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Abstract

This work focuses on a new challenging prob-
lem, open-world multi-label text classification
under extremely weak supervision, where only
raw documents are provided without any labels
or ground-truth label space. The multi-label na-
ture makes the existing (hard-)clustering-based
methods ineffective. We observe that (1) most
documents have a dominant class covering the
majority of content and (2) long-tail labels
would appear in some documents as dominant
class. Following these observations, we pro-
pose a novel method, X-MLClass, to discover
a comprehensive label space and construct a
multi-label classifier. Specifically, we start
with a reasonable subset of all the documents
and prompt a large language model (LLM) for
their most dominant keyphrases to obtain an
initial set of labels. We then leverage a zero-
shot multi-label classifier, identifying the doc-
uments with lower predicted scores and revis-
iting the keyphrases in those documents for
more long-tail labels. Later, we include these
long-tail labels into the label set and reiterate
this process. Extensive experiments demon-
strate that X-MLClass exhibits a remarkable
40% increase on the AAPD dataset in ground-
truth label space coverage compared to tradi-
tional topic modeling methods. Additionally,
it achieves higher accuracy in zero-shot multi-
label text classification.

1 Introduction

Multi-label text classification (MLTC) aims to as-
sign one or more labels to each input document in
the corpus. While the traditional methods work in
a fully supervised setting, recent works start to pay
more attention to weakly supervised settings using
limited labeled data (Liu et al., 2022) or even in
the absence of any labeled data (Shen et al., 2021;
Xiong et al., 2021). The state-of-the-art zero-shot
(single-label) text classification methods (Pamies
et al., 2023; Gera et al., 2022) follow the textual

entailment framework by comparing the document
and the label in a pairwise manner. However, all
these methods still require a complete list of class
names, which might be challenging even for do-
main experts to provide beforehand given the mas-
sive number of documents.

This work focuses on a new challenging problem,
open-world multi-label text classification under ex-
tremely weak supervision, where only raw docu-
ments are provided without any labels or ground-
truth label space. The most related problems are
text clustering (Zhang et al., 2023; Wang et al.,
2023b) and topic modeling (Grootendorst, 2022;
Pham et al., 2023), where those methods are typ-
ically only capable of assigning a single label to
each document. The multi-label nature makes the
existing (hard-)clustering-based methods ineffec-
tive.

We observe that (1) most documents have a
dominant class covering the majority of content
and (2) long-tail labels would appear as the dom-
inant class in some documents. Our observations
are confirmed by experiments based on 5 bench-
mark datasets: AAPD (Yang et al., 2018), Reuters-
21578 (Debole and Sebastiani, 2005), RCV1-
V2 (Lewis et al., 2004), DBPedia-298 (Lehmann
et al., 2015), and Amazon-531 (McAuley and
Leskovec, 2013). Specifically, we prompt a large
language model (LLM) to check if any of the
ground truth labels of a given document is domi-
nant, i.e., covering more than 50% of the content;
and if it exists, which one is the dominant label. !
After checking two thousand randomly sampled
documents, the LLM believes that more than 90%
of documents contain a dominant class, and human
spot-checking results agree with this too. More-
over, in every dataset, inspecting all the labels, the
LLM believes that 100% of them are dominant
classes of at least one document.

'The specific prompt can be found in Appendix A
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Figure 1: An overview of our X-MLClass framework.

Following these observations, we propose a
novel method, X-MLClass, to discover a pragmatic
label space and construct a multi-label text classifi-
cation classifier with the assistance of a customer-
sized LLM (i.e., 11ama-2-13b-chat in our experi-
ments), as illustrated in Figure 1.

The first step in X-MLClass is to construct a
high-quality label space. To balance the label cover-
age and the cost of LLM, we work on a reasonably
large subset of all the documents. For each docu-
ment, we partition it into chunks to better align with
the context length of LLM while ensuring that each
chunk contains a single topic, and then prompt the
LLM to generate the most dominant keyphrases
for each chunk. This process also anticipates a
higher chance of having only one label per chunk.
As previous LLM-based text clustering work has
suggested (Wang et al., 2023b,a), there are very
likely some semantically redundant yet lexically
different keyphrases among the generated ones. We
cluster these keyphrases, and within every cluster,
we pull together the corresponding chunks of the
keyphrases closest to the cluster center to prompt
the LLM once again, generating one single label
for each cluster. We further eliminate labels exhibit-
ing extremely high similarity scores, and for those
borderline similar label pairs, a little human effort
becomes integral. Combining all these survived
labels constitutes an initial label space.

