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Abstract

Attention has long served as a foundational
technique for generating explanations. With the
recent developments made in Explainable AI
(XAI), the multi-faceted nature of interpretabil-
ity has become more apparent. Can attention,
as an explanation method, be adapted to meet
the diverse needs that our expanded understand-
ing of interpretability demands? In this work,
we aim to address this question by introduc-
ing IvRA, a framework designed to directly
train a language model’s attention distribution
through regularization to produce attribution
explanations that align with interpretability cri-
teria such as simulatability, faithfulness, and
consistency. Our extensive experiments demon-
strate that IvRA outperforms existing methods
in guiding language models to generate expla-
nations that are simulatable, faithful, and con-
sistenti. In addition, we perform ablation stud-
ies to verify the robustness of IvRA across vari-
ous experimental settings and to shed light on
the interactions between different interpretabil-
ity criteria.

1 Introduction

The rapid adoption of language models (Devlin
et al., 2018; Liu et al., 2019; Lewis et al., 2019;
Achiam et al., 2023) in recent years has sparked
an escalating interest in enhancing model inter-
pretability. This has given rise to the burgeoning
field of Explainable AI (XAI), which has devised
various methods to increase model interpretabil-
ity (Shrikumar et al., 2016; Ribeiro et al., 2016;
Shrikumar et al., 2017). However, an universal
definition for the term “interpretability” remains
elusive in the research community (Lipton, 2016).
Interpretability assessment has primarily leaned
on criteria tailored for different purposes that fall
under the broad umbrella of the term “Interpretabil-
ity”. Some of the most popular criteria are simulata-
bility (Doshi-Velez and Kim, 2017), faithfulness
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(Jacovi and Goldberg, 2020; Ribeiro et al., 2016),
and consistency (Serrano and Smith, 2019; Jain and
Wallace, 2019). Simulatability measures whether
a model’s behavior is comprehensible enough for
a human or another ML model to predict its out-
puts on unseen data, aligning with the objective
of conveying the model’s underlying mechanics to
humans. Faithfulness measures the extent to which
an explanation reflects the actual decision-making
process of the model. Consistency assesses the ex-
planation method’s stability across varying input
data, favoring explanations that remain similar for
similar inputs and reflect input changes that lead to
inconsistent outputs.

The utility of attention for generating saliency ex-
planations is widely recognized (Deng et al., 2017;
Wiegreffe and Pinter, 2019; Vashishth et al., 2019;
Martins et al., 2020), notwithstanding initial doubts
regarding the faithfulness and consistency of atten-
tion mechanisms (Serrano and Smith, 2019; Jain
and Wallace, 2019). Past works (Atanasova et al.,
2020; Sun et al., 2024) that have benchmarked
existing attention-based text attribution methods
along interpretability criteria such as simulatabil-
ity, faithfulness and consistency do not explore the
possibility of directly training attention distribu-
tions to become more interpretable with regard to
a criterion. On the other hand, works that do train
their explanations to become more interpretable via
some criterion either only focus on a small subset
of criteria (Pruthi et al., 2022; Neely et al., 2021;
Fernandes et al., 2022) and/or do not use attention
as a technique (Chan et al., 2022b), instead rely-
ing on a separate model as rationale extractor. In
this work, we focus on developing an attention-
based explanation framework that enables a lan-
guage model (LM) to produce explanations that
align more closely with interpretability criteria. We
summarize our contribution below:

This paper introduces a novel frame-
work—Interpretability via Regularized Attention



Figure 1: Illustration of IvRA, our proposed framework. A IvRA model (M) takes as input xi and produces output logits ŷi
along with saliency explanations ri. Different loss functions (L) corresponding to different criteria then take ri and ŷi as input to
propagate loss back to the model. For simulatability (§2.2.1), S denotes a student model, with ŷ∗

i and r̂∗i denoting the output
logit and explanations of S, respectively. For comprehensiveness and sufficiency (§2.2.2), tki denotes tokens recognized by ri
with attention scores in the top k% of tokens. For consistency (§2.2.3), xj represents another example within the dataset.

(IvRA) that parameterizes attention distributions
in LMs to produce attention-based attribution
explanations (ri) alongside their outputs. The
operation of our framework is illustrated in Fig.
1. During training, IvRA uses specialized loss
functions for each criterion to propagate losses to
a set of weights within the interpretable attention
modules of the LM (Fig. 2) in order to optimize
the attention-based explanations for each criterion.
We empirically verify IvRA’s effectiveness in terms
of simulatability, faithfulness (comprehensiveness
and sufficiency), and consistency1 on three NLP
tasks: Text Classification, Entailment Inference,
and Question-Answering. Our results demonstrate
that IvRA effectively enhances model interpretabil-
ity, guiding LMs to generate simulatable, faithful,
and consistent explanations for their decisions.

2 Background and Methodology 2

Since our work seeks to integrate various criteria
of interpretability for training, the amount of re-
lated literature needed to detail our methodology
for each criterion is extensive. To conserve space,
we included only key works that we think are cru-
cial to understanding our contribution. See §A for
additional related works.

1We include a discussion as well as a study on the criterion
of plausibility using human annotated rationales in §F

2We share our source code at github.com/yx131/IvRA-
Interpretability-Driven-Training

2.1 Interpretable Attention Module
Given an input sequence xi of length L, an at-
tention head h processes xi through linear pro-
jections to yield Qh

i and Kh
i , thereby comput-

ing a normalized distribution Atthi ∈ ∆L
L−1 =

softmax{Qh
i (K

h
i )

T } (Vaswani et al., 2017). Re-
cent research has highlighted the effectiveness of
attention-based interpretation methods in enhanc-
ing the interpretability of language models (Treviso
and Martins, 2020; Kobayashi et al., 2020). Further-
more, because the attention mechanism is instrinsic
to the LM, attention-based explanations possess
the advantage of not requiring a separate proce-
dure that is decoupled from the decision-making
process, in contrast to post-hoc methods (Shriku-
mar et al., 2016; Du et al., 2019). Building on this
foundation, our work seeks to cultivate more inter-
pretable attention-based explanations by parameter-
izing the multi-head attention layers within a LM
and optimizing the parameterized attention distri-
bution in accordance with specified interpretability
objectives. In more detail, for the query and key
projections Qh

i and Kh
i of head h, we compute

normalized feature-wise distributions as shown in
equations 1 and 2:

Q̃h
i = NORM(ωh

Q ⊙ Qh
i ) (1)

K̃h
i = NORM(ωh

K ⊙ Kh
i ) (2)

For each layer ℓ, we compute the distribution Ψℓ

https://github.com/yx131/IvRA-Interpretability-Driven-Training
https://github.com/yx131/IvRA-Interpretability-Driven-Training


Figure 2: Illustrated architecture of IvRA’s interpretable attention module. The end output ri for each input is a vector of
saliency scores, each corresponding to a token in the input xi.

over the attention heads using equation 3, where
q̃h(i,n) represents the portion of normalized query

projection in Q̃h
i corresponding to token n in xi

and λh is a trainable coefficient for each head.

Ψℓ = NORM

([
λhψ

h
ℓ

]Hℓ

h=1

)
(3)

where

ψh
ℓ =

1

L
·

L∑
n

q̃h(i,n)(K̃
h
i )

T (4)

Lastly, to determine the aggregated attention dis-
tribution ri, we sum the normalized distribution
of all Ψℓ’s, as defined in equation 5, where ηℓ is a
coefficient for each layer:

ri = SUM

(
NORM

([
ηℓΨℓ

]L
ℓ=1

))
∈∆L−1

(5)
The design of our interpretable attention module,
as outlined above, serves dual purposes:

1) Aggregation for Salience: In order to derive
ri ∈ ∆L−1, it’s necessary to aggregate the attention
distributions across layers and heads. This is be-
cause the multi-head attention distribution is a ma-
trix of dimension L× L. Common interpretability
measures such as faithfulness and consistency are
only applicable to 1-dimensional saliency scores.
In the absence of IvRA, it’s common to either use
the attention heads in the final layer or the mean
attention distribution across all layers in the model
for layer aggregation (Fomicheva et al., 2020). 2)
Optimization for Interpretability: Our attention
module facilitates systematic aggregation through
learnable parameters and allows for hyperparame-
ter experimentation, such as the normalizing func-
tion for NORM.

