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Abstract

This work focuses on a new challenging prob-001
lem, open-world multi-label text classification002
under extremely weak supervision, where only003
raw documents are provided without any labels004
or ground-truth label space. The multi-label na-005
ture makes the existing (hard-)clustering-based006
methods ineffective. We observe that (1) most007
documents have a dominant class covering the008
majority of content and (2) long-tail labels009
would appear in some documents as dominant010
class. Following these observations, we pro-011
pose a novel method, X-MLClass, to discover012
a comprehensive label space and construct a013
multi-label classifier. Specifically, we start014
with a reasonable subset of all the documents015
and prompt a large language model (LLM) for016
their most dominant keyphrases to obtain an017
initial set of labels. We then leverage a zero-018
shot multi-label classifier, identifying the doc-019
uments with lower predicted scores and revis-020
iting the keyphrases in those documents for021
more long-tail labels. Later, we include these022
long-tail labels into the label set and reiterate023
this process. Extensive experiments demon-024
strate that X-MLClass exhibits a remarkable025
40% increase on the AAPD dataset in ground-026
truth label space coverage compared to tradi-027
tional topic modeling methods. Additionally,028
it achieves higher accuracy in zero-shot multi-029
label text classification.030

1 Introduction031

Multi-label text classification (MLTC) aims to as-032

sign one or more labels to each input document in033

the corpus. While the traditional methods work in034

a fully supervised setting, recent works start to pay035

more attention to weakly supervised settings using036

limited labeled data (Liu et al., 2022) or even in037

the absence of any labeled data (Shen et al., 2021;038

Xiong et al., 2021). The state-of-the-art zero-shot039

(single-label) text classification methods (Pàmies040

et al., 2023; Gera et al., 2022) follow the textual041

entailment framework by comparing the document 042

and the label in a pairwise manner. However, all 043

these methods still require a complete list of class 044

names, which might be challenging even for do- 045

main experts to provide beforehand given the mas- 046

sive number of documents. 047

This work focuses on a new challenging problem, 048

open-world multi-label text classification under ex- 049

tremely weak supervision, where only raw docu- 050

ments are provided without any labels or ground- 051

truth label space. The most related problems are 052

text clustering (Zhang et al., 2023; Wang et al., 053

2023b) and topic modeling (Grootendorst, 2022; 054

Pham et al., 2023), where those methods are typ- 055

ically only capable of assigning a single label to 056

each document. The multi-label nature makes the 057

existing (hard-)clustering-based methods ineffec- 058

tive. 059

We observe that (1) most documents have a 060

dominant class covering the majority of content 061

and (2) long-tail labels would appear as the dom- 062

inant class in some documents. Our observations 063

are confirmed by experiments based on 5 bench- 064

mark datasets: AAPD (Yang et al., 2018), Reuters- 065

21578 (Debole and Sebastiani, 2005), RCV1- 066

V2 (Lewis et al., 2004), DBPedia-298 (Lehmann 067

et al., 2015), and Amazon-531 (McAuley and 068

Leskovec, 2013). Specifically, we prompt a large 069

language model (LLM) to check if any of the 070

ground truth labels of a given document is domi- 071

nant, i.e., covering more than 50% of the content; 072

and if it exists, which one is the dominant label. 1 073

After checking two thousand randomly sampled 074

documents, the LLM believes that more than 90% 075

of documents contain a dominant class, and human 076

spot-checking results agree with this too. More- 077

over, in every dataset, inspecting all the labels, the 078

LLM believes that 100% of them are dominant 079

classes of at least one document. 080

1The specific prompt can be found in Appendix A
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Figure 1: An overview of our X-MLClass framework.

