
Under review as submission to TMLR

Decision Boundaries and Convex Hulls in the Feature Space
that Deep Learning Functions Learn from Images

Anonymous authors
Paper under double-blind review

Abstract

The success of deep neural networks in image classification and learning can be partly at-
tributed to the features they extract from images. It is often speculated about the properties
of a low-dimensional manifold that models extract and learn from images. However, there is
not sufficient understanding about this low-dimensional space based on theory or empirical
evidence. For image classification models, their last hidden layer is the one where images
of each class is separated from other classes and it also has the least number of features.
Here, we develop methods and formulations to study that feature space for any model. We
study the partitioning of the domain in feature space, identify regions guaranteed to have
certain classifications, and investigate its implications for the pixel space. We observe that
geometric arrangements of decision boundaries in feature space is significantly different com-
pared to pixel space, providing insights about adversarial vulnerabilities, image morphing,
extrapolation, ambiguity in classification, and the mathematical understanding of image
classification models.

1 Introduction

The process in which deep networks learn to classify images is not adequately understood. In the context of
classification, successful learning can be described as learning the similarities and differences between samples
of each class. But for images, similarities and differences usually cannot be identified or explained in terms
of individual pixels. So, how do models and humans identify similarities and see differences in images? The
spatial relationship between groups of pixels and the patterns that are depicted via such pixel groups are
instrumental in classifying them by humans and models. If we ask a person why they classify a particular
image as a cat, they might point out the specific patterns such as the shape of ears and eyes of the cat. If
we ask a radiologist why they classify a tumor as cancerous, they might point out the shape of the tumor
and the patterns visible in that region. Analyzing these patterns can be considered feature extraction, and
those features, as opposed to individual pixels, would be the ones helpful for learning and classification.

In deep learning, feature extraction is performed via specialized computational tools, i.e., convolutional
layers, and it is not easy to disentangle the feature extraction from the learning process as a whole. Often,
when a model has good generalization accuracy, one considers that the model has learned some useful
features (Chen et al., 2021), but it is not clear what those features are (Berner et al., 2021). This lack of
understanding is evident when we consider vulnerability of models to adversarial examples (Shafahi et al.,
2019). Sometimes adversarial examples are themselves considered features (Ilyas et al., 2019). Another issue
arises when one gives out-of-distribution images to a model, e.g., a model trained for object recognition may
classify a radiology image of liver as Airplane with 100% confidence, defying the notion of learning. Despite
these shortcomings, deep networks are impressively successful in a wide range of tasks related to image
classification, e.g., facial recognition, object recognition, medical imaging. There have been several studies
to improve our understanding of what models learn from images, e.g., Xiao et al. (2020) studied the effect
of image backgrounds. Several other studies focused on verifying whether models have learned generalizable
features (Yadav & Bottou, 2019; Recht et al., 2018; 2019). Neyshabur (2020) used feedforward networks to
learn the convolutional filters from scratch. Alain & Bengio (2016) studied linear separability of the classes
in intermediate layers of trained networks. Balestriero & Baraniuk (2021) showed that deep neural networks

1

Under review as submission to TMLR

are spline operators that partition their domain. Recanatesi et al. (2021) studied feedforward networks and
concluded that models learn a low-dimensional latent representation from images. This idea is pursued before
under a field known as representation learning (Bengio et al., 2013; Oord et al., 2018). There are studies on
geometry of data and the separability of classes, e.g., (Mallat, 2016; Cohen et al., 2020; Fawzi et al., 2018;
Bronstein et al., 2017). Moreover, specific deep learning architectures are introduced that process images
with wavelet scattering (Bruna & Mallat, 2013; Zarka et al., 2020) to provide a way to understand properties
of the features learned by the models, e.g., Zarka et al. (2021) studied the Fisher discriminant ratio of learned
features.

In this paper, we develop methods to complement the previous work and provide a better understanding
of the feature space that deep networks learn from images. We consider the last hidden layer of image
classification models as the feature space with least number of features where images of each class are
separated from other classes. Our contributions can be summarized as:

1. We develop methods and formulations that can be used to systematically investigate the feature
space learned by any trained model. We investigate how images map to the feature space, and how
that feature space relates to the pixel space. Finding images in the pixel space that would directly
map to particular points and regions in the feature space is an inverse problem involving the trained
models, the type of problem that is generally considered hard to solve (Elsayed et al., 2018). We
use the homotopy algorithm by Yousefzadeh & O’Leary (2020) to solve our formulations.

2. We study the functional task of models in that feature space and see that testing samples are all
outside the convex hull of training set even in a 64-dimensional feature space learned by the mod-
els, i.e., functional task of models involve moderate extrapolation. Yousefzadeh (2020) reported
that image classification requires extrapolation both in pixel space and in the feature space. More
recently, Balestriero et al. (2021) concluded that in high-dimensional space (larger than 100 dimen-
sions), learning always amounts to extrapolation. Our results in this paper show that even in a
64-dimensional space learned by the models, image classification still requires extrapolation.

3. Our method identifies points in the pixel space that would map to decision boundaries and convex
hulls in the feature space providing novel insights about the functional performance of models in
that space, and the extent of extrapolation. We observe that arrangements of decision boundaries
and convex hulls in feature space differ from the pixel space in meaningful ways, not reported in the
literature. Our methods can also be used for image morphing.

