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ABSTRACT

Radiology reports convey detailed clinical observations and capture diagnostic
reasoning that evolves over time. However, existing evaluation methods are lim-
ited to single-report settings and rely on coarse metrics that fail to capture fine-
grained clinical semantics and temporal dependencies. We introduce LUNGUAGE,
a benchmark dataset for structured radiology report generation that supports both
single-report evaluation and longitudinal patient-level assessment across multiple
studies. It contains 1,473 annotated chest X-ray reports, each reviewed by experts,
and 186 of them contain longitudinal annotations to capture disease progression
and inter-study intervals, also reviewed by experts. Using this benchmark, we
develop a two-stage structuring framework that transforms generated reports into
fine-grained, schema-aligned structured reports, enabling longitudinal interpreta-
tion. We also propose LUNGUAGESCORE, an interpretable metric that compares
structured outputs at the entity, relation, and attribute level while modeling tem-
poral consistency across patient timelines. These contributions establish the first
benchmark dataset, structuring framework, and evaluation metric for sequential
radiology reporting, with empirical results demonstrating that LUNGUAGESCORE
effectively supports structured report evaluation. Code and data are available at:
https://anonymous.4open.science/r/lunguage

1 INTRODUCTION

Radiology reports play a critical role in diagnosis by recording patient history, describing imaging
findings, documenting procedures, and noting temporal changes. However, because they are written in
unstructured free text, reports vary widely in terminology, style, and level of detail across radiologists,
complicating consistent computational interpretation and hindering automated systems for report
generation and evaluation. To address these challenges, structuring frameworks have been developed
to convert free-text reports into standardized, machine-friendly formats (Jain et al. (2021); Khanna
et al. (2023); Wu et al. (2021); Zhang et al. (2023); Zhao et al. (2024)). While these frameworks
improve representational consistency, current evaluation methods remain fundamentally limited in
two key aspects: temporal reasoning and fine-grained clinical accuracy.

Temporal reasoning is central to radiologic interpretation, as diagnoses often depend on comparing
current and prior studies to assess whether a finding has progressed. However, most evaluation
protocols (Bannur et al. (2024); Huang et al. (2024); Jain et al. (2021); Khanna et al. (2023); Ostmeier
et al. (2024); Smit et al. (2020); Wu et al. (2021); Yu et al. (2023a); Zhang et al. (2023); Zhao et al.
(2024)) assess reports in isolation, without incorporating previous findings. This makes it impossible
to determine whether temporal expressions—such as “no change,” “improved,” or “new”—are
appropriate. For instance, the statement “no change in pneumonia” cannot be meaningfully evaluated
without confirming whether pneumonia was present in prior studies.

Fine-grained clinical accuracy is equally critical. Reliable interpretation depends on attributes such as
precise location (e.g., “carina above 3 cm”) and lesion size (e.g., “2.5 cm”). These details are essential
for diagnostic specificity and downstream decision-making, yet most evaluation protocols collapse
them into broad categories. For instance, “2.5 cm right upper lobe nodule with spiculated margins”
may be reduced to simply “nodule,” and this loss of granularity makes it difficult to distinguish
precise from incomplete outputs.
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Figure 1: Evaluation pipeline for radiology report generation. We introduce the first evaluation
framework for radiology report generation, enabling both detailed single-report assessment and
comprehensive patient-level trajectory evaluation. On the left, we release LUNGUAGE, a radiologist-
annotated benchmark of structured single and sequential chest X-ray reports. On the right, we develop
a two-stage structuring framework that converts free-text into schema-aligned structures at both
single and sequential levels. At the bottom, we present LUNGUAGESCORE, a clinically validated
metric that jointly measures semantic accuracy, structural fidelity, and temporal alignment, providing
clinically faithful evaluation.

Structuring frameworks have attempted to address these issues by extracting entities and relations
from reports (Jain et al. (2021); Khanna et al. (2023); Wu et al. (2021); Zhang et al. (2023); Zhao
et al. (2024)). Some extend this by tagging temporal descriptors such as “worsened” or “stable”
(Khanna et al. (2023); Wu et al. (2021)). Yet, they remain restricted to single reports and rely only on
explicitly stated expressions, without verifying consistency across time. Consequently, they cannot
ensure whether findings align with prior studies or capture coherent clinical trajectories, and often
miss the clinical granularity needed for precise diagnostic interpretation.

