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ABSTRACT

This work presents DCFlow, a novel self-supervised cross-modal flow estimation
framework that integrates a decoupled optimization strategy and a cross-modal
consistency constraint. Unlike previous unsupervised approaches that implicitly
learn flow estimation solely from appearance similarity, we introduce a decoupled
optimization strategy with task-specific supervision to address modality discrep-
ancy and geometric misalignment distinctly. This is achieved by collaboratively
training a modality transfer network and a flow estimation network. To enable reli-
able motion supervision without ground-truth flow, we propose a geometry-aware
data synthesis pipeline combined with an outlier-robust loss. Additionally, we in-
troduce a cross-modal consistency constraint to jointly optimize both networks,
significantly improving flow prediction accuracy. For evaluation, we construct a
comprehensive cross-modal flow benchmark by repurposing public datasets. Ex-
perimental results demonstrate that DCFlow can be integrated with various flow
estimation networks and achieves state-of-the-art performance among unsuper-
vised approaches.

1 INTRODUCTION

Cross-modal flow estimation aims to establish pixel-wise correspondences between images cap-
tured from different modalities. It is crucial for various vision tasks, including multi-modal image
fusion (Liu et al., 2025), image restoration (Zhang et al., 2025), and depth estimation (Guo et al.,
2023). Due to the difficulty of acquiring cross-modal ground-truth flow in real-world scenarios, un-
supervised cross-modal flow estimation, which does not require such annotations for training, has
attracted increasing attention.

Existing unsupervised approaches typically address this task by minimizing appearance discrep-
ancies between image pairs. To achieve this, a modality transfer network is usually employed to
translate images from one modality to another. For instance, NeMAR (Arar et al., 2020) simultane-
ously optimizes the modality transfer and flow estimation networks, while others (Wang et al., 2022;
Xu et al., 2022) adopt a two-stage pipeline for separate training. Despite their different strategies,
these methods share a fundamental limitation in implicitly learning flow estimation solely through
appearance alignment. Consequently, they struggle particularly in textureless regions or repetitive
structures, and their performance substantially degrades under large viewpoint changes due to the
lack of direct flow supervision. This naturally raises a question: can we introduce reliable flow
supervision using only unaligned cross-modal image pairs? Recent studies (Watson et al., 2020;
Aleotti et al., 2021; Han et al., 2022; Liang et al., 2023) have explored generating synthetic motion
labels from single images via geometry-aware data synthesis, showing promising results in mono-
modal settings. However, whether such mono-modal supervision can benefit cross-modal scenarios,
and how to effectively exploit it, remain largely unexplored.

To bridge this gap, in this paper, we propose DCFlow, a novel self-supervised framework for cross-
modal flow estimation that introduces explicit motion supervision into the training process. In line
with existing approaches, our framework consists of a modality transfer network and a flow esti-
mation network. As shown in Fig. 1(a), DCFlow integrates a decoupled optimization strategy with
task-specific supervision to train the two networks separately, as well as a cross-modal consistency
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Figure 1: (a) Overall training framework of DCFlow, which integrates a decoupled optimization
strategy and a cross-modal consistency constraint. (b) Comparison of the cross-modal flow estima-
tion accuracy on five datasets. EPEs (endpoint errors) of different approaches are reported. Our
DCFlow achieves state-of-the-art performance.

constraint to jointly optimize them. Within this framework, we leverage complementary sources
of motion supervision through geometry-aware synthesis from single images and spatial transfor-
mations on cross-modal pairs. In this way, DCFlow learns in a fully self-supervised manner by
generating flow supervision through data synthesis, using only unaligned cross-modal images.

The decoupled optimization strategy separates the overall task into modality transfer and single-
modal flow estimation, forming a collaborative process where each network facilitates the optimiza-
tion of the other. More importantly, it allows the flow network to be trained using only mono-modal
flow supervision, while still contributing to accurate cross-modal alignment. To enable such super-
vision, we adopt a geometry-aware data synthesis pipeline that generates dense flow labels from
single-view images. Considering that the synthetic data inevitably contains noise, we further adopt
an outlier-robust loss to adaptively filter unreliable supervision based on residual magnitudes. These
innovations enable effective flow network training without real-world labels, facilitating the decou-
pled training scheme. Compared to the conventional appearance-based optimization, our decoupled
optimization strategy reduces the endpoint error (EPE) by 15.43 on the MS2 (RGB-T) dataset.

Furthermore, we propose a cross-modal consistency constraint to jointly optimize both the modality
transfer and flow estimation networks. Specifically, we apply spatial transformations to cross-modal
image pairs, and enforce consistency between flow predictions before and after transformations.
This constraint encourages direct learning of cross-modal flow, and strengthens the mutual promo-
tion of the two networks, improving the EPE on the MS2 (RGB-T) dataset from 4.81 to 3.46.

By integrating the above insights, DCFlow supports effective training of modern flow estimation
networks such as RAFT (Teed & Deng, 2020) and FlowFormer (Huang et al., 2022), offering a
general and effective network-agnostic training framework for cross-modal flow estimation. For
comprehensive evaluation, we repurpose public multi-modal datasets by projecting LiDAR points
to obtain ground-truth flow, creating five diverse datasets covering RGB, near-infrared (NIR), and
thermal modalities. As shown in Fig. 1(b), DCFlow significantly surpasses existing unsupervised
and large-scale pretrained approaches. In summary, our main contributions are as follows:

• We propose DCFlow, a general and network-agnostic self-supervised training framework for
cross-modal flow estimation. DCFlow achieves state-of-the-art performance among all unsuper-
vised approaches.

• We introduce a decoupled optimization strategy that enables single-modal flow supervision to
benefit cross-modal flow estimation, supported by a geometry-aware data synthesis pipeline and
an outlier-robust loss to reliably provide such supervision from single-view images.

• We devise a cross-modal consistency constraint to facilitate effective joint optimization of the
modality transfer and flow estimation networks, significantly enhancing flow estimation accuracy.
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• We construct a comprehensive cross-modal flow benchmark by repurposing publicly available
datasets, covering diverse modalities such as RGB, NIR, and thermal.