4. We propose a new method to identify ambiguous and adversarial images based on their relative
distance to decision boundaries and the convex hull of training set in the feature space. In the
feature space, unlike the pixel space, most testing images are relatively close to the convex hull of
training set while far from the decision boundaries. Ambiguous images, however, are close to decision
boundaries and far from the convex hull. Adversarial inputs are also recognizably close the decision
boundaries of feature space. Moreover, adversarial methods such as DeepFool (Moosavi-Dezfooli
et al., 2016) and PGD attacks (Madry et al., 2018) move images towards the convex hull of training
set in the feature space.

2 Feature space learned by trained models

We consider the feature space in the last hidden layer of trained models. This feature space is the key
to successful classification of images and it usually has the least dimensionality compared to other hidden
layers. Our trained model is a function denoted by N (.) that operates on input images and produces an
output vector

z = N (x), (1)

where each element of z corresponds to one class, and the class(es) with the largest value will be the
classification of the model1

C(z) = {i : zi = max
k

zk}. (2)

1For brevity, we may sometimes use C(x) to denote the classification of the model for x, implying that a z has been computed
for x and C(.) has been applied to that z.

2

Under review as submission to TMLR

Domain of N is denoted by Ω which would be the pixel space for image classification models. Any given
model is trained to recognize a certain number of classes. In our notation, pixel space has p dimensions/pixels
and z has n elements/classes.

We use Φ to denote the feature space in the last hidden layer of N . An input image, x, has a mapping to
that feature space denoted by xφ. We can formalize this mapping via our trained model

xφ = Nφ(x), (3)

where Φ has f dimensions. Nφ(.) is similar to N (.) except that it returns the output of the last hidden layer
of the model. Similar to pixel space, feature space will also have a domain, Ωφ which would be the range of
Nφ(.).

After the last hidden layer, the model has a fully connected layer and a softmax layer. Hence, the output of
the model, z, can be written in terms of the feature space:

z = softmax(xφWφ + bφ), (4)

where Wφ is the weight matrix for the last fully connected layer, with f rows and n columns, and bφ is
the bias vector for that layer with n elements. It is sensible to assume n < f , i.e., feature space has more
dimensions than the number of output classes.

Our following formulations are applicable to any model with any number of features in its hidden layers,
i.e., N can be any trained model. Moreover, one can study the feature space in any of the hidden layers,
though, in this work, our focus is on the last hidden layer. To make this more tangible, consider N to be a
standard CNN, pre-trained on CIFAR-10 dataset. Model has a standard residual network architecture (He
et al., 2016) with total depth of 20 layers while the last hidden layer has 64 features.2 It follows that Φ
for this particular model has 64 dimensions. We choose this model because its last hidden layer has fewer
features than the standard ResNet-18.

For a given x, one can easily compute its corresponding xφ (i.e., map x to Φ) by feeding x to the trained
model and computing the output of the model’s last hidden layer. However, given an arbitrary xφ, it is not
as easy to find its corresponding x in the pixel space. That is, a trained model N , and by extension Nφ,
are not invertible, i.e., there is not an inverse function N−1

φ readily available to map an arbitrary xφ to the
pixel space. Moreover, the mapping from the pixel space to Φ is not one-to-one.3

In Sections 4-5, we will formulate and solve optimization problems to find images (in the pixel space) that
would directly map to particular points and regions in the feature space. Before that, let us formulate the
decision boundaries of the model in the feature space.

3 Decision boundaries in the feature space

An image classification model is a classification function that partitions its domain and assigns a class to
each partition (Strang, 2019). Partitions are defined by decision boundaries and so is the model. We can
study the decision boundaries and partitions of the model, not just in the pixel domain, but also in the
feature space Φ. A point on the decision boundary between classes i and j would be a point that satisfies

zi = zj , (5)

zi ≥ zk,∀k /∈ {i, j}. (6)

Any point that satisfies the conditions above will be a flip between classes i and j, so we call it a flip point
(Yousefzadeh & O’Leary, 2020; 2021). We denote flip points by xf(i,j) when they are in the pixel space, and
denote them by xf(i,j)

φ when they are in the feature space.

2Pre-trained model is available at https://www.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.
html.

3This can be easily verified via any of the pooling layers.

3

https://www.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.html
https://www.mathworks.com/help/deeplearning/ug/train-residual-network-for-image-classification.html

Under review as submission to TMLR

For the purpose of identifying points on the decision boundaries of the model, we can ignore the softmax
operation in equation 4 because it only normalizes the values of z to be between 0 and 1, and does not
change their order. Therefore, in the following, we will drop the softmax from equation 4 because it does
not have an effect on satisfying constraints 5-6. As a result xf(i,j)

φ should satisfy

x
f(i,j)
φ Wφ(:, i) + bφ(i) = x

f(i,j)
φ Wφ(:, j) + bφ(j), (7)

x
f(i,j)
φ Wφ(:, i) + bφ(i) ≥ xf(i,j)

φ Wφ(:, k) + bφ(k), ∀k /∈ {i, j}, (8)

where Wφ(:, i) denotes the ith column of Wφ.