Recent report generation models have begun incorporating temporal inputs such as prior reports,
imaging, or clinical indications (Bannur et al. (2024); Zhou et al. (2024)), enabling outputs that are
more context-aware and temporally coherent. However, evaluation protocols have not kept pace.
Generated reports are still judged at isolated timepoints rather than across a continuous timeline,
making it impossible to assess whether models appropriately incorporated prior findings or preserved
clinically important details at both temporal and semantic levels.

To address these limitations, we present the first evaluation pipeline for assessing radiology report
generation in both single and sequential settings. Our contributions are threefold. (1) We construct
LUNGUAGE, a fine-grained benchmark that establishes reliable ground truth for evaluation. It consists
of 1,473 single reports from 230 patients (annotated with 17,949 entities and 23,307 relation–attribute
pairs across 18 clinically grounded relation types) and 186 sequential reports from 30 patients
(95,404 observation pairs across 2–14 reports per patient). These support longitudinal analysis through
ENTITYGROUPS (linking the same finding across reports) and TEMPORALGROUPS (segmenting
diagnostic episodes). (2) To enable automatic benchmarking on this scale, we develop a structuring
framework that converts free text into entity–relation–attribute triplets and links them across time
following the LUNGUAGE schema. It achieves high agreement with expert annotations (F1: 0.94
for entity–relation, 0.86 for full triplets, 0.69 for ENTITYGROUP, 0.87 for TEMPORALGROUP). (3)
Building on this foundation, we introduce LUNGUAGESCORE, a clinically grounded metric that
compares structured representations from generated and reference reports. Unlike prior approaches,
this metric simultaneously captures semantic accuracy, structural fidelity, and temporal coherence. To
our best knowledge, this is the first study to combine the highest schema granularity with explicit
modeling of full diagnostic trajectories.
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2 RELATED WORK

Structuring Radiology Reports Radiology reports encode layered clinical semantics, spanning
history, imaging observations, and diagnostic reasoning. Rule-based systems (Wu et al. (2021); Zhang
et al. (2023)) achieve high precision in constrained settings but struggle to generalize due to linguistic
variability. Supervised transformer-based methods (Jain et al. (2021); Khanna et al. (2023); Zhao
et al. (2024)) are more flexible but depend heavily on the coverage and granularity of their annotation
schema. Recently, prompting-based approaches have leveraged large language models (LLMs), such
as GPT-4 (Achiam et al. (2023)) and open-source variants (Liu et al. (2024); Touvron et al. (2023)), to
directly produce structured outputs from free text (Busch et al. (2024); Dorfner et al. (2024); Hartsock
et al. (2025); Woźnicki et al. (2024)). While these models demonstrate strong few-shot performance,
they remain prone to hallucinations, inconsistent terminology, and prompt sensitivity. To mitigate
this, we employ a task-specific vocabulary and schema-aligned reference set, constraining outputs to
valid clinical concepts and enhancing consistency through retrieval-augmented prompting. A detailed
comparison is provided in Appendix A.4.

Evaluation Metrics for Radiology Report Understanding Existing metrics fall into three cate-
gories: lexical, model-based, and structure-based. Lexical metrics (BLEU (Papineni et al. (2002)),
ROUGE (Lin (2004)), METEOR (Banerjee & Lavie (2005))) rely on surface overlap and often
miss clinical meaning. Model-based metrics (CheXbert (Smit et al. (2020)), BERTScore (Zhang
et al. (2019))) capture semantic similarity but overlook fine-grained detail. Structure-based metrics
(RadGraph-F1 (Jain et al. (2021)), RaTEScore (Zhao et al. (2024))) add granularity by matching
entities and relations. Recent efforts emphasize clinical error detection: ReXVal (Yu et al. (2023b))
introduced expert-labeled errors, informing RadCliQ (Yu et al. (2023a)), which combines BERTScore
and RadGraph-F1, while LLM-based metrics (GREEN (Ostmeier et al. (2024)), FineRadScore
(Huang et al. (2024)), RadFact (Bannur et al. (2024)), CheXprompt (Zambrano Chaves et al. (2025)))
aim to approximate expert judgment or factual correctness. However, most metrics still evaluate
reports in isolation, overlooking temporal consistency across studies and neglecting attributes like
location, extent, or progression. In contrast, our evaluation pipeline provides structured, tempo-
rally aligned evaluation over patient report sequences, enabling clinically faithful assessment across
semantic, structural, and temporal dimensions.