Following these observations, we propose a081

novel method, X-MLClass, to discover a pragmatic082

label space and construct a multi-label text classifi-083

cation classifier with the assistance of a customer-084

sized LLM (i.e., llama-2-13b-chat in our experi-085

ments), as illustrated in Figure 1.086

The first step in X-MLClass is to construct a087

high-quality label space. To balance the label cover-088

age and the cost of LLM, we work on a reasonably089

large subset of all the documents. For each docu-090

ment, we partition it into chunks to better align with091

the context length of LLM while ensuring that each092

chunk contains a single topic, and then prompt the093

LLM to generate the most dominant keyphrases094

for each chunk. This process also anticipates a095

higher chance of having only one label per chunk.096

As previous LLM-based text clustering work has097

suggested (Wang et al., 2023b,a), there are very098

likely some semantically redundant yet lexically099

different keyphrases among the generated ones. We100

cluster these keyphrases, and within every cluster,101

we pull together the corresponding chunks of the102

keyphrases closest to the cluster center to prompt103

the LLM once again, generating one single label104

for each cluster. We further eliminate labels exhibit-105

ing extremely high similarity scores, and for those106

borderline similar label pairs, a little human effort107

becomes integral. Combining all these survived108

labels constitutes an initial label space.109

We then apply the state-of-the-art textual110

entailment-based classification methods (Pàmies111

et al., 2023; Gera et al., 2022) to construct a classi-112

fier to re-access the documents and identify long-113

tail labels. Specifically, we query every text chunk114

against all the labels for the entailment score. We115

identify the chunks with small top predicted scores,116

indicating that they lack a dominant class. There- 117

fore, we revisit the keyphrases generated by these 118

chunks to unveil more long-tail labels. We se- 119

lectively choose keyphrases that exhibit a modest 120

presence within the entire keyphrase set, but are 121

notably absent in the original label space. We in- 122

clude these new keyphrases in the label set and 123

repeat re-accessing documents with this newly up- 124

dated label set for a fixed number of iterations. 125

A caveat is that to ensure wider coverage of the 126

long-tail keyphrases, we hold back a portion of 127

high-popularity labels in the label set each itera- 128

tion. These high-popularity labels are included 129

back after all iterations. 130

Extensive experiments on 5 benchmark datasets 131

reveal the superiority of X-MLClass outperform- 132

ing all compared methods. Remarkably, compared 133

with baselines, X-MLClass achieves a significant 134

enhancement of 40% and 25% in ground-truth la- 135

bel space coverage on the AAPD and RCV1-V2 136

datasets, respectively. Furthermore, it achieves 137

higher accuracy in zero-shot multi-label text clas- 138

sification, surpassing the top-ranking models on 139

HuggingFace across all datasets. 140

Our contributions are summarized as: 141

• We attack a new, challenging problem, open- 142

world MLTC with extremely weak supervision, 143

where only raw documents are available, without 144

any labeled data or ground-truth label space. 145

• We propose a novel framework, X-MLClass, 146

based on two intuitive, empirically confirmed 147

observations. X-MLClass discovers the label 148

space and builds an MLTC classifier with the as- 149

sistance of LLM. The only required human effort 150

is to resolve a few pairs of candidate labels with 151

borderline similarity scores. 152
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• X-MLClass achieves a significantly higher cover-153