We then apply the state-of-the-art textual
entailment-based classification methods (Pamies
et al., 2023; Gera et al., 2022) to construct a classi-
fier to re-access the documents and identify long-
tail labels. Specifically, we query every text chunk
against all the labels for the entailment score. We
identify the chunks with small top predicted scores,

indicating that they lack a dominant class. There-
fore, we revisit the keyphrases generated by these
chunks to unveil more long-tail labels. We se-
lectively choose keyphrases that exhibit a modest
presence within the entire keyphrase set, but are
notably absent in the original label space. We in-
clude these new keyphrases in the label set and
repeat re-accessing documents with this newly up-
dated label set for a fixed number of iterations.
A caveat is that to ensure wider coverage of the
long-tail keyphrases, we hold back a portion of
high-popularity labels in the label set each itera-
tion. These high-popularity labels are included
back after all iterations.

Extensive experiments on 5 benchmark datasets
reveal the superiority of X-MLClass outperform-
ing all compared methods. Remarkably, compared
with baselines, X-MLClass achieves a significant
enhancement of 40% and 25% in ground-truth la-
bel space coverage on the AAPD and RCV1-V2
datasets, respectively. Furthermore, it achieves
higher accuracy in zero-shot multi-label text clas-
sification, surpassing the top-ranking models on
HuggingFace across all datasets.

Our contributions are summarized as:

* We attack a new, challenging problem, open-
world MLTC with extremely weak supervision,
where only raw documents are available, without
any labeled data or ground-truth label space.

* We propose a novel framework, X-MLClass,
based on two intuitive, empirically confirmed
observations. X-MLClass discovers the label
space and builds an MLTC classifier with the as-
sistance of LLM. The only required human effort
is to resolve a few pairs of candidate labels with
borderline similarity scores.



* X-MLClass achieves a significantly higher cover-
age score compared to traditional topic modeling
methods, along with superior end-to-end classifi-
cation accuracy.

Reproducibility. We will release the code upon

acceptance.

2 Related Work

Topic Modeling: Topic modeling has been
widely adopted for discovering latent thematic
structures within collections of text documents.
Traditional models, such as Latent Dirichlet Allo-
cation (LDA) (Blei et al., 2003) and Non-Negative
Matrix Factorization (NMF) (Févotte and Idier,
2011) represent documents as mixtures of latent
topics using bag-of-words representations, but
they often neglect the semantic relationships be-
tween words. Addressing this limitation, new
techniques like Top2Vec (Angelov, 2020) and
BERTopic (Grootendorst, 2022) build primarily on
clustering embeddings, demonstrating the potential
of embedding-based topic modeling approaches.
Another recent method, TopicGPT (Pham et al.,
2023), takes a different approach by prompting
large language models for topic generation, align-
ing more closely with ground truth labels. However,
these existing methods typically provide a single
topic for each document, which poses challenges
when extending them to multi-label scenarios.

Multi-label Text Classification: Numerous ap-
proaches have been proposed to tackle the complex-
ities of Multi-Label Text Classification (MLTC)
problems. Bhatia and Jain (Bhatia et al., 2015)
employ embedding-based methods, leveraging the
power of embeddings to train individual classifiers
for each label. Later, there has been a notable surge
in the application of Neural Network-based mod-
els to address MLTC tasks. For instance, XML-
CNN (Liu et al., 2017) uses a Convolutional Neu-
ral Network (CNN) to learn text representations,
demonstrating improvements in MLTC accuracy.
It is important to note that all these methods rely
on labeled data, restricting their applicability in
scenarios where labeled information is unavailable.
Recent works have started to tackle MLTC prob-
lems using a small amount of labeled data or even
with no labels at all. For example, Shen et al. (2021)
achieves impressive results by using only class
names and taxonomies. Rios and Kavuluru (2018)
train a neural architecture with both true labels and
their natural language descriptor. However, these

methods still require access to the ground-truth la-
bel space, at the very least.