3 LUNGUAGE: SINGLE AND SEQUENTIAL STRUCTURED REPORTS

Radiology reports vary in depth and nuance, with differences in phrasing, certainty, and cross-
sentence connections that make structured interpretation challenging. They are commonly divided
into indication/history, which provides contextual cues (e.g., “history of cough”), and findings and
impression, which contain detailed descriptions and diagnostic reasoning (e.g., “left opacities likely
consolidation or pneumonia”). To address this complexity, we present LUNGUAGE, a benchmark
dataset of radiologist-annotated chest X-ray reports in two complementary versions: 1,473 single
reports and 186 sequential reports. Reports were structured through a rigorous annotation process
(Appendix A.3) guided by three principles: diagnostic source distinction (separating image-based
from context-based findings), semantic precision (capturing descriptive cues such as certainty, status,
and other fine-grained attributes including location, severity, and morphology), and longitudinal
linkage (capturing temporal consistency through entity and temporal grouping). This design reflects
physicians’ clinical perspectives and supports both a single-report schema for fine-grained interpreta-
tion and a sequential schema for modeling patient-level diagnostic trajectories. Figure 2 illustrates
these schemas.

3.1 SINGLE STRUCTURED REPORT: FINE-GRAINED SCHEMA AND ANNOTATION

We propose a single-report schema that captures the internal structure of radiology reports by struc-
turing clinically relevant information into two units: entities, representing core clinical concepts, and
relations, encoding their attributes and interconnections, enabling systematic modeling of both de-
tailed descriptions and cross-sentence reasoning for fine-grained and clinically faithful interpretation.

ENTITIES are assigned to one of six clinically grounded categories based on their derivability from
chest X-ray imaging: PF (PERCEPTUAL FINDINGS) for directly observable image features (e.g.,

3
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Figure 2: Schema for Single and Sequential Report Structuring. The figure shows two reports
from the same patient at day 10 and day 90. For the single report schema (within each report), gray
solid lines connect entities to attributes, while pink and blue solid lines represent inter-entity reasoning
relations (ASSOCIATE, EVIDENCE). For the sequential schema (across reports), black solid lines
denote entities in the same ENTITYGROUP (same clinical finding over time) and TEMPORALGROUP
(same diagnostic episodes), while black dashed lines show entities in the same ENTITYGROUP but
different TEMPORALGROUPS (different diagnostic episodes).

“lung,” “opacity”); CF (CONTEXTUAL FINDINGS) for diagnoses inferred from external clinical
context (e.g., “pneumonia”); OTH (OTHER OBJECTS) for mentioned devices or procedures (e.g.,
“ET tube”); COF (CLINICAL OBJECTIVE FINDINGS) for structured observations from non-imaging
sources (e.g., lab tests); NCD (NON-CXR DIAGNOSIS) for diagnoses based on other modalities
(e.g., “AIDS”); and PATIENT INFO for reported history or symptoms (e.g., “fever,” “cough”).

RELATIONS capture clinical properties and inter-entity connections, often spanning multiple sen-
tences. The schema includes diagnostic stance (DXSTATUS, DXCERTAINTY); spatial and descriptive
characteristics (LOCATION, MORPHOLOGY, DISTRIBUTION, MEASUREMENT, SEVERITY, COM-
PARISON); temporal dynamics (ONSET, IMPROVED, WORSENED, NOCHANGE, PLACEMENT); and
contextual information (PASTHX, OTHERSOURCE, ASSESSMENTLIMITATIONS)1. It also includes
two reasoning relations: ASSOCIATE (bidirectional links between related entities) and EVIDENCE
(asymmetric support from a finding to a diagnosis). For example, in “left lung opacity suggests
pneumonia,” the schema identifies both ASSOCIATE between opacity and pneumonia, and EVIDENCE
indicating that pneumonia is inferred from opacity. Full definitions can be found in Appendix A.1.

