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Abstract—Reconfigurable antennas, as a subclass of meta-
surfaces, offer innovative and dynamic capabilities for wireless
communication systems. Specifically, enabling radiation pat-
tern reconfigurability allows for flexible beam steering through
reverse-engineering of antenna parameters such as surface cur-
rent distributions. In this work, we present a physics-informed
machine learning model, leveraging fundamental physics such as
Kirchhoff’s current Law, to predict the switch configurations of
2-dimensional antenna arrays. We utilize a graph neural network
(GNN) to effectively capture the spatial relationships between
radio-frequency (RF) switches and antenna patches, closely
emulating the antenna topology. Simulation results demonstrate
that our approach successfully predicts switch configurations
needed to generate complex far-field radiation patterns.

Index Terms—inverse design, deep learning, graph neural
networks, large area electronics, reconfigurable antenna, meta-
surfaces, physics-informed machine learning.

I. INTRODUCTION

Recent advancements in deep learning have positioned the
inverse design of reconfigurable antennas as a promising
approach for antenna design solutions. Traditional design
methods rely on iterative simulations and manual optimization
[1], [2], which are computationally expensive. State-of-the-
art approaches leverage machine learning models, such as
deep neural networks and generative models, to accelerate
this process by learning the complex relationships between
design parameters and performance metrics. Recent studies
have demonstrated the use of neural networks for tasks like
optimizing beam steering and frequency tuning, showing great
promise in improving design efficiency [1], [3].

In this work, we tackle the inverse design of a large-aperture
GHz reconfigurable antenna proposed and demonstrated by
Can et al. [4], by predicting the switch configurations based
on a given current distribution. Since the surface current dis-
tribution determines the radiation pattern and the relationship
between the far-field pattern and current distribution is well-
established [5], [6], numerical methods such as inverse method
of moments can be used to analytically solve for the current
distributions that produce a desired far-field radiation pattern
[7], [8]. On the other hand, the relationship between the switch
configuration and the steady state current distribution of a
antenna array system is complex and largely unknown. This
poses a challenge in antenna inverse-design and applications,
as it hinders the ability to dynamically control the radiation

pattern through switch manipulation. While deep learning
methods such as convolutional neural network could be con-
sidered, the graph-based topology of antennas complicates
effective feature embedding. To close this gap, we propose a
physics-informed GNN framework that predicts the necessary
switch configuration to generate a desired current distribution.

II. INVERSE DESIGN

A. System Architecture and Feature Embedding

The reconfigurable antenna architecture features RF
switches operating in the 2.4 GHz band, interconnecting
copper square patches arranged in a 2D array as shown in
Fig. 1(a), where the antenna array is mounted on a printed
circuit board (PCB) (modeled using ”FR4” from CST’s mate-
rial library, with a dielectric constant of 4.5). Beneath the PCB
is a layer of alumina dielectric plane modeled using ”alumina”
from CST’s material library, with a dielectric constant of 9.8,
followed by an aluminum ground plane. The switch length
and the size of the copper patch are both 4.5 mm. A radiation
aperture is formed with 7 × 7 copper patches, covering
5.85cm × 5.85cm. For simplicity in analysis, we assume the
switch configuration below the x-axis is a mirrored version
of the configuration above the x-axis. Between each pair of
neighboring patches, a switch is placed to distribute current
across the copper patches, resulting in 239 possible switch
configurations. A reconfigurable antenna of such scale can
readily be constructed using Large-Area Electronics [4].

In full-wave EM simulations, each copper patch is dis-
cretized into hexahedral meshes, whose collective response
serves as that of an approximation of the continuous surface.
As shown in Fig. 1(b) left, each hexahedral mesh centered
at location index (i, j) carries current with surface current
density Ji,j , which is defined as current per unit length along
the surface of a conductor:

Ji,j = (ℜ(Jxi,j ) + iℑ(Jxi,j ),ℜ(Jyi,j ) + iℑ(Jyi,j )) A/m. (1)

Here, the subscripts x and y represent the vector components
of the current in the x-y plane. The color code in Fig. 1(b)
indicate the euclidean norm magnitude |Ji,j | of the current
vector Ji,j = (Jxi,j , Jyi,j ) for each mesh within a single
patch such that |Ji,j | =