2 RELATED WORK

Cross-modal image matching. Cross-modal image matching aims to establish spatial correspon-
dences between images from different modalities, and has a wide range of applications (Jiang et al.,
2021b; Li et al., 2024; Liu et al., 2024; Jiang et al., 2024). Traditional approaches (Shen et al.,
2014; Kim et al., 2015) design cross-modal invariant descriptors, but often suffer from high compu-
tational cost. Recently, unsupervised deep learning methods (Arar et al., 2020; Wang et al., 2022;
Xu et al., 2022) have been proposed, typically consisting of a modality transfer network and a flow
estimation network. Due to the absence of ground-truth correspondences, these methods rely on
appearance-based supervision, which often leads to ambiguity in textureless or repetitive regions.
Alternatively, approaches such as CrossRAFT (Zhou et al., 2022) and MINIMA (Ren et al., 2025)
synthesize cross-modal data using multi-view RGB images with known ground-truth displacements
to provide direct motion supervision. However, the synthetic-to-real domain gap limits their gen-
eralization to real-world scenarios. Besides, we note that recent work SSHNet (Yu et al., 2025)
introduces a split optimization framework for cross-modal homography estimation, which is lim-
ited to modeling global transformations. In contrast, we tackle the more challenging problem of
dense pixel-wise correspondence estimation across modalities, which has broader applicability in
real-world scenarios.

Flow estimation. Starting from FlowNet (Dosovitskiy et al., 2015), various network architec-
tures (Teed & Deng, 2020; Jiang et al., 2021a; Huang et al., 2022) have been proposed under
supervised learning, with most state-of-the-art methods adopting an iterative prediction paradigm
based on cost volumes. In the unsupervised setting, prior work (Yu et al., 2016) introduces bright-
ness constancy and motion smoothness as fundamental constraints. Subsequent approaches further
enhance these ideas through specifically designed regularization strategies (Liu et al., 2020; Luo
et al., 2021; Yuan et al., 2024), or design domain adaption techniques to enhance performance in
adverse weather (Zhou et al., 2023a;b). Other methods (Watson et al., 2020; Aleotti et al., 2021;
Liang et al., 2023; 2025) attempt to synthesize training data from single-view images. However,
most of the above approaches are designed for and evaluated on RGB image pairs, highlighting the
urgent need for effective solutions tailored to real-world cross-modal scenarios.

3 METHOD

3.1 PRELIMINARIES

This work tackles the problem of cross-modal flow estimation in an unsupervised setting. Given
a cross-modal image pair IA and IB from modalities A and B respectively, our goal is to train a
network N (·) to predict the dense flow FB2A from IB to IA. N (·) is typically decomposed into two
components, formulated as

FB2A = N (IA, IB) = Fθ(Tϕ(IA), IB), (1)

where Tϕ(·) is a modality transfer network with learnable parameters ϕ, which transforms IA into
modality B, and Fθ(·) is a mono-modal flow estimation network with learnable parameters θ. Ex-
isting unsupervised approaches generally rely on photometric losses between the warped source and
the target image for training, expressed as

argmin
ϕ,θ

Lph (W(IA,T,FB2A), IB) , (2)

where IA,T = Tϕ(IA) is the modality transferred image, W(·) denotes the warping operation, and
Lph is a photometric similarity metric such as L1 distance or SSIM. However, such supervision
is inherently ambiguous in texture-less regions or repetitive patterns, and lacks direct motion cues,
often leading to unsatisfactory results.

Motivated by these limitations, we believe that a potential improvement is to introduce motion super-
vision without using the cross-modal ground-truth flow. To achieve this goal, we propose DCFlow,
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Figure 2: Schematic diagram of DCFlow, which incorporates a decoupled optimization strategy (a,
b) and a cross-modal consistency constraint (c). (a) Optimization of the flow estimation network
Fθ, where Fθ is optimized using direct flow supervision from two-branch intra-modal synthetic
data. (b) Optimization of the modality transfer network Tϕ, where Tϕ learns to align modality IA
with IB via perceptual similarity. (c) Cross-modal consistency constraint, where both networks are
jointly optimized by enforcing flow consistency under known spatial transformations.

a novel training framework that provides explicit flow supervision without requiring any labeled
cross-modal data. We first decouple the overall task into modality transfer and mono-modal flow
estimation, thus enabling mono-modal flow supervision to benefit cross-modal flow estimation. Fur-
thermore, to ensure effective interaction between the two components, we introduce the cross-modal
consistency constraint. This constraint facilitates collaboration between the networks, leading to im-
proved performance. Fig. 2 illustrates the overall training framework of DCFlow.

3.2 DECOUPLED OPTIMIZATION

DCFlow adopts a decoupled optimization strategy for the modality transfer network Tϕ and the
flow estimation network Fθ, which address the modality discrepancy and geometric misalignment
between the input image pair separately, as illustrated in Fig. 2(a)(b). Each network is trained with
task-specific supervision, forming a self-reinforcing process where improvements in one network
provide better guidance for the other. Consequently, the training process becomes more stable, and
converges to more accurate results.

Flow estimation. Fig. 2(a) illustrates the optimization process of the flow estimation network. In
this stage, the weights of the modality transfer network Tϕ are frozen. The objective is to provide
direct motion supervision for the flow network Fθ, addressing the limitations of implicit appearance-
based supervision. Inspired by recent works (Zhang et al., 2024; Yu et al., 2025), we adopt a two-
branch intra-modal supervision scheme using synthetic data from each modality. It enables the flow
estimation network to process inputs from two different domains simultaneously at the start of train-
ing. Under the multi-task learning paradigm (Caruana, 1997), this setup progressively enhances the
generalization of the network to cross-modal inputs, and facilitates convergence in a self-supervised
manner.

Specifically, we construct two training triplets (IA, I
′
A,FA,S) and (IB, I

′
B,FB,S), where I′A/B de-

notes the rendered novel view from IA/B, and FA/B,S is the corresponding synthetic flow label. The
data synthesis pipeline is detailed in Sec. 3.3. The flow network is trained by minimizing the L1

distance between the predicted and synthetic flows from both branches, formulated as

argmin
θ

(LF(FA,FA,S) + LF(FB,FB,S)), (3)
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Figure 3: Illustration of the geometry-aware data synthesis pipeline.

where the predicted flows are defined as FA = Fθ(Tϕ(I′A), Tϕ(IA)) and FB = Fθ(I
′
B, IB), and the

loss LF is computed as

LF(F,FS) = ∥F− FS∥1 . (4)

We implement Fθ using RAFT (Teed & Deng, 2020), an iterative flow estimation architecture, and
apply the loss over all intermediate predictions. Notably, DCFlow is agnostic to the choice of flow
network, and supports alternative architectures, as demonstrated in Table 2e.