Open-world Single-label Text Classification:
In recent developments, there has been a surge
in open-world models utilizing LLM prompts to
derive labels without relying on ground-truth la-
bel spaces. Notably, GOALEX (Wang et al.,
2023b) generates labels for text samples based on
users’ specific goals, demonstrating a goal-driven
approach. Another noteworthy model, CLUSTER-
LLM (Zhang et al., 2023), leverages API-based
LLMs to guide text clustering, resulting in im-
proved performance. The approach of intent dis-
covery (Zhang et al., 2022), aiming to infer latent
intents from a document set, has proven effective
in generating label spaces. A newly introduced
method, IDAS (De Raedt et al., 2023), prompts
LLMs to succinctly summarize utterances, enhanc-
ing intent prediction. However, akin to topic mod-
eling methods, all these approaches are currently
limited to assigning only a single label to each doc-
ument.

3 Problem Formulation

Given an unlabeled corpus D = {Di, D, ...,
D, }, where D; € D represents a document in
the collection. Our task is to (1) identify class
names C = {C’j}]Kzl, where K is the unknown
number of classes, and (2) build a text classifier
f(-) to map any raw document D; to its target la-
bels V; = {y/}/_,, where y is the single label
name and p is the number of target labels for D;.

To the best of our knowledge, this is the first
work that explores open-world multi-label text clas-
sification without the presence of a ground-truth
label space. This is a very challenging problem, so
we assume that human experts are willing to de-
vote some very limited effort, i.e., extremely weak
supervision. For example, the human expert shall
be able to annotate tens of label pairs and confirm
whether they appear equivalent or not. We also
assume that human experts possess insights into
the magnitude of the label space based on dataset
characteristics. For instance, news datasets typi-
cally contain a broader range of classes compared
to datasets consisting of computer science paper
abstracts.

4 Our X-MLClass Framework

X-MLClass consists of three key steps. First, every
document is split into chunks and transformed into



keyphrases by prompting an LLM to construct an
initial label space through clustering. We further
assign labels to each raw document D; using a cus-
tom keyphrase-chunk zero-shot textual entailment
classifier. Finally, we iteratively enhance the label
space by incorporating additional long-tail labels.
The framework overview is depicted in Figure 1,
and the below sections provide a detailed discus-
sion of each step.

4.1 Initial Label Space Construction

The first step in X-MLClass is to construct a high-
quality label space. To balance label coverage and
the computational cost of LLM, X-MLClass is ap-
plied to a reasonably large subset of the corpus D,
denoted as Dy, C D.

Dominant Keyphrase Generation: For each
document, we partition it into chunks to better
align with the context length of LLM, and then
prompt for the most dominant keyphrases per
chunk. Specifically, each document D; € Dgyp
is segmented into chunks {S}, SZ, ...}, with a pre-
defined chunk size of 50 tokens. This choice is
also made to ensure each chunk primarily contains
one label, allowing us to leverage state-of-the-art
textual entailment-based single-label text classifi-
cation methods for every chunk later. To generate
keyphrases for each chunk S?, we employ an LLM
and provide it with an instruction such as “find at
most three labels for this document”. The LLM
then refines keyphrases p! from the chunk S?, serv-
ing as potential class candidates for subsequent
stages of our X-MLClass model. Keyphrases gen-
erated from each chunk collectively form a set P.

Keyphrase Clustering: As previous LLM-based
text clustering work has suggested (Wang et al.,
2023b,a), there are very likely some semanti-
cally redundant yet lexically different keyphrases
among the generated ones. Therefore it is nec-
essary to cluster the keyphrases at the seman-
tic level. Specifically, we employ the state-of-
the-art instruction-tuned text embedding model,
instructor-large (Su et al., 2022), to generate
vector representations for all the keyphrases in P.
Traditional clustering methods face challenges in
high-dimensional spaces (Aggarwal et al., 2001;
Wang et al., 2020b), primarily attributed to varia-
tions in distance measurements. To address this
limitation, we apply the dimensionality reduction
method to trim down the embedding dimension.
Particularly, we choose UMAP (Mclnnes et al.,

2018) because it can effectively balance local and
global structures, demonstrating improved perfor-
mance in handling high-dimensional data. Finally,
we obtain the clusters using the Gaussian Mixture
Model (GMM) in the projected low-dimensional
space, renowned for its enhanced flexibility in cap-
turing intricate data distributions.

