24.32

SignBERT+ (Hu et al., 2023) 28.35 29.06 15.71 9.60 6.84 50.63 52.01 39.19 31.06 25.70

SLRT (Chen et al., 2022) 31.27 30.10 18.13 10.43 7.98 52.65 53.97 41.75 33.84 28.39

SLTUNET (Zhang et al., 2023a) 31.15 31.27 18.02 10.36 8.19 52.11 52.92 41.76 33.99 28.47

VRG-SLT (Ours) 33.38±.02 35.61±.04 20.35±.03 13.12±.06 8.53±.03 53.92±.05 55.74±.01 43.31±.01 36.59±.05 30.17±.06

sentences. Leveraging the strong capabilities of LLM in context modeling, VRG-SLT prioritizes
contextual coherence to generate semantically consistent sentences. This is reflected in its ROUGE
scores, which measure how well the translated text covers the reference text vocabulary. Non-verbal
information such as expressions and body language is crucial in sign language for conveying complete
meaning. Our model captures these details through the encoding abilities of the hierarchical VQ-VAE.
As a result, translations translations encompass emotional and emphatic cues beyond just words,
significantly benefiting BLEU scores.

4.2 ABLATION STUDIES

Ablation analysis focuses on the parameter counts in pre-trained LLMs, the architectures of tokenizers,
and RAG strategies (Table 2). These experiments involve selectively removing or modifying specific
model features or structures to elucidate the impact of each component.

Pre-trained Model Sizes. We evaluate the performance across the four publicly accessible pre-
trained models from FLAN-T5. The experimental results with the FLAN-T5-base show a compelling
balance between size and performance (Table 2a). FLAN-T5-base achieve competitive accuracy
in our tests, showing only a marginal decrease in performance compared to its larger counterparts.
The FLAN-T5-base model excels in speed, showing an approximate 37% boost in inference speed,
while the FLAN-T5-XL model surpasses in accuracy with a high of 36.38 in BLUE-1. The results
make FLAN-T5-base an appealing choice for applications where efficiency is paramount. The slight
trade-off in translation accuracy is more than offset by the gains in speed and resource efficiency,
indicating that FLAN-T5-base is well-suited for resource-constrained environments.

Sign-tokenizer. To evaluate the impact of VQ-VAE structures, we experiment with VQ-VAE, VQ-
VAE-2, and hierarchical VQ-VAE (Table 2b). The basic VQ-VAE model, although effective in
encoding visual information, fell short in accurately translating complex gestures, achieving only a
34.08 BLEU-1. The improved VQ-VAE-2, with its more detailed encoding layers, raise BLEU-1 to
35.11. Further, our adoption of the hierarchical VQ-VAE, evolved from VQ-VAE-2, significantly
enhances the capture of sign language details, boosting translation BLEU-1 to 35.61, thus proving its
superiority in handling complex sign language information.

Codebook Size. In our pursuit to refine SLT accuracy, we vary the codebook sizes within sign-
tokenizer and observe significant differences in ROUGE and BLEU scores (Table 2c). The size of
codebook can directly influence the model’s ability to quantize the input data. In general, larger
embedding spaces can offer finer quantization. Initially, with a codebook size of 256, the model
scored 27.94 in ROUGE and 30.66 in BLEU-1. Doubling the codebook size to 512 improved the
ROUGE to 31.16 and BLEU to 34.47. However, when the embedding space reach a certain size (i.e.,
1024), performance improvement plateau, where the scores escalated to 33.38 for ROUGE and 35.61
for BLEU-1. These results underscore the importance of a larger codebook in capturing a broader
array of features necessary for accurate translation. However, larger embedding spaces provide finer
quantization but also introduce higher computational complexity and storage requirements. Thus, an
code space size around 1024 offers a reasonable trade-off, providing good reconstruction performance
while maintaining relatively low computational cost.
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Table 2: Ablation studies on How2Sign (Duarte et al., 2021) dataset (§4.2).

