
Published in Transactions on Machine Learning Research (07/2024)

Object-Centric Relational Representations
for Image Generation

Luca Butera luca.butera@usi.ch
The Swiss AI Lab IDSIA & Università della Svizzera italiana

Andrea Cini andrea.cini@usi.ch
The Swiss AI Lab IDSIA & Università della Svizzera italiana

Alberto Ferrante alberto.ferrante@usi.ch
The Swiss AI Lab IDSIA & Università della Svizzera italiana

Cesare Alippi cesare.alippi@usi.ch
The Swiss AI Lab IDSIA & Università della Svizzera italiana
Politecnico di Milano

Reviewed on OpenReview: https: // openreview. net/ forum? id= 7kWjB9zW90

Abstract

Conditioning image generation on specific features of the desired output is a key ingredient
of modern generative models. However, existing approaches lack a general and unified way of
representing structural and semantic conditioning at diverse granularity levels. This paper
explores a novel method to condition image generation, based on object-centric relational
representations. In particular, we propose a methodology to condition the generation of
objects in an image on the attributed graph representing their structure and the associated
semantic information. We show that such architectural biases entail properties that facilitate
the manipulation and conditioning of the generative process and allow for regularizing the
training procedure. The proposed conditioning framework is implemented by means of a
neural network that learns to generate a 2D, multi-channel, layout mask of the objects,
which can be used as a soft inductive bias in the downstream generative task. To do so, we
leverage both 2D and graph convolutional operators. We also propose a novel benchmark
for image generation consisting of a synthetic dataset of images paired with their relational
representation. Empirical results show that the proposed approach compares favorably
against relevant baselines.

1 Introduction

Graphs are an abstraction that allows for representing objects as collections of entities and binary relation-
ships. Previous research on graph-based image generation has been limited to the high-level conditioning of
the image content by means of scene graphs, i.e., graphs where nodes represent objects, and edges denote
subject-predicate-object relationships (Johnson et al., 2018; Ivgi et al., 2021). Conversely, conditioning on
desired fine-grained properties, e.g., spatial location, arrangement or visual attributes, is usually performed
without considering a relational structure. In fact, most of the literature dealing with pose-constrained
image generation, e.g., (Ma et al., 2017; Siarohin et al., 2018; Neverova et al., 2018; Qian et al., 2018; Jiang
et al., 2022), represents key points and semantic attributes with 2D masks or feature vectors; hence not ex-
ploiting known relationships among the components of the object being generated. Indeed such approaches
are usually limited to conditioning the generation on a fixed template structure and lack flexibility. This
paper aims at taking full advantage of graph representations in this context; our approach fills the above
research gap and addresses the shortcomings of existing methods by encoding relational inductive biases into

1

https://openreview.net/forum?id=7kWjB9zW90


Published in Transactions on Machine Learning Research (07/2024)

the processing. In our method, graphs are used both as effective and compact, fine-grained object-centric
representations of the image content as well as an architectural bias for the neural architecture. We call such
representations attributed pose graphs, i.e., graphs whose nodes can represent particular landmarks in an
object’s structure and have both positional (location) and, possibly, semantic attributes (e.g., color, class).
Edges, instead, account for relationships among nodes, capturing the object’s morphology. Our formulation
allows for encoding all the desired properties of the generated image in such a graph, without relying on
additional inputs, such as reference images or similar, allowing for high flexibility in specifying the condition-
ing. The generation of the scene can then be manipulated, without any change to the model architecture, by
editing the graph, e.g., by modifying the nodes’ attributes and/or the number of landmarks used to represent
each object. This is thanks to the exploitation of neural message passing (Gilmer et al., 2017) and graph
neural networks (GNNs) (Bacciu et al., 2020; Bronstein et al., 2021) used for constraining the processing.

Our model, named GraPhOSE, relies on learning a multi-channel layout mask from the structured repre-
sentation of the scene. It is trained jointly with a downstream model (image decoder) that contextually
exploits such mask to constrain the generative process. To overcome the lack of pre-annotated object masks
for specific use cases, we also propose the usage of surrogate masks corresponding to procedurally generated
synthetic pose graphs, as targets for a supervised pre-training of GraPhOSE. After the pertaining, the full
architecture, i.e., GraPhOSE and the downstream model, can be trained end-to-end on the task at hand.
Additionally, since pre-training relies on randomly generated graphs potentially (partially) outside the target
distribution, the proposed method can act as a regularization, preventing overfitting the most common poses
in the target dataset.

To the best of our knowledge, this is the first work to use object-centric graph-based relational representa-
tions to condition a neural generative model. Furthermore, we complement the methodological contributions
by introducing a benchmark for pose-conditioned image generation: we propose a synthetic dataset named
Pose-Representable Objects (PRO), which aims at assessing the performance of generative models in condi-
tioning image generations on fine-grained structural and semantic information of the objects in the scene.
PRO consists of images containing stylized 2D objects that can be rendered starting from a relational rep-
resentation, i.e., a graph, encoding their structure and style. Our contribution can be then summarized as
follows:

• We provide a novel and general methodology to solve the task of generating images conditioned on
an attributed graph that represents the structure and semantics of objects in the scene.

• We provide a specific implementation of such methodology, together with a learning procedure based
on a task-independent pre-training to enable transfer to different problems.

• We propose a novel benchmark for image generation conditioned on relational representations of the
objects in the scene.

Experimental results show that our approach compares favorably against non-relational baselines and that
the proposed method is flexible and can be applied to different settings.

2 Preliminaries

A pose graph is a couple G = (V, E), V is the set of vertices (or nodes) and E is the set of edges that connect
such nodes. We define node attributes vi = (pi, xi) where pi ∈ R2, xi ∈ Rd represents the 2D position of
the i-th node in V and its d-dimensional feature vector, respectively. We denote with V the node attribute
matrix V = (P ∥X) stacking all the node attribute vectors. The edge connecting the i-th to the j-th node
is indicated as eij = ⟨i, j⟩. We assume the graph to be undirected and indicate its (symmetric) adjacency
matrix as A; nonetheless, our approach can be seamlessly extended to directed graphs. The described graph
can be processed by stacking GNN layers; in particular, we rely on the message passing framework (Gilmer
et al., 2017), which provides a template for building GNNs by specifying update and aggregation functions
to process a node’s representation and those of its neighbors.

2



Published in Transactions on Machine Learning Research (07/2024)

Figure 1: Our pipeline, with GraPhOSE in grey. µθ gets pre-trained on surrogate masks. The downstream
model, in yellow, can be any trainable generative model that accepts a 3-d tensor as conditioning input. The
whole pipeline can be trained end-to-end.

Figure 2: Surrogate mask for a random graph (left) and for a graph representing a person (right). Node
positions in graph space are normalized between 0 and 1.

We indicate as deep generative model a neural network that, optionally given a conditioning input, can
be trained to match a desired data distribution. The sampling is often obtained by feeding random noise
from a fixed distribution to the model, while conditioning allows to control the generative process, e.g., by
specifying a class label. In our case, we consider generative processes conditioned on the objects in the scene,
represented as attributed pose graphs.

3 Graph-based Object-Centric Generation

In this Section, we first provide a high-level description of our method, consequently propose an architecture
implementing the framework and finally present our surrogate pre-training objective.