Number of Clusters: The number of clusters is
determined by considering both the insights of hu-
man experts regarding the magnitude of the label
space and non-parametric clustering methods such
as BERTopic (Grootendorst, 2022), a highly effec-
tive topic modeling method for generating topics
in a corpus. For example, one can train BERTopic
on the keyphrase set P to obtain the topic number
K9, serving as the hyper-parameter to GMM.

Redundant Keyphrase Removal: Within every
cluster, we focus on the three keyphrases closest
to the cluster center to synthesize one single label.
Instead of directly employing the keyphrases for
label space creation, we trace back to the original
chunks responsible for generating these keyphrases.
Concatenating these three chunks for each cluster
results in a new document S’. K% documents col-
lective%y form a new corpus &’ = {S; }JKZO1 For
each Sj, we prompt LLM with an instruction “find
one label for this document”, thereby yielding the
initial K° classes {C; }5(201

This initial label space may contain redundant
labels and sometimes requires expert assistance for
refinement. Sentence-Transformer models (Wang
et al., 2020a) are used to identify distinct pairs of
classes with cosine similarity > 0.75. The first
class in each identified pair is then removed, rep-
resenting a straightforward approach to eliminate
redundant labels. This method proves effective in
creating a robust label space {C} }]K:ll, and while
human involvement can enhance the refinement
process especially for those borderline similar la-
bel pairs, it is not mandatory. Further details on
human involvement in the label space refinement
are provided in appendix B.

4.2 Textual Entailment-based Classifier

Given a label space, we build a zero-shot textual
entailment-based classifier (Yin et al., 2019). As
our chunks are short enough (i.e., only 50 tokens),
there is typically only one label per chunk. There-
fore, the state-of-the-art zero-shot single-label text
classification methods (Pamies et al., 2023; Gera



et al., 2022; He et al., 2021) are all applicable here.
Specifically, we compare every text chunk against
all the labels using a textual entailment model. For
each chunk s € § and each class name ¢ € C,
we derive F . representing the confidence for the
chunk s entailing the hypothesis “This example is
constructed for ¢”. Similarly, we obtain £, . for
each keyphrase p € P representing the confidence
for the phrase p entailing the same hypothesis as
above. Subsequently, for each example in S, we
identify the label ¢ with the top entailment score,
denoted by Es . > E; »,Vc # c.

Finally, we find all s and p belong to the same
document D; and group them into a new set Q.
For each instance in (), we rank the label candi-
dates according to their entailment scores. We iden-
tify the labels that occur most frequently with the
same ranking as the predicted labels for document
D;, progressing from the top-ranking to the lowest-
ranking order.

4.3 Label Space Improvement

We further identify the chunks with lower top pre-
dicted scores — these chunks lack a dominant class.
We rank E; . in ascending order and select a subset
Ssup C S with relatively lower entailment scores.
Lower entailment scores suggest a potential asso-
ciation with a tail class, not included in our la-
bel space. Considering the possibility of multiple
chunks belonging to the same document D;, we re-
fine Sgyp by selecting s only if Fy. < 0.6, where
Vs' € D;. For each s € S,,;, we examine all
keyphrases in the corresponding p. If a keyphrase
is absent in the label space but occurs more than 15
times in PP, we incorporate it into the label space C.

Additionally, we compute the frequency of each
label ¢ with the top entailment score. Labels with
lower frequency are removed from the label space
C. The high-frequency labels, secured as a part of
the label space, are temporarily excluded from the
later label space improvement process. By itera-
tively training the classifier based on the updated
label space, the label set gets finalized by adding
more long-tail labels. In the concluding stages, all
high-frequency labels are reintroduced, culminat-
ing in the formation of ultimate label space.

5 Experiments

We assess the performance of X-MLClass through
two primary criteria: label space quality and zero-
shot MLTC accuracy. Our evaluation involves a

Table 1: Dataset statistics.

Dataset # Train #Text #Class
AAPD 53,840 2,000 54
Reuters 7,769 3,019 90
RCVI1-V2 643,531 160,883 103
DBPedia 196,665 49,167 298
Amazon 29,487 19,685 531

comparison of our model’s label coverage with that
of four topic modeling methods. In terms of end-
to-end classification accuracy, we test our method
with several top-ranking models available on Hug-
gingFace. The subsequent section provides compre-
hensive details on the datasets, baseline methods,
evaluation metrics, implementation specifics, and
performance analysis.