(a) Pre-trained Model Size

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

FLAN-T5-small 33.38±.06 35.61±.08 20.35±.12 13.12±.06 8.53±.04

FLAN-T5-base 34.06±.02 35.32±.04 21.17±.03 13.97±.06 9.20±.03

FLAN-T5-large 34.81±.03 35.61±.04 21.54±.01 14.30±.03 9.73±.05

FLAN-T5-XL 34.73±.01 36.38±.04 21.80±.03 13.76±.08 9.88±.00

(b) Sign-tokenizer

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

VQ-VAE 30.80±.04 34.08±.05 18.16±.02 10.01±.03 8.04±.07

VQ-VAE-2 32.47±.02 35.11±.06 19.48±.04 12.92±.05 8.29±.05

Sign-tokenizer 33.38±.02 35.61±.04 20.35±.03 13.12±.06 8.53±.03

(c) Codebook Size

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

Sign-tokenizer-128 27.94±.08 30.66±.05 15.39±.09 10.68±.02 6.13±.07

Sign-tokenizer-256 31.16±.03 34.47±.04 19.61±.02 11.81±.01 7.42±.07

Sign-tokenizer-512 34.84±.02 34.65±.04 20.93±.08 12.60±.05 8.33±.13

Sign-tokenizer-1024 33.38±.02 35.61±.04 20.35±.03 13.12±.06 8.53±.03

(d) RAG

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

w/o RAG 32.16±.05 33.41±.08 19.39±.05 12.83±.04 7.63±.06

Pre-SignLLM 33.06±.06 35.32±.03 20.87±.02 12.97±.06 8.20±.04

Post-SignLLM 33.38±.02 35.61±.04 20.35±.03 13.12±.06 8.53±.03

RAG. We explore three RAG configurations (Table 2d): no RAG, RAG applied before the LLM
(pre-SignLLM), and RAG applied after the LLM (post-SignLLM). Our findings indicate significant
differences in translation accuracy across these setups. Without retrieval enhancement, RAG-SLT
relies on pre-trained knowledge, leading to insufficient handling of new information. Without RAG,
VRG-SLT achieves a BLEU-1 score of 54.90 and a ROUGE score of 52.25. Pre-SignLLM results
in improved performance, with the BLEU score rising to 54.83 and the ROUGE score to 54.26.
Moreover, post-SignLLM yields the best results, with a BLEU score of 53.92 and a ROUGE score
of 55.74. RAG can enhance the knowledge coverage by retrieving from external knowledge bases,
which is particularly useful for generating knowledge-based answers.

4.3 DISCUSSION

Impacts. Sign language translation technology bridges communication gaps, providing the deaf and
hard-of-hearing community with greater access to information and services. Socially, this fosters
inclusivity, ensuring that individuals who use sign language can participate fully in educational,
professional, and social settings. This technology can empower deaf communities by providing more
autonomous and straightforward ways to communicate, reducing reliance on interpreters. From a
technological standpoint, advancements in this field drive innovation in NLP and computer vision,
pushing the boundaries of how machines understand and interpret human gestures and expressions.

Limitation. VRG-SLT still struggles with the contextual and cultural nuances of sign languages. Sign
languages are not universal and vary widely from one region to another. Thus, its often fail to account
for these variations, leading to translations that may be correct in one dialect but completely off in
another. This lack of sensitivity to regional differences can significantly affect the utility of translation
technologies. Additionally, the subtleties of hand shapes, orientations, and movements in sign
language can be difficult to capture reliably, especially in complex or dynamic environments. This
limitation often results in errors or inaccuracies in translation, hindering effective communication.

5 CONCLUSION

We present VRG-SLT as a unified framework for sign language translation, generating spoken de-
scriptions based on prompt-driven instructions. Extensive experiments on How2Sign and PHOENIX-
2014T datasets demonstrate competitive performance and validate the efficacy of each module. The
hierarchical VQ-VAE effectively encodes visual gestures into a compressed representation, playing
a vital role. Simultaneously, SignLLM establishes a robust linguistic framework that enhances
translation with a deep understanding of syntax and semantics. Collectively, these components push
the boundaries of traditional SLT methods, achieving a BLEU-1 score improvement from 53.97
to 55.74 and a ROUGE score from 52.65 to 53.92. The collaborative training of VQ-VAE and
LLMs offers promising tools for nuanced communication within the deaf community, showcasing
the transformative effects on accessibility and interaction. Future research aspires to break down
linguistic boundaries, enabling multilingual translation within a unified model.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement. The generative power of our model stems from the large language model FLAN-
T5, which has been fine-tuned to include extra knowledge relevant to sign language. Our model
also shares ethical and legal considerations with FLAN-T5. We employ open-source sign language
datasets and knowledge bases that adhere to applicable ethical norms and laws. There are no human
subjects involved in our experimental processes. Large language models will not scrutinize the sign
tokens entered into the system. Instead, they attempt to generate output based on the received token
sequence, significantly influenced by the sign-tokenizer.