age score compared to traditional topic modeling154

methods, along with superior end-to-end classifi-155

cation accuracy.156

Reproducibility. We will release the code upon157

acceptance.158

2 Related Work159

Topic Modeling: Topic modeling has been160

widely adopted for discovering latent thematic161

structures within collections of text documents.162

Traditional models, such as Latent Dirichlet Allo-163

cation (LDA) (Blei et al., 2003) and Non-Negative164

Matrix Factorization (NMF) (Févotte and Idier,165

2011) represent documents as mixtures of latent166

topics using bag-of-words representations, but167

they often neglect the semantic relationships be-168

tween words. Addressing this limitation, new169

techniques like Top2Vec (Angelov, 2020) and170

BERTopic (Grootendorst, 2022) build primarily on171

clustering embeddings, demonstrating the potential172

of embedding-based topic modeling approaches.173

Another recent method, TopicGPT (Pham et al.,174

2023), takes a different approach by prompting175

large language models for topic generation, align-176

ing more closely with ground truth labels. However,177

these existing methods typically provide a single178

topic for each document, which poses challenges179

when extending them to multi-label scenarios.180

Multi-label Text Classification: Numerous ap-181

proaches have been proposed to tackle the complex-182

ities of Multi-Label Text Classification (MLTC)183

problems. Bhatia and Jain (Bhatia et al., 2015)184

employ embedding-based methods, leveraging the185

power of embeddings to train individual classifiers186

for each label. Later, there has been a notable surge187

in the application of Neural Network-based mod-188

els to address MLTC tasks. For instance, XML-189

CNN (Liu et al., 2017) uses a Convolutional Neu-190

ral Network (CNN) to learn text representations,191

demonstrating improvements in MLTC accuracy.192

It is important to note that all these methods rely193

on labeled data, restricting their applicability in194

scenarios where labeled information is unavailable.195

Recent works have started to tackle MLTC prob-196

lems using a small amount of labeled data or even197

with no labels at all. For example, Shen et al. (2021)198

achieves impressive results by using only class199

names and taxonomies. Rios and Kavuluru (2018)200

train a neural architecture with both true labels and201

their natural language descriptor. However, these202

methods still require access to the ground-truth la- 203

bel space, at the very least. 204

Open-world Single-label Text Classification: 205

In recent developments, there has been a surge 206

in open-world models utilizing LLM prompts to 207

derive labels without relying on ground-truth la- 208

bel spaces. Notably, GOALEX (Wang et al., 209

2023b) generates labels for text samples based on 210

users’ specific goals, demonstrating a goal-driven 211

approach. Another noteworthy model, CLUSTER- 212

LLM (Zhang et al., 2023), leverages API-based 213

LLMs to guide text clustering, resulting in im- 214

proved performance. The approach of intent dis- 215

covery (Zhang et al., 2022), aiming to infer latent 216

intents from a document set, has proven effective 217

in generating label spaces. A newly introduced 218

method, IDAS (De Raedt et al., 2023), prompts 219

LLMs to succinctly summarize utterances, enhanc- 220

ing intent prediction. However, akin to topic mod- 221

eling methods, all these approaches are currently 222

limited to assigning only a single label to each doc- 223

ument. 224

3 Problem Formulation 225

Given an unlabeled corpus D = {D1, D2, . . . , 226

Dn}, where Di ∈ D represents a document in 227

the collection. Our task is to (1) identify class 228

names C = {Cj}Kj=1, where K is the unknown 229

number of classes, and (2) build a text classifier 230

f(·) to map any raw document Di to its target la- 231

bels Yi = {yji }
p
j=1, where yji is the single label 232

name and p is the number of target labels for Di. 233

To the best of our knowledge, this is the first 234

work that explores open-world multi-label text clas- 235

sification without the presence of a ground-truth 236

label space. This is a very challenging problem, so 237

we assume that human experts are willing to de- 238

vote some very limited effort, i.e., extremely weak 239

supervision. For example, the human expert shall 240

be able to annotate tens of label pairs and confirm 241

whether they appear equivalent or not. We also 242

assume that human experts possess insights into 243

the magnitude of the label space based on dataset 244

characteristics. For instance, news datasets typi- 245

cally contain a broader range of classes compared 246

to datasets consisting of computer science paper 247

abstracts. 248

4 Our X-MLClass Framework 249

X-MLClass consists of three key steps. First, every 250

document is split into chunks and transformed into 251
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keyphrases by prompting an LLM to construct an252