3.1 Overview

Figure 1 provides a high-level view of our approach. Given an input pose graph G, we wish to output a layout
mask L ∈ [0, 1]C×H×W , which will then be used to condition the downstream model on a target generative
task. The mask generation process is designed to obtain the final mask by aggregating masks localized w.r.t.
each node. In particular, the generation of L is decomposed into the generation of a mask Mi ∈ [0, 1]H×W

and a feature vector fi ∈ [0, 1]C for each node vi, such that:

L = 1
|V|
∑
i∈V

fi ⊗ Mi, (1)

where ⊗ indicates the tensor product. Notably, each node mask, Mi, is dependant on pose attributes,
P , only, while features fi depend on both pose and attributes (P ∥X), so that the former encodes only

3



Published in Transactions on Machine Learning Research (07/2024)

structural information, while the latter will also eventually account for semantics. In particular, both fi and
Mi are computed by means of two learnable mappings, such that the core processing of GraPhOSE can be
summarized as:

F = Φϕ (V , A)
M = µθ (P , A)

L = 1
|V|
∑
i∈V

fi ⊗ Mi,

(2)

where A is the graph’s adjacency matrix, M and F indicate respectively the tensor encompassing all the
Mi masks and the matrix having as rows the node level representations fi. The Φϕ function can be learned
end-to-end with the downstream model, as shown in Section 5. Differently, µθ is pre-trained on a surrogate
task designed to foster the learning of masks coherent with the structure of the object being generated.
After pre-training, µθ can be fine-tuned by being trained end-to-end with the downstream model on the
target task. This approach is suitable to flexibly condition the generation of different objects based on
their structure. Notably, we implement our method with two neural networks that operate in parallel: the
encoder (Φϕ) and the mask generator (µθ). The former implements function Φϕ from Equation (2), while
the latter implements function µθ. The outputs of the two networks are combined as in Equation (2) to
obtain the layout mask.

3.2 Implementing the encoder Φϕ

The encoder (Φϕ) network is based on what we call a pose convolution layer, which consists of the following
message-passing operator:

h′
i = gg

(
gs (hi, pi) +

∑
j∈N (i)

gl (hj , pj − pi) , hi
)

(3)

where N (i) is the set of neighbours of the i-th node, while gs, gl and gg can be any learnable function (e.g.,
MLPs). Consistently with the previous naming convention, hi and pi indicate node features and position
respectively. The layer is inspired by PointNet (Qi et al., 2017), but uses two distinct operators for processing
the representation of the central node and computing messages coming from neighbors. In particular, gs can
be seen as implementing a parametrized skip connection to mitigate over-smoothing node representations (Li
et al., 2019). The final node encodings are obtained by stacking blocks of the form

GH′∥P = BN
(
ReLU

(
PConv

(
GH∥P

)))
, (4)

which is a common way of chaining processing layers in deep neural networks. In particular, BN denotes
batch normalization (Ioffe & Szegedy, 2015), ReLU is the activation function, PConv is our pose convolution
layer and GH∥P a pose graph with features H and node coordinates P .

3.3 Implementing the mask generator µθ

The mask generator (µθ) network consists of a first block of stacked pose convolutional layers analogous to
the ones in Equation (4). The outputs of these layers are then reshaped into bi-dimensional matrices used as
input for the second stack of layers consisting of a combination of shared 2D convolution blocks, interleaved
with relational pose convolution 2D layers. Such layers implement the following message-passing function:

Oi =
∑

j∈N (i)

go (Hi, Hj)

H ′
i = gs (Hi) + σ (Oi) ⊙ gg (Oi)

(5)

where, ⊙ denotes the Hadamard product, N (i) is the set of neighbors of node i and gs, gl and gg can be
any learnable function that has two-dimensional inputs and outputs.

4



Published in Transactions on Machine Learning Research (07/2024)

In our case, gg is a 2D convolutional layer while go is a convolutional block with upsampling and skip-
connection and gs is a linear upsampling operation followed by a 2D convolution, where the upsampling
is needed to match the dimensions of the output of go. The rationale behind the design of Equation (5)
is promoting heterogeneity between the masks generated by different nodes. Notably, gs can act as a skip
connection preserving the node representations while the gating operation allows for selectively aggregat-
ing information coming from neighbors. Indeed, over-smoothing the node features would be particularly
detrimental as it would compromise the locality of the masks learned w.r.t. each node. Said property is
desirable as, per Equation (1) this would in turn make the learned node features, fi, localized w.r.t. their
spatial neighborhood. Note that these soft constraints, i.e., architectural biases, can be seen as a form of
regularization aligned with object-centric generation tasks.

3.4 Surrogate Task

As mentioned previously, we want to pre-train GraPhOSE, in particular µθ, on the generic surrogate task
of mapping a pose graph to a 2D mask. For this purpose, we define the surrogate mask associated with a
pose graph G, as shown in Figure 2, which, intuitively, is a grayscale image that depicts the structure of the
graph.

The mask for the whole graph is obtained by composing partial masks relative to each node and edge. In
particular, given pixel coordinates c, we define the value of each i-th partial surrogate mask at that pixel as

SN ,i (c) = exp
(

−
∥pi − c∥2

2
2σ2

)
, (6)

and, analogously, the value of the partial surrogate mask associated with each eij edge as

SE,ij (c) =

√√√√exp
(
−dij(c)T · T −1

ij · dij(c)
)

(2π)2 · det (Tij)
, (7)

where Tij denotes a 2×2 rotation and scaling matrix dependent on the length and orientation of the segment
connecting the i-th and j-th nodes (see the supplementary material for the details). Conversely, dij(c) is
defined as

dij(c) = c −
(

pi + pj
2

)
(8)

and denotes the distance between c and the midpoint between the coordinates of nodes i and j.

The final surrogate mask is obtained, for each pixel c, as

SG (c) =
∑
i∈G

SN ,i (c) +
∑

⟨i,j⟩∈G

SE,i,j (c) (9)

which is the pixel-wise sum of the masks associated with each node and edge. All the values are then clipped
between 0 and 1. More details about the computation of the mask can be found in Appendix A.3. Intuitively,
the mask corresponding to a node is obtained by considering an isotropic bi-variate gaussian centered into
the node’s coordinates and with standard deviation σ. The mask corresponding to an edge, instead, is
obtained by considering a bi-variate gaussian centered w.r.t. the midpoint between the edge’s vertices, and a
covariance matrix dependent on the distance between the two points and the orientation of the line joining
them. The surrogate mask obtained in such a way is agnostic w.r.t. the object represented by the graph and
hence general. Note that differently from, e.g., segmentation masks, the mask we are referring to depends
entirely on the structure of the objects in the image being generated and not on their class.

As a final remark, the surrogate mask has a lattice structure, which may not properly resemble the desired
mask for all target tasks; indeed, depending on the specific object, some loops should be filled and the
silhouette of each specific part refined. Nonetheless, such surrogate masks are helpful in providing supervision
for the pre-training routine and act as a regularization for the model. Details on the fine-tuning procedure
on downstream tasks are discussed in Section 6.1. The pre-training routine is carried out by minimizing a
surrogate loss Lre based on a reconstruction error, e.g., mean squared error or binary cross entropy.