For a given model, there usually are infinite number of xf(i,j)
φ satisfying the constraints 7-8, but we may be

interested to find the xf(i,j)
φ that is closest to a particular xφ. Consider that element i of z has the largest

value for the input x, i.e., classification of x and xφ are i. The closest flip point to xφ between classes i and
j is denoted by xf(i,j),c

φ and obtained via the objective function

min
x
f(i,j),c
φ

‖xφ − xf(i,j),c
φ ‖22. (9)

Our feature space Φ is usually lower bounded by zero because it is the result of convolutional, ReLU, and
max pooling layers. Hence, we require

0 ≤ xf(i,j),c
φ . (10)

The optimization problem defined by objective function 9 subject to constraints 7,8, and 10 is convex, and
there are reliable algorithms to solve it. In most cases, it may be strictly convex, making the optimal solution
unique. Either way, the minimum distance to decision boundaries (a.k.a. margin) will be a unique value.
The minimum distance of xφ to the decision boundary between classes i and j is

d
f(i,j)
φ (xφ) = ‖xφ − xf(i,j),c

φ ‖2. (11)

For a model with n output classes and for a specific input x, mapped to xφ and classified as i, we can
compute its margin in Φ to all other n− 1 classes and find out decision boundary of which class is closest to
it. We denote the closest margin by

df,minφ (xφ) = min
j∈{1:n\i}

d
f(i,j)
φ (xφ). (12)

Consider, for example, the 2D domain depicted in Figure 1 which has 5 partitions representing 5 different
classes. Input x is located in the partition associated with Class 1. This particular input has a margin to
each of the other four classes and the minimum margin is to Class 4. Since our optimization problems in
Φ are convex, we can calculate df,minφ precisely and be sure that it actually is the distance to the closest
decision boundary.

Let us now consider the ball centered at xφ with radius df,minφ , and denote it by B(xφ). Such ball may be
entirely inside the domain of feature space, Ωφ, or it may extend outside the domain, if xφ is close to the
boundaries of the Ωφ in some dimensions. Either way, classification of N for the entire region inside the
intersection of B(xφ) and Ωφ is guaranteed to be the same as the classification for x and xφ

∀yφ ∈ (B(xφ) ∩ Ωφ) : C(yφ) = C(xφ), (13)

i.e., any point in Ωφ that its distance to xφ is less than df,minφ (xφ) has the same classification as xφ. For this
guarantee, we note that Φ is a continuous space and the output of N is Lipschitz continuous with respect to
points in Φ. In fact, Lipschitz constant of the model with respect to Φ would be σmax(Wφ), i.e., the largest
singular value of Wφ, since one can prove

‖z(xφ)− z(yφ)‖2 ≤ σmax(Wφ)‖xφ − yφ‖2, (14)

4

Under review as submission to TMLR

Figure 1: An example 2D domain with 5 partitions. Input xφ, in the feature space, is located in the partition
for Class 1. Its margin to each of the other classes is marked. The red ball is the largest ball centered around
xφ where every point inside it is guaranteed to have the same classification as xφ.

for any xφ and yφ in feature space.

The radius of the ball B(xφ) gives a measure of robustness for the classification of the model with respect
to perturbations in feature space. By studying the decision boundaries, one can also design and analyze
adversarial inputs in the feature space and then trace them back to the pixel space as we will explore in
numerical experiments. In the following two sections, we provide formulations to reveal the relationship
between feature space and pixel space.

4 Seeking points in the pixel space that would map to particular regions in the
feature space

As the first goal, let us find images in the pixel space that would map to particular regions in the feature
space. Specifically, we seek to find images in the pixel space that would map to B(xφ) ∩ Ωφ around any
particular image xφ satisfying equation 13. The following constraints will ensure such mapping for xΩ→B(xφ)

‖Nφ(xΩ→B(xφ))− xφ‖2 < λ , x ∈ Ω, (15)

where λ is the radius of the B or region of interest.

Many different images (in pixel space) may satisfy the constraint above for a particular xφ as we shall see in
experimental results. To gain an understanding of the variety of such images, we seek to find the ones that
are closest to a reference point, xr, in pixel space. A reference point may be any training or testing image,
or any other image such as a completely black or white image. Minimizing the distance to reference point is
our objective function

min
xΩ→B(xφ)

‖xΩ→B(xφ) − xr‖22, (16)

and our constraint is equation 15. We can solve this optimization problem for various reference points, xr,
to gain an understanding of the ball surrounding the sample xφ.

Unlike our set of optimization problems in Section 3, optimization problems in Sections 4 and 5 may be
non-convex because they involve a typically non-convex function Nφ. Hence, it is important that global
optimization algorithms be utilized for solving them. Moreover, issue of vanishing and exploding gradients
(Bengio et al., 1994) may arise which is addressed in our previous work.

5

Under review as submission to TMLR

5 Seeking points in the pixel space that would map to particular points in feature
space

We now seek points in the pixel space that Nφ will directly map them to a particular xφ. For an input
xΩ→xφ , this condition can be formalized as:

Nφ(xΩ→xφ) = xφ , xΩ→xφ ∈ Ω. (17)

The particular xφ may be any point of interest in the feature space, for example, a point on a decision
boundary, or a point on the boundary of a convex hull.

It is possible that xΩ→xφ defined by equations 17 is not unique, rather, a region, SΩ→xφ , in the pixel space
(contiguous or not), will all map to a particular point in the feature space. We seek to find the xh,φΩ that is
closest to a reference point xr using the objective function

min
xΩ→xφ

‖xΩ→xφ − xr‖, (18)

subject to constraint 17.