Reproducibility Statement. In the main text, we highlight the fundamental techniques for building
our framework in the first stage (§3.1), second stage (§3.2), and third stage (§3.3). Our experimental
data are drawn from widely-used public datasets, and training steps are discussed in §3.3. Detailed
model configurations, all optimizer hyperparameters, and model dimensions are elaborated in §A.
Additionally, pseudocode for each stage is provided in §B.
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SUPPLEMENTARY MATERIALS

This supplementary material, provided for a more comprehensive understanding of the main paper, is
organized as follows:

• § A: Architecture Details. Detail the VRG-SLT network architecture, including its layer composi-
tion and connectivity patterns, etc.

• § B: Pseudo code. Outline the execution steps for each stage.
• § C: Competitors. Provide a brief overview of the methods compared in experiments.
• § D: More Experimental Analysis.

A ARCHITECTURE DETAILS

VRG-SLT consists of three key components: the sign-tokenizer, the large language model FLAN-T5,
and the RAG. Among these, FLAN-T5 utilizes the pre-trained Base version with approximately 220
million parameters. RAG is implemented using BERT. The sign-tokenizer, inspired by the design
of motionGPT, mainly employs 1x1 convolutional neural networks. Detailed network settings are
provided in Table A2.

Table A1: Network Configuration Details

Model Flan-T5-Base

Training Batch Size 16

Model Size 220M

Pre-training - Iterations 300K

Pre-training - Learning Rate 2e− 4

Instruction Tuning - Iterations 300K

Instruction Tuning - Learning Rate 1e− 4

Table A2: Network Configuration Details

Module Encoder Eu Encoder Eh Decoder Du Decoder Dh

Conv1d 1 1 1 1

Resnet1D-block 5 5 5 5

Conv1d 1 1 1 1

Vocabulary Number Vm 1024

Codebook Dimension 512

Batch Size 512

Iterations 150k

Learning Rate 1e− 4

Human keypoints are employed in training the sign-tokenizer, which brings several benefits to
improving the precision and efficiency of sign language translation:

• Precise Hand Localization: Utilizing human body keypoints allows for direct and precise extrac-
tion of hand regions, crucial for capturing subtle gestures in sign language.

• Focusing on Relevant Features: Keypoints concentrate on critical aspects of sign language, such
as hand positions, facial expressions, and body postures. This focus allows the sign-tokenizer
to capture the essential elements of sign language more accurately without being distracted by
background noise or irrelevant details.

• Robustness to Variability: Normalization of keypoints enhances the model’s robustness against
variations in environment, camera distances, and different lighting conditions.
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• Efficiency in Processing: Compared to processing full RGB video frames, keypoints effectively
reduce computational load. By simplifying gestures into a more basic form, they streamline the
processing and can speed up recognition and translation tasks.

B PSEUDO CODE

Our sign language translation framework, VRG-SLT, comprises three training stages. This section
provides pseudocode for each stage.

Stage 1: Trainging of sign-tokenizer

# Initialize the hierarchical encoders, decoders, and quantizers
def training(sign_motions, hand_motions):

# Encode images at multiple scales to get hierarchical latent representations
Z_upper = encode_upper(sign_motions); Z_hand = encode_hand(hand_motions)

# Quantize the latent representations of upper body
Q_upper = vector_quantize_top(Z_upper)
Dec_upper = decoder_upper(Q_upper)

# Combine quantized representations from different scales
combined_Z = combine(Dec_upper, Z_hand)
Q_hand = vector_quantize_hand(combined_Z)

# Decode combined quantized representations to reconstruct motions
reconstructed_motions = decode(Q_hand)

# Compute reconstruction loss between original motions and reconstructed_motions
reconstruction_loss = compute_loss(sign_motions, reconstructed_motions)

# Compute quantization loss for top and bottom levels
quantization_loss_upper = compute_loss(Z_upper, Q_upper)
quantization_loss_hand = compute_loss(Z_hand, Q_hand)

# Total quantization loss is the sum of top and bottom quantization losses
total_quantization_loss = quantization_loss_upper + quantization_loss_hand