Our approach to regularizing attention is similar
to the attention-based explainer used in Fernandes
et al. (2022) to elicit explanations for a student-
teacher setup (SMaT). However, the SMaT ex-
plainer is relatively coarse, as it only learns weights
for head selection. Fernandes et al. (2022) did not
explore the effectiveness of feature and layer selec-
tion and confined their interpretability evaluation to
just one criterion (simulatability). In contrast, our
framework not only seeks to employ an attention-
based explainer that integrates four criteria, but
also employs the parameterization of attention at
the feature, head, and layer levels. Our detailed
ablation study in §C, demonstrates that parameteri-
zation at all levels is the most effective strategy.

2.2 Interpretability Objectives

We formulate our interpretability objectives as dis-
tinct loss functions: simulatability, faithfulness
(comprehensiveness and sufficiency), and consis-
tency. Given a classification task with C classes,
we denote a dataset as D = {(xi, yi)}Ni=1 consist-
ing of N samples, with each xi as an input se-
quence of length L and yi representing the ground
truth label. We denote the output logits of model
M for input xi as M(xi) ∈ RC , and the predicted
class as ỹi = argmax(ŷi).

2.2.1 Simulatability
Simulatability refers to the capacity of a model to
generate decisions replicable by a human observer
(Doshi-Velez and Kim, 2017; Lipton, 2016). This
interpretability measure proves beneficial by quan-
tifying the efficacy of model behavior communica-
tion (Treviso and Martins, 2020). Simulatability is
evaluated both through manual annotations (Hase
and Bansal, 2020) and automated methods (Pruthi



et al., 2022). In this work, we adopt the automated
approach outlined by Pruthi et al. (2022) and ex-
tended by Fernandes et al. (2022). Here, simu-
latability is gauged as the extent to which a student
model can replicate the teacher model’s predictions
given a saliency explanation of the teacher’s input.
We employ this simulatability evaluation construct
to enhance the simulatability of our primary (i.e.,
teacher) model M. To this end, we train M to
generate an explanation ri, which we use in the
training of a student model S to replicate ỹi. Let
the output logits ŷ∗i = S(xi) of S for xi, and let
r∗i be the attention module output of S for y∗i , we
define simulatability accuracy on a dataset D as
shown in equation 6.

SIM(M,S,D) =

1

|D|

∑
(xi,yi)∈D

1{ỹi = argmax(ŷ∗i )} (6)

Considering ỹi,c and ŷ∗i,c as values of ỹi and ŷ∗i
for class c ∈ C, respectively, we define simulata-
bility loss for a single instance as the sum of cross-
entropy loss between M ’s predictions and S’s pre-
dictions and the Kullback–Leibler divergence loss
between M′s and S’s attention outputs (eq. 7).

LSIM =∑
c∈C

ỹi,clog(ŷ∗i,c) + KLDiv(ri, r∗i )
(7)

It’s crucial to note that simulatability should be
evaluated under a constrained setting, wherein the
student’s learning capability is intentionally limited.
Two frequently employed strategies are: 1) simpli-
fying the student model architecture, or 2) utilizing
a distinct data subset for simulatability evaluation,
different from that used to train the teacher (Fer-
nandes et al., 2022). We adopt the second strategy
in our experiments. For additional information on
simulatability, please refer to §B.1 in the appendix.

2.2.2 Faithfulness
Faithfulness represents the extent to which an ex-
planation accurately captures the underlying rea-
soning process of model M in predicting ỹi (Jacovi
and Goldberg, 2020). To gauge the faithfulness of
our explanations for M, we examine the impact
of salient tokens identified by our extracted ex-
planation ri on ŷi using comprehensiveness and
sufficiency (DeYoung et al., 2019). We define

ti as the sequence of tokens obtained by binariz-
ing ri over a k% threshold, i.e., tki ∈ {0, 1}L ={

1 if rli is in in the top k% of salient scores

0 else

}L

l=1

Given pỹi(xi) as M’s confidence probability for
ỹi with input xi, we compute comprehensiveness
as the difference in pỹi with tki removed from the
input (eq. 8). In essence, if tokens identified by tki
are comprehensive, their exclusion from the input
should decrease the predicted probability of M for
ỹi. Similarly, we determine sufficiency by calcu-
lating the difference in pỹi when only retaining the
identified tokens in tki (eq. 9). In this case, tokens
in tki are deemed sufficient if keeping them as the
sole input elements does not reduce M’s predicted
probability for ỹi.

COMP = pỹi(xi)− pỹi(xi\tki ) (8)

SUFF = pỹi(xi)− pỹi(t
k
i ) (9)

In our experiments, we compute COMP and SUFF
for each individual k ∈ {1, 5, 10, 20, 50}. We cal-
culate the final COMP and SUFF values as the
area-over-precision curve (AOPC) for all k values
in the set (DeYoung et al., 2019; Chan et al., 2022b).
Furthermore, we define comprehensiveness loss
for a single instance xi as the difference between
cross-entropy losses when using xi as input ver-
sus xi\tki as input. This is lower-bounded by a
margin µcomp to prevent exceedingly high negative
losses (eq. 10). Likewise, we define sufficiency
loss for a single instance as the difference between
cross-entropy losses when using tki as input and
xi as input (eq. 11), lower-bounded by µsuff . For
additional details on faithfulness loss, see B.3.

LCOMP = µcomp + max
{
− µcomp,

−
(
ỹilog(M(xi))− ỹilog(M(xi\tki ))

)} (10)

LSUFF = µsuff + max
{
− µsuff ,

−
(
ỹilog(M(tki ))− ỹilog(M(xi))

)} (11)

2.2.3 Consistency
Consistency refers to the ability of explanation
methods to produce similar reasoning paths for
similar instances of data (Robnik-Šikonja and Bo-
hanec, 2018; Serrano and Smith, 2019; Jain and



Wallace, 2019). Consequently, if two instances xi
and xj are perceived as similar by M, then ri and
rj , the salient scores provided by IvRA, should also
exhibit similarity. We note that our focus is on
the similarity of interpretations in ri and rj , not
on the similarity of outcomes. Identical predic-
tions do not necessarily imply analogous model
reasoning, which is the essence of our interest in
consistency. We derive Hi, the aggregate hidden
state for xi, by averaging the hidden states in M
for xi across all layers. This approach for obtaining
input representation for consistency calculation has
been effectively demonstrated by Atanasova et al.
(2020). Let Dist be a distance function; we com-
pute consistency for a dataset D and model M by
measuring Spearman’s ρ between similarities in ag-
gregate hidden states (Hi and Hj) and similarities
in attention explanations (ri and rj) as detailed in
eq. 12. We further define our loss function for con-
sistency as the Kullback-Leibler divergence loss
between explanations for two samples, weighted
by the similarity between the samples’ aggregate
hidden states. (eq. 13). For additional information
the consistency loss function, see §B.4.