It is sensible to use a reference point that has the same classification as xφ. In such case, we can impose an
additional constraint to ensure xΩ→xφ and xr belong to the same partition in pixel space.

∃π, π : (xΩ→xφ , xr) | ∀x ∈ π, C(N (x)) = C(N (xr)), (19)

To verify the additional constraint 19, one needs to verify Lipschitz continuity of N not just in the feature
but also in the pixel space Ω. There are methods to estimate the Lipschitz constant for neural networks
(Scaman & Virmaux, 2018). In our empirical experiments, we see that when xr has the same classification
as xφ, this constraint is automatically satisfied via a direct path.

6 Convex hull of training set in feature space

We now turn our attention to geometric properties of training and testing set in the feature space. Mainly, we
investigate the geometry of testing samples with respect to the convex hull of training set. Using equation 3,
we can map all training samples to Φ and form their convex hull. Htrφ denotes the convex hull of training
set in Φ while Htr denotes the convex hull of training set in the pixel space. Furthermore, projection of x to
Htr is denoted by xh, and projection of xφ to Htrφ is denoted by xhφ.

It is reported that for standard image classification datasets, testing samples are entirely outsideHtr andHtrφ .
As a result, a model has to extrapolate in order to classify testing samples (Yousefzadeh, 2020; Balestriero
et al., 2021). Here, we study the extent of such extrapolation in the feature space and investigate its
implications for the pixel space. Particularly, for a given x and its corresponding xhφ, we would like to
find the least changes in x that would directly map it to xhφ. Moreover, using the formulations in previous
sections, we will investigate the decision boundaries of the model in feature space with respect to the Htrφ ,
as presented in numerical experiments. Before that, we briefly review the computations necessary to project
a point to a convex hull.

6.1 Projecting a query point to a convex hull

In the feature space, as in the pixel space, projecting a query point to a convex hull can be performed by
solving a convex optimization problem. Here, we briefly review the formulation. While there are off-the-
shelf algorithms to solve this problem, Yousefzadeh (2021) has provided a sketching algorithm that may be
beneficial for solving the problem faster.

Given a point in the feature space, xφ, we would like to find the closest point to it on the Htrφ . Distance can
be measured using any desired norm. Here, we use the 2-norm distance and minimize it via the objective
function

min
xh
φ

‖xhφ − xφ‖22 (20)

6

Under review as submission to TMLR

Our first constraint relates the solution to the samples in training set

xhφ = αDφ, (21)

where Dφ is the training set, in the feature space, formed as a matrix where rows represent n samples and
columns represent dφ features. The other two constraints ensure that xhφ belongs to the convex hull of Dφ.

α1n,1 = 1, (22)

0 ≤ α. (23)

Minimizing the objective function 20 subject to constraints 21-23 will lead to the point on Htrφ closest to xφ.
Since our optimization problem is convex, there is guarantee to find its solution. We denote this projection
with

xhφ = Ph(xφ,Htrφ), (24)

while distance to Htrφ is denoted by
dhφ(xφ) = ‖xφ − xhφ‖2. (25)

Using the optimization problem formulated in Section 5, we may map xhφ back to the pixel space.

7 Numerical experiments

We first investigate a single image of CIFAR-10 dataset (Krizhevsky, 2009) in detail and from different
perspectives. Later in Section 7.2, we report the larger trends in this dataset.

7.1 Insights about one image

Let us consider x to be the first testing sample of dataset shown in Figure 2a. Our model is a standard
pre-trained model described in Section 3 and available at the link in footnote 2. We map this image to the
feature space of the model to obtain xφ. Since xφ has 64 elements, we can plot it as an 8 by 8 image:

(a) x (b) xφ

Figure 2: First testing sample in CIFAR-10 dataset (a) in pixel space. (b) mapping of x to the feature
space in the last hidden layer of our trained model.

Decision boundaries in the feature space. We first investigate the decision boundaries of the model in
the vicinity of xφ. Classification of the model for this image is Cat. Table 1 shows the margin of xφ to each
of the other 9 classes.

Table 1: Distance to decision boundaries of each class in the feature space Φ (sample in Figure 2)

Class airplane car bird cat deer dog frog horse ship truck
j 1 2 3 4 5 6 7 8 9 10

d
f(4,j)
φ 3.498 3.266 2.546 - 3.087 2.629 2.711 3.805 3.494 3.849

Closest flip point and B(xφ). The flip point closest to xφ is with the class bird, distanced 2.546 from it
(measured in L2 norm in the 64-dimensional feature space). This flip point is depicted in Figure 3a, and its
distance to xφ defines the radius of B(xφ). Any point in feature space that is a member of B(xφ) ∩Ωφ (i.e.,

7

Under review as submission to TMLR

closer than 2.546 to xφ) is guaranteed to be classified as Cat by the model. Moreover, Lipschitz constant
for the feature space is 6.122, the largest singular value of Wφ, enabling us to study this space with clarity.
Intriguingly, we see that 437 training samples and 69 testing samples are actually inside the B(xφ) ∩ Ωφ
centered at xφ. We then solve the optimization problem defined by equations 17-18 to find the image in the
pixel space that would map to this specific flip point, obtaining the image shown in Figure 3c. This image
can be considered the closest adversarial example in Φ, however, in the pixel space, it looks very different
from the original image.