Single Report Annotation Process We developed a two-stage annotation pipeline for 1,473
radiology reports from MIMIC-CXR (Johnson et al. (2019)) to ensure fine-grained and clinically
grounded structuring of report language. The process began with schema design and initial structured
drafts generated by GPT-4 (0613)2, from which all candidate entity and relation terms were collected
to build a comprehensive vocabulary. Four radiologists independently reviewed these terms in
a blinded manner, resolving discrepancies through majority voting and consensus meetings, and
referring to the Fleischner Society (Bankier et al. (2024)) terminology and UMLS (Bodenreider
(2004)) mappings where appropriate. This stage unified terminology and eliminated category-level
inconsistencies in advance. In the second stage, annotators revised all reports using this curated
vocabulary, focusing on contextual interpretation and correction of potential LLM errors rather
than category disputes. Reports were evenly divided among radiologists, who verified every (entity,
relation, attribute) triplet, including cross-sentence relations such as ASSOCIATE and EVIDENCE.
This two-step process yielded 17,949 entity instances and 23,307 relation instances, providing a

1Abbreviations: “Dx” stands for “diagnosis” and is used in relations such as DXSTATUS (i.e., positive or
negative finding) and DXCERTAINTY (i.e., definitive or tentative). “Hx” in PASTHX stands for “history”.

2All large language model (LLM) usage, including GPT-4, was conducted using HIPAA-compliant deploy-
ments provided by Azure and Fireworks AI.
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reliable and clinically validated dataset for benchmarking structured report interpretation. Details of
the vocabulary and annotation process are provided in Appendix A.2 and A.3.1.

3.2 SEQUENTIAL STRUCTURED REPORT: DISEASE TRAJECTORY SCHEMA AND ANNOTATION

Longitudinal reports often exhibit lexical variation, abstraction shifts, and inconsistent phrasing
(Meystre et al. (2008); Wang et al. (2018)). The same pathology may be described differently across
timepoints, such as “left opacity” and “left lower consolidation,” with differences in wording and
specificity that complicate semantic alignment and temporal reasoning. To address this, we introduce
a schema that structures reports across patient timelines through two key components:

ENTITYGROUPS identify observations that refer to the same underlying clinical finding, even when
expressed using different terms, anatomical references, or levels of abstraction. Within each patient,
all observation pairs are compared to detect semantic equivalence, regardless of when they appear
in the timeline, whether the finding is reported as present or absent (DXSTATUS), or whether it is
stated definitively or tentatively (DXCERTAINTY). For example, “PICC line tip in lower SVC” and
“at the cavoatrial junction” (Figure 2) may describe the same catheter tip location, reflecting inherent
ambiguity in 2D imaging. Similarly, “lung volumes” reported as low on day 10 and described as “no
change” on day 90 can be grouped to indicate persistent low lung volume.

TEMPORALGROUPS divide each ENTITYGROUP into distinct diagnostic episodes based on temporal
distance, status shifts or certainty, and clinical change expressions (e.g., “worsening”). This approach
captures clinically meaningful transitions in a patient’s condition (Chapman et al. (2011); Savova et al.
(2010)). For example, “fever” mentioned in both the day 10 and day 90 reports (Figure 2) appears in
the “history” section but occurs far apart in time, so treating them as separate temporal groups better
reflects clinical reasoning, whereas repeated descriptions of an effusion would remain in the same
group. Together, these components support fine-grained evaluation of both semantic consistency and
temporal coherence in longitudinal model outputs.

Sequential Report Annotation Process We annotated 186 chest X-ray reports from 30 patients—a
subset of the 230-patient cohort used in single-report annotation—to construct a gold-standard dataset
for patient-level longitudinal evaluation. The same four radiologists independently reviewed reports
in chronological order, linking observations that referred to the same underlying finding into ENTITY-
GROUPS (e.g., “pleural effusion right lung increasing”) and dividing them into TEMPORALGROUPS
(labeled 1, 2, . . . ) to distinguish diagnostic episodes. Terminology was normalized when appropriate
(e.g., aligning “clavicle hardware” with “orthopedic side plate”) while preserving abstraction and
anatomical distinctions. Patients contributed 2–14 reports, with intervals spanning 1–1,200 days.
For each patient, all observation pairs (29–141 per case) were compared, yielding 95,404 total
comparisons. This rigorous process ensured both longitudinal consistency and clinically meaningful
transitions such as resolution or recurrence. Further details are provided in Appendix A.3.2.