CONS =

ρ
(
Dist(Hi,Hj), Dist(ri, rj)

) (12)

LCONS =

1

Dist(Hi,Hj) + ϵ0
· KLDiv

(
ri, rj

) (13)

3 Experiments

In order to evaluate our framework’s effectiveness
at producing simulatable, faithful and consistent
explanations, we train three transformer-based lan-
guage models with IvRA: Electra (Clark, 2020),
Llama-2-7b (Touvron et al., 2023), and GPT-2
(medium) (Radford et al., 2019)) on three NLP
Tasks: Sentiment Classification, Entailment Infer-
ence and Question-Answering, with the following
datasets, respectively: IMDb (Maas et al., 2011),
SNLI(Bowman et al., 2015), and SQuAD (Ra-
jpurkar et al., 2016). In the main paper, we present
results of IvRA using ELECTRA as the base lan-
guage model, with further results using Llama-2
and GPT-2 provided in I. In §3.1, 3.2, 3.3 we re-
port results obtained when training models for each
of the interpretability criteria separately. We then

delve into mixed-criteria training in §3.4 and ex-
amine the IvRA’s effect on downstream accuracy
in §3.5.

In order to assess the relative effectiveness of
IvRA compared to other explanation methods, we
conduct experiments using other methods on the
same datasets and compare the extent to which each
interpretability objective is achieved. We report the
mean and standard error values from 5 runs for
each experiment setting. The explanation methods
that were employed in our experiments are:

• Common Pooling Techniques: We obtain expla-
nations by 1): Averaging the attention distribu-
tion over all heads in all layers and 2): Averaging
the attention distribution in heads of the final
layer

• Explainability Methods: 3) LIME (Ribeiro
et al., 2016), 4) Input X Gradient (Shrikumar
et al., 2016), 5) Integrated Gradients (Sundarara-
jan et al., 2017)

• Attention-Regularization: 5) Attention-SMaT,
the coarsely parameterized attention module in-
troduced by Fernandes et al. (2022). 6) IvRA
with NORM = Softmax 7) IvRA with NORM =
Sparsemax (Martins and Astudillo, 2016)

IMDb SNLI SQuAD

Attention (Avg. all layers) 0.911 ± 0.025 0.906 ± 0.029 0.821 ± 0.029
Attention (last layer) 0.916 ± 0.038 0.908 ± 0.029 0.837 ± 0.042
Input X Gradients 0.827 ± 0.042 0.813 ± 0.006 0.773 ± 0.051
Integrated Gradients 0.831 ± 0.057 0.803 ± 0.018 0.782 ± 0.052
LIME 0.828 ± 0.033 0.825 ± 0.031 0.785 ± 0.012
Attention-SMaT 0.926 ± 0.035 0.912 ± 0.013 0.881 ± 0.043
IvRA - Softmax 0.928 ± 0.055 0.922 ± 0.047 0.888 ± 0.028
IvRA - Sparsemax 0.944 ± 0.019 0.939 ± 0.027 0.897 ± 0.019

Table 1: Simulatability results of our experiments.
Bolded values indicate the highest performance, with
underlined values indicating the highest performance.

3.1 Simulatability

In Table 1 we show the simulatability accuracy (eq.
6) of our experiments. We observe that, overall,
IvRA is more capable of producing simulatable ex-
planations than other methods. We found that the
gradient-based explanation methods and LIME did
not consistently outperform the common attention-
pooling techniques in terms of to simulatability.
In addition, we see that using Sparsemax as the
normalizing function leads to more simulatable ex-
planations than Softmax. When normalizing with
Softmax, all elements are guaranteed a representa-
tion in the distribution, however minute it may be.



Figure 3: Example explanations and coefficient heat maps from IvRA (Softmax and Sparsemax) and LIME. For IvRA, a stronger
shade denotes a higher importance of that word’s influence on the output. For LIME, importance scores are signed, with green
and red representing positive influence and negative influence, respectively.

This leads to all tokens always having some weight
in the explanation. Normalizing with Sparsemax
leads to tokens having no weight at all in the ex-
planation, thus producing more sparse and more
concise explanations. We show example explana-
tions from LIME (Ribeiro et al., 2016), and IvRA
when normalizing with Softmax and Sparsemax in
Fig. 3, where sparser parameters is observable at
all levels when training with Sparsemax than train-
ing with Softmax. In addition, we observe IvRA
is able to produce much concise explanations than
LIME. This is intuitive when considered from a
human standpoint, as simple and concise explana-
tions are easier to follow along than long-winded
explanations.

3.2 Faithfulness

We show the comprehensiveness obtained in our
experiments in Table 2 and sufficiency scores ob-
tained in our experiments in Table 3. We observe
that IvRA is able to produce more faithful explana-
tions than methods. We further note that compre-
hensiveness is the only interpretability criterion in
our experiments for which IvRA-Softmax consis-
tently outperformed IvRA-Sparsemax. We hypothe-
size that this may be due to the fact that generating
explanations with weights distributed over a large
number of tokens proves advantageous when as-
sessing comprehensiveness—typically, the more
words included in an explanation, the more com-
prehensive it is. By design, Softmax excels in pro-

ducing explanations that highlight a greater number
of tokens. On the other hand, we note that Soft-
max tends to underperform when used for training
aimed at sufficiency. For additional discussion and
analysis on the number of words identified and its
relationship with faithfulness, please see §D.

IMDb SNLI SQuAD

Attention (Avg. all layers) 0.115 ± 0.093 0.099 ± 0.106 0.018 ± 0.035
Attention (last layer) 0.115 ± 0.039 0.097 ± 0.082 0.015 ± 0.051
Input X Gradients 0.130 ± 0.059 0.101 ± 0.094 0.021 ± 0.060
Integrated Gradients 0.148 ± 0.033 0.175 ± 0.108 0.092 ± 0.011
LIME 0.139 ± 0.092 0.179 ± 0.111 0.087 ± 0.065
Attention-SMaT 0.275 ± 0.253 0.350 ± 0.081 0.121 ± 0.066
IvRA - Softmax 0.323 ± 0.080 0.427 ± 0.084 0.126 ± 0.031
IvRA - Sparsemax 0.273 ± 0.107 0.360 ± 0.061 0.111 ± 0.088

Table 2: Comprehensiveness results. Bolded values
indicate the highest performance, with underlined values
indicating the highest performance.

IMDb SNLI SQuAD

Attention (Avg. all layers) 0.157 ± 0.051 0.514 ± 0.081 0.620 ± 0.097
Attention (last layer) 0.130 ± 0.018 0.679 ± 0.066 0.728 ± 0.041
Input X Gradients 0.137 ± 0.019 0.487 ± 0.079 0.718 ± 0.033
Integrated Gradients 0.147 ± 0.014 0.566 ± 0.021 0.622 ± 0.119
LIME 0.131 ± 0.009 0.401 ± 0.038 0.531 ± 0.017
Attention-SMaT 0.129 ± 0.012 0.330 ± 0.041 0.530 ± 0.012
IvRA - Softmax 0.132 ± 0.038 0.364 ± 0.087 0.589 ± 0.032
IvRA - Sparsemax 0.040 ± 0.030 0.220 ± 0.055 0.459 ± 0.033

Table 3: Sufficiency results. Bolded values indicate
the best performance (lowest number), with underlined
values indicating the second-best performance.

3.3 Consistency
We present our consistency results in Table 4.
While IvRA clearly outperforms other explainabil-



Figure 4: Visualization of explanations for similar instances of data provided by Integrated Gradients and IvRA-sparsemax. We
can observe that IvRA-sparsemax is able to produce explanations that are more consistent (highlightin words that are common to
both instances of data with similar degrees of emphasis) than IG. For example, the word “instruments” is not highlighted in both
instances by IG, whereas IvRA highlights the word with similar emphases in both cases.