(a) xf(4,3),c
φ

(b) |xf(4,3),c
φ

−xφ| (c) x
Ω→xf(4,3),c

φ

Figure 3: (a) Closest flip point in Φ for image in Figure 2, (b) difference between the closest flip point and
xφ, (c) image that would directly map to xf(4,3),c

φ

Convex hull of training set in feature space. The fact that some training samples are members of
B(xφ)∩Ωφ implies that the convex hull of the training set overlaps with B(xφ)∩Ωφ. Let us remember that
this testing sample, as well as all other testing samples of this dataset, are outside the convex hull of training
set, both in pixel space and in feature space. However, geometric arrangements are different in the feature
space. In the pixel space, usually, decision boundaries are very close to both training and testing samples.
It is known that adversarial examples, i.e., close-by images on the other side of decision boundaries, are so
similar to original images that their differences are not easily detectable by human eye. At the same time,
in the pixel space, convex hull of training set is rather far from images, and images have to visibly change to
reach their Htr. See, for example, Figure 4b for the projection of our first testing sample to the convex hull
of the training set in the pixel space, and notice that the image has considerably changed while changes are
related to the object of interest as shown in Figure 4c.

(a) x (b) xh (c) |xh − x|

Figure 4: First testing sample in CIFAR-10 dataset (a) in pixel space, (b) its projection to Htr, (c) their
difference.

In feature space, however, this order is reversed, i.e., convex hull of training set is closer to the sample com-
pared to decision boundaries. Figure 5a shows the projection of our testing sample to Htrφ using equation 24.
This point is distanced 0.508 from xφ, smaller than the 2.546 distance to closest decision boundary in feature
space. Notice that the corresponding image in Figure 5c, derived from equations in Section 5, looks more
similar to the original image compared to the closest image on the decision boundary shown in Figure 3c
and also the projection in the pixel space shown in Figure 4b. Hence, in the feature space, testing sample is
more closely related to the convex hull of training set.

Support in the training set. Let us now look at training images that participate in the convex combination
leading to xh and xhφ. Figure 6a shows four images with largest α coefficients that contribute to the convex
hull projection in pixel space, shown in Figure 4b. Coefficients refer to the optimization parameter α in
equation 21. Note that only one of these images is from the Cat class while others are from the classes of
Automobile, Deer, and Dog.

8

Under review as submission to TMLR

(a) xhφ (b) |xhφ − xφ| (c) xΩ→xh
φ

Figure 5: (a) Projection of xφ to convex hull of training set in feature space, (b) difference with xφ, (c)
image that would directly map to xhφ.

(a) Support images in pixel space (b) Support images in feature space

Figure 6: Images that form the point on the convex hull of training set, closest to image 2a.

Similarly, Figure 6b shows the training images with largest α coefficients supporting the projection of our
image to the convex hull in feature space. These image are all from the Cat class, and the resulting image
in the pixel space (Figure 5c) looks more similar to the original image.

Images on the perimeter of B(xφ). We seek images in the pixel space that would map to the perimeter of
B(xφ)∩Ωφ in the feature space. This is done by solving the optimization problem defined by equations 15-16
using r = 2.546 and with different reference points. To ensure images are on the perimeter, we change the
inequality constraint of equation 15 to equality constraint. Finding images on the perimeter of B(xφ) ∩ Ωφ
can be informative because it shows the extremes of B(xφ) ∩ Ωφ. Resulting images are shown in Figure 7
next to their reference points.

(a) xr (b) xΩ→B(xφ) (c) Nφ(.) (d) xr (e) xΩ→B(xφ) (f) Nφ(.)

(g) xr (h) xΩ→B(xφ) (i) Nφ(.)

Figure 7: A variety of images in pixel space may map to the perimeter of B(xφ) for a particular image. The
second image in each box is on the perimeter of B(xφ) for the first testing sample of CIFAR-10.

Morphing between images. We now explore the path between two images inside the B(xφ) ∩ Ωφ. We
pick the image shown in Figure 8a which is the 19821th sample from the training set. In Φ, this image is
distanced 2.546 from xφ, so it is close to the perimeter of B(xφ). We gradually move between these image in
the feature space and find how the path between them maps back to the pixel space. This is done by solving
equations 15-16 while decreasing the value of r from 2.54 to 0. Result is depicted in Figure 8.

Note that moving between these images in the feature space leads to a morphing process between them
in the pixel space which is more sophisticated than simple image interpolation (Lakshman et al., 2015).

9

Under review as submission to TMLR

(a) 2.54 (b) 2.50 (c) 2.40 (d) 2.25 (e) 2.20 (f) 2.10

(g) 2.00 (h) 1.80 (i) 1.50 (j) 1.00 (k) 0.50 (l) 0.00

Figure 8: Morphing between two images in the feature space. Distance is measured from the projection of l
in feature space. This entire path is inside the B(xφ) and therefore, classified as Cat.

Hence, our formulations can be used for image morphing which has practical applications (Effland et al.,
2021). Moreover, this transformation is not linear, i.e., change does not occur at a linear rate along the path
between the two images. The image in subfigure (a) is distanced 2.54 from subfigure (l). By the time its
distance is 2.2 from (l), it appears more similar to (l) than (a). By the time its distance to (l) is 1.80, it
looks almost like (l) despite its relative closeness to (a).