# Total loss is the sum of reconstruction loss and total quantization loss
total_loss = reconstruction_loss + total_quantization_loss

# Update model parameters based on total_loss
update_parameters(total_loss)

Stage 2: Finetuning the large language model FLAN-T5

# Initialize the FLAN-T5 model
def finetuning(batch):

# Inputs are sign language tokens combined with text prompts
sign_tokens, text_prompts = batch[’sign_tokens’], batch[’text_prompts’]

# Combine tokens with prompts to form the input for the model
model_input = concatenate(sign_tokens, text_prompts)

# Expected translation as output
expected_output = batch[’translated_text’]

# Perform model training with input and expected output
loss = train_model(model_input, expected_output)

# Update model parameters based on the loss
update_parameters(loss)

def inference(sign_tokens, text_prompt):
# Combine sign language tokens with text prompt for inference
input_for_inference = concatenate(sign_tokens, text_prompt)

# Generate translation using the fine-tuned model
translated_text = generate_translation(input_for_inference)

return translated_text

# Example sign_tokens and text_prompt for testing inference
test_sign_tokens = [’sign_token1’, ’sign_token2’, ’sign_token3’]
test_text_prompt = "Translate the following sign language sequence:"
translation = inference(test_sign_tokens, test_text_prompt)
print("Translated text:", translation)
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Stage 3: Tuning with RAG

# Initialize the BERT model for retrieval and a RAG module for refinement
def indexing(corpus):

# Index the corpus with BERT to facilitate efficient retrieval
indexed_corpus = bert_index(corpus)
return indexed_corpus

def retrieving(initial_translation, indexed_corpus):
# Use BERT to retrieve relevant documents or context from the indexed corpus
retrieved_documents = bert_retrieve(initial_translation, indexed_corpus)
return retrieved_documents

def generation(initial_translation, retrieved_context):
# Combine the initial translation from FLAN-T5 with retrieved context
combined_input = concatenate(initial_translation, retrieved_context)

# Use the generator model to refine the translation
refined_translation = generator_model(combined_input)
return refined_translation

def inference(sign_tokens, text_prompt):
# Generate initial translation using FLAN-T5
input_for_inference = concatenate(sign_tokens, text_prompt)
initial_translation = flan_t5_generate_translation(input_for_inference)

# Index the relevant corpus if not already indexed (can be pre-indexed)
indexed_corpus = index_corpus(corpus) # Assuming ’corpus’ is predefined or loaded

# Retrieve context based on the initial translation
context = retrieve_context(initial_translation, indexed_corpus)

# Generate the final, refined translation using the retrieved context
final_translation = generate_refined_translation(initial_translation, context)
return final_translation

# Example usage:

# Assuming corpus is available and FLAN-T5 is pre-trained
test_sign_tokens = [’sign_token1’, ’sign_token2’, ’sign_token3’]
test_text_prompt = "Translate the following sign language sequence:"
final_translation = inference(test_sign_tokens, test_text_prompt)
print("Final Translated text:", final_translation)

C COMPETITORS

We offer succinct introductions to a few state-of-the-art methods compared in this paper:

• SL-Luong (Camgöz et al., 2018) distinguishes sign language translation from traditional sign
language recognition by addressing it as a complex translation problem. By framing SLT in
pretrained contexts, it effectively captures spatial representations and the intricate mapping between
sign and spoken languages, acknowledging the unique grammatical structures of sign languages.

• TSPNet-Joint (Li et al., 2020a) is a temporal semantic pyramid network that innovatively learns
hierarchical sign video features without precise segmentation. The network employs a new segment
representation and attention mechanisms at multiple scales to improve the accuracy and consistency.

• SL-Transf (Camgöz et al., 2020) integrates continuous sign language recognition and translation
using CTC loss. This method obviates the need for ground-truth timing and significantly boosts
performance by solving interdependent learning challenges concurrently.

• STMC-T (Zhou et al., 2022) incorporates multi-cue learning into neural networks to capture
the nuanced visual grammars of sign language. It consists of spatial and temporal modules that
separately and jointly analyze visual cues, achieving end-to-end sequence learning.

• TIN-Trans (Zhou et al., 2021) introduces a sign back-translation strategy to mitigate the parallel
data bottleneck in SLT. It back-translates text to gloss and then assembles sign sequences from a
gloss bank, thus enriching the training dataset for the SLT encoder-decoder framework.