IMDb SNLI SQuAD

Attention (Avg. all layers) 0.302 ± 0.208 0.211 ± 0.291 0.134 ± 0.032
Attention (last layer) 0.312 ± 0.036 0.138 ± 0.157 0.194 ± 0.066
Input X Gradients 0.296 ± 0.088 0.230 ± 0.244 0.186 ± 0.084
Integrated Gradients 0.319 ± 0.044 0.232 ± 0.036 0.146 ± 0.019
LIME 0.338 ± 0.038 0.273 ± 0.172 0.224 ± 0.224
Attention-SMaT 0.340 ± 0.003 0.333 ± 0.031 0.247 ± 0.052
IvRA - Softmax 0.378 ± 0.005 0.336 ± 0.052 0.250 ± 0.14
IvRA - Sparsemax 0.366 ± 0.037 0.357 ± 0.042 0.284 ± 0.07

Table 4: Consistency results. Bolded values indicate the
highest performance, with underlined values indicating
the highest performance.

ity methods, we do not observe a clear winner
between IvRA-Softmax and IvRA-Sparsemax. In
particular, we observe overlapping IQR’s between
SMaT, IvRA-Softmax and IvRA-Sparsemax. In Fig.
4, we show the explanations produced by Integrated
Gradients and IvRA-sparsemax’s for two instances
of data from SQuAD with similar semantics. In the
example, both questions inquire about collabora-
tors with whom Kanye West has previously worked
on his album. While IG’s explanation is sporadic
and pattern-less (e.g. ’inspired’ having completely
opposite color/weight of contribution in the two
examples), we observe consistent highlighting of
keywords by IvRA-Sparsemax in both examples.

3.4 Mixed-criteria Training

To what extent does the simulatability training
of a model correlate with its comprehensiveness?
Can a model trained to produce sufficient expla-
nations also be consistent? These questions arise
from the multifaceted nature of IvRA, which aims
to accommodate various interpretability criteria.
While earlier sections demonstrate IvRA’s superior-
ity over existing methods when trained individually
for each criterion, this section explores the efficacy
of mixed-criteria training. We train IvRA with dif-

ferent combinations of interpretability losses (Eqn.
7, 10, 11, 13) enabled. We then compare the results
of these models against models that were trained
solely using each individual criterion. Formally,
let C = SIM,COMP, SUFF,CONS, and P(C) de-
note the powerset of C. To assess the effectiveness
of mixed-criteria training, we evaluate the Average
Relative Gain (ARG) (Ye et al., 2021) of criterion
a ∈ C for an IvRA model trained on b ∈ P(C)
against a model trained solely on a. Our findings
are presented in a heatmap shown in Fig. 5. We
observe underperformance (negative ARG) across-
the-board i.e., we observe that models trained with
multiple criteria losses enabled achieve each crite-
rion less than models trained with a sole focus on
the same criterion. While this may initially seem
discouraging, we find the results to be intuitive—as
we demonstrate, models trained to be more sim-
ulatable do not naturally exhibit greater compre-
hensiveness than models originally trained with
comprehensiveness as the primary goal. Moreover,
our results suggest that different interpretability
criteria’s parameters are at odds with each other
and satisfying one criterion may not satisfy others.
We observe that, particularly, training for consis-
tency has the greatest adverse effect on all other
criteria. We also observe the least amount of de-
crease in performance between models trained for
simulatability and sufficiency and vice versa. We
attribute this to our earlier discussions in §3 where
we find that conciser explanations are helpful for
both simulatability and sufficiency.

3.5 Impact on Downstream Accuracy

In this section, we examine IvRA’s influence on
model performance. We specifically aim to as-
sess how each of the four interpretability criteria



Figure 5: Average Relative Gain (ARG) when IvRA is trained under combinations of interpretability criteria (x-axis)
over when IvRA is trained individually for each criterion (y-axis). In general, we observe CONS. to be most at odds
with other interpretability criteria. We also observe SIM. and SUFF. to be the most compatible pair of criteria.

Inter. criteria enabled IMDb SNLI SQuAD
{Sim.} 95.0 (-0.4) 89.8 (-1.4) 89.0 (-0.9)

{Comp.} 93.1 (-2.3) 87.5 (-3.7) 88.0 (-1.9)

{Suff.} 95.2 (-0.2) 90.3 (-0.9) 89.4 (-0.5)

{Cons.} 87.6 (-7.8) 84.7 (-6.5) 79.5 (-10.4)

{Sim., Comp.} 93.6 (-1.8) 88.7 (-2.5) 88.7 (-1.2)

{Sim., Suff.} 95.2 (-0.2) 90.0 (-1.2) 89.2 (-0.7)

{Sim., Cons.} 90.0 (-5.4) 86.8 (-4.4) 81.2 (-8.7)

{Comp., Suff.} 94.3 (-1.1) 88.4 (-2.8) 88.8 (-1.1)

{Comp., Cons.} 88.8 (-6.6) 85.9 (-5.3) 82.0 (-7.9)

{Suff., Cons.} 91.1 (-4.3) 87.7 (-3.5) 82.8 (-7.1)

{Sim., Comp., Suff., Cons.} 91.8 (-3.6) 88.5 (-2.7) 83.1 (-6.8)

ELECTRA baseline 95.4 91.2 89.9

Table 5: The accuracy of IvRA when training with dif-
ferent interpretability criteria (Sim., Comp., Suff. Cons.)
enabled. Shades of blue indicate the relative decrease
in accuracy when comapred against the baseline model,
with lighter shades indicating smaller decreases and
darker shades indicating larger decreases in accuracy.

in IvRA impacts downstream accuracy. To that
end, we conduct experiments on accuracy by vary-
ing the combination of loss functions used during
training (Eqn. 7, 10, 11, 13), while always includ-
ing Cross-entropy loss. We present our results on
model accuracy across three three NLP tasks in Ta-
ble. 5. Despite some decreases in accuracy, IvRA’s
effect on accuracy is generally minor, except in
cases involving consistency training. Furthermore,
distinct impacts on accuracy are observed across
the four interpretability criteria. Notably, training
for Sim. and Suff. demonstrates minimal accuracy
reduction. We hypothesize, akin to sections §3.1
and §3.2, that training for these criteria involve pin-
pointing salient and succinct input elements, align-
ing well with accuracy training. Comp. training
also involves identifying salient features but with

less emphasis on succinctness, which we believe
is the reason for a slightly higher decrease in ac-
curacy. On the other hand, Cons. training causes a
relatively large decrease in model accuracy because
its goal of identifying similar elements in similar
inputs lacks a direct alignment with the accuracy
(Cross-entropy) objective compared to other cri-
teria. Overall, training an IvRA model with any
combination of criteria from Table 5 yields models
with competent downstream accuracy. We con-
sider IvRA’s reliable performance across various
criteria combinations as evidence of its robustness,
balancing specificity in producing interpretable ex-
planations with the generalizability required for
accurate predictions. We further explore IvRA’s
generalizability in §E.

4 Conclusion

We introduce IvRA, a paramerterized attention mod-
ule for directly training a LM’s attention distribu-
tion to produce explanations that align with inter-
pretability criteria. We test IvRA’s effectiveness at
producing explanations that are simulatable, faith-
ful (comprehensive and sufficient) and consistent
using multiple LMs and on multiple NLP tasks.
We perform ablation experiments to reveal insights
on the interplay between different interpretability
criteria and to assess IvRA’s influence on down-
stream accuracy. Our findings demonstrate that
IvRA’s attention-based explanations is robust under
various settings and empowers LMs to generate
explanations that better align with interpretability
criteria.



5 Limitation and Future Direction

We summarize the main limitations of our work
below. While we acknowledge the potential short-
comings of this work in these areas, we also hope
to inspire future works of research in these areas to
address and improve upon our deficiencies.