5



Published in Transactions on Machine Learning Research (07/2024)

4 Related Works

Image generation is a popular application of deep learning models from generative adversarial networks
(GANs) (Goodfellow et al., 2014; Gui et al., 2021), to variational autoencoders (VAEs) (Kingma & Welling,
2014; Vahdat & Kautz, 2020; Park et al., 2020) and, more recently, diffusion models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020). Concurrently, many researchers have explored ways of con-
ditioning the generation of such images, from simple class labels (Mirza & Osindero, 2014; Brock et al.,
2019), to fully articulated sentences (Ramesh et al., 2022; Rombach et al., 2022) or even other images (Isola
et al., 2017; Liu et al., 2017; Zhu et al., 2017). Although no previous work directly exploits pose graphs to
guide image generation, several approaches focused on scene-graph-conditioned image generation and pose-
conditioned image generation. Even though these tasks present some similarities with our work, they are
fundamentally different, as discussed in the remainder of this section.

Scene-Graph-Conditioned Image Generation Scene graphs are a way of representing a visual scene
context as a graph linking object nodes through predicate edges. These graphs are obtained by parsing
natural language sentences (e.g., the phrase A man sits on a bench turns into a graph with two nodes with
attributes man and bench, respectively, linked by an edge with attribute to sit), making these approaches
similar to text-based image generation. The first method for conditioning image generation on scene graphs
was introduced by Johnson et al. (2018), which propose a GNN mapping the scene graph into a scene
layout used to bias a generator network. Ivgi et al. (2021) improved such an approach by designing a GNN
that directly operates on 2D feature maps. Differently from the above methods, however, our formulation
represents objects as graphs of related parts, with both structural and semantic information; scene graphs
contain only semantics and represent one object per node, as they are derived from natural language parsing.
This makes such methods unsuitable for our problem setting.

Pose-Conditioned Image Generation Several prior works condition image generation on the pose of
the objects being generated. In particular, several methods deal with images from human poses, with Ma
et al. (2017) introducing the first deep learning approach based on conditioning a reference image on a
target pose. The method introduced by Ma et al. (2017) has been thereafter extended by implementing
deformable convolutions (Siarohin et al., 2018), adopting dense poses (Neverova et al., 2018) and global style
attributes (Men et al., 2020) as conditioning. Moreover, it has been used to address the problem of person
re-identification (Qian et al., 2018). Horiuchi et al. (2021) exploits a graph-based representation for the pose
paired with a reference image encoding semantics. To the best of our knowledge, none of the previous works
jointly encode pose and semantics information in a graph and then use such graph as an architectural bias
for the neural processing. Exploiting this previously unused relational information allows our method to
compare favorably against the state of the art w.r.t. flexibility, generality, and effectiveness. Moreover, note
that this family of techniques solves an image-to-image task, conditioned on the pose (i.e., given a person’s
image as input, the model outputs an image with the same context, where the person matches the target
pose). This is a very different problem w.r.t. to the graph-to-image task we are tackling. While a direct
comparison would not be meaningful, classical pose-conditioned approaches can be better suited to tasks
where the conditioning is a template image that needs to be modified or augmented.

5 Experiments

We start the empirical validation of the proposed method by focusing on the pre-training of the mask
generator µθ with surrogate masks created from procedurally generated graphs. Then, we introduce relevant
baselines for our model and compare them on image generation tasks w.r.t. both synthetic and real-world
data. We carried out our experiments with a GAN, even though the same principles can be extended to work
with other methodologies. For this, noise is sampled at the input graph level, such that, V = (P ∥X∥Z) with
Z ∈ RN×Z ∼ N (0, 1). The code used to run the experiments is provided in the supplementary materials.

6



Published in Transactions on Machine Learning Research (07/2024)

Figure 3: Sample of generated masks. For each one, the large figure is the aggregated mask, while the small
ones are those associated with each node. The blue dots highlight the position of the accounted node. (a) is
a random graph like those used for pre-training; (b) and (c) are simple handcrafted ones.

Figure 4: Masks generated by pre-training on random graphs (a) and on the Humans task’s ones (b). For each
group, the first two columns are samples from the Humans task, last two are random. In (b), performance
clearly degrades out of distribution.

5.1 Surrogate Pre-Training

For surrogate pre-training, we generate random graphs using the Barbasi-Albert (Albert & Barabási, 2002)
or a Erdos-Renyi (ERDdS & R&wi, 1959; Gilbert, 1959) model, with a number of nodes in the interval
[5, 30]. The position of each node is determined by using Kamada-Kawai’s force-directed graph drawing
algorithm (Kamada & Kawai, 1989). These choices aim at generating (almost planar) graphs that can easily
be drawn on the plane, i.e., with only a few intersections among edges. More detailed information on the
setup of the generators are provided in the supplementary materials. Target masks are computed as in
Equation (9) and the model is fitted to minimize the binary cross entropy (BCE) loss. Figure 3 shows
sample results of the mask generation process. Each one of the larger images corresponds to the full mask
generated from the input graph (shown in blue and red), while the smaller images show masks relative to
each node (in blue). The model produces masks that match the topology of the graph, even for complex
structures. More interestingly, results show that the proposed architecture is indeed capable of generating
localized node-level masks that capture the structure of the neighborhood of each node. By looking at
samples (b) and (d), which contain handcrafted graphs, we see that this property is preserved for graphs
with a small diameter; even though, nodes with high connectivity tend to produce richer masks that may
span it completely. Indeed, locality is preserved against over-smoothing which is typical of isotropic graph
convolutional filters; conversely, the learned node-level masks are diverse and properly localized. Figure 4
additionally shows how pre-training on randomly generated graphs can act as regularization by yielding a
model able to perform properly for graphs outside the distribution of the downstream task.

5.2 Baselines

Comparing existing models to ours is not straightforward. As detailed in Section 4, these methods lack
flexibility concerning the objects they can generate and the representation of structural and semantic con-
straints. Moreover, the tasks they address fundamentally differ from ours, as they rely on different inputs,
and thus they cannot be directly compared to our approach. As described in Section 3, GraPhOSE learns to
map the graph into a layout mask by learning both node representations and node masks. We thus compare
it to two baselines: both use a fixed (non-learnable) mapping to generate the node masks; the first (GNN
Conditioner) uses a GNN-based encoder to learn node representations, while the second (FNN Conditioner)
uses a feedforward neural network (FNN) based one (i.e., it does not use relational information). Considering
Equation (2), we can contextually schematize the baselines as computing mask M as

M = ∥i∈V
(
SN ,i (C) +

∑
j∈N (i)

SE,ij (C)
)

(10)

7



Published in Transactions on Machine Learning Research (07/2024)

and, for the FNN-based one only, as computing F as

F = Ψψ (V ) (11)

where ∥i∈V( · ) indicates concatenation along a new axis, while, for ease of notation, SN ,i (C) and SE,ij (C)
denote operations applied over all the pixel coordinates w.r.t. nodes and edges, respectively. Note that
the FNN Conditioner has still access to structural information through the fixed masks which makes the
comparison against GraPhOSE meaningful. For all the baselines (including GraPhOSE), we use the same
downstream model based on a simple stack of layers with 2D Convolutions, batch normalization (Ioffe
& Szegedy, 2015) and ReLU activation and residual connections (He et al., 2016). Moreover, similarly
to Johnson et al. (2018), each layer may take as input both the previous layers’s output and the downsampled
layout mask to condition the generative process at the different processing steps. The discriminator is
based on similar building blocks and receives the graph as input, together with the real/fake image. See
Appendix A.7 for more details on the implementation for each baseline. For GraPhOSE we pre-train the
mask generator as described in Section 5.1, and then train the whole model on the downstream task. Note
that, during the end-to-end training, we drop the reconstruction loss originally used during the pre-training.
This is to allow for adapting the masking mechanism to the downstream task, removing any bias coming
from the surrogate loss. All the baselines were trained under the same settings; more details can be found
in Appendix A.2.