√
|Jxi,j

|2 + |Jyi,j
|2. Note that the

surface current density at each point on a copper patch varies
depending on its steady state response based on the state of



Fig. 1. (a) Left: Top view of the reconfigurable antenna, where a radiation aperture is formed with 7 × 7 copper patches. Between each neighboring patches, a
switch is placed to distribute current across the copper patches. Right: Cross section view of a switch-copper-switch segment of the antenna array. The antenna
array is assembled onto a printed circuit board (PCB). Beneath the PCB is a layer of alumina dielectric plane followed by aluminum ground plane. (b) Inverse
design of switch configurations based on given surface current distributions of antenna patches (assume symmetry across the x-axis). Left: Data abstraction of
the node features is done by averaging the surface current density Ji,j within each patch p, yielding a single complex value Jp. Right: Before inverse design,
all switches are initialized as closed. After inverse design, predicted switch configurations required to achieve the given surface current distribution is made.

the connecting switches as well as capacitive coupling among
neighboring components. By averaging the surface current
density Ji,j within each patch p, we obtain a single complex
value Jp, which will provide an efficient feature embedding
representing the surface current density of each patch, where

Jp = Mean(Ji,j) =
1

n ∗m

n−1∑
i=0

m−1∑
j=0

Ji,j A/m. (2)

Here, n and m are the number of meshes along the vertical and
horizontal axis respectively (in our case n = 5 and m = 5).

As shown in Fig. 1(b) right, to embed the features of the
reconfigurable antenna into a graph data structure, we define
node features h as the mean surface current distributions of
each copper patch, Jp, whereas the switch states are embedded
as edge weights e.

h = (ℜ(Jpx) + iℑ(Jpx),ℜ(Jpy) + iℑ(Jpy)) A/m, (3)

e =


(1, 0) if a horizontal switch is closed.
(0, 1) if a vertical switch is closed.
(0, 0) if a horizontal/vertical switch is opened.

(4)

Note that the only possible embeddings for a horizontal switch
are (1, 0) and (0, 0), and the reverse applies for a vertical
switch.

Similar to the mesh coloring scheme, the color coding of the
node features in Fig. 1(b) right also indicate the magnitude |Jp|
of the current vector Jp = (Jpx, Jpy) for each patch, where
|Jp| =

√
|Jpx|2 + |Jpy|2. The coloring scheme presented in

Fig. 1(b) is applied to all subsequent figures.
To predict switch configurations (edge weights) based on

given surface current distributions (node features), we begin by

initializing all switches in the closed state. Using inverse de-
sign with GNN, we then reconstruct the switch configurations
that produce the given current distributions. The data required
to train such a GNN model can be acquired with full-wave EM
simulations. In this work, CST Microwave Studio is utilized
to simulate the current distributions and the resulting far-field
radiation patterns. Specifically, we randomly generate 3000
switch configurations as ground truth, input them into CST
and use the Finite-difference time-domain method (FTDT)
solver to perform forward simulation with respect to their
resonant frequency in the 2.4 GHz band, and generate the
surface current distributions and radiation patterns associated
with each set of switch configurations.

B. Physics informed Modeling

The behavior of the antenna circuits is fundamentally
governed by Kirchhoff’s Current Law (KCL), which states
that the total current entering a node must equal the total
current leaving it. The current distribution across the antenna
network adheres to KCL, which forms the basis for our
proposed physics-informed modeling. In the 2.4 GHz band,
the incoming currents from the switches and the capacitive
coupling between the patches as well as the ground plane
affect the steady state current distribution of the antenna.
We aim to train a network to predict if the connection
between any two patches is dominated by an active switch
or merely due to capacitive coupling. If the network identifies
dominating active switch over capacitive coupling, it predicts
the switch is closed; otherwise, it predicts the switch is opened.
Our physics-informed model is inspired by the interaction
network architecture, which performs object relation reasoning
on graph inputs [9]. Similar to the interaction network, our



Fig. 2. The proposed network architecture comprises (a) an interaction network and an edge classification multi-layer perceptron (MLP), where the interaction
network includes message passing layers followed by a relational reasoning MLP. (b) The relational reasoning MLP has an input dimension of 6. The output
of the relational reasoning MLP m′ represents a high-dimensional message generated through the message-passing mechanism, which is then used as input for
the edge classification MLP. The relational reasoning MLP and edge classification MLP each comprise three fully connected hidden layers with a dimension
of 32, utilizing rectified linear unit activation functions for the hidden layers. The output layer of the edge classification MLP employs a sigmoid activation
function to indicate the probability of a switch being ON.

proposed network features specialized message-passing layers,
implemented in a manner similar to traditional neural network
layers in deep learning.