initial label space through clustering. We further253

assign labels to each raw document Di using a cus-254

tom keyphrase-chunk zero-shot textual entailment255

classifier. Finally, we iteratively enhance the label256

space by incorporating additional long-tail labels.257

The framework overview is depicted in Figure 1,258

and the below sections provide a detailed discus-259

sion of each step.260

4.1 Initial Label Space Construction261

The first step in X-MLClass is to construct a high-262

quality label space. To balance label coverage and263

the computational cost of LLM, X-MLClass is ap-264

plied to a reasonably large subset of the corpus D,265

denoted as Dsub ⊂ D.266

Dominant Keyphrase Generation: For each267

document, we partition it into chunks to better268

align with the context length of LLM, and then269

prompt for the most dominant keyphrases per270

chunk. Specifically, each document Di ∈ Dsub271

is segmented into chunks {S1
i , S

2
i , . . . }, with a pre-272

defined chunk size of 50 tokens. This choice is273

also made to ensure each chunk primarily contains274

one label, allowing us to leverage state-of-the-art275

textual entailment-based single-label text classifi-276

cation methods for every chunk later. To generate277

keyphrases for each chunk Sj
i , we employ an LLM278

and provide it with an instruction such as “find at279

most three labels for this document”. The LLM280

then refines keyphrases pji from the chunk Sj
i , serv-281

ing as potential class candidates for subsequent282

stages of our X-MLClass model. Keyphrases gen-283

erated from each chunk collectively form a set P .284

Keyphrase Clustering: As previous LLM-based285

text clustering work has suggested (Wang et al.,286

2023b,a), there are very likely some semanti-287

cally redundant yet lexically different keyphrases288

among the generated ones. Therefore it is nec-289

essary to cluster the keyphrases at the seman-290

tic level. Specifically, we employ the state-of-291

the-art instruction-tuned text embedding model,292

instructor-large (Su et al., 2022), to generate293

vector representations for all the keyphrases in P .294

Traditional clustering methods face challenges in295

high-dimensional spaces (Aggarwal et al., 2001;296

Wang et al., 2020b), primarily attributed to varia-297

tions in distance measurements. To address this298

limitation, we apply the dimensionality reduction299

method to trim down the embedding dimension.300

Particularly, we choose UMAP (McInnes et al.,301

2018) because it can effectively balance local and 302

global structures, demonstrating improved perfor- 303

mance in handling high-dimensional data. Finally, 304

we obtain the clusters using the Gaussian Mixture 305

Model (GMM) in the projected low-dimensional 306

space, renowned for its enhanced flexibility in cap- 307

turing intricate data distributions. 308

Number of Clusters: The number of clusters is 309

determined by considering both the insights of hu- 310

man experts regarding the magnitude of the label 311

space and non-parametric clustering methods such 312

as BERTopic (Grootendorst, 2022), a highly effec- 313

tive topic modeling method for generating topics 314

in a corpus. For example, one can train BERTopic 315

on the keyphrase set P to obtain the topic number 316

K0, serving as the hyper-parameter to GMM. 317

Redundant Keyphrase Removal: Within every 318

cluster, we focus on the three keyphrases closest 319

to the cluster center to synthesize one single label. 320

Instead of directly employing the keyphrases for 321

label space creation, we trace back to the original 322

chunks responsible for generating these keyphrases. 323

Concatenating these three chunks for each cluster 324

results in a new document S′. K0 documents col- 325

lectively form a new corpus S ′ = {S′
j}K

0

j=1. For 326

each S
′
j , we prompt LLM with an instruction “find 327

one label for this document”, thereby yielding the 328

initial K0 classes {Cj}K
0

j=1. 329

This initial label space may contain redundant 330

labels and sometimes requires expert assistance for 331

refinement. Sentence-Transformer models (Wang 332

et al., 2020a) are used to identify distinct pairs of 333

classes with cosine similarity ≥ 0.75. The first 334

class in each identified pair is then removed, rep- 335

resenting a straightforward approach to eliminate 336

redundant labels. This method proves effective in 337

creating a robust label space {Cj}K
1

j=1, and while 338

human involvement can enhance the refinement 339

process especially for those borderline similar la- 340

bel pairs, it is not mandatory. Further details on 341

human involvement in the label space refinement 342

are provided in appendix B. 343

4.2 Textual Entailment-based Classifier 344

Given a label space, we build a zero-shot textual 345

entailment-based classifier (Yin et al., 2019). As 346

our chunks are short enough (i.e., only 50 tokens), 347

there is typically only one label per chunk. There- 348

fore, the state-of-the-art zero-shot single-label text 349

classification methods (Pàmies et al., 2023; Gera 350
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et al., 2022; He et al., 2021) are all applicable here.351

Specifically, we compare every text chunk against352

all the labels using a textual entailment model. For353

each chunk s ∈ S and each class name c ∈ C,354

we derive Es,c representing the confidence for the355

chunk s entailing the hypothesis “This example is356

constructed for c”. Similarly, we obtain Ep,c for357

each keyphrase p ∈ P representing the confidence358

for the phrase p entailing the same hypothesis as359

above. Subsequently, for each example in S, we360

identify the label c with the top entailment score,361

denoted by Es,c > Es,c′ ,∀c′ ̸= c.362

Finally, we find all s and p belong to the same363

document Di and group them into a new set Q.364

For each instance in Q, we rank the label candi-365

dates according to their entailment scores. We iden-366

tify the labels that occur most frequently with the367

same ranking as the predicted labels for document368

Di, progressing from the top-ranking to the lowest-369

ranking order.370

4.3 Label Space Improvement371

We further identify the chunks with lower top pre-372

dicted scores — these chunks lack a dominant class.373

We rank Es,c in ascending order and select a subset374

Ssub ⊂ S with relatively lower entailment scores.375

Lower entailment scores suggest a potential asso-376

ciation with a tail class, not included in our la-377

bel space. Considering the possibility of multiple378

chunks belonging to the same document Di, we re-379

fine Ssub by selecting s only if Es′c < 0.6, where380

∀s′ ∈ Di. For each s ∈ Ssub, we examine all381

keyphrases in the corresponding p. If a keyphrase382

is absent in the label space but occurs more than 15383

times in P , we incorporate it into the label space C.384

Additionally, we compute the frequency of each385

label c with the top entailment score. Labels with386

lower frequency are removed from the label space387

C. The high-frequency labels, secured as a part of388

the label space, are temporarily excluded from the389

later label space improvement process. By itera-390

tively training the classifier based on the updated391

label space, the label set gets finalized by adding392

more long-tail labels. In the concluding stages, all393

high-frequency labels are reintroduced, culminat-394

ing in the formation of ultimate label space.395

5 Experiments396

We assess the performance of X-MLClass through397

two primary criteria: label space quality and zero-398

shot MLTC accuracy. Our evaluation involves a399

Table 1: Dataset statistics.