Modality transfer. Fig. 2(b) illustrates the optimization process of the modality transfer network. In
this stage, the weights of the flow estimation network Fθ are frozen. The modality transfer network
Tϕ is optimized to translate the input image IA into the appearance of modality B.

Specifically, an estimated flow FB2A between the cross-modal image pair is used to warp the trans-
ferred image IA,T, producing the warped output IwA,T = W(IA,T,FB2A). The optimization objec-
tive is then given by

argmin
ϕ

LT(I
w
A,T, IB), (5)

where LT is defined as the perceptual loss (Johnson et al., 2016), formulated as

LT(I
w
A,T, IB) =

∑
l

λl

∥∥Φl(I
w
A,T)− Φl(IB)

∥∥
2
, (6)

with Φl(·) denoting the l-th layer of a pretrained VGG network, and λl the corresponding layer
weight. The perceptual loss captures high-level structural and semantic similarity, and is less sen-
sitive to spatial misalignments than pixel-wise metrics like L1 distance. This makes it a robust
supervisory signal for the modality transfer network, even when the estimated flow is imperfect,
thereby guiding the training process toward a desired convergence. We implement Tϕ using a U-
Net (Ronneberger et al., 2015) to preserve both fine-grained details and global contextual features.

Under this decoupled training strategy, the two networks are trained independently with stable su-
pervision. Meanwhile, their outputs mutually reinforce each other, driving the entire framework
toward continuous performance improvement. Better still, this strategy enables the flow network to
be trained using only mono-modal supervision, while contributing to cross-modal alignment, funda-
mentally addressing limitations of appearance-based methods.

3.3 DATA SYNTHESIS AND OUTLIER-ROBUST LOSS

To provide reliable supervision for the flow estimation network, we propose a geometry-aware data
synthesis pipeline with an outlier-robust loss. The data synthesis process aims to generate a novel
view image I′ and its corresponding synthetic flow FS from a single input image I. To achieve this,
we introduce a lifting and reprojection technique that projects 2D pixels into 3D space and reprojects
them into a virtual camera view. It produces photorealistic and geometrically consistent image pairs
under realistic motion patterns, providing dense, geometry-grounded supervision without requiring
multi-view images with ground-truth flow label. Fig. 3 illustrates the overall pipeline.

We first estimate a depth map D using a pretrained monocular depth model, such as UniDepth (Pic-
cinelli et al., 2024). Each 2D pixel x = [u, v]⊤ is projected into a 3D point X = [x, y, z]⊤ via a
sampled intrinsic matrix K as

X ∼ D(x) ·K−1 · x. (7)

5
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For simplicity, we omit the homogeneous coordinate form. We then sample a virtual camera pose
T ∈ SE(3), and re-project the 3D points into the novel view as

x′ ∼ K ·T ·X, (8)

where x′ = [u′, v′]⊤. Then, the rendered image I′ is obtained by sampling the corresponding pixel
values from I, and the synthetic flow FS is defined as the 2D displacement between x and x′.

To identify occluded and invisible regions introduced by viewpoint changes, we adopt a photomet-
ric consistency check to generate a binary valid mask M, where M = 1 indicates valid pixels.
Specifically, we warp the rendered image I′ back to the original view using FS, and measure the
photometric error against I. Pixels with photometric errors exceeding a threshold are marked as
invalid and excluded from loss computation. The flow loss is then defined as

LF =
1∑
M

∑
M(x)=1

∥F(x)− FS(x)∥1 . (9)

While the valid mask effectively excludes occluded and invisible regions, some pixels may still yield
unreliable supervision due to rendering artifacts or depth estimation errors. These regions, such as
distorted boundaries or thin structures, may contain valid flow but poor appearance quality, making
them unsuitable for flow supervision.

To address this, in line with previous approaches (Wang et al., 2021; Keetha et al., 2025; Ding et al.,
2025), we adopt an outlier-robust loss that further filters noisy supervision by discarding a small
fraction of pixels with the highest residuals. Specifically, we sort the per-pixel L1 flow error within
valid regions, and remove the top-τ% pixels for loss computation. This ensures that the supervision
focuses on regions with both accurate motion and relatively high appearance fidelity. The outlier-
robust loss is defined as

LF =
1

|Ωτ |
∑
x∈Ωτ

∥F(x)− FS(x)∥1 , (10)

where Ωτ denotes the set of valid pixels after excluding the top-τ% largest residuals. It provides
a more robust training signal by avoiding noisy supervision caused by uncertain depth or texture
distortions, thereby further improving the stability and accuracy of flow learning.

3.4 CROSS-MODAL CONSISTENCY CONSTRAINT

Though the decoupled optimization strategy ensures stable convergence, it does not explicitly teach
the network to perform cross-modal flow estimation. Instead, the model relies on the generalization
ability of two independently optimized networks. To overcome this limitation, we introduce a cross-
modal consistency constraint that jointly optimizes both networks by enforcing flow consistency
under known spatial transformations, as illustrated in Fig. 2(c).

Given a cross-modal image pair (IA, IB) and the corresponding flow prediction FB2A, we apply
random affine transformations (e.g., scaling, rotation, and translation) to both images, yielding the
augmented image pair (ĨA, ĨB). Since the transformations are known, we can derive a transformed
flow F̃∗

B2A from FB2A. The augmented pair is then passed through the full network pipeline, pro-
ducing a new prediction F̃B2A = Fθ(Tϕ(ĨA), ĨB). Based on the assumption that flow predictions
should remain geometrically consistent under known transformations, the joint optimization objec-
tive is defined as

argmin
ϕ,θ

LF(F̃B2A, F̃
∗
B2A), (11)

where LF is the outlier-robust loss in Eq. 10. This self-supervised constraint enables direct learning
of cross-modal flow estimation, encouraging mutual adaptation between the two networks and thus
improving final performance.

3.5 OVERALL TRAINING OBJECTIVE

The entire training objective can be formulated as

argmin
ϕ,θ

LF(FA,FA,S) + LF(FB,FB,S) + λTLT(I
w
A,T, IB) + λCLF(F̃B2A, F̃

∗
B2A), (12)
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Table 1: The statistics of cross-modal flow datasets.