1. Reliance on Existing Interpretability Met-
rics: Our method builds upon existing in-
terpretability metrics like faithfulness, con-
sistency, and simulatability. Despite their
widespread use, these metrics may not fully
capture the complexity of interpretability in
machine learning models. Developing more
comprehensive and robust metrics could po-
tentially enhance our approach and lead to
better results

2. Generalizability: The performance of our
proposed method is primarily assessed on spe-
cific datasets and tasks. Thus, its applicabil-
ity and effectiveness across different domains,
tasks, and model architectures remain to be
further explored

3. Scalability: Our method relies on the intro-
duction of additional loss functions and the
training of student models, which might in-
troduce computational overhead and increase
training complexity

4. Subjectivity of Interpretability: Inter-
pretability is inherently subjective, and what
might be interpretable for one user or expert
may not necessarily be so for another. Our
work focuses on commonly used metrics and
techniques, which may not capture diverse
perspectives on interpretability. Developing
adaptive and specialized interpretability ap-
proaches could be a valuable direction for fu-
ture research .
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cisions, attribution-based methods that leverage
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Chan et al. (2022b) proposed a framework to opti-
mize a model for task loss and faithfulness, it relies
on a separate rationale extractor model. To directly
impact the interpretability of transformer models,
recent work has proposed attention-regulating tech-
niques that adjust a model’s attention weights to
generate more interpretable explanations (Treviso
and Martins, 2020; Guerreiro and Martins, 2021).
However, Treviso and Martins (2020) only ex-
plored the effectiveness of sparse attention as a
communication method to a lay person. Similarly,
Ferreira et al. (2024) examines the capability of
attribution methods to produce interpretable expla-
nations, but only on sentiment classification tasks
and only on human judgement-based criteria such
as plausibility. On the other hand, although Meister
et al. (2021) found that sparse attention does not
necessarily produce plausible explanations, they
did not evaluate sparse attention using the other
interpretability criteria outlined in our paper. Addi-
tionally, Meister et al. (2021) suggests that future
research could explore interpretability experiments
on attention outputs using the evaluation strategies
of DeYoung et al. (2019), which we have incorpo-
rated through our adaptations of comprehensive-
ness and sufficiency.

A.2 Defining and Evaluating Interpretability
Objectives

Doshi-Velez and Kim (2017) defined forward sim-
ulation of model decisions by humans as a core
interpretability metric. Pruthi et al. (2022) then
extended the evaluation of simulatability with an
automated setup that relied on simulating with
models instead of humans. For faithfulness, DeY-
oung et al. (2019) introduced concrete measures
in the form of comprehensiveness and sufficiency.
Consistency was discussed in Jain and Wallace
(2019); Serrano and Smith (2019). More recently,
Atanasova et al. (2020) benchmarked the consis-
tency of explainer on several datasets and found
that attention-based explainer generally outper-
formed gradient-based explainer in terms of con-
sistency. Neely et al. (2021) shows that without
comparison against ground-truth explanations (of-
ten provided by human-labeled rationales (DeY-
oung et al., 2019)), it is difficult to establish an
objective better/worse explainer. Even more recent
work (Joshi et al., 2022; Chan et al., 2022a) show
that it is difficult to align attention networks’ out-
put with human rationales (plausibiltiy). In terms

of the architecture used to evaluate interpretability,
Guerreiro and Martins (2021), Jacovi and Goldberg
(2021) and Ismail et al. (2021) take the approach of
building model decisions upon aligned rationales,
but focus on task performance and evaluate their
work only on a subset of the interpretability objec-
tives.

A.3 Where our work stands

IvRA as a an explanation technique that utilizes
regularized attention has the advantage over gradi-
ent and perturbation-based methods (Ribeiro et al.,
2016; Shrikumar et al., 2017) in that the process
of explaining the output is intrinsic to the model
and not decoupled from the prediction process. In
addition, IvRA does not require the usage of a sep-
arate model or gradient-based salience explainer
to act as rationale extractor during training, as in
the case of Chan et al. (2022b) and Ismail et al.
(2021). Moreover, IvRA’s is demonstrably robust
for a wide range of interpretability criteria (simu-
latability, comprehensiveness, sufficiency and con-
sistency) whereas techniques in Fernandes et al.
(2022), Chan et al. (2022b), Xie et al. (2022b) and
Ismail et al. (2021) have only be shown to be effec-
tive at enhancing model interpretability for a subset
of criteria. Finally, our work’s scope is similar to
that of Sun et al. (2024), as both attempt to create
a comprehensive framework for evaluating differ-
ent interpretability criteria. However, while their
work emphasizes diagnosing the properties of exist-
ing interpretability techniques, ours is focused on
methods to train models to acquire these properties.
Furthermore, we affirm the validity of our approach
by highlighting that several of our interpretability
criteria are closely aligned with those defined by
Sun et al. (2024).

B Interpretability Criteria Details

B.1 Simulatability Training Details

We use a fine-tuned model for M trained on the
dataset for the task and an unfine-tuned model for
S that has not been exposed to the dataset. Addi-
tionally, M’s explanations (ri’s) are withheld from
the student S during testing to prevent information
leakage (Pruthi et al., 2022).

B.2 Gradient updates

Optimizing the M’s attention parameters θ(M)
for the simulatability of a separate, student model
S is a non-trivial process. We in this work take



the scaffoled approach for optimizing the param-
eters of introduced in by Fernandes et al. (2022).
Specifically, let d ∈ D be a batch of data, we frame
optimizing IvRA’s attention weights as a bi-level
optimization problem where eq. 14 updates θ(S)
(S’s parameters) based on model outputs (see eq.
7) and eq. 15 updates M’s parameters based on
how well S can simulate M, with newly updated
parameters. We take a single optimization step to
calculate the gradient for S (eq. 14). After up-
dating S with the gradient, we take an additional
gradient step but only use this gradient to update
parameters of M, and not S (eq. 15). For even
more specific details on scaffolded simulatability,
we refer the reader to pilot updates by Zhou et al.
(2021).

θ∗(S) =

argminθ(S) E
{
LSIM[d,M,S]

} (14)

θ∗(M) =

argminθ(M) E
{
LSIM[d,M,Sθ∗(S)]

} (15)

B.2.1 Constrained student training
In addition to limiting the model weights of M and
S as described in §2.2.1, we further constrain the
amount of data the student S is trained on. Specif-
ically, while the full training set for IMDb, SNLI
and SQuAD were used to finetune and train M, we
only use 20% of the available testing set to train the
student, which yields 5000 samples, 2000 samples
and 2000 samples for IMDb, SNLI and SQuAD,
respectively.

B.3 Faithfulness Training Details
B.3.1 Comprehensiveness and sufficiency

bounds
Intuitively, the entropy (with respect to the output
class ỹi) can be higher when calculated with tki
removed than when calculated with the entirety
of xi, i.e. −ỹilog(M(xi\tki )) ≫ −ỹilog(M(xi)).
Without bounding by µCOMP, eq. 10 can yield
large, negative losses. While this can analogously
happen for eq. 11, there exists alternative loss func-
tions (see below). We experimented with µCOMP ∈
{0.1, 0.2, ..., 1} and µSUFF ∈ {0.1, 0.2, ...1} and
the reported results in Table 2 and Table 3 are for
µCOMP = 1 and µSUFF = 0.1, respectively.

B.3.2 Sufficiency losses
Apart from the loss function outlined in §2.2.2,
we experiment with two additional sufficiency loss
functions for sufficiency. Critically, we note that
eq. 16 relies on the assumption that M is not able
to make more accurate predictions when using only
a subset of the sequence (tki ) as its input. We also
note here that while 11 and 16 are computed with
respect to the output class ỹi, 17 computes the KL
divergence loss over distributions. Similar to (Chan
et al., 2022b), we found that all three loss functions
can be used to train IvRA for sufficiency, although
we decided to report 11 in the main paper as it’s
more general and in conformity with eq. 10.