Dataset # Train # Text # Class

AAPD 53,840 2,000 54
Reuters 7,769 3,019 90
RCV1-V2 643,531 160,883 103
DBPedia 196,665 49,167 298
Amazon 29,487 19,685 531

comparison of our model’s label coverage with that 400

of four topic modeling methods. In terms of end- 401

to-end classification accuracy, we test our method 402

with several top-ranking models available on Hug- 403

gingFace. The subsequent section provides compre- 404

hensive details on the datasets, baseline methods, 405

evaluation metrics, implementation specifics, and 406

performance analysis. 407

5.1 Datasets 408

We perform experiments on five benchmark 409

datasets for multi-label text classification across 410

various domains: AAPD, Reuters-21578, RCV1- 411

V2, DBPedia-298, and Amazon-531. Detailed 412

information about each dataset is provided in Ap- 413

pendix C. Table 1 shows that the number of labels 414

in these datasets varies from tens to hundreds. All 415

the methods will be applied on the documents from 416

the training set, and then evaluated on the test set. 417

5.2 Compared Methods 418

We compare our X-MLClass framework with two 419

types of methods. 420

Topic Modeling: We select four representative 421

topic modeling methods with distinct paradigms. 422

These methods include Latent Dirichlet Allocation 423

(LDA) (Blei et al., 2003), Non-Negative Matrix 424

Factorization (NMF) (Févotte and Idier, 2011), 425

Topic2Vec (Angelov, 2020), and BERTopic (Groo- 426

tendorst, 2022). LDA and NMF serve as foun- 427

dational algorithms, extracting topics based on 428

word frequency within documents. NMF decom- 429

poses the TF-IDF matrix to obtain latent topics. 430

Topic2Vec and BERTopic represent more recent ad- 431

vancements with a focus on semantics. Topic2Vec 432

extends the Word2Vec model to embed topics, fa- 433

cilitating the exploration of semantic relationships 434

between documents. Meanwhile, BERTopic lever- 435

ages BERT embeddings and the HDBSCAN clus- 436

tering algorithm to identify topics. 437

Zero-shot Text Classification: State-of-the-art 438

zero-shot text classifiers typically follow textual 439

entailment (Yin et al., 2019; Pàmies et al., 2023). 440

Therefore, we choose three entailment models: (1) 441
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Table 2: Label Space Coverage Comparison. Top2Vec
and BERTopic generate topics with multiple keywords.
The predicted label is determined by selecting the top-
ranking keyword based on each model’s setting.

Model AAPD Reuters RCV1-V2 DBPedia Amazon

LDA 29.17 14.44 10.67 21.81 15.44
NMF 22.92 15.56 9.71 30.20 15.82
Top2Vec 33.33 17.77 21.35 31.87 16.38
BERTopic 25.00 20.00 7.76 33.89 18.08
X-MLClass 67.35 25.55 46.60 53.02 21.66