Dataset Modality # Training # Testing Resolution
MS2 RGB-T-NIR 3631 907 608×192
VTD RGB-T 1536 392 512×320
RNS RGB-NIR 1187 294 704×512

(b) Synthetic RGB image and flow
(2D transformation)

(a) Input RGB and thermal images (c) Synthetic RGB image and flow
(3D Gaussian Splatting)

(d) Synthetic RGB image and flow
(Geometry-aware synthesis)

(e) Synthetic thermal image and flow 
(Geometry-aware synthesis)

Figure 4: Qualitative comparison of different synthetic flow data generation strategies.

where λT and λC denote the loss weights for the modality transfer and cross-modal consistency
components, respectively. We note that these three losses are jointly optimized within a single
gradient descent step, with each loss imposed on its corresponding set of parameters. Once com-
bined, the decoupled optimization allows each network to learn its specific task robustly, while the
consistency constraint enhances collaboration between two networks for better cross-modal flow
estimation, ultimately leading to stable and effective self-supervised training.

For implementation, we set λT = 2.0 and λC = 0.05. We train the entire network from scratch for
30, 000 iterations with a batch size of 4. The cross-modal consistency constraint is introduced after
10, 000 iterations, allowing the model to produce reliable flow predictions before joint optimization
begins. More details can be found in Sec. A.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate DCFlow on three public datasets, i.e., MS2 (Shin et al., 2023), VTD (Guo
et al., 2023), and RNS (Kim & Baek, 2025). These datasets provide multi-modal data including
RGB, near-infrared (NIR), thermal (T), and LiDAR, and consist of multiple video sequences. To
adapt them for cross-modal flow evaluation, we repurpose the raw data using the following proce-
dure. We first resize and crop images across modalities to achieve consistent effective focal lengths,
based on the provided intrinsic parameters. Then, we project LiDAR points from one image to
another using the known extrinsic parameters, and compute the ground-truth flow from the 2D dis-
placements of valid projected points. Due to the inherent sparsity of LiDAR, the resulting flow
labels are sparse. Details can be found in Sec. A.5. For dataset splitting, we use the first 80% frames
in each video sequence for training and the remaining 20% for testing. Dataset statistics are sum-
marized in Table 1. Notably, the MS2 dataset simultaneously captures RGB, NIR, and T modalities,
allowing us to construct three sub-datasets for comprehensive evaluation under different modality
gaps. We denote these as MS2 (RGB-T), MS2 (RGB-NIR), and MS2 (NIR-T).

Metrics. We report the endpoint error (EPE) and the flow outlier rate (F1). EPE measures the aver-
age L2 distance between the predicted flow and the ground-truth, while F1 denotes the percentage
of pixels with EPE greater than both 3 pixels and 5% of the ground-truth magnitude. Lower EPE
and F1 values indicate better performance.

4.2 ABLATION STUDY

Ablation studies are conducted on the MS2 (RGB-T) dataset unless otherwise specifically stated.

Training strategy. Table 2a presents the ablation study on different training strategies of DCFlow.
We start with the appearance-based optimization baseline, where the entire network is trained using
only the photometric similarity loss in Eq. 2. As shown, this strategy leads to poor performance,
reflecting the inherent limitations of relying solely on appearance cues. We then evaluate our de-

7
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Table 2: Ablation studies of DCFlow on the MS2 (RGB-T) dataset.

(a) Ablation study on training strategies.

Training strategy EPE F1
Appearance-based optimization 21.23 98.45
Decoupled optimization 5.80 57.18
+ Outlier-robust loss 4.81 51.39
+ Cross-modal consistency constraint 3.46 35.89

(b) Ablation study on data synthesis strategies.

Data synthesis strategy EPE F1
2D transformation 13.12 95.21

3D Gaussian Splatting 5.11 63.12
Geometry-aware synthesis (Ours) 3.46 35.89

(c) Ablation study on inaccurate depth estimation.

Depth quality σ of Gaussian noise σ of scaling noise Kernel size of blurring EPE F1
Network output - - - 3.46 35.89

Small degradation 0.1 0.1 7 3.81 40.66
Large degradation 0.2 0.2 14 4.00 49.08

(d) Ablation study on different depth estimation networks.

Depth network EPE F1
Metric3D v2 3.74 39.41

Depth Anything v2 3.45 34.81
UniDepth (Default) 3.46 35.89

(e) Ablation study on different flow networks.

Training strategy RAFT GMA FlowFormer SEA-RAFT
EPE F1 EPE F1 EPE F1 EPE F1

Appearance-based optimization 21.23 98.45 24.27 97.39 29.22 99.43 23.93 98.66
DCFlow (Ours) 3.46 35.89 4.13 48.04 3.66 37.97 3.57 38.63

coupled optimization strategy, which separately trains the modality transfer and flow estimation
networks using task-specific objectives. In this setup, synthetic flow data is introduced to enable ex-
plicit motion supervision for the flow network. This strategy yields stable convergence and achieves
an EPE of 5.80. Introducing the outlier-robust loss further improves performance, reducing EPE
by 0.99 and F1 by 5.79, demonstrating its effectiveness in suppressing noisy supervision from syn-
thetic artifacts. Finally, incorporating the proposed cross-modal consistency constraint leads to the
best performance, with an EPE of 3.46 and F1 of 35.89. These results confirm that enforcing spatial
consistency during joint optimization significantly enhances flow estimation accuracy.

Flow data synthesis. DCFlow introduces a geometry-aware synthesis pipeline to generate image
pairs with dense flow labels from a single image. As alternatives, we evaluate the 2D transfor-
mation (e.g., homography) and feed-forward 3D Gaussian Splatting (Szymanowicz et al., 2025)
as substitute data generation strategies. We present qualitative comparisons of these strategies in
Fig. 4. The 2D transformation (Fig. 4(b)) ignores scene geometry and produces unrealistic mo-
tion patterns, which cause the model to overfit to such distortions. The 3D Gaussian Splatting
approach (Fig. 4(c)) synthesizes novel views with 3D awareness, but often suffers from visual arti-
facts and instability caused by imperfect Gaussian primitives estimation. In contrast, our proposed
data synthesis pipeline (Fig. 4(d)) produces geometrically consistent and visually plausible novel
views, offering more reliable training data for flow networks. Moreover, Fig. 4(e) shows that our
geometry-aware synthesis pipeline generalizes well to challenging modalities such as thermal im-
ages. Table 2b reports the results trained under each data synthesis pipeline, further demonstrating
that our geometry-aware synthesis significantly outperforms the alternatives.