5.3 Datasets

As previously mentioned we consider 2 benchmarks based on synthetic and real-world data. We explicitly
design the synthetic dataset, named PRO, to highlight the benefits of object-centric relational representa-
tions. PRO consists of images containing simple stylized objects that can be rendered starting from a pose
representation in which each keypoint has class and style attributes, i.e., from a relational description of the
image. Different objects are represented at different degrees of abstraction w.r.t. their appearance to make
the task of generating objects, with a coherent style, from the representation more challenging. The style
and visual appearance of the different rendered components vary smoothly with respect to the structure of
each object (as it is often the case in the real world), making the adoption of appropriate inductive biases
particularly appealing. For our experiments, we generated 100000 samples. For what concerns the second
task, referred to as Humans, it consists of the problem of generating images of humans from key-points
with class attributes (e.g., ankle, shoulder). To build a dataset of examples, we leveraged the existing MPII
Human Pose (Andriluka et al., 2014), Market 1501 (Zheng et al., 2015) and DeepFashion (Liu et al., 2016)
datasets. For the DeepFashion dataset, we use just the Fashion Landmark Detection and the In-Shop Re-
trieval subsets. The keypoint annotations for DeepFashion In-Shop Retrieval and Market 1501 are based
on Zhu et al. (2019), and were generated by using the open-source software OpenPose (Cao et al., 2019).
For DeepFashion Fashion Landmark we instead rely on MediaPipe’s BlazePose (Bazarevsky et al., 2020),
while MPII Human Pose already contains pose features. All annotations are reduced to the COCO keypoint
standard (Lin et al., 2014) and used to generate the corresponding graphs with node coordinates normalized
between 0 and 1, resulting in a dataset of roughly 300000 samples. Images from the real-world datasets have
been downscaled (or padded) to a 64 × 64 shape. Images in PRO are generated with size 128 × 128 to ensure
that objects are not too small. Further details on the datasets are provided in Appendix A.5 and A.6.

6 Results

In the following section, we discuss the results obtained on the synthetic and real-world datasets. On the
former, we used a small downstream model with around 28K parameters, while, on the latter, a more
complex one, with roughly 5M parameters, was employed; details are provided in the appendix. Moreover,
for the synthetic dataset, models that leverage relational representations receive inputs with 10% of the
semantic node attributes randomly masked in 50% of the samples; we do so to show that structures can be
used to generate coherent images from partial conditioning. Table 1 shows the Frechet Inception Distance
(FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al., 2016) for our model and the baselines
w.r.t. both datasets, together with the Structural Similarity Index Measure (SSIM) (Wang et al., 2004) for

8



Published in Transactions on Machine Learning Research (07/2024)

(a) PRO (b) Humans

Figure 5: Sample results for PRO (left) and Humans (right) tasks. Row (a) is the input graph. Generated
samples come from: the PRO exact renderer (b - left), the unconditioned downstream model (b - right), the
FNN-based baseline (c), the GNN-based one (d), GraPhOSE without pre-training (e), GraPhOSE (f).

Table 1: Frechet Inception Distance (FID) (lower is better) and Inception Score (IS) (higher is better) for
PRO and Humans datasets. Also the Structural Similarity Index Measure (SSIM) is reported for the PRO
dataset.

Models PRO Humans
FID ↓ IS ↑ SSIM ↑ FID ↓ IS ↑

FNN Conditioner 103.86±15.93 3.23±0.03 0.74±0.05 58.91±3.77 3.52±0.10
GNN Conditioner 105.23±9.72 3.24±0.02 0.78±0.02 118.18±78.54 3.58±0.16
GraPhOSE No-Pretrain 90.9±6.71 3.11±0.02 0.77±0.01 125.22±84.14 3.52±0.27
GraPhOSE 66.5±4.82 2.92±0.01 0.84±0.01 54.46±7.57 3.41±0.12

the PRO dataset. GraPhOSE achieves a significantly better FID and SSIM score compared to the baselines.
Indeed, in the PRO dataset, GraPhOSE outperforms the baseline both with and without pre-training for
the FID measure. Note that SSIM measures the accuracy of image reconstruction, making it a meaningful
metric only for the PRO dataset, where the input graph fully describes the target image. For the human pose
dataset, pre-training acts as regularization allowing for reducing the variance among runs. As expected, the
IS, which evaluates the distinctiveness and diversity of the generated samples, does not highlight significant
differences among the models, as these properties are not highly influenced by their architectural differences.
We can then assess compliance w.r.t. the conditioning visually, in a qualitative manner.

In this regard, Figures 5a and 5b, show results generated, by the compared models, for the two tasks. We
can see that, in PRO, GraPhOSE, row (f), is clearly superior to the other baselines, in particular when the
surrogate mask further deviates from the object’s visual appearance. The generation quality is consistent
across different numbers of objects and scales, showing the approach is suitable to handle a wide range of

9



Published in Transactions on Machine Learning Research (07/2024)

Figure 6: Masks generated by GraPhOSE after pre-training (b) and after subsequent training on the down-
stream task (c). (d), shows those generated by skipping pre-training, while (a) is the input graph

Figure 7: Samples of individual node masks generated from GraPhOSE. The first column is the cumulative
mask for the whole input graph (superimposed with nodes in blue and edges in red). Individual node masks
have the reference node highlighted in blue. Hand masks (a) are only a sub-sample for ease of visualization.

possible scenes. Moreover, the FNN Conditioner is not capable of handling missing attributes or nodes, which
hinders its flexibility, in particular for real-world settings. For Humans, we again see that images generated
by GraPhOSE have better visual appeal and compliance with the input pose, even when not all the key-
points are present in the conditioning graph. Furthermore, notice how images from the FNN Conditioner,
row (c), are visually worse than those from models with a higher (worse) FID score. In general, relational
representation plays a significant role in guiding the generation toward a coherent result, as structure alone,
i.e., even without semantics, can be leveraged to characterize silhouettes, and neighboring information can
help reconstruct missing features. Examples of this behavior are shown in Appendix B.1. Note that the
generative models used in this work are purposely simple, as our experiments focus on the conditioning
capabilities rather than image quality (i.e., detail, realism). The resulting image quality is comparable to
that of architectures that use similar generators (Johnson et al., 2018; Yan et al., 2016). Images of better
quality can be obtained at the expense of increased computational and sample complexity by adopting more
complex generators trained at higher resolutions.

6.1 Task specific mask adaptation

The purpose of pre-training on surrogate masks of random pose graphs is to learn a general mapping between
the graph and the image representation of the structure it entails. However, this learned mapping might
not produce the exact visual properties desirable for a specific downstream task. We wish to adapt to these
properties while learning the target task, during the end-to-end training. Figure 6 shows how this indeed

10



Published in Transactions on Machine Learning Research (07/2024)

Figure 8: Results (b) of changing input nodes’ position (a) while maintaining other inputs constant.