4 STRUCTURING FRAMEWORK FOR SINGLE AND SEQUENTIAL REPORTS

We develop a two-stage structuring framework that automatically structures radiology reports using the
same schema as LUNGUAGE, generating radiologist-like structured outputs for consistent evaluation.
The framework covers both single-report and longitudinal settings, producing representations for
semantic, structural, and temporal evaluation (Figure 1).

(i) Single Structuring Framework To generate structured outputs from free text, we apply corpus-
guided relation extraction with a LLM, which extracts (entity, relation, attribute) triplets aligned to
our schema. The task requires handling both intra- and inter-sentential contexts and accommodating
lexical variation without relying on templates. While LLMs can capture diverse phrasing and nuanced
expressions, they are prone to hallucinations and inconsistencies (Busch et al. (2024); Dorfner et al.
(2024); Hartsock et al. (2025); Woźnicki et al. (2024)). To mitigate errors, we guide the model with a
curated vocabulary derived from our annotation corpus (Section 3.1). Details of the prompts and the
vocabulary-matching algorithm are provided in Appendix B.1 and B.1.1.

(ii) Sequential Structuring Framework Building on the outputs from stage (i), we use the LLM
to interpret report sequences over time. To address longitudinal variability, the model performs
normalization and temporal aggregation. Each entity and its attributes are linearized into flattened text
in chronological order relative to the initial study (e.g., “day 0: opacity right lung,” “day 30: opacity

5
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right basilar”). The LLM is guided with few-shot examples illustrating lexical variation, abstraction
shifts (e.g., descriptive to diagnostic terms), and rephrasings of persistent devices. Using these, it
determines whether observations across time represent the same underlying finding and whether they
belong to a single temporal group. Decisions are guided by semantic similarity, anatomical alignment,
and temporal continuity. Observations reflecting recurrence after resolution or clinically disconnected
events are treated as distinct temporal groups. This process yields two outputs: ENTITY GROUPS
and TEMPORAL GROUPS, consistent with Section 3.2. The format combines entity, location, and
temporal pattern (e.g., “pleural effusion right lung no change”), with groups numbered sequentially (1,
2, 3, . . . ). This framework enables faithful structuring of longitudinal narratives, capturing clinically
meaningful trajectories across report sequences. Full prompt examples are provided in Appendix B.2.

5 LUNGUAGESCORE: A FINE-GRAINED PATIENT-LEVEL METRIC

We propose LUNGUAGESCORE, a fine-grained metric for quantifying radiology report quality
across semantic equivalence, temporal coherence, and attribute-level similarity. It captures clinically
meaningful distinctions in terminology (e.g., “right clavicle hardware” vs. “orthopedic side plate”),
longitudinal trends (e.g., resolution vs. decrease), and detailed attributes (e.g., 2.3 cm vs. 3.0 cm).
These dimensions are integrated into a single similarity score that compares candidate and reference
reports—either individually or as sequences—enabling patient-level evaluation.

Evaluation Principles. LUNGUAGESCORE is grounded in three clinical principles: semantic
sensitivity captures concept-level equivalence across linguistic variation (Meystre et al. (2008); Wang
et al. (2018)); temporal coherence ensures alignment with clinical timelines for assessing disease
progression (Chapman et al. (2011); Savova et al. (2010)); and structural granularity evaluates
fine-grained attributes critical for diagnosis (Demner-Fushman et al. (2009); Pons et al. (2016)).
These principles enable clinically faithful evaluation suitable for real-world deployment.

Evaluation Method. Each patient is associated with a sequence of T structured reports. The metric
operates at the patient level and supports both single-report (T = 1) and sequential-report (T > 1)
evaluations. In the single-report setting, evaluation is based on semantic and structural alignment,
while in the sequential-report setting, temporal alignment is additionally incorporated to assess
consistency across longitudinal disease trajectories. Formally, LUNGUAGESCORE evaluates similarity
between predicted and gold reference sets of structured report findings as follows.