Discussion on monocular depth estimation. In DCFlow, we adopt a pretrained monocular depth
model to estimate the depth of input images for the geometry-aware data synthesis pipeline. We
note that DCFlow is robust to imperfect or biased depth estimation. In general, the estimated depth
serves only as an intermediate variable for flow data synthesis. Although the depth prediction may
not be perfect, it is sufficient to represent the relative distance relationships between different re-
gions of an image. Since both the warped image and the corresponding synthetic flow are computed
using the same depth prediction, the synthetic flow label can still accurately represent the motion
between the source image and the warped image. In addition, the photometric consistency checking
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Table 3: Ablation study on the direction of modality transfer.

Dataset MS2 (RGB-T) MS2 (NIR-T) MS2 (RGB-NIR)
Direction RGB→T T→RGB NIR→T T→NIR RGB→NIR NIR→RGB

EPE 3.46 3.68 4.53 4.80 0.96 0.94
F1 35.89 44.11 49.81 60.71 5.00 4.66

and the outlier-robust loss filter out invisible areas and regions with artifacts, which ensures that the
supervision focuses on pixels with reliable motion and appearance. Moreover, the cross-modal con-
sistency constraint provides an additional source of flow supervision that does not rely on monocular
depth. To further demonstrate the robustness of DCFlow under inaccurate depth, we add degrada-
tions to the depth map estimated by UniDepth (Piccinelli et al., 2024) for flow synthesis, including
Gaussian noise, scaling noise, and edge blurring. As shown in Table 2c, DCFlow shows only slight
performance drop even when the depth maps are heavily corrupted, and it still performs favorably
compared with existing unsupervised baselines.

Besides, we note that the monocular depth for NIR and thermal images is obtained by directly apply-
ing depth foundation models pretrained on the RGB domain in a zero-shot manner. Although these
depth models are trained on RGB data, prior works (Shin et al., 2023; Shin & Park, 2025) show that
monocular depth estimation mainly relies on geometry cues such as perspective geometry, occlu-
sion boundaries, and texture gradients, which are largely modality invariant. Moreover, these depth
foundation models are trained on diverse datasets with strong augmentations such as brightness,
contrast, and hue changes, which further enhance their generalization ability to unseen modalities.
As a result, models like UniDepth generalize reasonably well to NIR and thermal inputs. We replace
UniDepth (Piccinelli et al., 2024) with Depth Anything v2 (Yang et al., 2024) and Metric3D v2 (Hu
et al., 2024) for flow synthesis, and the results in Table 2d show that DCFlow consistently achieves
strong performance across different depth networks.

Generalization ability for different flow networks. We replace RAFT (Teed & Deng, 2020) with
GMA (Jiang et al., 2021a), FlowFormer (Huang et al., 2022), and SEA-RAFT (Wang et al., 2024),
and report the results in Table 2e. Our DCFlow consistently achieves superior performance across
different flow networks, demonstrating strong generalization and compatibility.

Direction of modality transfer. Since some modalities contain more information, transferring from
richer to less informative modalities could make the learning process easier. We select the transfer
direction based on the observation that modalities such as RGB and NIR contain richer texture
and structure than thermal, making the modality transfer easier and more stable than the reverse
direction. As shown in Table 3, transferring from RGB/NIR to thermal outperforms the reverse
direction. The performance difference between RGB and NIR mapping is relatively small.

4.3 COMPARISONS WITH EXISTING APPROACHES

Baselines. We evaluate our DCFlow with large-scale pretrained approaches including Cross-
RAFT (Zhou et al., 2022) and MINIMA (Ren et al., 2025), unsupervised approaches including
NeMAR (Arar et al., 2020) and UMF-CMGR (Wang et al., 2022), and supervised approaches in-
cluding RAFT (Teed & Deng, 2020), GMA (Jiang et al., 2021a), FlowFormer (Huang et al., 2022),
and SEA-RAFT (Wang et al., 2024). CrossRAFT and MINIMA are pretrained on large-scale syn-
thetic datasets with ground-truth flow label. We evaluate their performance using publicly available
checkpoints. We retrain all unsupervised and supervised baselines under the same settings as ours
for fairness. The supervised approaches are trained using sparse ground-truth flow annotations.

Quantitative comparison. Table 4 reports the quantitative results on five cross-modal datasets.
Among all unsupervised and large-scale pretrained approaches, our DCFlow consistently achieves
the best performance on both metrics, demonstrating strong generalization ability across diverse
modalities. The existing unsupervised approaches such as NeMAR and UMF-CMGR generally
yield unsatisfactory results, which aligns with findings from prior studies (Zhang et al., 2024; Yu
et al., 2025). This suggests that appearance-based optimization struggles to converge under signif-
icant modality discrepancy and geometric misalignment. In contrast, DCFlow produces stable and
accurate flow estimation, highlighting the effectiveness of our training framework. Compared to
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Input image A Input image B NeMAR UMF-CMGR CrossRAFT MINIMA DCFlow (Ours)

MS²
(RGB-T)

MS²
(RGB-NIR)

MS²
(NIR-T)

VTD
(RGB-T)

RNS
(RGB-NIR)

Figure 5: Qualitative comparison of DCFlow and other approaches. The first two columns show the
input image pairs, and the remaining columns visualize the image from modality A warped using
the estimated flow from each approach. For clarity, cropped patches of the full-resolution images
are shown. The red boxes highlight the distortion regions.

Table 4: Quantitative comparison of DCFlow and other approaches. The EPE and F1 are reported.
The best results among all large-scale pretrained and unsupervised methods are highlighted in bold.