Mapping paths from the pixel space to the feature space. In the previous experiment, we moved
between two images in the feature space and saw how they morph in the pixel space. Let us now move
between those same images in the pixel space and see how the path between them looks like in the feature
space. In the pixel space, we follow a direct path along a line connecting these two images, but as Figure 9
shows, the resulting path between them in the feature space is far from a direct line. Our feature space, Φ,
is 64-dimensional. To draw this path in 2 dimensions, we use the two-point equidistant projection method
as explained in Appendix A.

Figure 9: Direct paths in pixel space map to highly curved paths in the feature space. The blue line shows
the direct path between images shown in Figures 8a and 8l, mapped to the 64-dimensional feature space,
then visualized in 2D.

7.2 Larger Trends in the CIFAR-10 dataset

We extend this analysis to the entire dataset to see the larger trends persistent for most images.

Geometric arrangements in the feature space. Figures 10a-10b show that for most testing samples,
distance to the closest decision boundaries is larger than the distance to convex hull of training set. This
difference has broad implications. For example, when we project testing samples to the convex hull of training
set in the pixel space, testing accuracy of the model drops from above 90% to 33% on those projected images.
However, when we project the testing samples to the convex hull of training set in the feature space, the

10

Under review as submission to TMLR

accuracy does not change at all, meaning that in the feature space, model has not defined any decision
boundaries separating testing samples from their projections to the Htrφ .

(a) (b)

Figure 10: Distribution of distance in the feature space (a) to closest flip point, (b) to convex hull of training
set. For most samples, decision boundaries are much further away than the convex hull of training set. In
the pixel space, however, this relationship is reversed.

Detecting ambiguous images. In feature space, convex hull of the training set is closer than the decision
boundaries for 78.3% of testing samples. Let us see what is different about the remaining 21.7% of images.
Testing sample #732, shown in Figure 11a, is distanced 0.3745 from the closest decision boundary in Φ while
its distance to the Htrφ is 2.143. This is clearly an ambiguous image from the model’s perspective, because
in the feature space, this image is very close to model’s decision boundaries, yet very far from the training
set.

(a) (b) (c) (d)

Figure 11: (a) Testing sample #732, (b) Mapping of (a) to Φ, (c) Modified version of (a) to remove its
ambiguity, (d) Mapping of (c) to Φ.

From a human’s perspective, as opposed to the model’s, ambiguity may be perceived differently because
a human typically have seen many instances of birds and alike, in different settings/contexts and against
various backgrounds. However, the model trained on the CIFAR-10 training set has only seen 5,000 bird
images, and the testing image #732 is not similar to any training image regarding the parallel wires below
and above the bird. Therefore, this testing image can be considered ambiguous.

Let us now try to remove the ambiguity by eliminating the parallel wires as shown in Figure 11c. Mapping
of this modified image to the feature space is drastically different than the mapping of original image. In
fact, in Φ, these two images are 5.21 apart which is considerable compared to those distances we previously
reported for other images (e.g., in Figures 9 and 10a). The modified image is only distanced 0.605 from
the Htrφ while its distance to the closest flip point has drastically increased to 1.225 (the flip point to the
Airplane class). From the model’s perspective, our modification has removed the ambiguity from the image
because now, in the feature space, the image is much closer to the convex hull of training set and it has also
moved away from the decision boundaries.

Figure 12 shows the visualized path in Φ between the testing image #732 and its unambiguous counterpart.
As we can see, the path between these images is nonlinear even though moving between them is merely,
gradual removal of the wires. But note that non-linearity of the path is more moderate in comparison to the
path in Figure 9.

Formalizing an ambiguity indicator. This leads us to consider the difference between the distance to
closest flip point in Φ and the distance to Htrφ as a relative indicator for ambiguity

df−hφ = df,minφ (xφ)− dhφ, (26)

11

Under review as submission to TMLR

Figure 12: Visualization of direct path between images shown in Figures 11a and 11c.

drawing from the distances previously defined by equations 12 and 25. Figure 13 shows images with extreme
values of df−hφ .

(a) Largest negative values of df−hφ (most ambiguous)

(b) Largest positive values of df−hφ (least ambiguous)

Figure 13: Images with the largest values of df−hφ which we consider to be an ambiguity indicator. Images
in (a) are close to model’s decision boundaries and far from the convex hull of the training set in the feature
space. Images in (b) are far from model’s decision boundaries yet very close to the convex hull of training
set in Φ.

This notion of ambiguity takes into account closeness to decision boundaries in the feature space learned by
the model and contrasts it with the farness from Htrφ . When an image falls close to a decision boundary
in a feature space, the model may be unsure about the classification, because the image may easily cross
the close-by decision boundary and fall into the partition for a different class. Regarding the Htrφ , when
an image falls close to Htrφ , it means that the model has a close point of reference to it in the training set,
and therefore, can be more confident in the correctness of classification. By this logic and from the trained
model’s perspective, all images in Figure 13a can be considered ambiguous while all images in Figure 13b
can be considered unambiguous.

We note that most ambiguous images we report are previously reported to be ambiguous for humans from
the cognitive science perspective via empirical studies by Peterson et al. (2019); Battleday et al. (2020). In
those cognitive science studies, humans were presented with a certain number of training samples of CIFAR-
10, and then, were asked to classify testing images of CIFAR-10 in a certain time frame. Ambiguity of
images was characterized based on the correctness of human classifications and the time it took for humans
to classify them. This can be the subject of further study from the perspective of cognitive science and
psychology as well as machine learning. Identifying ambiguous images are also useful in practice.