5.1 Datasets

We perform experiments on five benchmark
datasets for multi-label text classification across
various domains: AAPD, Reuters-21578, RCV1-
V2, DBPedia-298, and Amazon-531. Detailed
information about each dataset is provided in Ap-
pendix C. Table 1 shows that the number of labels
in these datasets varies from tens to hundreds. All
the methods will be applied on the documents from
the training set, and then evaluated on the test set.

5.2 Compared Methods

We compare our X-MLClass framework with two
types of methods.

Topic Modeling: We select four representative
topic modeling methods with distinct paradigms.
These methods include Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), Non-Negative Matrix
Factorization (NMF) (Févotte and Idier, 2011),
Topic2Vec (Angelov, 2020), and BERTopic (Groo-
tendorst, 2022). LDA and NMF serve as foun-
dational algorithms, extracting topics based on
word frequency within documents. NMF decom-
poses the TF-IDF matrix to obtain latent topics.
Topic2Vec and BERTopic represent more recent ad-
vancements with a focus on semantics. Topic2Vec
extends the Word2Vec model to embed topics, fa-
cilitating the exploration of semantic relationships
between documents. Meanwhile, BERTopic lever-
ages BERT embeddings and the HDBSCAN clus-
tering algorithm to identify topics.

Zero-shot Text Classification: State-of-the-art
zero-shot text classifiers typically follow textual
entailment (Yin et al., 2019; Pamies et al., 2023).
Therefore, we choose three entailment models: (1)



Table 2: Label Space Coverage Comparison. Top2Vec
and BERTopic generate topics with multiple keywords.
The predicted label is determined by selecting the top-
ranking keyword based on each model’s setting.

Model AAPD Reuters RCV1-V2 DBPedia Amazon
LDA 29.17 14.44 10.67 21.81 15.44
NMF 22.92 15.56 9.71 30.20 15.82
Top2Vec 33.33 17.77 21.35 31.87 16.38
BERTopic  25.00  20.00 7.76 33.89 18.08
X-MLClass 67.35  25.55 46.60 53.02 21.66

bart-large-mnli exclusively trained on the MNLI
dataset, (2) deberta-v3-large-all trained on 33
datasets reformatted into the universal NLI format,
and (3) xlm-roberta-large-xnli fine-tuned on the
XNLI dataset. We apply these models using the
HuggingFace Transformer pipeline, with a hypoth-
esis template “This example is {label}”.

5.3 Evaluation Metrics

Label Space Quality: We employ an automatic
evaluation metric, coverage, to quantify the align-
ment between the ground-truth (GT) label space
and the predicted label space. A ground-truth la-
bel is deemed "covered" if it can be matched to a
predicted label with a similarity score surpassing a
predefined threshold. For this study, we compute
the similarity scores using the al1-MinilM-L6-v2
model from HuggingFace Sentence-Transformers.
In our evaluation, we set this threshold to 0.6 as it
aligns the best with GPT4 and human evaluation on
whether the predicted label has the same meaning
as the ground-truth label.
The coverage score is computed as follows:

Coverage = %G (I (CP=d, CTY)

Here N is the total number of topics in the
GT label set, CST(CPd) denotes the set of
ground-truth (predicted) labels. I is an indicator
that returns 1 if the similarity score between the
GT labels and predicted labels for the documents
exceeds the threshold (0.6). G represents the bipar-
tite graph maximum match algorithm.

Classification Accuracy: Because of the large
label space, multi-label text classification typically
employs the rank-based evaluation metric precision
at k, i.e., P@k. It captures the percentage of true
labels among top-k score labels and is used for
performance comparison. P@Xk can be defined as:

Nooren i,

1
N z; min(k, | Ls|)

1=

P@k =

where L; and C; denote the true labels and pre-
dicted labels for document D;, |L;| is the number
of true labels for D;, and ry, is the k-th highest pre-
dicted label. We follow the same similarity thresh-
old in the coverage score to decide if the true label
and the predicted label are the same.

5.4 Implementation Details

We  implement X-MLClass using the
1lama-2-13b-chat LLM. The chunk size is
uniformly set to 50 across all datasets, ensuring
a consistent approach. To maintain precision, we
introduce a human-in-the-loop element. Specifi-
cally, we request human input to determine the
word count constituting a single label. To optimize
efficiency, a small subset is selected, aiming for a
task completion time of less than 10 minutes per
human contributor.