For each patient, we compare all predicted and gold reference findings across the entire sequence of
reports. Let Spred = (Spred

1 , . . . , Spred
T ) and Sgold = (Sgold

1 , . . . , Sgold
T ) denote the predicted and gold

sequences for a given patient, where each S
(·)
t is the set of all structured findings at the t-th study.

Pairwise similarity is computed over every possible pair of findings, pooled across all timepoints:

(f pred, f gold) ∈

 T⋃
tp=1

Spred
tp

×

 T⋃
tg=1

Sgold
tg

 . (1)

Each pair of findings is assigned a composite similarity score that captures alignment across semantic,
temporal, and structural similarity dimensions, as defined below:

MatchScore(f pred, f gold) = Semantic · (Temporal if T > 1) · Structural . (2)

Semantic similarity determines whether two findings express the same underlying clinical concept.
Representation differs by setting: in single reports (T = 1), each finding is encoded as a linearized
phrase combining the entity and all attributes (e.g., “opacity”-“left lung”-“nodular”-“slightly in-
creased”); in sequential reports (T > 1), where findings must be tracked across time, we instead use
ENTITYGROUP (Section 4). This enables lexically divergent but conceptually identical findings to
align across multiple reports. Semantic similarity is then computed as the average cosine similarity
between contextual embeddings from two domain-specific clinical BERT models—MedCPT and
BioLORD (Jin et al. (2023); Remy et al. (2024))—selected for their ability to capture variability in
chest X-ray language. Details of model selection are in Appendix C.3.

Semantic(f pred, f gold) = cosine(Embed(f pred),Embed(f gold)) (3)
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Temporal similarity is defined only when T > 1 and captures alignment across timepoints. It
ensures that findings are not only semantically similar but also temporally coherent with the patient’s
disease progression. To prevent matches across unrelated timepoints, LUNGUAGESCORE prioritizes
findings that occur in the same study timepoint t and TEMPORALGROUP. Temporal alignment
receives the maximum score (= 1) when both study timepoint t and TEMPORALGROUP match, and a
reduced score when only one matches, for example, when a predicted finding belongs to the correct
TEMPORALGROUP but appears in a different study. Final scores are computed using equal weights:

Temporal(f pred, f gold) = wS · 1[S(f pred) = S(f gold)] + wG · 1[G(f pred) = G(f gold)] . (4)

where S refers to the study timepoint t, G refers to the TEMPORALGROUP of findings across time,
and equal weights (wS = wG = 0.5) are used in our implementation.

Structural similarity evaluates individual attributes (e.g. LOCATION, MEASUREMENT...) between
predicted and gold reference findings, enabling fine-grained comparison. Each attribute is assigned a
normalized weight wattribute based on its clinical importance, as determined by experts, reflecting its
role in decision making (see Appendix C.1). Similarity is computed as:

Structural(f pred, f gold) =
∑

attribute

wattribute · sim(f pred[attribute], f gold[attribute]) , (5)

where sim(·) returns 1 for exact matches on binary attributes3 and cosine similarity for non-binary
attributes4 using the average of MedCPT and BioLORD contextual encoders. This ensures that
evaluation captures both overall correctness and clinically critical attribute accuracy.

Set-level matching with partial credit. We can compute the combined MatchScore by multiplying
semantic, temporal, and structural similarity scores (Equations 3-5), as shown in Equation 2. We then
perform optimal bipartite matching between predicted findings i and gold reference findings j using
MatchScore sij as edge weights, giving us sets of matched pairs {(f (pred)

m , f
(gold)
n )}, unmatched

predicted findings {f (pred)
u }, and unmatched gold reference findings {f (gold)

v }. Matched pairs
contribute similarity smn to true positives (TP), with residual (1− smn) assigned to false positives
(FP) and negatives (FN). Unmatched findings incur penalties based on their most similar finding:

TP =
∑
(m,n)

smn, FP =
∑
(m,n)

(1− smn)+
∑
u

(
1−max

j
suj

)
, FN =

∑
(m,n)

(1− smn)+
∑
v

(
1−max

i
siv

)
.

(6)

This formulation supports partial credit based on alignment strength. Full credit is awarded only
when a finding aligns simultaneously at the semantic, temporal, and structural levels. Partial matches
contribute proportionally to the score, while unmatched findings in either set are penalized as FP or
FN. This scoring scheme enables nuanced evaluation that distinguishes minor misalignments from
complete misses. The final F1 score is computed from these TP, FP, and FN counts using the standard
formula. Additional illustrative examples are provided in Appendix C.2.