Figure 9: Results of changing the input nodes’ semantic attributes (i.e. color), for samples of the PRO
dataset. The input graph, with according colored nodes, is superimposed onto the generated image. Nodes
belonging to the same finger change color in group as otherwise the input graph would be out of distribution
w.r.t. training data.

happens for the masks being generated before (b) and after (c) training on a target task. This adaptability is
particularly relevant, as it shows that after pre-training the mask generator towards the correct direction, we
can have it learn the specifics of the target downstream task. Differently, the images generated by training
GraPhOSE without pre-training on surrogate masks (d) do not visually resemble the input pose. These
results suggest the lack of structure in the mask leads to degradation of the performance, in particular when
the target data distribution is not heavily biased towards a few poses (e.g., Humans contains mostly poses
of people standing). Note that, even without pre-training, the model still leverages the relational inductive
biases encoded by the input graphs and accounted for by our model architecture. This shows the usefulness
of pre-training as a soft regularization, which localizes node features w.r.t. corresponding portions of the
image. Further examples of this property are shown in the appendix. Figure 7 shows how individual node
masks preserve a property of locality after training on the downstream task, even though no particular
constraint, aside from architectural biases, enforces this. These results are really meaningful, as localized
masks allow, by GraPhOSE’s design, for better local conditioning on node level semantics. Moreover, it
entails the learning of a distributed representation, where each node describes a specific part, rather than a
collapsed representation in which all nodes contain a representation of the whole object. Further examples
of this node-mask locality can be found in Appendix B.2.

6.2 Structure and style sensitivity analysis

To assess whether the model is able to disentangle structure and style, we experiment with providing it a series
of human graphs with slightly different poses while fixing all the remaining attributes of the conditioning.
As shown in Figure 8, generated figures are rearranged according to the changes in the input pose while the
style is mostly unchanged. Note that, however, in case of more significant changes in the pose, the resulting
images can be visually different. This emergent property is nonetheless interesting and provides ground
for future research. Similarly, we assess the sensitivity of the method to incremental perturbations of the
semantic node attributes for samples of the PRO dataset. Example results are shown in Figure 9. We can
see that the generated object’s structure is not affected by the semantic changes. Only the colors change
according to the changes in node attributes. This further highlights the disentanglement between structural
and style control over the generated images.

7 Conclusions and Future Work

We propose GraPhOSE, a method to exploit attributed graphs as object-centric relational inductive biases to
flexibly condition image generation. Our approach has several advantages compared to standard approaches
which result in a scalable and flexible framework. Notably, we shone a light on the properties of relational
representation in this context, by showing how they can be used to regularize and manipulate the generative

11



Published in Transactions on Machine Learning Research (07/2024)

model. We also provided a novel synthetic dataset that pairs images with their object-centric relational rep-
resentation, introducing a benchmark to support further studies. Future research might target approaches
to generate meaningful and coherent masks without relying on pre-training, or investigate methods to disen-
tangle the different elements that contribute to the final generated image. We argue that our study has the
potential of sparking new interest in object-centric relational representations for generative modeling and
that the results presented here constitute the first building block for future research in this direction.

Acknowledgments

The authors wish to thank Daniele Zambon for the helpful suggestions provided during the development of
this work.

References
Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of modern

physics, 74(1):47, 2002.

Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human pose estimation: New
benchmark and state of the art analysis. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

Davide Bacciu, Federico Errica, Alessio Micheli, and Marco Podda. A gentle introduction to deep learning
for graphs. Neural Networks, 129:203–221, 2020.

Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias Grund-
mann. Blazepose: On-device real-time body pose tracking, 2020. URL https://arxiv.org/abs/2006.
10204.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model. Advances in
neural information processing systems, 13, 2000.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Soft-
ware available from wandb.com.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=B1xsqj09Fm.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person 2d pose
estimation using part affinity fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2019.

Robert L Cook. Stochastic sampling in computer graphics. ACM Transactions on Graphics (TOG), 5(1):
51–72, 1986.

P ERDdS and A R&wi. On random graphs i. Publ. math. debrecen, 6(290-297):18, 1959.

William Falcon and The PyTorch Lightning team. Pytorch lightning, 3 2019. URL https://www.
pytorchlightning.ai.

Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pp. 1263–1272. PMLR,
2017.

12

https://arxiv.org/abs/2006.10204
https://arxiv.org/abs/2006.10204
https://www.wandb.com/
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://www.pytorchlightning.ai
https://www.pytorchlightning.ai


Published in Transactions on Machine Learning Research (07/2024)

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C
Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on generative adversarial
networks: Algorithms, theory, and applications. IEEE transactions on knowledge and data engineering,
35(4):3313–3332, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Yusuke Horiuchi, Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. Differentiable rendering-based
pose-conditioned human image generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3921–3925, 2021.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International conference on machine learning, pp. 448–456. PMLR, 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134, 2017.

Maor Ivgi, Yaniv Benny, Avichai Ben-David, Jonathan Berant, and Lior Wolf. Scene graph to image gen-
eration with contextualized object layout refinement. In 2021 IEEE International Conference on Image
Processing (ICIP), pp. 2428–2432. IEEE, 2021.

Yuming Jiang, Shuai Yang, Haonan Qju, Wayne Wu, Chen Change Loy, and Ziwei Liu. Text2human:
Text-driven controllable human image generation. ACM Transactions on Graphics (TOG), 41(4):1–11,
2022.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1219–1228, 2018.

Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Information
Processing Letters, 31(1):7–15, April 1989. doi: 10.1016/0020-0190(89)90102-6. URL https://doi.org/
10.1016/0020-0190(89)90102-6.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs go as deep as
CNNs? In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9267–9276,
2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars (eds.), Computer Vision – ECCV 2014, pp. 740–755, Cham, 2014. Springer
International Publishing. ISBN 978-3-319-10602-1.

13

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114


Published in Transactions on Machine Learning Research (07/2024)

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks. Advances
in neural information processing systems, 30, 2017.

Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang. Deepfashion: Powering robust clothes
recognition and retrieval with rich annotations. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?id=Skq89Scxx.

Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuytelaars, and Luc Van Gool. Pose guided person
image generation. Advances in neural information processing systems, 30, 2017.

Yifang Men, Yiming Mao, Yuning Jiang, Wei-Ying Ma, and Zhouhui Lian. Controllable person image
synthesis with attribute-decomposed gan. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 5084–5093, 2020.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for gener-
ative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Natalia Neverova, Riza Alp Guler, and Iasonas Kokkinos. Dense pose transfer. In Proceedings of the European
conference on computer vision (ECCV), pp. 123–138, 2018.

Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei Efros, and Richard Zhang.
Swapping autoencoder for deep image manipulation. Advances in Neural Information Processing Systems,
33:7198–7211, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Xuelin Qian, Yanwei Fu, Tao Xiang, Wenxuan Wang, Jie Qiu, Yang Wu, Yu-Gang Jiang, and Xiangyang Xue.
Pose-normalized image generation for person re-identification. In Proceedings of the European conference
on computer vision (ECCV), pp. 650–667, 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

Aliaksandr Siarohin, Enver Sangineto, Stéphane Lathuiliere, and Nicu Sebe. Deformable gans for pose-
based human image generation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3408–3416, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256–2265.
PMLR, 2015.

14

https://openreview.net/forum?id=Skq89Scxx


Published in Transactions on Machine Learning Research (07/2024)

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. URL
https://github.com/facebookresearch/hydra.

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation
from visual attributes. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 776–791. Springer, 2016.

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person re-
identification: A benchmark. In Computer Vision, IEEE International Conference on, 2015.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Computer Vision (ICCV), 2017 IEEE International Conference
on, 2017.

Zhen Zhu, Tengteng Huang, Baoguang Shi, Miao Yu, Bofei Wang, and Xiang Bai. Progressive pose attention
transfer for person image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2347–2356, 2019.