Category Method
MS2 MS2 MS2 VTD RNS

(RGB-T) (NIR-T) (RGB-NIR) (RGB-T) (RGB-NIR)
EPE F1 EPE F1 EPE F1 EPE F1 EPE F1

Supervised

RAFT 1.70 14.76 1.80 16.50 0.23 0.57 1.14 8.45 1.63 9.32
GMA 1.67 14.58 1.80 16.55 0.24 0.61 1.15 8.67 1.53 6.53

FlowFormer 1.65 14.28 1.78 16.22 0.25 0.77 1.20 8.43 1.87 13.88
SEA-RAFT 1.65 14.04 1.97 17.64 0.21 0.48 1.31 9.49 1.37 6.42

Large-scale CrossRAFT 6.21 70.20 7.06 73.06 4.32 29.54 9.86 89.33 2.04 15.53
pretrained MINIMA 5.97 66.12 7.10 70.37 5.44 33.48 6.34 80.41 2.34 15.18

Unsupervised
NeMAR 19.25 99.80 28.41 99.99 11.39 99.92 23.43 96.89 25.11 99.83

UMF-CMGR 18.84 99.78 26.67 99.99 8.85 99.27 28.05 99.13 31.13 99.98
DCFlow (Ours) 3.46 35.89 4.53 49.81 0.96 5.00 3.65 48.49 1.90 13.05

large-scale pretrained approaches like CrossRAFT and MINIMA, DCFlow achieves significantly
better results. For instance, DCFlow yields 42.0%, 36.2%, 82.4%, 42.4%, and 18.8% lower EPEs
than MINIMA on the five datasets, demonstrating the advantage of learning directly from unlabeled
real-world data over relying on synthetic cross-modal datasets. When compared with supervised ap-
proaches, our DCFlow achieves competitive performance, despite the absence of using ground-truth
cross-modal flow labels. These results highlight the effectiveness of DCFlow.

Qualitative comparison. Fig. 5 presents qualitative results on five datasets. We visualize the im-
age from modality A warped using the estimated flow to assess the accuracy of each method. As
shown, previous unsupervised approaches such as NeMAR and UMF-CMGR struggle with large
cross-modal misalignments. Although CrossRAFT and MINIMA produce coarse alignment, they
still exhibit noticeable mismatches in several regions, as highlighted by the red boxes. In contrast,
DCFlow achieves more precise warping, demonstrating the superiority of our training framework.

5 CONCLUSIONS

We have presented DCFlow, a novel self-supervised framework for cross-modal flow estimation that
combines a decoupled optimization strategy and a cross-modal consistency constraint. The former
tackles modality discrepancy and geometric misalignment with task-specific supervision, while the
latter enables direct learning of cross-modal flow. Within this framework, we introduce a geometry-
aware synthesis pipeline with an outlier-robust loss to provide reliable flow supervision from single-
view images. Experiments on multiple datasets demonstrate that DCFlow achieves state-of-the-art
performance among unsupervised approaches.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT
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A APPENDIX

A.1 NETWORK ARCHITECTURES

In this paper, we propose DCFlow, a novel self-supervised framework for cross-modal flow estima-
tion. It serves as a general and network-agnostic training paradigm, supporting the effective training
of modern flow estimation networks. In our main experiments, we adopt U-Net (Ronneberger et al.,
2015) for modality transfer and RAFT (Teed & Deng, 2020) for flow estimation.

Modality transfer. As illustrated in Fig. 6(a), the modality transfer network adopts an encoder-
decoder structure with skip connections to preserve spatial details, and operates at four resolution
scales. We use two convolutional layers with batch normalization and ReLU activations as the
basic unit, max-pooling for downsampling, and bilinear interpolation for upsampling. Given the
input image I ∈ RH×W×3, the feature maps across the four scales have sizes of H × W × C,
H
2 × W

2 × 2C, H
4 × W

4 × 4C, and H
8 × W

8 × 8C, respectively. The U-Net architecture allows the
network to translate images from one modality to another without any task-specific modifications,
demonstrating the generalization ability and robustness of our training framework.

Flow estimation. We adopt RAFT as the flow estimation network. As shown in Fig. 6(b), it consists
of a feature encoder, a context encoder, a correlation layer, and an iterative flow decoder. Given the
input image pair I1, I2 ∈ RH×W×3, the goal is to predict the optical flow F ∈ RH×W×2. The
feature encoder extracts matching features from both images, while the context encoder processes
only I1 to extract contextual information. The correlation layer then computes a 4D cost volume by
taking the inner product between all pairs of matching features. Finally, the cost volume and context
features are passed into the iterative decoder, which progressively refines the flow predictions. For
more details, please refer to RAFT (Teed & Deng, 2020).

A.2 DETAILS OF CROSS-MODAL CONSISTENCY CONSTRAINT

In the following, we describe the details on how the transformed flow is obtained. Given a cross-
modal image pair (IA, IB) and the predicted flow FB2A, we apply the same random affine trans-
formation A(x) = Ax + t to both images, where A encodes rotation and scaling, and t is the
translation. We denote the original flow as FB2A(xB) = xA − xB. After transformation, the corre-
sponding points are given by x̃B = A(xB) and x̃A = A(xA). The transformed flow F̃∗

B2A can be
formulated as

F̃∗
B2A(x̃B) = x̃A − x̃B = A(xA − xB) = AFB2A(xB). (13)

We note that only the linear part A affects the flow, while the translation term t cancels out. In
practice, for each x̃B, we sample the corresponding FB2A(xB) via bilinear interpolation and then
multiply it by A to obtain the transformed flow.

A.3 MORE IMPLEMENTATION DETAILS

We implement DCFlow using PyTorch. The channel dimension C in the modality transfer network
is set to 16. The number of iterations in RAFT is fixed to 6. The threshold of the photometric error
in the data synthesis pipeline is set to 10, defined on 8-bit image intensities. The top-τ% threshold in
the outlier-robust loss for flow estimation is set to 20%. For the cross-modal consistency constraint,
we apply random affine transformations, including rotations within ±3◦, scaling factors in the range
of [0.95, 1.05], and translations within ±24 pixels along both axes. We adopt the AdamW optimizer
with a maximum learning rate of 0.0004, and apply the cosine decay schedule during training. All
experiments are conducted on NVIDIA RTX 4090 GPUs.
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Figure 6: Illustration of the network architectures. (a) Modality transfer network, which adopts a
U-Net architecture. (b) Flow estimation network, which adopts RAFT.

A.4 METRICS

We use the endpoint error (EPE) and flow outlier rate (F1) as quantitative metrics to evaluate flow
accuracy.

The EPE is defined as the average L2 distance between the predicted optical flow F and the ground-
truth flow FGT over all valid pixels, formulated as

EPE =
1

N

∑
x

∥F(x)− FGT(x)∥2 , (14)

where x indexes valid pixel locations, and N is the total number of valid pixels. Lower EPE indicates
higher accuracy.