bart-large-mnli exclusively trained on the MNLI442

dataset, (2) deberta-v3-large-all trained on 33443

datasets reformatted into the universal NLI format,444

and (3) xlm-roberta-large-xnli fine-tuned on the445

XNLI dataset. We apply these models using the446

HuggingFace Transformer pipeline, with a hypoth-447

esis template “This example is {label}”.448

5.3 Evaluation Metrics449

Label Space Quality: We employ an automatic450

evaluation metric, coverage, to quantify the align-451

ment between the ground-truth (GT) label space452

and the predicted label space. A ground-truth la-453

bel is deemed "covered" if it can be matched to a454

predicted label with a similarity score surpassing a455

predefined threshold. For this study, we compute456

the similarity scores using the all-MiniLM-L6-v2457

model from HuggingFace Sentence-Transformers.458

In our evaluation, we set this threshold to 0.6 as it459

aligns the best with GPT4 and human evaluation on460

whether the predicted label has the same meaning461

as the ground-truth label.462

The coverage score is computed as follows:463

Coverage =
1

N
G
(
I
(
Cpred, CGT))464

Here N is the total number of topics in the465

GT label set, CGT(Cpred) denotes the set of466

ground-truth (predicted) labels. I is an indicator467

that returns 1 if the similarity score between the468

GT labels and predicted labels for the documents469

exceeds the threshold (0.6). G represents the bipar-470

tite graph maximum match algorithm.471

Classification Accuracy: Because of the large472

label space, multi-label text classification typically473

employs the rank-based evaluation metric precision474

at k, i.e., P@k. It captures the percentage of true475

labels among top-k score labels and is used for476

performance comparison. P@k can be defined as:477

P@k =
1

N

N∑
i=1

Crk
i ∩ Li

min(k, |Li|)
478

where Li and Ci denote the true labels and pre- 479

dicted labels for document Di, |Li| is the number 480

of true labels for Di, and rk is the k-th highest pre- 481

dicted label. We follow the same similarity thresh- 482

old in the coverage score to decide if the true label 483

and the predicted label are the same. 484

5.4 Implementation Details 485

We implement X-MLClass using the 486

llama-2-13b-chat LLM. The chunk size is 487

uniformly set to 50 across all datasets, ensuring 488

a consistent approach. To maintain precision, we 489

introduce a human-in-the-loop element. Specifi- 490

cally, we request human input to determine the 491

word count constituting a single label. To optimize 492

efficiency, a small subset is selected, aiming for a 493

task completion time of less than 10 minutes per 494

human contributor. 495

In configuring LDA and NMF, we align the num- 496

ber of topics with our approach. For Top2Vec and 497

BERTopic, which employ HDBSCAN as a cluster- 498

ing method, specifying an exact number of topics is 499

not feasible. However, to maintain consistency, we 500

ensure that these methods generate clusters neither 501

exceeding nor falling below 10 in comparison to 502

our label number. 503

As human experts believe the label space mag- 504

nitude of the AAPD, Reuters-21578, and RCV1- 505

V2 datasets should be no more than 100, on these 506

datasets, we strategically choose a subset of 3,000 507

documents as Dsub And it is intuitive to have more 508

labels in Wikipedia because of its diverse article 509

categories, therefore, 8,000 documents are sampled 510

for DBPedia-298 as Dsub. Amazon products antici- 511

pate an even wider range, so 14,000 documents are 512

chosen as Dsub. 513

In the label space improvement phase, by rank- 514

ing the top entailment scores in ascending order, 515

we select a subset of chunks S with comparatively 516

lower entailment scores. To ensure consistency 517

with the original document subset size chosen for 518

chunk-keyphrase generation, we control the size 519

of S proportionally. Precisely, for AAPD, Reuters- 520

21578, and RCV1-V2 datasets, we select the top 521

500 examples. For DBPedia-298, the subset size is 522

set at 1,000, and for Amazon-531, we choose 1,500 523

examples. When incorporating labels into the new 524

label space, only those with a semantic similarity 525

score lower than 55% compared to all existing la- 526

bels are added. This methodology ensures a refined 527

and relevant augmentation of the label space. 528
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Table 3: Zero-Shot Multi-Label Text Classification Accuracy Comparison: baseline model trained on raw documents
vs. our model trained on the combination of chunks and keyphrases.

Method
AAPD Reuter RCV1-V2 DBPedia Amazon

P@1 P@3 P@1 P@3 P@1 P@3 P@1 P@3 P@1 P@3

bart-large-
mnli

w/ raw docs 0.1390 0.1497 0.0940 0.2547 0.3730 0.3367 0.6330 0.3713 0.5100 0.3827
w/ X-MLClass 0.2743 0.2115 0.1450 0.3490 0.4530 0.3808 0.6890 0.3917 0.5620 0.4168

deberta-v3-
large-all

w/ raw docs 0.3240 0.2595 0.1290 0.3937 0.4550 0.3793 0.6410 0.3713 0.5810 0.4148
w/ X-MLClass 0.3544 0.2733 0.0980 0.4102 0.4900 0.3883 0.6370 0.3953 0.5800 0.4170

xlm-roberta-
large-xnli

w/ raw docs 0.1330 0.1455 0.1260 0.3478 0.3270 0.3053 0.6670 0.3497 0.4760 0.3663
w/ X-MLClass 0.2222 0.1930 0.1170 0.3837 0.4040 0.3383 0.6610 0.3767 0.5250 0.4072

5.5 Label Space Coverage Results529

We present the coverage of the predicted label530

space in comparison to topic modeling baselines,531

as detailed in Table 2. Our method consistently out-532

performs all baseline approaches. Specifically, for533

the AAPD, RCV1-V2, and DBPedia-298 datasets,534

we achieve approximately 50% coverage of the535

ground-truth label space, showcasing a noteworthy536

increase of more than 20% compared to traditional537

topic modeling methods. This notable improve-538

ment can be attributed to the fact that labels gener-539

ated by topic model methods are mostly keywords,540

while some ground-truth labels are keyphrases en-541

compassing multiple keywords. Our method excels542

at predicting labels that align more closely with the543

ground-truth label space.544

However, our model exhibits comparatively545

lower performance on the Reuters-21578 and546

Amazon-531 datasets. Regarding Reuters-21578,547

this discrepancy is attributable to two primary fac-548

tors. Firstly, this dataset includes a higher propor-549

tion of long-tail labels compared to other datasets.550

Secondly, some ground-truth labels consist of ab-551

breviations, while our model generates only the552

full versions, resulting in lower semantic similarity553

scores. For the Amazon-531 dataset, the initially554

generated label space by X-MLClass is only one-555

third of the ground-truth size. Despite adding addi-556

tional labels through the label space improvement557

stage, the predicted label space remains less than558

half of the ground-truth space size, leading to a559

lower coverage score.560

5.6 Zero-shot Text Classification Accuracy561

We present the comprehensive zero-shot perfor-562

mance across all methods in Table 3. The results563

unequivocally demonstrate that our framework con-564

sistently outperforms nearly all baseline models.565

Notably, the P@3 scores of X-MLClass surpass566

those of the baseline methods across all datasets.567

This observation implies that training the zero-shot568

Table 4: Label Coverage Score Improvement Results.