6 EXPERIMENTS

We conduct three experiments from complementary perspectives: (1) performance of the structuring
framework, (2) diagnostic utility of LUNGUAGESCORE as a single-report evaluation metric, and (3)
benchmarking of single- and longitudinal-report generation models with LUNGUAGESCORE.

6.1 STRUCTURING FRAMEWORK VALIDATION

We evaluate the structuring framework on LUNGUAGE, comprising 1,473 reports from 230 patients
(1–15 studies each), including 30 patients with full longitudinal trajectories. Evaluation follows two
stages: (i) single structuring, assessing localized semantic relations, and (ii) sequential structuring,
evaluating consistency and organization of findings into clinical episodes across time.

3Binary attributes: DXSTATUS (positive/negative) and DXCERTAINTY (definitive/tentative)
4Non-binary attributes include: LOCATION, SEVERITY, ONSET, IMPROVED, WORSENED, PLACEMENT,

NOCHANGE, MORPHOLOGY, DISTRIBUTION, MEASUREMENT, COMPARISON, PASTHX, OTHERSOURCE,
ASSESSMENTLIMITATIONS
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Table 1: Performance of various models under zero-shot and 5-shot settings. Left: single report
structuring performance. Right: sequential report structuring performance.

Single Structuring Sequential Structuring
entity-relation entity-relation-attribute Entity Grouping Temporal Grouping

Shot Model F1 P R F1 P R F1 P R F1 P R

Zero

GPT-4.1 0.91 0.83 1.00 0.78 0.79 0.77 0.67 0.68 0.71 0.84 0.83 0.86
Qwen3 0.73 0.58 1.00 0.62 0.53 0.75 0.51 0.43 0.65 0.84 0.87 0.82
Deepseek-v3 0.87 0.76 1.00 0.76 0.72 0.80 0.43 0.30 0.76 0.81 0.87 0.75
Llama4-Maverick 0.81 0.68 1.00 0.69 0.64 0.76 0.37 0.24 0.77 0.60 0.87 0.47
MedGemma-27b-text-it 0.75 0.59 1.00 0.20 0.28 0.16 0.33 0.30 0.37 0.74 0.85 0.66
GPT-OSS-120b 0.92 0.85 1.00 0.70 0.71 0.69 0.62 0.57 0.69 0.83 0.86 0.80

5-shot

GPT-4.1 0.94 0.88 1.00 0.86 0.86 0.86 0.69 0.72 0.68 0.87 0.84 0.91
Qwen3 0.92 0.85 1.00 0.84 0.83 0.85 0.64 0.58 0.71 0.85 0.87 0.84
Deepseek-v3 0.93 0.88 1.00 0.86 0.85 0.86 0.67 0.61 0.75 0.86 0.89 0.84
Llama4-Maverick 0.94 0.88 1.00 0.86 0.86 0.85 0.54 0.39 0.87 0.63 0.92 0.48
MedGemma-27b-text-it 0.90 0.82 1.00 0.81 0.80 0.82 0.55 0.50 0.61 0.82 0.87 0.78
GPT-OSS-120b 0.90 0.83 1.00 0.81 0.79 0.83 0.66 0.60 0.74 0.83 0.86 0.80

Single Structuring We evaluate model performance on generating structured representations from
individual reports by comparing predicted (entity, relation, attribute) triplets against expert annotations
in LUNGUAGE. Using micro-averaged precision, recall, and F1 scores at both the entity–relation
and full triplet levels, we assess GPT-4.1 Achiam et al. (2023) alongside several recent open-source
LLMs Liu et al. (2024); OpenAI (2025); Sellergren et al. (2025); Touvron et al. (2023); Zheng
et al. (2025) under the framework described in Section 4. As shown in Table 1, all models achieve
perfect recall, with 5-shot prompting yielding F1 scores of 0.90–0.94 for entity–relation extraction and
0.81–0.86 for full triplets. Performance improves further with more few-shot examples, demonstrating
the robustness of the framework despite the schema’s complexity. Additional experiments, including
vocabulary guidance, 10-shot prompting, and qualitative examples, are provided in Appendix B.3.