In configuring LDA and NMF, we align the num-
ber of topics with our approach. For Top2Vec and
BERTopic, which employ HDBSCAN as a cluster-
ing method, specifying an exact number of topics is
not feasible. However, to maintain consistency, we
ensure that these methods generate clusters neither
exceeding nor falling below 10 in comparison to
our label number.

As human experts believe the label space mag-
nitude of the AAPD, Reuters-21578, and RCV1-
V2 datasets should be no more than 100, on these
datasets, we strategically choose a subset of 3,000
documents as Dy,,;, And it is intuitive to have more
labels in Wikipedia because of its diverse article
categories, therefore, 8,000 documents are sampled
for DBPedia-298 as Dy,;,. Amazon products antici-
pate an even wider range, so 14,000 documents are
chosen as Dyg,p.

In the label space improvement phase, by rank-
ing the top entailment scores in ascending order,
we select a subset of chunks S with comparatively
lower entailment scores. To ensure consistency
with the original document subset size chosen for
chunk-keyphrase generation, we control the size
of S proportionally. Precisely, for AAPD, Reuters-
21578, and RCV1-V2 datasets, we select the top
500 examples. For DBPedia-298, the subset size is
set at 1,000, and for Amazon-531, we choose 1,500
examples. When incorporating labels into the new
label space, only those with a semantic similarity
score lower than 55% compared to all existing la-
bels are added. This methodology ensures a refined
and relevant augmentation of the label space.



Table 3: Zero-Shot Multi-Label Text Classification Accuracy Comparison: baseline model trained on raw documents
vs. our model trained on the combination of chunks and keyphrases.

Method AAPD Reuter RCV1-V2 DBPedia Amazon
etho
P@l P@3 P@l P@3 P@l P@3 P@1 P@3 P@1 P@3

bart-large- w/ raw docs  0.1390 0.1497 0.0940 0.2547 0.3730 0.3367 0.6330 0.3713 0.5100 0.3827
mnli w/ X-MLClass 0.2743 0.2115 0.1450 0.3490 0.4530 0.3808 0.6890 0.3917 0.5620 0.4168
deberta-v3- w/ raw docs 0.3240 0.2595 0.1290 0.3937 0.4550 0.3793 0.6410 0.3713 0.5810 0.4148
large-all w/ X-MLClass 0.3544 0.2733 0.0980 0.4102 0.4900 0.3883 0.6370 0.3953 0.5800 0.4170
xlm-roberta-  w/rawdocs 0.1330 0.1455 0.1260 0.3478 0.3270 0.3053 0.6670 0.3497 0.4760 0.3663
large-xnli w/ X-MLClass 0.2222 0.1930 0.1170 0.3837 0.4040 0.3383 0.6610 0.3767 0.5250 0.4072

5.5 Label Space Coverage Results

We present the coverage of the predicted label
space in comparison to topic modeling baselines,
as detailed in Table 2. Our method consistently out-
performs all baseline approaches. Specifically, for
the AAPD, RCV1-V2, and DBPedia-298 datasets,
we achieve approximately 50% coverage of the
ground-truth label space, showcasing a noteworthy
increase of more than 20% compared to traditional
topic modeling methods. This notable improve-
ment can be attributed to the fact that labels gener-
ated by topic model methods are mostly keywords,
while some ground-truth labels are keyphrases en-
compassing multiple keywords. Our method excels
at predicting labels that align more closely with the
ground-truth label space.

However, our model exhibits comparatively
lower performance on the Reuters-21578 and
Amazon-531 datasets. Regarding Reuters-21578,
this discrepancy is attributable to two primary fac-
tors. Firstly, this dataset includes a higher propor-
tion of long-tail labels compared to other datasets.
Secondly, some ground-truth labels consist of ab-
breviations, while our model generates only the
full versions, resulting in lower semantic similarity
scores. For the Amazon-531 dataset, the initially
generated label space by X-MLClass is only one-
third of the ground-truth size. Despite adding addi-
tional labels through the label space improvement
stage, the predicted label space remains less than
half of the ground-truth space size, leading to a
lower coverage score.

5.6 Zero-shot Text Classification Accuracy

We present the comprehensive zero-shot perfor-
mance across all methods in Table 3. The results
unequivocally demonstrate that our framework con-
sistently outperforms nearly all baseline models.
Notably, the P@3 scores of X-MLClass surpass
those of the baseline methods across all datasets.
This observation implies that training the zero-shot

Table 4: Label Coverage Score Improvement Results.