Dataset Initial After Improvement ∆

AAPD 51.02 67.34 +16.32%
Reuters-21578 18.89 25.55 +6.66%
RCV1-V2 40.78 46.60 +5.82%
DBPedia-298 51.68 53.02 +1.34%
Amazon-531 19.96 21.67 +1.71%

classifier for both the keyphrases set and the chunk 569

set, followed by merging the results, enhances the 570

multi-label performance. Specifically, our chunk 571

splitting procedure increases the likelihood of find- 572

ing the less dominant labels for each document, 573

as these labels may become dominant in smaller 574

chunks. Similarly, our approach improves the accu- 575

rate prediction of tail labels by the classifier, con- 576

tributing to the overall MLTC performance. 577

5.7 Label Space Coverage Improvement 578

Table 4 shows that iteratively updating the label 579

space leads to an enhancement in label coverage 580

across all datasets. Figure 2 visually represents the 581

incremental coverage during each iteration across 582

AAPD and RCV1-V2 datasets. Notably, the im- 583

provement is more pronounced for datasets with 584

smaller initial label space sizes. This finding aligns 585

with expectations, as DBPedia-298 and Amazon- 586

531 exhibit significantly larger label space sizes 587

compared to the other three datasets, rendering 588

label space improvement more challenging. Ad- 589

ditionally, the criteria for adding new labels must 590

align with all existing ones in the generated la- 591

bel space, presenting a greater challenge in ex- 592

panding larger label spaces. Moreover, DBPedia- 593

298 and Amazon-531 feature hierarchical labels, 594

with inclusive relationships. For example, con- 595

sider “health_care” and “health_personal_care”, 596

where “health_care” acts as the parent node of 597

“health_personal_care”. Despite the model suggest- 598

ing they are the same label due to higher seman- 599

tic similarity scores, these labels represent distinct 600

concepts in real-world scenarios, presenting chal- 601

lenges in adding new labels during the label space 602

improvement process. 603
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Figure 2: Improvement of Label Coverage across Itera-
tions for the AAPD and RCV1-V2 datasets.

5.8 Label Coverage with Human Evaluation604

Our model encounters challenges in generating la-605

bels exactly matching the ground-truth label space.606

Consequently, there exists a possibility that, de-607

spite the same meanings, our model-generated la-608

bel may not align with the ground truth using only609

semantic similarity score calculation. For instance,610

within Reuters-298, certain ground-truth labels are611

abbreviations, while our model generates the full-612

word version, leading to a lower semantic similarity613

score than the actual score. As shown in Table 5,614

the ground-truth label “acq” corresponds to our615

predicted label “acquisitions,” possessing identical616

meanings, yet their semantic similarity score falls617

below 30%.618

In the Amazon-531 dataset, many ground-truth619

labels consist of phrases, complicating semantic620

similarity score calculation. Achieving high scores621

requires all words in our predicted phrase to match622

the ground-truth label precisely. However, pre-623

dicting a similar-meaning phrase with different in-624

dividual words is common, leading to an overall625

similarity score lower than the actual score. As626

evident in Table 5, “electrical_safety” and “elec-627

tronics_troubleshooting” are identical labels, but628

their semantic similarity scores are lower, treated629

as distinct labels in our setting.630

Considering these factors, the actual coverage631

score of our predicted label space compared to the632

ground-truth label space is likely higher than the633

presented result in Table 2.634

5.9 Ablation Study for Amazon-531 Dataset635

The label space for the Amazon-531 dataset signif-636

icantly surpasses that of the other datasets. To ad-637

dress this discrepancy and enhance label coverage,638

we have customized hyperparameters specifically639

for the Amazon-531 dataset. Using the same hyper-640

parameter setting as the other datasets would result641

in a final label space that is only half the size of642

the ground-truth label space. In our current setting,643

0.55 0.57 0.59 0.61 0.63 0.65 0.67
0.210

0.215

0.220

0.225

0.230

0.235

Figure 3: Improvement of Label Coverage for Amazon-
531 by changing tail labels addition criterion.