15

https://github.com/facebookresearch/hydra


Published in Transactions on Machine Learning Research (07/2024)

A Implementation Details

In the following we clarify some details on the settings used to train the models, on the specifics of some
models’ architectures, as well as further details on surrogate masks and the hardware and software we used
to run the experiments.

A.1 Hardware and Software

The code to reproduce the experiments and generate the PRO dataset is available online1. It is all written in
Python 3.9, leveraging Pytorch (Paszke et al., 2019) and Pytorch Lightning (Falcon & team, 2019) to define
models and data, while Hydra (Yadan, 2019) is used to manage the experiment configuration. Weights &
Biases (Biewald, 2020) is used to log and compare experiment results. We run all the experiments on an
NVIDIA RTX A5000 GPU equipped with 24GBs of VRAM.

A.2 Training settings

Each model is trained under the same settings and metrics are computed over three different runs each. In
particular, we use the Adam (Kingma & Ba, 2015) optimizer, with cosine annealing (Loshchilov & Hutter,
2017) learning rate schedule with period 300 for the PRO dataset and 150 for the Humans one, starting
learning rate 0.002 and final learning rate 0.00002. Models are trained up to 300 (PRO) or 150 (Humans)
epochs each, with a batch size of 64 and early stopping with patience 50 on the FID. Notice that the learning
rate for the parameters of the pre-trained mask generator used in GraPhOSE was reduced to 1

2 (PRO)
or 1

100 (Humans) with respect to the learning rate of the other parameters, in order to avoid catastrophic
foregetting at the beginning of training. This procedure could be enhanced by slowly raising the learning
rate of the pre-trained parameters back to the value of other parameters, as training epochs go by, with
the aim of favoring mask adaptation after the training has stabilized during the first epochs. The reduction
was much stronger for Humans in order to counter balance the heavy bias the dataset had towards poses of
people standing up with arms straight down. However, this reduction factor is indeed an hyper-parameter
that can be effectively used to allow for more or less deviation from the surrogate masks, depending on the
downstream task characteristics.

A.3 Surrogate Mask

Referring to Equation (7), we explicitly define Tij as

dij = ∥pi − pj∥2
2

4
αij = arctan 2 (pj − pi)

ta,ij = dij · cos (αij)2 + dij
a2 · sin (αij)2

tb,ij = dij · sin (αij)2 + dij
a2 · cos (αij)2

tc,ij =
(

dij − dij
a2

)
· sin (αij) · cos (αij)

Tij =
[
ta,ij tc,ij
tc,ij tb,ij

]
,

(12)

where vectors p denote node coordinates, arctan 2 is the element-wise 2-argument arctangent and a denotes
a parameter that regulates the scaling ratio of the second dimension w.r.t. the first one. In our experiments
a is set to 10.

1https://github.com/LucaButera/graphose_ocrrig

16

https://github.com/LucaButera/graphose_ocrrig


Published in Transactions on Machine Learning Research (07/2024)

Figure 10: Examples of objects present in the PRO dataset. From left to right: Pie, Scissors, Hand, Robotic
Arm, Hollow Polygon, Filled Polygon, Lattice

A.4 Random Graphs for Pre-Training

Referring to Section 5.1, we set the Barbasi-Albert model’s number of edges for new nodes parameter to 1
in 90% of the cases and to 2 in the remaining 10%, if the number of nodes is less than 10. For graphs with
more than 10 nodes, it is always set to 1. Erdos-Renyi model’s edge probability is set to exp

( 1
n

)
− 0.95,

where n is the number of nodes.

A.5 PRO Dataset

Our synthetic Pose-Representable Objects (PRO) dataset consists of square images (i.e., with same height
and width) rendered from random graphs that represent certain object’s parts and their color. A graph
representing an object has a fixed connectivity (i.e., adjacency matrix) and each node has color (from a pool
of possible ones) and class attributes together with a coordinate in 2D space. Coordinates and colors, for
each node in a sample, are generated randomly within reasonable boundaries (e.g. to stay within the image
or to comply to a specific structure, like that of a regular polygon). Figure 10 shows some examples of each
object type in our dataset; the graph that describes the object has the edges superimposed in white, while
the nodes are colored accordingly to their attributes. Images from the PRO dataset can contain multiple
objects, however we experimented with up to four objects for image, in order to keep their size reasonably
big. Regarding the objects’ structural constraints, we highlight the following properties: Pie has an inner
angle of up to 135◦, as the two pie tips have the same class and it would not be possible to discriminate which
part of the pie has to be filled otherwise. Pie nodes have always the same color. Scissors have the structural
constraint that the angle between the blades and the handles must be the same and be contained between
30◦ and 90◦. Also blades and handles must respectively have the same color. For the Hand object we have
constraints on the maximum relative angle between each phalanx, in order to avoid impossible orientations;
moreover, fingers must have a consistent color. Hands can uniformly be either "right" or "left" hands. The
Robotic Arm, similar to the Hand, has constraints on the relative angles between its parts, to similarly avoid
collapsed configurations. Additionally, the number of segments in the arm can vary between 3 and 7 and
their color must not change. Similarly, also the prongs must have a consistent coloring. Hollow Polygon and
Filled Polygon must always have all nodes of the same color and the presence of a "center" node determines if
the polygon is filled or not. We experiment with polygons up to 8 vertices. The Lattice is the only structure
with randomized connectivity, as nodes, uniformly distributed between 3 and 9, are sampled from a Poisson
Disk distribution (Cook, 1986) and are connected if their distance is less than 20% of the whole image width.
The lattice is also the only object in which each node has a random color and the segment connecting two
nodes is colored with a linear gradient going from one node’s color to the other’s.

Table 2 contains a summary of the classes for each object’s node. We would like to underline that the
presence of structure in the assignment of colors and classes to object nodes is not just to make them
visually consistent, but is fundamental in order to make it possible to reconstruct missing attributes by
using relational information and acquired knowledge on how said structure behaves.

Regarding dataset size, in our experiments we generated 100000 images. We employed 1000 of these as
validation set, and another 1000 as test set. Images were sampled so that the dataset contains a uniform
distribution of different objects. Moreover, also the number of objects that appear in an image at once,
between 1 and 4, is uniformly distributed across the dataset. Train, validation and test splits, while random,
preserved these uniform distributions.

17



Published in Transactions on Machine Learning Research (07/2024)

Table 2: Node classes for each object.

Object Classes
Pie center, tip

Scissors pivot, blade, handle
Hand wrist, finger

Robotic Arm base, arm, prong
Hollow Polygon vertex
Filled Polygon vertex, p_center

Lattice l_vertex

Table 3: The Encoder Φϕ.

Layer H-params Input Output
MultiEmbedding 8, cat X O

PoseConv 8, 8, 8 O∥Z, P , A O
BatchNorm O O

ReLU O O
PoseConv 8, 16, 16 O, P , A O

BatchNorm O O
ReLU O O

PoseConv 16, 32, 32 O, P , A O
Sigmoid O O

A.6 Humans Dataset

The Humans dataset consists of roughly 300000 images, coming from MPII Human Pose (Andriluka et al.,
2014), Deep Fashion (Liu et al., 2016) and Market 1501 (Zheng et al., 2015), which are all widely adopted
benchmarks for pose estimation and other human body related tasks. Out of these, around 3000 images,
were used for validation and an analogous size for testing. Train, validation, and test sets were partitioned
at random but the proportion of samples from the 3 original benchmarks was maintained. Within the
Humans task, the only object type is Person, while there are 14 node classes (left and right shoulders,
elbows, wrists, ankles, knees, hips plus base of the neck and top of the head). Note that, differently from
the PRO dataset, these real-world images contain different backgrounds and lighting conditions. We do not
address the explicit conditioning over these properties in our model, however these could be incorporated
via a vector representation that acts as a global graph attribute.