The F1 score measures the percentage of outlier pixels where the EPE exceeds both 3 pixels and 5%
of the ground-truth flow magnitude. A pixel x is considered an outlier if

∥F(x)− FGT(x)∥2 > max(3, 0.05 · ∥FGT(x)∥2). (15)

The F1 score is then computed as

F1 =
1

N

∑
x

1 [x is an outlier]× 100%, (16)

where 1[·] denotes the indicator function. Lower F1 indicates better robustness to large flow errors.

A.5 DETAILS OF DATASETS

We evaluate DCFlow on MS2 (Shin et al., 2023), VTD (Guo et al., 2023), and RNS (Kim & Baek,
2025) datasets. Specifically, the MS2 dataset contains three modality pairs, namely MS2 (RGB-T),
MS2 (RGB-NIR), and MS2 (NIR-T). In the following, we describe the process of dataset repurpos-
ing.

To ensure scale consistency across modalities, we first standardize the image resolution, and unify
the effective camera intrinsics. This ensures that all modalities share a common focal length scale,
enabling accurate reprojection between viewpoints. Formally, we adjust the intrinsic matrices KA

and KB of modalities A and B, respectively, to a shared intrinsic matrix K̂:

KA → K̂, KB → K̂. (17)

After aligning the intrinsics, we compute ground-truth optical flow between modality pairs using
LiDAR depth and known extrinsic calibration. For each valid pixel xA = [u, v]⊤ in modality A
with depth z, we first back-project it into 3D space, expressed as

XA = z · K̂−1

[
u
v
1

]
. (18)
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Pair 1 (Modality A) Pair 1 (Modality B) Pair 2 (Modality A) Pair 2 (Modality B)

Figure 7: Cross-modal input image pairs from each dataset. For each dataset, we present two exam-
ples.

Table 5: Ablation on the value of τ in the outlier-robust loss.

τ EPE F1
w/o outlier-robust loss 5.80 57.18

10 5.40 55.59
20 (Default) 4.81 51.39

30 5.01 50.22
40 5.59 58.29

We then transform the 3D point into the coordinate system of modality B using the extrinsic matrix
TA→B = [R, t] ∈ SE(3), formulated as

XB = R ·XA + t. (19)

The corresponding 2D projection in modality B is given by

xB = π(K̂ ·XB), (20)

where π(·) denotes the perspective projection. The ground-truth flow is then computed as the 2D
displacement between corresponding points as

F(xA) = xB − xA. (21)

Only pixels with valid depth and successful projections within image boundaries are retained. We
present two cross-modal image pairs for each dataset in Fig. 7.

A.6 ADDITIONAL ABLATION STUDIES

Ablation on the value of τ in the outlier-robust loss. We vary τ from 10 to 40, and list the results
in Table 5. When τ is too small, the filtering of undesired regions becomes insufficient, and noisy
pixels still contribute to supervision. When τ is too large, too many pixels are removed, and the
supervision signal becomes weak. We choose τ as 20 to provide a good balance between removing
unreliable regions and keeping enough valid information for supervision.

Comparison with other robust loss functions. We compare our outlier robust loss with the Char-
bonnier loss and the Mixture of Laplace loss used in SEA-RAFT (Wang et al., 2024). As shown
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Table 6: Comparison with other robust loss functions.

Loss type EPE F1
L1 loss (baseline) 5.80 57.18
Charbonnier loss 6.02 63.62

Mixture-of-Laplace loss 5.94 56.21
Outlier-robust loss (Ours) 4.81 51.39

Table 7: Ablation on the affine ranges in the cross-modal consistency constraint.

Affine range Rotation Translation Scaling EPE F1
w/o consistency constraint - - - 4.81 51.39

Small [-1, +1] [-12, +12] [0.98, 1.02] 3.61 36.08
Medium (Default) [-3, +3] [-24, +24] [0.95, 1.05] 3.46 35.89

Large [-5, +5] [-36, +36] [0.92, 1.08] 3.93 46.37

in Table 6, both alternatives lead to inferior results, while our outlier-robust loss achieves the best
performance by more effectively suppressing high error outliers.

Ablation on the affine ranges in the cross-modal consistency constraint. We evaluate small,
medium, and large affine perturbations for consistency constraint, and list the results in Table 7. It
can be seen that small and medium perturbations already introduce sufficient geometric variation for
the consistency constraint, while excessively large perturbations may create unrealistic deformations
that harm the supervision quality. We choose medium perturbations as default.

A.7 MORE EXPERIMENTAL RESULTS

Generalization to unseen domains. We present the cross-dataset generalization results between
MS2(RGB–T) and VTD (RGB–T) in Table 8. When trained on one dataset and evaluated on an-
other unseen dataset, DCFlow achieves better performance than existing unsupervised approaches
trained directly on the target dataset. This highlights the advantage of our framework over previ-
ous unsupervised approaches that rely solely on appearance-based supervision. Moreover, although
large-scale pretrained approaches use substantially larger synthetic datasets with ground-truth flow,
DCFlow achieves comparable or better generalization under the cross-dataset evaluation setting,
while requiring far less training data.

Generalization to unseen sensor types. We evaluate the cross-modal generalization ability
of DCFlow by testing models trained on MS2(RGB–T) and MS2(RGB–NIR) on the unseen
MS2(NIR–T) modality. As shown in Table 9, the model trained on RGB–T achieves reasonable
performance on NIR–T, whereas the model trained on RGB–NIR fails to generalize. This can likely
be attributed to the modality gap between RGB–T and NIR–T is relatively closer, making the trans-
fer from RGB–T to NIR–T more feasible. In contrast, the gap between RGB–NIR and NIR–T is
substantially larger, which leads to poor generalization.

Modality transfer results. We present qualitative results of modality transfer on each dataset in
Fig. 8. The translated images preserve the structural details of the source modality, while showing
appearance characteristics aligned with the target modality. These results clearly demonstrate the
effectiveness of our proposed learning framework.

Visualization of synthetic flow data. Fig. 9 presents examples of synthetic flow generated from
single-view images. The results demonstrate that our geometry-aware data generation pipeline pro-
duces high-quality flow supervision, and generalizes well across different modalities.