Detecting adversarial examples. Geometric arrangements in the feature space have implications for
detecting adversarial images. Our suggested rule of thumb is that any testing image very close to a decision
boundary is likely to be an adversarial input. For testing samples in this dataset, we see that using a simple
threshold, we can detect all adversarial inputs.

Consider, for example, the image in Figure 14a and its adversarial counterpart in Figure 14b classified as
Airplane. The original image is distanced 2.494 from the closest decision boundary while its distance to Htrφ
is 0.845. On the other hand, its adversarial version is distanced 0.0001 from the closest decision boundary

12

Under review as submission to TMLR

in Φ while its distance to Htrφ is 0.640. Extreme closeness of this sample to the decision boundary in Φ is a
clear indication of its adversary nature.

(a) (b)

Figure 14: (a) Testing sample #2, (b) Adversarial version of it classified as Airplane.

In the pixel space, genuine images are often very close to decision boundaries, so closeness to decision
boundaries is not a good measure to distinguish adversarial inputs from genuine ones. In the feature space,
however, decision boundaries are relatively far from the images, especially in comparison to the Htrφ . In
other words, an image very close to the decision boundaries of feature space is unusual, and this closeness
can be used as an indicator.

For 100% of testing samples, their adversarial version is closer to the decision boundaries of the feature
space compared to the Htrφ . Their margin to decision boundaries is also closer than the margin to decision
boundaries for all training/testing samples. In other words, adversarial methods move the testing sam-
ples, recognizably, very close to the decision boundaries of the feature space, by any of these measures of
comparison.

Moreover, we see that standard adversarial methods such as DeepFool move the samples towards the Htrφ .
See Appendix B for further discussion.

Out-of-distribution detection. Using the ambiguity measure in equation 26, we evaluate the ambiguity
of MNIST images for our model trained on the CIFAR-10 dataset. Figure 15 shows the ambiguity measure
for the testing images of MNIST vs the ambiguity measure for training and testing sets of CIFAR-10 dataset.

Figure 15: Ambiguity of MNIST and CIFAR-10 images for our model. Using the threshold of 0 for df−hφ our
model can separate 96% of MNIST images as ambiguous and abstain from classifying them.

As we can see, our ambiguity measure considers almost all images of MNIST dataset as highly ambiguous.
One can use the threshold of 0 for df−hφ to identify images that are ambiguous. Using this threshold, more
than 96% of MNIST images are ambiguous while all training samples of CIFAR-10 are unambiguous. About
80% of testing samples of CIFAR-10 would also be considered unambiguous. In a practical setting, the
ambiguity measure can be used for a model to abstain from classification and/or flag such inputs for review
by humans.

Union of learned regions. Earlier, we mentioned that a classification model is a function defined by its
decision boundaries. A model learns from the contents of training images and their labels. Via this process,
model partitions the domain (in pixel space and in feature space) by defining certain decision boundaries.
We defined the ball around each image that borders with the closest decision boundary. Such ball can be
viewed as a region known to the model and guaranteed to have a certain classification. We reported earlier
that for the first testing sample of dataset, the radius of that ball was quite large in the feature space such
that it contained hundreds of training and testing samples, having a considerable overlap with the convex
hull of training set. This trend holds for many other images in the dataset. In fact, for 49.9% of training

13

Under review as submission to TMLR

samples, their corresponding B(xφ) contains at least another training or testing sample. Similarly, for 47%
of testing samples, their B(xφ) contains other training/testing samples. On average, each B(xφ) contains
about 297 other training and testing samples. The largest number of samples contained in a B(xφ) is 4,791.

Therefore, the learned regions, defined by B(xφ) around each image, have significant overlaps, and we can
study the union of learned regions defined by

n⋃
i=1
B(xi),

for all the n samples in a training set.

Overall, more than 68% of testing samples are contained in the union of learned regions for the training set.
These samples could be considered most familiar samples for the model as they fall into familiar regions
in the feature space relating closely to training samples. This concept may also be useful for detecting
out-of-distribution images, and images with low-confidence in their classification.

How images are supported by the convex hull of training set. Using equation 24, we project each
testing image to the convex hull of training set. We perform this both in the pixel space and in the feature
space. Projection of each image to the convex hull is a point defined as a convex combination of certain
support images in the training set. We see that in the feature space, 78% of support images have the same
label as the testing image that they are supporting while this percentage is only 27% in the pixel space. This
shows that in the feature space, a testing image of a given class, let us say Automobile, is supported mostly
by training images of Automobile class, whereas in the pixel space, a testing image from the Automobile
class may be supported by training images of many other classes. This is another evidence that geometric
arrangement of images in the feature space is more sensible and meaningful from the classification perspective.

8 Conclusions

In this work, we presented a set of formulations that can answer questions about the inner workings of feature
space learned by trained neural networks. Our formulations incorporate any trained model as a function,
and find images in the pixel space that map to particular points and regions of interest in the feature space.
This enabled us to provide many novel insights about image classification functions, the features that they
learn from images, and their adversarial vulnerabilities. Although our formulations about the pixel space
are generally hard to solve, we were able to solve them with a homotopy algorithm. The feature space, on
the other hand, is Lipschitz continuous with a known constant which enable us to study it with clarity. We
identify certain regions around each image guaranteed to have the same classification as the image. We then
investigated these regions with respect to training samples and decision boundaries of the model. Notably,
we observed that geometric arrangements of decision boundaries are considerably different in the feature
space in relation to training and testing samples, providing a way to identify ambiguous and adversarial
images. These geometric arrangements are very different than the ones reported in the literature for the
pixel space. Moreover, a new direction of research would be to study adversarial examples that remain far
from the decision boundaries and at the same time, maintain a distance from the convex hull of training set
in feature space. Finally, these insights may inform us about the functional task of models and the extent
in which they extrapolate to classify unseen images.