A.7 Architectures

In the following we give a more precise specification for the architecture we used in our experiments, while
specifying that these represent only a possible way of implementing our approach and deeper or more complex
architectures might be better suited for different tasks. Coherently with previous notation, Tables 3 to 7
describe the architectures of the different components in our framework; while Tables 8 and 9, for clarity,
describe recurring building blocks (i.e., used multiple times) inspired by Brock et al. (2019). In particular,
we clarify the meaning of some layers: MultiEmbedding simply denotes multiple embedding layers (Bengio
et al., 2000) with the same output size, used to obtain a continuous representation for different discrete node
attributes. The first hyperparameter refers to the embedding size, while the second describes the way in
which embeddings of different features are combined into a single embedding. In particular, cat refers to
concatenation along the feature dimension. The usage of embedding layers can be exchanged for multiple
linear layers, if the input features are already continuous. PoseConv is a layer that implements the function
described in Equation (3); by respectively naming its three hyperparameters i, h and o, we can further
specify that, in this implementation, gs and gl are linear layers with input size i + 2 (2 is the size of pi)

18



Published in Transactions on Machine Learning Research (07/2024)

Table 4: The FNN-based Encoder Ψψ.

Layer H-params Input Output
MultiEmbedding 8, cat X O
FNNPoseConv 8, 8 O∥Z, P , A O

BatchNorm O O
ReLU O O

FNNPoseConv 8, 16 O, P , A O
BatchNorm O O

ReLU O O
FNNPoseConv 16, 32 O, P , A O

Sigmoid O O

Table 5: The Mask Generator µθ.

Layer H-params Input Output
PoseConv 3, 8, 8 P ∥Z, P , A O

BatchNorm O O
ReLU O O

PoseConv 8, 32, 32 O, P , A O
BatchNorm O O

ReLU O O
PoseConv 32, 128, 128 O, P , A O
Reshape 128, [8, 4, 4] O O

PoseConv2D 8, 16 O, A O
ConvBlock2D 16, 32, 2 O O
PoseConv2D 32, 16 O, A O
PoseConv2D 16, 8 O, A O

BatchNorm2D O O
ReLU O O

Conv2D 8, 1 O O
Sigmoid O O

and output size h, while gg is a linear layer with input size h and output size o. Analogously, PoseConv2D
refers to a layer implementing Equation (5), where go is a ConvBlock2D with in = 2 · i, out = o and up = 2,
followed by f (H) = σ (H) ⊙ H. gs is a times two upsampling followed by a 1 × 1 2D convolution with 0
padding, input size i and output size o and, finally, gg is also a 1 × 1 2D convolution with 0 padding and
both input and output size set to o. In this case i is the first hyperparameter of PoseConv2D, while o is the
second. FNNPoseConv is the FNN equivalent of PoseConv, computing

h′
i = gs (hi) + gnr (hi∥pi) , (13)

where, naming the first hyperparameter i and the second o, gnr and gs are both linear layers, the former with
input size i + 2 and output size o and the latter with input size i and output size o. Note that, when using
the FNN Conditioner, the PoseConv layers of the discriminator are swapped for equivalent FNNPoseConv
ones. Furthermore, note that, unless differently stated, all Conv2D operations use a kernel of size 3 × 3 with
stride and padding set to 1. All layer weights are normalized through spectral normalization (Miyato et al.,
2018), Upsample operations are implemented through bilinear interpolation, while Downsample ones use 2D
average pooling. For completeness, we clarify that the Sum(H,W) operation in Table 7, refers to summing
the tensor O2 ∈ RB×C×H×W over the last two dimensions, thus obtaining the matrix O2 ∈ RB×C .

Tables 10 and 11 show, respectively, the architectures of the downstream generator and discriminator,
used for the human dataset. In such case the GraPhOSE architecture remained the same, although the

19



Published in Transactions on Machine Learning Research (07/2024)

Table 6: The Downstream Generator.

Layer H-params Input Output
ConvBlock2D 32, 32, 1 L O
ConvBlock2D 32, 32, 1 O O
ConvBlock2D 32, 16, 1 O O
ConvBlock2D 16, 16, 1 O O
ConvBlock2D 16, 8, 1 O O
BatchNorm2D O O

ReLU O O
Conv2D 8, 3 O O

Tanh O O

Table 7: The Downstream Discriminator.

Layer H-params Input Output
MultiEmbedding 8, cat X O1

PoseConv 8, 8, 8 O1, P , A O1
BatchNorm O1 O1

ReLU O1 O1
PoseConv 8, 16, 16 O1, P , A O1

BatchNorm O1 O1
ReLU O1 O1

PoseConv 16, 32, 32 O1, P , A O1
DConvBlock2D 3, 8, 2 I O2
DConvBlock2D 8, 16, 2 O2 O2
DConvBlock2D 16, 16, 2 O2 O2
DConvBlock2D 16, 32, 2 O2 O2
DConvBlock2D 32, 32, 2 O2 O2

ReLU O2 O2
Sum H, W O2 O2

Linear 64, 32 O1∥O2 O3
ReLU O3 O3
Linear 32, 1 O3 O3

number of hidden features was increased by a factor of two and µθ dropped the ConvBlock2D, as the target
images had shape 64 × 64, hence no further upsampling was required. The main differences are present
at the discriminator and generator level, as for this more complex task we borrowed the building blocks of
BigGAN (Brock et al., 2019). In particular, DConvBlock2D∗ has a slightly different architecture in which the
first Conv2D layer outputs 2 ·out features and is followed by a ReLU and another Conv2D layer that outputs
out features. ConvBlock2D∗, instead, takes as additional input the downsampled layout mask L∗, which
goes through a Conv2D layer that outputs out features; these are concatenated to the output of the Conv2D
on the standard input and go through a second Conv2D(2 · out, out) layer, before the skip connection. This
serves the purpose of conditioning the generative process at different scales, as, in this case, the downstream
generator starts from a 1 × 4 × 4 feature map, Z, which is upsampled at each step, instead of directly using
the layout mask and always keeping the same feature map size. For completeness, Z represents additional
latent conditioning, required to account for the background, and is obtained by reshaping the output of a
linear layer with output size 16, which takes as input a vector of normally distributed noise of size 8.

Table 12 summarizes the parameter counts for GraPhOSE and the baselines, differentiating between the
smaller versions used for the PRO dataset and the larger ones used for Humans.

20



Published in Transactions on Machine Learning Research (07/2024)

Table 8: The ConvBlock2D (in, out, up).

Layer H-params Input Output
BatchNorm H O1

ReLU O1 O1
Upsample up O1 O1
Upsample up H O2
Conv2D in, out O1 O1
Conv2D in, out O2 O2

Sum O1, O2 O1 + O2

Table 9: The DConvBlock2D (in, out, down).