• SLRT (Chen et al., 2022) is a transfer learning approach for sign language translation, addressing
the data scarcity issue by progressively pretraining on general and specific domain datasets. It
includes pretraining separate networks for sign-to-gloss and gloss-to-text translations, which are
then connected by a visual-language mapper for fine-tuning.
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• SLTUNET (Zhang et al., 2023a), a unified neural model, is proposed to support various sign
language translation tasks, effectively bridging the modality gap and mitigating data scarcity issues.
The model explores cross-task relatedness and taps into external spoken language data.

• SIGN2GPT (Hu et al., 2023) merges computer vision and language processing, using lightweight
adapters with large pretrained models to overcome data scarcity. It leverages pseudo-glosses to
train the encoder, eliminating the need for precise gloss annotations.

• SignBERT+ (Wong et al., 2024) is a self-supervised framework designed to improve sign language
understanding by integrating a hand prior aware of model contexts. Hand gestures are encoded as
visual tokens with detailed position and gesture information.

D MORE EXPERIMENTAL ANALYSIS

Ablation studies on PHOENIX-2014T. To further elucidate the impact of different components on
our sign language translation model, we conducted additional ablation studies using the PHOENIX-
2014T dataset (Table A3). This section aims at dissecting the contribution of each component to the
overall performance of our translation model.

As shown in Table A3, similar outcomes are present within the How2Sign dataset. For instance, in
the sign-tokenizer experiments, our sign-tokenizer consistently outperforms other methods, due to
better capture of sign language nuances or more effective learning strategies. The gradual decrease in
BLEU scores from BLEU-1 to BLEU-4 across all methods indicates that generating longer coherent
text sequences remains a challenge.

Similarly, The addition of RAG components (Pre and Post SignLLM) generally improves performance
over the baseline, underscoring the value of incorporating retrieval-augmented strategies in handling
complex language tasks like sign language translation. w/o RAG represents the baseline model
without the Retrieval-Augmented component, showing robust initial scores but lower in more complex
metric evaluations (BLEU-3 and BLEU-4). Pre-SignLLM shows improvement over the baseline,
particularly in ROUGE and BLEU-1 scores, suggesting that pre-processing or prior learning can
enhance performance. Post-SignLLM is similar to Pre-SignLLM in ROUGE, but slightly better
in higher BLEU metrics, implying further enhancements post-initial training. Consistent with the
sign-tokenizer results, there is a noticeable performance drop in higher BLEU metrics, indicating the
inherent difficulty of the tasks as they require maintaining longer-range textual coherence.

Table A3: More ablation studies on PHOENIX-2014T (Camgöz et al., 2018) dataset (§4.2).

(a) Pre-trained Model Size

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

FLAN-T5-small 53.71±.04 54.92±.06 42.84±.01 36.22±.03 28.36±.04

FLAN-T5-base 53.92±.05 55.74±.01 43.31±.01 36.59±.05 30.17±.06

FLAN-T5-large 55.80±.01 55.39±.06 43.04±.07 38.52±.05 32.44±.02

FLAN-T5-XL 56.59±.04 55.05±.07 44.17±.00 38.94±.05 32.83±.03

(b) Sign-tokenizer

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

VQ-VAE 50.10±.08 52.93±.05 41.96±.02 34.52±.01 28.61±.10

VQ-VAE-2 53.05±.05 53.62±.03 43.13±.01 35.23±.07 29.58±.02

Sign-tokenizer 53.92±.05 55.74±.01 43.31±.01 36.59±.05 30.17±.06

(c) Codebook Size

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

Sign-tokenizer-128 48.27±.11 50.64±.06 36.87±.06 33.39±.03 26.81±.09

Sign-tokenizer-256 50.53±.08 52.19±.02 39.53±.02 34.84±.04 26.25±.07

Sign-tokenizer-512 52.36±.04 53.27±.01 41.94±.01 35.26±.03 29.30±.06

Sign-tokenizer-102453.92±.0555.74±.0143.31±.0136.59±.0530.17±.06

(d) RAG

Methods ROUGE↑ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑

w/o RAG 52.25±.06 54.90±.02 42.70±.07 35.11±.10 29.49±.01

Pre-SignLLM 54.83±.03 54.26±.10 42.97±.06 36.08±.02 29.70±.04

Post-SignLLM 53.92±.05 55.74±.01 43.31±.01 36.59±.05 30.17±.06
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