References
Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. arXiv

preprint arXiv:1610.01644, 2016.

Randall Balestriero and Richard Baraniuk. Mad Max: Affine spline insights into deep learning. Proceedings
of the IEEE, 109, 2021.

Randall Balestriero, Jerome Pesenti, and Yann LeCun. Learning in high dimension always amounts to
extrapolation. arXiv preprint arXiv:2110.09485, 2021.

14

Under review as submission to TMLR

Ruairidh M Battleday, Joshua C Peterson, and Thomas L Griffiths. Capturing human categorization of
natural images by combining deep networks and cognitive models. Nature Communications, 11(1):1–14,
2020.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 2013.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern mathematics of deep
learning. arXiv preprint arXiv:2105.04026, 2021.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(8):1872–1886, 2013.

Zhengdao Chen, Eric Vanden-Eijnden, and Joan Bruna. On feature learning in shallow and multi-layer neural
networks with global convergence guarantees. In International Conference on Learning Representations,
2021.

Charles Close. Note on a doubly-equidistant projection. The Geographical Journal, 57(6), 1921.

Uri Cohen, SueYeon Chung, Daniel D Lee, and Haim Sompolinsky. Separability and geometry of object
manifolds in deep neural networks. Nature Communications, 11(1):1–13, 2020.

Alexander Effland, Erich Kobler, Thomas Pock, Marko Rajković, and Martin Rumpf. Image morphing
in deep feature spaces: Theory and applications. Journal of Mathematical Imaging and Vision, 63(2):
309–327, 2021.

Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large margin deep
networks for classification. In Advances in Neural Information Processing Systems, pp. 842–852, 2018.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard, and Stefano Soatto. Empirical study of
the topology and geometry of deep networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3762–3770, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry.
Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing
Systems, pp. 125–136, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Haricharan Lakshman, W-Q Lim, Heiko Schwarz, Detlev Marpe, Gitta Kutyniok, and Thomas Wiegand.
Image interpolation using shearlet based iterative refinement. Signal Processing: Image Communication,
36:83–94, 2015.

Mingai Li, Bin Liu, and Ziwei Ruan. A dipole imaging method based on azimuthal equidistant projection. In
International Conference on Intelligent Computing, Automation and Applications (ICAA), pp. 755–760.
IEEE, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018.

15

Under review as submission to TMLR

Stéphane Mallat. Understanding deep convolutional networks. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150203, 2016.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate
method to fool deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016.

Behnam Neyshabur. Towards learning convolutions from scratch. Advances in Neural Information Processing
Systems, 33, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Russakovsky. Human uncertainty
makes classification more robust. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9617–9626, 2019.

Stefano Recanatesi, Matthew Farrell, Guillaume Lajoie, Sophie Deneve, Mattia Rigotti, and Eric Shea-
Brown. Predictive learning as a network mechanism for extracting low-dimensional latent space represen-
tations. Nature Communications, 12(1):1–13, 2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do CIFAR-10 classifiers gener-
alize to CIFAR-10? arXiv preprint arXiv:1806.00451, 2018.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet classifiers generalize
to ImageNet? In International Conference on Machine Learning, 2019.

Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural networks: Analysis and efficient
estimation. In Advances in Neural Information Processing Systems, 2018.

Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial examples
inevitable? In International Conference on Learning Representations, 2019.

John P Snyder. Flattening the earth: Two thousand years of map projections. University of Chicago Press,
1997.

Gilbert Strang. Linear Algebra and Learning from Data. Wellesley-Cambridge Press, 2019.

Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The role of
image backgrounds in object recognition. In International Conference on Learning Representations, 2020.

Chhavi Yadav and Léon Bottou. Cold case: The lost MNIST digits. In Advances in Neural Information
Processing Systems, pp. 13443–13452, 2019.

Roozbeh Yousefzadeh. Deep learning generalization and the convex hull of training sets. arXiv preprint
arXiv:2101.09849, 2020.

Roozbeh Yousefzadeh. A sketching method for finding the closest point on a convex hull. arXiv preprint
arXiv:2102.10502, 2021.

Roozbeh Yousefzadeh and Dianne P. O’Leary. Deep learning interpretation: Flip points and homotopy
methods. In Proceedings of Machine Learning Research, volume 107, pp. 1–26, 2020.

Roozbeh Yousefzadeh and Dianne P. O’Leary. Auditing and debugging deep learning models via flip points:
Individual-level and group-level analysis. La Matematica, 2021.

John Zarka, Louis Thiry, Tomas Angles, and Stéphane Mallat. Deep network classification by scattering and
homotopy dictionary learning. In International Conference on Learning Representations, 2020.

John Zarka, Florentin Guth, and Stéphane Mallat. Separation and concentration in deep networks. In
International Conference on Learning Representations, 2021.

16