Layer H-params Input Output
ReLU H O1

Conv2D in, out O1 O1
Downsample down O1 O1

Conv2D in, out H O2
Downsample down O2 O2

Sum O1, O2 O1 + O2

A.8 Metrics

We chose Frechet Inception Distance (Heusel et al., 2017) and Inception Score (Salimans et al., 2016) as
metrics for our generative models as both are commonly used to asses generation quality. However, only
FID is effectively useful in assessing how much the generated samples resemble those coming from the real
distribution, as this metric compares the similarity between the distribution of images coming from the
generator and those coming from the dataset. Inception Score is limited to evaluation of some properties of
the generated images distribution, hence it is less useful as a metric of comparison between models because
it can only tell us if the model is capable of generating images that are sufficiently distinct and recognizable,
even though they might actually be completely different from those of the real distribution. In other words,
IS is only influenced by the capability of the generative model of producing samples that can be distinctively
allocated to a class and that, at the same time, are diverse within each class. In our setting, the differences
between GraPhose and each baseline are not expected to impact such properties, which are mostly tied to the
downstream model, which is always the same for each task. This makes the resulting Inception Score quite
uninformative as a way of comparing the various models; nonetheless, it highlights that learning the object’s
relational masks does not indeed harm the appeal of the generated samples. For the PRO dataset we also
reported the Structural Similarity Index Score (SSIM) (Wang et al., 2004). This metric is used as a measure
of image reconstruction accuracy, hence it is suitable to evaluate generation quality only in situations where
the input to the model uniquely and completely describes the image to be generated. That is the case for
the PRO task, as there is a deterministic mapping between the graph and the resulting image. However,
that is not the case for the Humans dataset, in which the input graph just describes the person’s pose but
carries no information regarding the clothing or the background, hence the reason for not employing such
metric in that scenario.

B Additional results

The following is a collection of additional results, comprising further examples of what already discussed in
the main paper, and also images generated by training models with slight architectural changes.

21



Published in Transactions on Machine Learning Research (07/2024)

Table 10: The Downstream Generator used for the human dataset.

Layer H-params Input Output
ConvBlock2D∗ 1, 512, 2 Z, L∗ O
ConvBlock2D∗ 512, 256, 2 O, L∗ O
ConvBlock2D∗ 256, 128, 2 O, L∗ O
ConvBlock2D∗ 128, 64, 2 O, L∗ O

Attention 64 O O
ConvBlock2D∗ 64, 32, 2 O, L∗ O
BatchNorm2D O O

ReLU O O
Conv2D 32, 3 O O

Tanh O O

Table 11: The Downstream Discriminator used for the human dataset.

Layer H-params Input Output
MultiEmbedding 8, cat X O1

PoseConv 8, 16, 16 O1, P , A O1
BatchNorm O1 O1

ReLU O1 O1
PoseConv 16, 32, 32 O1, P , A O1

BatchNorm O1 O1
ReLU O1 O1

PoseConv 32, 64, 64 O1, P , A O1
DConvBlock2D∗ 3, 32, 2 I O2

Attention 32 O2 O2
DConvBlock2D∗ 32, 64, 2 O2 O2
DConvBlock2D∗ 64, 128, 2 O2 O2
DConvBlock2D∗ 128, 256, 2 O2 O2
DConvBlock2D∗ 256, 512, 2 O2 O2

ReLU O2 O2
Sum H, W O2 O2

Linear 576, 512 O1∥O2 O3
ReLU O3 O3
Linear 512, 1 O3 O3

B.1 Missing attributes

As discussed, our formulation allows for sub-conditioning the pose graph, i.e., having nodes without any
semantic attribute assigned, in order to let the generative process decide how to treat them. Figure 11 shows
some examples of this behavior, in which white nodes represent nodes without any semantic attribute. We
can see that the generation is mostly consistent when the attributes can be recovered from neighbouring
nodes. However, in cases in which the information needs to be reconstructed through multiple hops (e.g.,
the scissors handle) the model uses the nearest color instead. This might be the result of biases in the data.
Mind that we use the term reconstruction loosely here, as the model is trained with a generative objective,
hence we might expect different results if we train it on a strict reconstruction task. Figure 12, instead,
shows what happens when we have a growing chain of missing attributes. We can see that semantics are
coherently filled in, by GraPhOSE, up to a certain number of subsequent masked nodes. This is, in part,
due to architectural constraints, as the number of hops information can traverse depends on the number of
message passing steps. On the other hand, the usage of graph convolution operators that try to prevent

22



Published in Transactions on Machine Learning Research (07/2024)

Table 12: GraPhOSE and baselines approximate parameter count, for the two tasks, divided between con-
ditioning, downstream generator and discriminator.

Models PRO Humans
Conditioning Generator Discriminator Conditioning Generator Discriminator

FNN Conditioning 2K 27K 23K 6K 8.6M 5.2M
GNN Conditioning 5K 27K 26K 17K 8.6M 5.2M
GraPhOSE 63K 27K 26K 2.4M 8.6M 5.2M

Figure 11: Sample images generated from GraPhOSE in presence of missing semantic attributes: from left to
right, Hand, Robotic Arm, Filled Polygon and Scissors. White nodes have their semantic attributes masked,
while others are colored according to their color attribute.

over-smoothing might also play a role in this. However, notice we did not train our model to specifically
address high chances of partial conditioning, i.e., missing attributes; different results can be expected if
we purposefully train it on datasets with such characteristics. Even though, in such experiments, the color
relationships between object components are rather simple, we think these results, tied with the architectural
constraints involved, can be a promising basis for further, and more specifically aimed, experimentation.

B.2 Mask adaptation

Figure 13 shows additional examples of how the pre-learned masks consistently adapt to the downstream
task during the end-to-end training, while figure 14 shows how directly training on the downstream task
leads to masks that are not visually meaningful. This is particularly severe for the case of human poses,
where the dataset is heavily biased towards a few particularly common ones.

Figure 15 shows further examples of how node-mask locality is preserved after downstream training, and
adapted to the specifics of the objects in the task. We can notice that the Pie (e) is the only object for which
this locality seems to be lost, however it is not surprising as its graph representation diameter is only 2, with
just 3 nodes, hence it is harder to avoid over-smoothing. For graphs with larger diameter and/or number of
nodes, we see that locality is retained.

23



Published in Transactions on Machine Learning Research (07/2024)

Figure 12: Example of how GraPhOSE behaves, with a graph with n nodes, in presence of missing attributes,
as the chain of subsequent ones increases in length from 0 (left) to n − 1 (right). White nodes represent
missing attributes.

Figure 13: Random sample of humans masks generated by our model after pre-training (b) and after subse-
quent training on the downstream task (c). The top row (a) shows the corresponding input graph.

Figure 14: Samples of humans masks generated by GraPhOSE’s mask generator after end-to-end training
without surrogate mask pre-training. The input graph is superimposed in blue (nodes) and red (edges).

24



Published in Transactions on Machine Learning Research (07/2024)

Figure 15: Samples of individual node masks generated from GraPhOSE. The first column is the cumulative
mask for the whole input graph (superimposed with nodes in blue and edges in red). Individual node masks
have the reference node highlighted in blue. Hand masks (a) are only a sub-sample for ease of visualization.

25


	Introduction
	Preliminaries
	Graph-based Object-Centric Generation
	Overview
	Implementing the encoder Phi phi
	Implementing the mask generator Mu theta
	Surrogate Task

	Related Works
	Experiments
	Surrogate Pre-Training
	Baselines
	Datasets

	Results
	Task specific mask adaptation
	Structure and style sensitivity analysis

	Conclusions and Future Work
	Implementation Details
	Hardware and Software
	Training settings
	Surrogate Mask
	Random Graphs for Pre-Training
	PRO Dataset
	Humans Dataset
	Architectures
	Metrics

	Additional results
	Missing attributes
	Mask adaptation