Table 5: Matching pairs between the ground-truth labels
and the predicted labels through human evaluation.

Ground-truth Predicted Label

acq acquisitions
money-fx monetary policy

earn earnings
plug_play_video_games gaming_electronics

electrical_safety electronics_troubleshooting
teether baby_dental_care

we tailored the similarity score, which serves as 644

the boundary for adding tail labels to the existing 645

label space. As depicted in Figure 3, we observe 646

that increasing the similarity score facilitates the 647

addition of more labels to the predicted label space, 648

leading to an improvement in the coverage score. 649

6 Conclusion and Future Work 650

We attack a novel and challenging problem, open- 651

world MLTC with extremely weak supervision. In 652

this scenario, only raw documents are available, 653

lacking labeled data or a ground-truth label space. 654

Our LLM-based framework, X-MLClass, is de- 655

signed to overcome this challenge by discovering 656

a practical label space and constructing an MLTC 657

classifier for label prediction. Notably, it excels 658

in identifying long-tail labels, arguably the most 659

challenging aspect in MLTC problems. Our ex- 660

periment results show that X-MLClass surpasses 661

baselines in terms of ground-truth label coverage 662

and exhibits higher zero-shot text classification per- 663

formance compared to top-ranking models. 664

Despite our model’s success in generating some 665

tail labels, a considerable number of tail labels 666

remain undiscovered. Future work should focus 667

on refining our approach to capture more long-tail 668

labels. Subsequent studies could explore method- 669

ologies tailored for datasets featuring significantly 670

larger label spaces, contributing to the broader ap- 671

plicability of our model. 672
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Limitations673

Our work aims to discover the label space from674

extensive input text documents and then construct675

a multi-label text classifier. The most formidable676

challenge in this problem setting revolves around677

label space construction — how can we discover678

the labels, especially the long-tail ones? There-679

fore, our primary focus is on developing a novel680

method to address this challenge; we didn’t pro-681

pose any new zero-shot multi-label text classifier,682

since it is beyond the scope of this paper. Given683

that our proposed X-MLClass starts with a sub-684

set of documents, its efficacy may be limited for685

extremely long-tail labels (e.g., those occurring686

less frequently than 0.0001% of the documents).687

Alternatively, a considerably large subset would688

be required, potentially incurring significant com-689

putational costs from LLM. While our evaluation690

includes a diverse set of datasets, there is potential691

for further extension to more challenging datasets692

with an exceptionally large label space (e.g., over693

1000 different labels are expected).694
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A Prompt Templates for Dominant Label 827

Here is the prompt we use to find the dominant 828

label for the selected document: 829

Which label in the label space 830

ground-truth labels[i] is the dominant 831

label that covers more than 50 percent 832

of the below content? Please output the 833

dominant label only if exists or output 834

’NO’ if there are no dominant labels. 835

Documents[i] 836

B Label Space refinement with human 837

involvement 838

Human experts play a crucial role in refining the 839

label space generated by LLM. For instance, when 840

the cosine similarity score between two labels falls 841

between 0.55 and 0.65, indicating a certain degree 842

of semantic similarity, human intervention is pre- 843

ferred to determine whether these labels are synony- 844

mous. Synonyms need to be identified and treated 845

accordingly, with one of them being removed from 846

the label space. However, there is also the case 847

that these two labels may represent concepts from 848

different scopes; for example, “health_care” and 849

“health_personal_care.” In such instances, human 850

judgment is necessary to detect and treat them as 851

separate labels. 852

Furthermore, some predicted labels may contain 853

multiple meanings, necessitating human interven- 854

tion to split them into distinct labels. For instance, 855

if a predicted label is “computer vision and ma- 856

chine learning,” it is evident that the label should 857

be divided into two separate labels. These judg- 858

ments require human expertise for accurate and 859

context-aware decisions. 860

C Datasets Detailed Information 861

• AAPD (Yang et al., 2018) contains computer 862

science papers. The labels are research topics. 863

• Reuters-21578 (Debole and Sebastiani, 2005) 864

is a collection of news articles from the Reuters 865

financial newswire service in 1987. The labels 866

are the news topics. 867

• RCV1-V2 (Lewis et al., 2004) contains catego- 868

rized newswire articles by Reuters Ltd. The la- 869

bels are the news topics. 870

• DBPedia-298 (Lehmann et al., 2015) are ex- 871

tracted from Wikipedia articles. The labels are 872

the article categories. 873
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• Amazon-531 (McAuley and Leskovec, 2013) en-874

compasses product reviews and associated meta-875

data. The labels are the product tags.876
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