The message passing layers takes an initialized graph as
input, G = (V,E) with node features hv for each node v ∈ V
and edge features euv for each (u, v) ∈ E, where u ∈ V and
v ∈ V are neighboring nodes. The message-passing forward
pass is expressed as follows,

h(k+1)
u = UPDATE(k)(h(k)

u ,m
(k)
N (u)), (5)

where the subscript k denotes the current number of it-
erations and h

(k+1)
u represents the updated feature of node

u, where u ∈ V . The notation N (u) refers to the one-hop
neighborhood of node u, while m

(k)
N (u) indicates the message

aggregated from node u’s neighborhood:

m
(k)
N (u) = AGGREGATE(k)(h(k)

v ,∀v ∈ N (u)). (6)

In our proposed model, we aim to emulate KCL. Hence, we
use summation as the aggregation function in each message-
passing iteration, which ensures that the aggregated messages
from a node’s neighbors reflect the total incoming and out-
going currents, aligning the message-passing mechanism with
the physics governing current flow in the antenna network.

C. Network Architecture

The proposed network architecture is illustrated in Fig. 2
and is built using PyTorch and PyTorch Geometric [10], [11].
The architecture includes an interaction network (IN) with
message passing layers and a relational reasoning relational
reasoning multi-layer perceptron (MLP), followed by an edge
classification MLP. The original IN was developed using basic
matrix operations, which were interpreted as series of physical
interactions and effects [9]. The primary goal of the proposed

architecture is to process graphs where the current distributions
are embedded in the nodes and to emulate KCL by the edges.

In the interaction network, 10 message passing layers are
implemented to capture information from a 10-hop neighbor-
hood, effectively covering the entire graph. The first layer
takes an initialized graph G = (V,E) as input (example
initialized graph is illustrated on the left in Fig. 1(b)) and
propagates information between nodes. Following the message
passing layers is the relational MLP that learns to infer the
message representing the relationship between the nodes. In
this context, the message is analogous to the current flowing
between two patches of the antenna. Once the messages are
computed, the edge classification MLP takes the messages as
input to perform binary classification of the switches.

The relational reasoning MLP has an in-
put dimension of 6 and is expressed as
ϕr(|hux|, |huy|, einit[0], einit[1], |hvx|, |hvy|) = m′. Here,
hu and hv are the features of the nodes at the ends of an
edge, u ∈ V and v ∈ V , respectively, while einit denotes
the initialized edge features. The subscripts x and y, again,
correspond to the vector components of the mean surface
current density in the x-y plane. The output of the relational
reasoning MLP m′ represents a high-dimensional message
on the edge, which serves as input to the edge classification
MLP and can be expressed as ϕe(m

′). Both ϕr and ϕe consist
of three fully-connected hidden layers, each with a dimension
of 32, connected by rectified linear unit activation function
(ReLU) [13], [14]. By activating the final layer of the ϕe

with a sigmoid function, the network outputs the probability
of a switch being in the ON state. This classification outputs
the predicted switch configuration of a graph, Wp(G), based
on the input current distribution. The forward pass of the



proposed network outputs can be expressed as follows,

Wp(G) =

{
1 if P (On) ≥ 0.5 ,

0 if P (On) < 0.5 ,
(7)

where P (On) = ϕe(IN(G)) is the probability of a switch
being closed.