LMAE−SUFF =∣∣∣∣− ỹilog(M(tki )) + ỹilog(M(xi))

∣∣∣∣ (16)

LKL−SUFF = KLDiv
(
M(tki ), M(xi)

)
(17)

B.4 Consistency Training Details
B.4.1 Consistency within batch
For simplicity and clarity, we defined eq. 12 and eq.
13 in the main paper for two examples xi and xj .
In practice, both CONS and LCONS are calculated
for every pair of samples within each batch during
training. We report the consistency for a dataset
by averaging the consistency across batches. i.e.
CONS we calculate:

1

|D|
1

|
(
d
2

)
|

∑
d∈D

∑
(xi,xj)∈(d2)

CONS(xi, xj) (18)

For batch loss LCONS during training, we calculate
the following:

1

|
(
d
2

)
|

∑
(xi,xj)∈(d2)

LCONS(xi, xj) (19)

As a result, we note here that training for pair-wise
consistency can be costly in terms of time. For
more analysis on computational cost of IvRA see
§G.

B.4.2 Distance function
We report results for using L2 distance as our Dist
function. Although we experimented with L1 dis-
tance function, we found using L2 distance in gen-
eral led to better performance. We note here that



the Dist function in eq. 12 calculates pair-wise
distance at the token level, whereas the Dist func-
tion for loss calculate (eq. 13) is the p-2 norm of
the difference between Hi and Hj .

B.4.3 Consistency clustering loss
Training with a focus on consistent reasoning
shares similarities with the process of clustering
similar examples together. To that end, we also
experimented with a clustering loss for LCONS that
is similar to the loss function for learning asso-
ciations between examples in Chen et al. (2019)
and Das et al. (2022). Specifically, let χ and be
the set of samples in d that belong belong to the
same output class as xi, let γ be the set of samples
in d that do not belong to the same output class
as xi i.e. χ = {xj s.t. yj = yi | ∀xj ∈ d} and
γ = {xj s.t. yj ̸= yi | ∀xj ∈ d}, we define an
alternative clustering loss for consistency training
as:

LCLUST−CONS =

1

|χ|

∑
xj∈χ

min||ri − rj ||22

+

1

|γ|

∑
xj∈γ

max||ri − rj ||22

(20)

Intuitively, we try to train for consistency via min-
imizing the distance of ri and rj’s that are expla-
nations of examples with the same class as xi and
maximizing the distance between ri and rj’s that
are explanations of examples with a different class
than xi. In practice, we found this loss function
to perform worse than eq. 13 both in terms of
consistency as well as time.

C Effect of Feature/Head/Layer Selection

The interpretable attention module of IvRA in-
volves the selection of salient input elements at
three levels: feature, head, and layer. What is
the effectiveness of the selection process at each
level in terms of achieving simulatable, compre-
hensive, sufficient, and consistent explanations?
In this section, we conduct experiments aimed at
answering this question. Specifically, we experi-
ment with IvRA by enabling feature-level selection,
head-level selection, and layer-level selection sep-
arately to observe their individual effects during
training. The loss curve for each criterion during

training is illustrated in Figure. 6. We observe in
our experiments, that, across all four interpretabil-
ity criteria, layer-level selection exhibits the least
reduction in loss during training. While head-level
selection is shown to be more effective than layer-
level selection, its loss curve stabilizes at a higher
level compared to feature-level selection. Notably,
feature-level selection proves to be the most effec-
tive (out of the three levels) in identifying infor-
mation that aligns with each of the interpretability
criteria, leading to the lowest level of losses during
training, relatively to head and layer-level selec-
tion. Finally, training with selection at all levels
enabled proves to be the optimal solution to pro-
duce explanations that align with each of the crite-
ria, albeit with only marginal improvements over
feature-selection-only in certain cases.

D Important Tokens Identified

In Fig. 7, we conduct an analysis of the num-
ber of important tokens in the output of different
explainers. Every token receives some weight in
the saliency outputs by Integrated Gradients (IG),
LIME, and Softmax, although often minute. To
find impactful tokens, we perform min-max nor-
malizing on the saliency outputs of these explainers
and find the number of tokens (as a percentage of
the input’s length) that score above thresholds in the
set Z = {0.1, 0.2, ..., 0.9}. i.e. a token is impor-
tant if its normalized saliency is higher than z ∈ Z.
We then calculate the area-over-precision curve
(DeYoung et al., 2019; Xie et al., 2023) ∀z ∈ Z to
obtain the AOPC of important words identified. We
find that, while the number of important remains
roughly the same for IvRA-Softmax when trained
on both COMP. and SUFF, IvRA-Sparsemax, in
general, identifies fewer tokens when trained for
SUFF than when trained for COMP.

E Transferability between Datasets

We hypothesize that the parameters learned by
IvRA are transferable between datasets for the same
task. To verify our hypothesis, we take models that
were trained on IMDb and SNLI, denoted as MI

and MS , respectively, and apply them on SST2
and MNLI from GLUE (Wang et al., 2018). In
order to gauge the transferability, we directly train
another set of models on SST2 and MNLI, denoted
as M∗

I and M∗
S , respectively. We then compare

the results of M∗
I and M∗

S against the results of
MI and MS using ARG. We report the ARG of



Figure 6: Loss curves for interpretability criteria during training with feature/head/layer-level selection enabled in
interpretable attention modules.

Figure 7: AOPC of important tokens identified by different explainers in different tasks. We observe that IG, in
general, identifies the most amount of tokens while training IvRA while normalizing with sparsemax yields the least
amount of tokens.

M∗
I and M∗

S over MI and MS in percentages
in Fig. 8. A higher ARG means a greater differ-
ence in scores for each interpretability criterion
between the directly-trained models and the mod-
els with transferred parameters. We observe that
the parameters trained for SIM transferred the best

between datasets, followed by SUFF and COMP.
We also note that parameters trained for CONS did
not transfer well, relatively speaking. We conjec-
ture that, although the task for both datasets are the
same, the difference in the semantics of samples
between two datasets can vary widely, thus making



Figure 8: Average Relative Gain (in terms of
SIM,COMP,SUFF and CONS) of IvRA-Sparsemax
(Llama-2) when trained on SST2/MNLI over when
trained on IMDB/SNLI.

it difficult for CONS parameters learned on one
dataset to be applied to another.

F The Plausibility of IvRA

Plausibility is defined as how convincing are ex-
planations to humans (Jacovi and Goldberg, 2020).
Recent studies have assessed plausibility by mea-
suring the overlap between generated rationales (a
set of tokens) and groundtruth labels (Sun et al.,
2024; Xie et al., 2022a). However, this approach
not only highlights that plausibility is inherently
human judgement-based and challenging to train
for—requiring a distinct set of labeled groundtruth
data for each dataset (Chan et al., 2022b)—but
also that recent research suggests attributions might
be ineffective in producing plausible outputs alto-
gether (Ferreira et al., 2024). Consequently, in this
work, we have chosen not to use plausibility as
a training objective. Nonetheless, we include a
study on the plausibility of explanations generated
by IvRA models trained under alternative criteria
here.