Visualization of the valid mask used for flow supervision. We present examples of the valid mask
used for flow supervision in Fig. 10. Though the imperfect depth estimation would lead to visual
artifacts in the synthetic images, the photometric consistency checking and the outlier-robust loss
effectively remove these regions for loss computation, enabling high-quality supervision of the flow
network.
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Table 8: Cross-dataset generalization results.

Method Training dataset MS2 (RGB-T) VTD (RGB-T)
EPE F1 EPE F1

CrossRAFT Large-scale synthetic dataset 6.21 70.20 9.86 89.33
MINIMA Large-scale synthetic dataset 5.97 66.12 6.34 80.41

NeMAR MS2 (RGB-T) 19.25 99.80 25.29 99.99
VTD (RGB-T) 20.05 99.76 23.43 96.89

UMF-CMGR MS2 (RGB-T) 18.84 99.78 32.06 99.99
VTD (RGB-T) 25.78 99.99 28.05 99.13

DCFlow (Ours) MS2 (RGB-T) 3.46 35.89 6.65 76.25
VTD (RGB-T) 5.70 68.97 3.65 48.49

Table 9: Generalization results from models trained on RGB-T or RGB-NIR image pairs to NIR-T.

Training Modality EPE F1
RGB-T 10.20 86.23

RGB-NIR 27.66 99.99

Analysis for low-performing modalities. We note that the flow estimation accuracy of NIR-T
modalities is lower than that of RGB-T. It is mainly caused by imperfect modality transfer. For
instance, the NIR modality has a much narrower spectral range and only one channel, whereas
RGB covers a wider spectrum with three channels. This makes transferring from NIR to thermal
substantially more difficult than transferring from RGB, especially when perfectly aligned cross-
modal pairs are not available for supervision. Fig. 11 compares modality transfer and flow estimation
on RGB–T and NIR–T pairs from the same scenes. Compared with the transferred images from
RGB, the transferred images from NIR show blurrier structures and less distinct edges in some
regions, which result in larger alignment errors.

Visualization of the training process. We provide a visualization of the training process in Fig. 12.
Fig. 12(a) shows the curves of four loss functions, where all losses exhibit stable decreases. Fig 12(b)
presents the qualitative comparison of the modality transfer and flow estimation results at different
training iterations. As the network trains, both the transferred images and estimated flow gradually
improve, confirming that the proposed framework effectively learns cross-modal flow estimation
over time.

Qualitative comparison. We present additional qualitative comparisons between DCFlow and pre-
vious methods, including NeMAR (Arar et al., 2020), UMF-CMGR (Wang et al., 2022), Cross-
RAFT (Zhou et al., 2022), and MINIMA (Ren et al., 2025), as shown in Fig. 13. It can be observed
that DCFlow produces more accurate flow estimation results, whereas the other approaches exhibit
noticeable mismatches.

Efficiency comparison. Table 10 presents the comparison in terms of inference time and mem-
ory usage. It can be seen that DCFlow achieves competitive runtime and memory usage, while
maintaining strong accuracy.

A.8 LIMITATIONS

While DCFlow significantly outperforms previous unsupervised approaches, a slight performance
gap remains compared to supervised methods. In addition, DCFlow relies on a data synthesis
pipeline to provide flow supervision from single-view images, which may increase training time.
Despite these limitations, we believe DCFlow contributes to advancing unsupervised cross-modal
flow estimation.
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Figure 8: Visualization of modality transfer results across different datasets.
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Figure 9: Visualization of synthetic flow data across different datasets.

B STATEMENT ON THE USE OF LLMS

We used large language models (LLMs) solely as a writing aid to improve grammar and wording.
LLMs were not used for research ideas, experimental design, or data analysis. All text was written by
the authors and carefully reviewed for accuracy and originality. The authors take full responsibility
for the content of the manuscript.
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Input image Synthetic image Synthetic flow Mask for supervision

Figure 10: Visualization of the valid mask used for flow supervision on the MS2 (RGB-T) dataset.
Thanks to the photometric consistency checking and the outlier-robust loss, invisible areas and re-
gions affected by severe artifacts are excluded from loss computation.

Input image A (RGB)

Input image A (NIR)

Transferred image A (RGB->T)

Transferred image A (NIR->T) Warped image A (NIR)

Warped image A (RGB)

Input image B (Thermal)

Input image A (RGB)

Input image A (NIR)

Transferred image A (RGB->T)

Transferred image A (NIR->T) Warped image A (NIR)

Warped image A (RGB)

Input image B (Thermal)

Example 1 Example 2

Figure 11: Comparison of modality transfer and flow estimation results for RGB–T and NIR–T
pairs on the same scenes. For clarity, cropped patches of the full-resolution images are shown. The
red boxes highlight regions where the modality transfer quality and the resulting flow estimation
accuracy differ across modalities.

Table 10: Efficiency comparison of different approaches.

Approach RAFT GMA FlowFormer SEA-RAFT CrossRAFT MINIMA NeMAR UMF-CMGR DCFlow (Ours)
Inference time (ms) 32.6 39.1 58.7 34.5 85.2 357.9 49.4 64.7 40.1

Inference memory (MB) 708 718 816 614 2250 7240 3056 2770 742
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(a) Curves of different loss functions
Flow loss of modality A Flow loss of modality B Flow loss of consistency constraint Modality transfer loss

(b) Visual example of the training process

Input RGB and thermal images

The results of modality transfer and flow estimation at 100 iteration

The results of modality transfer and flow estimation at 1000 iteration

The results of modality transfer and flow estimation at 10000 iteration

The results of modality transfer and flow estimation at 30000 iteration

Figure 12: Visualization of the training process on the MS2 (RGB-T) dataset. (a) Curves of loss
functions used in DCFlow. All losses decrease with clear convergence as training progresses, indi-
cating the effectiveness of our training strategies. (b) Visual examples of modality transfer and flow
estimation at different training iterations. The results are shown at 100, 1000, 10000, and 30000
iterations.

Input image A Input image B NeMAR UMF-CMGR CrossRAFT MINIMA DCFlow (Ours)

MS²
(RGB-T)

MS²
(RGB-NIR)

MS²
(NIR-T)

VTD
(RGB-T)

RNS
(RGB-NIR)

Figure 13: Qualitative comparison of DCFlow and other approaches. The first two columns show
the input image pairs, and the remaining columns visualize the image from modality A warped using
the estimated flow from each approach. For clarity, cropped patches of the full-resolution images
are shown. The red boxes highlight the distortion regions.
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