Dataset Initial After Improvement A
AAPD 51.02 67.34 +16.32%
Reuters-21578  18.89 25.55 +6.66%
RCVI1-V2 40.78 46.60 +5.82%
DBPedia-298 51.68 53.02 +1.34%
Amazon-531 19.96 21.67 +1.71%

classifier for both the keyphrases set and the chunk
set, followed by merging the results, enhances the
multi-label performance. Specifically, our chunk
splitting procedure increases the likelihood of find-
ing the less dominant labels for each document,
as these labels may become dominant in smaller
chunks. Similarly, our approach improves the accu-
rate prediction of tail labels by the classifier, con-
tributing to the overall MLTC performance.

5.7 Label Space Coverage Improvement

Table 4 shows that iteratively updating the label
space leads to an enhancement in label coverage
across all datasets. Figure 2 visually represents the
incremental coverage during each iteration across
AAPD and RCV1-V2 datasets. Notably, the im-
provement is more pronounced for datasets with
smaller initial label space sizes. This finding aligns
with expectations, as DBPedia-298 and Amazon-
531 exhibit significantly larger label space sizes
compared to the other three datasets, rendering
label space improvement more challenging. Ad-
ditionally, the criteria for adding new labels must
align with all existing ones in the generated la-
bel space, presenting a greater challenge in ex-
panding larger label spaces. Moreover, DBPedia-
298 and Amazon-531 feature hierarchical labels,
with inclusive relationships. For example, con-
sider “health_care” and ‘“health_personal_care”,
where “health_care” acts as the parent node of
“health_personal_care”. Despite the model suggest-
ing they are the same label due to higher seman-
tic similarity scores, these labels represent distinct
concepts in real-world scenarios, presenting chal-
lenges in adding new labels during the label space
improvement process.
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Figure 2: Improvement of Label Coverage across Itera-
tions for the AAPD and RCV1-V2 datasets.

5.8 Label Coverage with Human Evaluation

Our model encounters challenges in generating la-
bels exactly matching the ground-truth label space.
Consequently, there exists a possibility that, de-
spite the same meanings, our model-generated la-
bel may not align with the ground truth using only
semantic similarity score calculation. For instance,
within Reuters-298, certain ground-truth labels are
abbreviations, while our model generates the full-
word version, leading to a lower semantic similarity
score than the actual score. As shown in Table 5,
the ground-truth label “acq” corresponds to our
predicted label “acquisitions,” possessing identical
meanings, yet their semantic similarity score falls
below 30%.

In the Amazon-531 dataset, many ground-truth
labels consist of phrases, complicating semantic
similarity score calculation. Achieving high scores
requires all words in our predicted phrase to match
the ground-truth label precisely. However, pre-
dicting a similar-meaning phrase with different in-
dividual words is common, leading to an overall
similarity score lower than the actual score. As
evident in Table 5, “electrical_safety” and “elec-
tronics_troubleshooting” are identical labels, but
their semantic similarity scores are lower, treated
as distinct labels in our setting.

Considering these factors, the actual coverage
score of our predicted label space compared to the
ground-truth label space is likely higher than the
presented result in Table 2.

5.9 Ablation Study for Amazon-531 Dataset

The label space for the Amazon-531 dataset signif-
icantly surpasses that of the other datasets. To ad-
dress this discrepancy and enhance label coverage,
we have customized hyperparameters specifically
for the Amazon-531 dataset. Using the same hyper-
parameter setting as the other datasets would result
in a final label space that is only half the size of
the ground-truth label space. In our current setting,
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0.55 0.57 0.59 0.61 0.63 0.65 0.67

Figure 3: Improvement of Label Coverage for Amazon-
531 by changing tail labels addition criterion.

Table 5: Matching pairs between the ground-truth labels
and the predicted labels through human evaluation.

Ground-truth Predicted Label
acq acquisitions
money-fx monetary policy
earn earnings

plug_play_video_games
electrical_safety
teether

gaming_electronics
electronics_troubleshooting
baby_dental_care

we tailored the similarity score, which serves as
the boundary for adding tail labels to the existing
label space. As depicted in Figure 3, we observe
that increasing the similarity score facilitates the
addition of more labels to the predicted label space,
leading to an improvement in the coverage score.