Similarly to simulatability, plausibility derives
its advantage and utility as an evaluation metric
from its alignment with human intuition. There-
fore, we in this study conduct a plausibility study
exploring which of IvRA models provides the
most plausible explanations. We utilize the an-
notated MovieReviews dataset (DeYoung et al.,
2019) which consists of human-labeled rationales
for movie review sentiment classification. The ra-
tionales are in the form of tokens that have binary

labels 0 and 1 that indicate their presence in the
rationale. For each of the explanation method in Ta-
ble 6, we calculate the plausibility score as the AUC
ROC of tokens identified against salient tokens la-
beled by human annotators. We found the explana-
tions generated by IvRA to be the most plausible
i.e., aligning the most with human-generated ratio-
nales in terms of tokens identified. More specifi-
cally, we find that the explanations learned for the
criterion of simulatability are the most plausible
overall, followed by sufficiency, comprehensive-
ness and consistency. This study, in conjunction
with our findings in §3.1, show us that sparser
explanations that can better target keywords are
deemed more intuitive and practical by both models
and humans alike. Additionally, we observe , apart
from IvRA(Cons.), explanations produced by mod-
els incorporating learnable interpretable attention
modules (IvRA(SIM., COMP, SUFF) & SMaT) out-
performed perturbation and gradient-based meth-
ods such as LIME and IG in generating more plau-
sible explanations.

G Computational Cost of IvRA

This section explores the computational overhead
associated with training and deploying IvRA to gen-
erate explanations. To assess the time complex-
ity of IvRA during training, we employ an IvRA
model (utilizing Llama-2 as the base) for each in-
terpretability criterion using varying quantities of
input data. Specifically, we conduct training for
10 epochs with N ∈ 10, 100, 1000, 10000, 100000
input samples from the SNLI dataset and measure
the elapsed time in minutes. The outcomes of these
experiments, depicted in Figure. 9, reveal that IvRA
introduces only a marginal increase in training time
complexity compared to the baseline model3. It is
important to note that training IvRA for all criteria
except consistency proves to be feasible in terms of
time. Furthermore, even in the case of consistency,
the training time only becomes computationally
challenging for input samples of very large sizes
(N ≥ 100000).

In terms of explanation generation time, IvRA
presents a distinct advantage over existing post-hoc
explanation methods like Ribeiro et al. (2016) and
Shrikumar et al. (2016, 2017). Unlike gradient-
based post-hoc techniques, IvRA does not necessi-
tate gradient calculations during inference, thereby

3Details regarding our computational hardware are out-
lined in §H



Explanation Methods Plausibility
Attention (Avg.) 0.68 ± 0.03
Attention (Last layer) 0.61 ± 0.02
Input X Gradients 0.53 ± 0.03
Integrated Gradients 0.51 ± 0.02
LIME 0.58 ± 0.04
SMaT 0.73 ± 0.02
IvRA Sparsemax (trained for SIM.) 0.78 ± 0.03
IvRA Sparsemax (trained for COMP.) 0.62 ± 0.04
IvRA Sparsemax (trained for SUFF.) 0.72 ± 0.03
IvRA Sparsemax (trained for CONS.) 0.53 ± 0.06

Table 6: The plausibility score (as AUC ROC of identifed tokens) of XAI methods and IvRA on the MovieReviews
dataset. The IvRA Sparsemax trained for simulatability is shown to produce the most plausible explanations over all
other explanation methods.

reducing computational complexity during its ap-
plication. We conducted experiments comparing
the time required for popular post-hoc methods and
IvRA to generate explanations across different input
sample sizes, as depicted in Figure. 10. Our results
indicate that, for all versions of IvRA, the time
needed to generate explanations is significantly
shorter compared to post-hoc methods. Overall,
while deploying a IvRA model may involve addi-
tional time complexity during the training phase,
we found this to be manageable in implementa-
tion. Furthermore, IvRA offers the added benefit
of producing superior (more simulatable, faithful,
and consistent) explanations at faster speeds during
application.

Figure 9: Growth in training time for IvRA with respect
to input sample size. While employing IvRA does intro-
duce a slight increase in training time, this additional
time is generally manageable for most criteria, except
when training for consistency with very large sample
sizes.

Figure 10: Time required by XAI methods and IvRA
to generate explanations for different input sizes. IvRA
exhibits notable advantages over alternative post-hoc
XAI methods, especially noticeable with larger input
sizes.

H Compute resources and Additional
Hyperparameters

Our compute resources consist of 4× RTX 6000,
4× RTX 4500 and 2× RTX 3090. For running
Integrated Gradients in our experiments, we use 50
iterations for calculating the integral. For running
LIME in our experiments, we use 500 perturba-
tions to approximate the neighborhood in which the
surrogate models are learned. For baseline embed-
dings, we use zero tensors (Atanasova et al., 2020).
Saliency scores (for each individual word) in all
settings are the sum of saliency scores of its word
pieces (DeYoung et al., 2019). We use AdamW
(Loshchilov and Hutter, 2017) as our optimizer for
all our models, with the exception of training the
student for simulatability, in which case we use



SGD (§B.1).
In all the experiments detailed in Tables 1, 2, 3,

and 4, we trained all models for 20 epochs at a
batch size of 64, applying decay factor every two
epochs, and the reported results are from the best
iteration of each model. To determine the opti-
mal learning rate, we explored a broad range of
learning rates and decay factors. The outcomes
of our hyperparameter search for the IMDb task
are presented in Table 7. Our investigation reveals
that while IvRA can acquire the necessary informa-
tion for producing interpretable explanations across
most settings, achieving the optimal performance
metrics requires specific learning rates, highlight-
ing IvRA’s sensitivity to variations in learning rates.
In the experiments documented in Tables 1, 2, We
observe that training for simulatability achieves op-
timal results with smaller learning rates and higher
decay factors (larger γ). Both comprehensiveness
and sufficiency training benefit from a moderate
learning rate and decay factor. Training for consis-
tency performs best with a higher initial learning
rate and a lower decay factor.

I Additional Experimental Results



LR γ SIM.↑ COMP.↑ SUFF.↓ CONS.↑

3e-5

1.000 92.03 ± 0.75 0.301 ± 0.118 0.132 ± 0.110 0.238 ± 0.109
0.750 94.31 ± 0.35 0.289 ± 0.102 0.185 ± 0.115 0.220 ± 0.111
0.500 93.31 ± 0.45 0.320 ± 0.124 0.111 ± 0.109 0.232 ± 0.107
0.250 93.04 ± 0.92 0.298 ± 0.155 0.129 ± 0.014 0.329 ± 0.110

3e-4

1.000 89.03 ± 0.50 0.265 ± 0.088 0.123 ± 0.051 0.329 ± 0.110
0.750 88.02 ± 0.84 0.278 ± 0.096 0.052 ± 0.053 0.376 ± 0.108
0.500 86.02 ± 0.88 0.325 ± 0.068 0.016 ± 0.013 0.381 ± 0.108
0.250 84.23 ± 1.20 0.305 ± 0.083 0.037 ± 0.012 0.398 ± 0.109

1e-4

1.000 89.13 ± 1.80 0.205 ± 0.077 0.123 ± 0.044 0.428 ± 0.109
0.750 83.02 ± 1.94 0.228 ± 0.121 0.116 ± 0.013 0.426 ± 0.111
0.500 83.31 ± 1.37 0.233 ± 0.098 0.230 ± 0.009 0.402 ± 0.109
0.250 80.74 ± 1.34 0.258 ± 0.078 0.097 ± 0.011 0.430 ± 0.108

1e-3

1.000 65.03 ± 2.80 0.302 ± 0.076 0.147 ± 0.082 0.421 ± 0.108
0.750 71.02 ± 1.94 0.260 ± 0.132 0.253 ± 0.057 0.347 ± 0.110
0.500 74.31 ± 1.37 0.287 ± 0.079 0.270 ± 0.034 0.399 ± 0.109
0.250 75.03 ± 1.34 0.280 ± 0.109 0.278 ± 0.011 0.407 ± 0.107

Table 7: Metrics of interpretability criteria achieved by IvRA with Llama-2 when trained under different learning
rates and weight decay factor (γ) on IMDb. Results (µ ± σ) were obtained from 5 separate runs. Optimal
performances for each criterion is bolded.