Note that the switch prediction is effectively a binary classi-
fication problem, we aim to optimize the binary cross-entropy
(BCE) loss between the ground truth switch configurations
Wt ∈ (0, 1) and predicted switch configurations Wp. To
account for the varying influence of different edges on the final
current distribution, the architecture includes an importance
mechanism. Edges are deemed trivial if both connected nodes
have low current magnitudes, defined as less than 20% of
the maximum current. During training, these trivial edges
are assigned reduced importance by lowering the penalty for
incorrect predictions. That is, a weighted loss function is
employed, where trivial edges weighting 0.1 of loss compared
to non-trivial edges. The final loss function L subject to
optimization is expressed as follows,

L(Wt,Wp) = − pi
N

N∑
i=1

(Wt,i log(Wp,i)

+(1−Wt,i) log(1−Wp,i)) (8)

where N represents the total number of switches evaluated,
i is an index that refers to each switch in the graph, and pi
indicates the penalty weighting of the switch pi ∈ (0.1, 1).
This weighted loss function prevents overfitting and allows
the model to focus on the underlying physics of the more
critical edges. To facilitate training, the simulated data for the
3000 total switch configurations are used in 9-fold training and
cross validation, where the Adam optimizer [15] is employed
to optimize the loss function, with 500 epochs, a batch size
of 64, and a learning rate of 0.005 with early stopping.

III. EXPERIMENTAL RESULTS

To validate the model, we report the test accuracy, as well
as true positive, true negative, false positive, and false negative
rates for non-trivial switches (see Tab. I for details). The test
accuracy is 93.2%. To further demonstrate the model’s ability
to replicate complex radiation patterns, we conducted forward
simulations using the predicted switch configurations to gen-
erate surface current distributions and radiation patterns. Fig.
3(a) outlines the steps taken for simulation-based validation.
Our proposed GNN model first takes a graph with the current
distribution embedded as node features as input, where all
switches are initially closed. The GNN then predicts the switch
configuration based on the given current distribution. This
predicted switch configuration is input into the full-wave EM
simulator, which outputs the corresponding current distribution
and radiation pattern. We compare these results with those
obtained from the ground truth switch configurations. We
compare the current distributions and radiation patterns from
the predicted switch configurations with that of the ground
truth switch configurations.

TABLE I
SWITCH PREDICTION PERFORMANCE METRICS.

Metric Accuracy True
Positive

True
Negative

False
Positive

False
Negative

Value 93.2% 87.97% 98.02% 1.98% 12.03%

Fig. 3(b) presents two examples with complex radiation
patterns, comparing the simulated current distribution and far-
field radiation patterns for both the ground truth and predicted
switch configurations. The left two columns and right two
columns correspond to example switch configurations 1 and
2, respectively, along with their resulting current distributions
and radiation patterns. The top row illustrates the ground
truth switch configurations, while the bottom row shows
the GNN-predicted switch configurations and their results.
In the first example, the ground truth and predicted switch
configurations produce nearly identical current distributions,
with only two incorrect switch predictions occurring in the
third column from the left. These switches were deemed
trivial and have minimal impact on the current distribution
(error vector magnitude, EVM, of 13.62 A/m), enabling the
predicted switch configurations to accurately replicate the
three-lobe radiation pattern of the ground truth with a mean-
square error (MSE) of 0.001. Similarly, in the second example,
a few incorrect switch predictions in the fifth and sixth
columns had little impact on the current distribution (EVM
of 10.74 A/m), enabling the ground truth radiation pattern
to be recreated with a MSE of 0.003. We randomly sampled
10 configurations from the validation test, performed forward
simulations, and calculated an average current distribution
EVM of 19.85, signal to noise ratio of 35.32, and radiation
pattern MSE of 0.0064. In summary, the simulation validates
the model’s ability to recreate complex radiation patterns from
patch current distributions, demonstrating its effectiveness for
reconfigurable antenna inverse design through simulations.

IV. CONCLUSION

In this work, we developed, trained, and validated a physics-
informed GNN-based model for reconfigurable antenna in-
verse design through simulations. By integrating KCL and
antenna topology into the network architecture, the model ac-
curately predicted switch configurations capable of recreating
surface current distributions and far-field radiation patterns.
This demonstrates the effectiveness of leveraging physics-
informed modeling for antenna inverse design. While the
architecture has been optimized for the current antenna dimen-
sions, future work will explore its scalability across varying
dimensions and include real-world experimental validation.
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