6 Conclusion and Future Work

We attack a novel and challenging problem, open-
world MLTC with extremely weak supervision. In
this scenario, only raw documents are available,
lacking labeled data or a ground-truth label space.
Our LLM-based framework, X-MLClass, is de-
signed to overcome this challenge by discovering
a practical label space and constructing an MLTC
classifier for label prediction. Notably, it excels
in identifying long-tail labels, arguably the most
challenging aspect in MLTC problems. Our ex-
periment results show that X-MLClass surpasses
baselines in terms of ground-truth label coverage
and exhibits higher zero-shot text classification per-
formance compared to top-ranking models.

Despite our model’s success in generating some
tail labels, a considerable number of tail labels
remain undiscovered. Future work should focus
on refining our approach to capture more long-tail
labels. Subsequent studies could explore method-
ologies tailored for datasets featuring significantly
larger label spaces, contributing to the broader ap-
plicability of our model.



Limitations

Our work aims to discover the label space from
extensive input text documents and then construct
a multi-label text classifier. The most formidable
challenge in this problem setting revolves around
label space construction — how can we discover
the labels, especially the long-tail ones? There-
fore, our primary focus is on developing a novel
method to address this challenge; we didn’t pro-
pose any new zero-shot multi-label text classifier,
since it is beyond the scope of this paper. Given
that our proposed X-MLClass starts with a sub-
set of documents, its efficacy may be limited for
extremely long-tail labels (e.g., those occurring
less frequently than 0.0001% of the documents).
Alternatively, a considerably large subset would
be required, potentially incurring significant com-
putational costs from LLM. While our evaluation
includes a diverse set of datasets, there is potential
for further extension to more challenging datasets
with an exceptionally large label space (e.g., over
1000 different labels are expected).
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A Prompt Templates for Dominant Label

Here is the prompt we use to find the dominant
label for the selected document:

Which label in the 1label space
ground-truth 1labels[i] is the dominant
label that covers more than 50 percent
of the below content? Please output the
dominant label only if exists or output
"NO’ if there are no dominant labels.

Documents[i]

B Label Space refinement with human
involvement

Human experts play a crucial role in refining the
label space generated by LLM. For instance, when
the cosine similarity score between two labels falls
between 0.55 and 0.65, indicating a certain degree
of semantic similarity, human intervention is pre-
ferred to determine whether these labels are synony-
mous. Synonyms need to be identified and treated
accordingly, with one of them being removed from
the label space. However, there is also the case
that these two labels may represent concepts from
different scopes; for example, “health_care” and
“health_personal_care.” In such instances, human
judgment is necessary to detect and treat them as
separate labels.

Furthermore, some predicted labels may contain
multiple meanings, necessitating human interven-
tion to split them into distinct labels. For instance,
if a predicted label is “computer vision and ma-
chine learning,” it is evident that the label should
be divided into two separate labels. These judg-
ments require human expertise for accurate and
context-aware decisions.

C Datasets Detailed Information

* AAPD (Yang et al., 2018) contains computer
science papers. The labels are research topics.
Reuters-21578 (Debole and Sebastiani, 2005)
is a collection of news articles from the Reuters
financial newswire service in 1987. The labels
are the news topics.

RCV1-V2 (Lewis et al., 2004) contains catego-
rized newswire articles by Reuters Ltd. The la-
bels are the news topics.

DBPedia-298 (Lehmann et al., 2015) are ex-
tracted from Wikipedia articles. The labels are
the article categories.


https://api.semanticscholar.org/CorpusID:235097263
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https://doi.org/10.18653/v1/2023.emnlp-main.858
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https://doi.org/10.18653/v1/2023.emnlp-main.858

* Amazon-531 (McAuley and Leskovec, 2013) en-
compasses product reviews and associated meta-
data. The labels are the product tags.

11



	Introduction
	Related Work
	Problem Formulation
	Our X-MLClass Framework
	Initial Label Space Construction
	Textual Entailment-based Classifier
	Label Space Improvement

	Experiments
	Datasets
	Compared Methods
	Evaluation Metrics
	Implementation Details
	Label Space Coverage Results
	Zero-shot Text Classification Accuracy
	Label Space Coverage Improvement
	Label Coverage with Human Evaluation
	Ablation Study for Amazon-531 Dataset

	Conclusion and Future Work
	Prompt Templates for Dominant Label
	Label Space refinement with human involvement
	Datasets Detailed Information