IMDb SNLI SQuAD

GPT-2

Attention (Avg. all layers) 90.46 ± 0.22 90.88 ± 0.16 82.18 ± 0.18
Attention (last layer) 90.65 ± 0.23 90.45 ± 0.36 83.62 ± 0.33
Input X Gradients 82.04 ± 0.39 80.89 ± 0.21 76.68 ± 0.29
Integrated Gradients 82.41 ± 0.15 79.34 ± 0.17 78.20 ± 0.15
LIME 82.16 ± 0.28 82.45 ± 0.29 77.30 ± 0.09
Attention-SMaT 92.53 ± 0.32 91.70 ± 0.15 88.11 ± 0.28
IvRA - Softmax 92.09 ± 0.41 91.21 ± 0.19 87.73 ± 0.46
IvRA - Sparsemax 93.60 ± 0.42 93.55 ± 0.43 88.22 ± 0.34

Llama-2

Attention (Avg. all layers) 91.00 ± 0.08 90.80 ± 0.23 82.34 ± 0.21
Attention (last layer) 91.43 ± 0.43 91.12 ± 0.26 83.54 ± 0.24
Input X Gradients 82.98 ± 0.37 81.55 ± 0.36 77.23 ± 0.40
Integrated Gradients 83.02 ± 0.12 80.42 ± 0.17 78.12 ± 0.26
LIME 83.11 ± 0.30 82.54 ± 0.061 78.21 ± 0.49
Attention-SMaT 92.81 ± 0.53 92.41 ± 0.31 88.10 ± 0.44
IvRA - Softmax 92.76 ± 0.21 91.01 ± 0.30 88.83 ± 0.31
IvRA - Sparsemax 94.31 ± 0.35 93.95 ± 0.21 89.43 ± 0.49

Table 8: Simulatability results for our experiments, expressed in accuracy %. Bolded values indicate the highest
performance, with underlined values indicating the second highest performance.



IMDb SNLI SQuAD

GPT-2

Attention (Avg. all layers) 0.109 ± 0.118 0.079 ± 0.040 -0.035 ± 0.041
Attention (last layer) 0.095 ± 0.073 0.035 ± 0.036 -0.022 ± 0.044
Input X Gradients 0.144 ± 0.098 0.135 ± 0.019 0.011 ± 0.032
Integrated Gradients 0.084 ± 0.076 0.144 ± 0.061 0.017 ± 0.022
LIME 0.085 ± 0.035 0.322 ± 0.067 0.084 ± 0.053
Attention-SMaT 0.244 ± 0.027 0.331 ± 0.066 0.123 ± 0.046
IvRA - Softmax 0.273 ± 0.063 0.386 ± 0.068 0.125 ± 0.032
IvRA - Sparsemax 0.266 ± 0.029 0.356 ± 0.103 0.119 ± 0.052

Llama-2

Attention (Avg. all layers) 0.115 ± 0.047 0.099 ± 0.066 0.018 ± 0.054
Attention (last layer) 0.131 ± 0.053 0.104 ± 0.075 0.023 ± 0.068
Input X Gradients 0.149 ± 0.059 0.176 ± 0.041 0.094 ± 0.104
Integrated Gradients 0.141 ± 0.034 0.183 ± 0.098 0.086 ± 0.042
LIME 0.179 ± 0.046 0.355 ± 0.037 0.123 ± 0.076
Attention-SMaT 0.284 ± 0.021 0.364 ± 0.069 0.130 ± 0.044
IvRA - Softmax 0.325 ± 0.068 0.433 ± 0.083 0.151 ± 0.080
IvRA - Sparsemax 0.289 ± 0.063 0.362 ± 0.028 0.119 ± 0.039

Table 9: Comprehensiveness results for our experiments. Bolded values indicate the highest performance, with
underlined values indicating second highest performance.

IMDb SNLI SQuAD

GPT-2

Attention (Avg. all layers) 0.183 ± 0.029 0.635 ± 0.015 0.691 ± 0.051
Attention (last layer) 0.143 ± 0.035 0.747 ± 0.035 0.797 ± 0.031
Input X Gradients 0.219 ± 0.033 0.549 ± 0.032 0.775 ± 0.044
Integrated Gradients 0.197 ± 0.022 0.604 ± 0.059 0.622 ± 0.04
LIME 0.153 ± 0.014 0.442 ± 0.036 0.580 ± 0.023
Attention-SMaT 0.143 ± 0.019 0.409 ± 0.068 0.533 ± 0.041
IvRA - Softmax 0.136 ± 0.041 0.448 ± 0.058 0.565 ± 0.015
IvRA - Sparsemax 0.053 ± 0.025 0.347 ± 0.04 0.509 ± 0.015

Llama-2

Attention (Avg. all layers) 0.180 ± 0.008 0.666 ± 0.034 0.763 ± 0.013
Attention (last layer) 0.111 ± 0.018 0.599 ± 0.017 0.799 ± 0.013
Input X Gradients 0.112 ± 0.022 0.489 ± 0.042 0.860 ± 0.017
Integrated Gradients 0.101 ± 0.032 0.467 ± 0.04 0.891 ± 0.017
LIME 0.099 ± 0.06 0.400 ± 0.010 0.645 ± 0.004
Attention-SMaT 0.113 ± 0.027 0.396 ± 0.026 0.656 ± 0.016
IvRA - Softmax 0.115 ± 0.038 0.386 ± 0.044 0.612 ± 0.016
IvRA - Sparsemax 0.016 ± 0.013 0.221 ± 0.063 0.423 ± 0.153

Table 10: Sufficieny results for our expreriments. For sufficiency, lower values indicate better performance. The
best results are bolded and second-best results are underlined.



IMDb SNLI SQuAD

GPT-2

Attention (Avg. all layers) 0.299 ± 0.024 0.145 ± 0.03 0.113 ± 0.032
Attention (last layer) 0.226 ± 0.063 0.111 ± 0.016 0.138 ± 0.022
Input X Gradients 0.268 ± 0.108 0.155 ± 0.027 0.149 ± 0.018
Integrated Gradients 0.259 ± 0.142 0.239 ± 0.033 0.146 ± 0.098
LIME 0.216 ± 0.126 0.206 ± 0.010 0.114 ± 0.027
Attention-SMaT 0.302 ± 0.026 0.236 ± 0.010 0.173 ± 0.015
IvRA - Softmax 0.322 ± 0.041 0.258 ± 0.020 0.176 ± 0.052
IvRA - Sparsemax 0.326 ± 0.04 0.240 ± 0.006 0.181 ± 0.033

Llama-2

Attention (Avg. all layers) 0.372 ± 0.021 0.230 ± 0.024 0.185 ± 0.014
Attention (last layer) 0.365 ± 0.019 0.231 ± 0.022 0.194 ± 0.019
Input X Gradients 0.421 ± 0.034 0.321 ± 0.012 0.178 ± 0.021
Integrated Gradients 0.410 ± 0.027 0.327 ± 0.017 0.144 ± 0.027
LIME 0.385 ± 0.017 0.315 ± 0.032 0.178 ± 0.028
SMaT 0.422 ± 0.031 0.356 ± 0.007 0.287 ± 0.027
IvRA - Softmax 0.429 ± 0.026 0.357 ± 0.015 0.298 ± 0.011
IvRA - Sparsemax 0.430 ± 0.008 0.361 ± 0.014 0.289 ± 0.022

Table 11: Consistency results for our experiments. Bolded values indicate the highest performance, with underlined
values indicating second highest performance.