Sequential Structuring The second stage evaluates whether models can group temporally dis-
tributed findings into clinically meaningful categories, a task complicated by subtle semantic distinc-
tions. For instance, “heart size” may group with “cardiomegaly,” whereas “mediastinal silhouette”
concerns shape and can remain normal despite cardiomegaly. Using micro-averaged F1 scores,
we observe that zero-shot prompting already yields strong temporal grouping performance (F1
≈ 0.80–0.84 for GPT-4.1 and other LLMs), whereas entity grouping is noticeably more variable
across models, particularly among open-source LLMs. Providing five in-context examples stabilizes
the predictions and consistently improves entity grouping, with GPT-4.1 reaching an F1 of 0.69
and most models exceeding 0.60, while temporal grouping remains high (F1 ≈ 0.82–0.87). As
detailed in Appendix B.4, the remaining discrepancies in entity grouping mainly concern how finely
entities are grouped, for example whether closely related lexical variants or attribute-specific mentions
are merged or split. Consequently, because LUNGUAGESCORE (Section 5, Equation 3) relies on
continuous semantic, temporal, and structural similarity over matched findings rather than exact
group identity, predictions that differ only in grouping granularity still receive high similarity when
they follow the same diagnostic trajectory.

6.2 EVALUATING LUNGUAGESCORE ALIGNMENT WITH RADIOLOGIST JUDGMENTS

We validate the diagnostic utility of LUNGUAGESCORE on the ReXVal dataset (Yu et al. (2023b)),
which consists of 200 MIMIC-CXR report pairs annotated by six radiologists to benchmark alignment
between automated metrics and expert judgments. As ReXVal contains only single reports, we
evaluate the single-report version of LUNGUAGESCORE (semantic and structural alignment). We
compare against BLEU, BERTScore, GREEN, FineRadScore, RaTEScore, RadGraph-F1, and
RadGraph-XL F1, with implementation details in Appendix D.

Table 2 reports Kendall Tau and Pearson correlations between each metric and the number of
radiologist-identified errors, where stronger alignment corresponds to more negative values. We also
report 95% confidence intervals from 1,000 bootstrap resamples.
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Table 2: Kendall Tau and Pearson correlation coef-
ficients (with 95% CIs) between single-report met-
rics and the total number of radiologist-annotated
errors in each report, across the ReXVal dataset.
Note that FineRadScore was inverted for compara-
bility.

Metric Kendall Tau Pearson

BLEU -0.38 (-0.29, -0.48) -0.53 (-0.45, -0.62)
BERTScore -0.50 (-0.43, -0.57) -0.63 (-0.55, -0.70)
GREEN -0.63 (-0.56, -0.69) -0.73 (-0.67, -0.78)
1/FineRadScore -0.69 (-0.63, -0.74) -0.75 (-0.69, -0.80)
RaTEScore -0.52 (-0.44, -0.59) -0.63 (-0.55, -0.70)
RadGraph F1 -0.57 (-0.50, -0.63) -0.68 (-0.62, -0.74)
RadGraph-XL F1 -0.53 (-0.45, -0.62) -0.63 (-0.56, -0.72)

LUNGUAGESCORE -0.58 (-0.52, -0.64) -0.69 (-0.63, -0.74)

Our metric outperforms traditional structure- or
semantics-based metrics (BLEU, BERTScore,
RaTEScore, RadGraph-F1, RadGraph-XL F1)
but falls slightly short of LLM-derived scores
(FineRadScore, GREEN), which are explicitly
tuned to ReXVal’s error taxonomy. Nonethe-
less, LUNGUAGESCORE achieves performance
close to these metrics while relying only on
semantic and structural alignment rather than
error-type supervision. Additional analyses in
Appendix D show that LUNGUAGESCORE cor-
relates strongly with all other metrics.

6.3 BENCHMARKING SINGLE-REPORT AND
SEQUENTIAL REPORT GENERATION MODELS

We further validate LUNGUAGESCORE by
benchmarking it against existing evaluation
methods across a diverse set of report gener-
ation models, assessing its capacity to capture clinically meaningful differences at both single-report
and patient-level scales. We categorize the models based on input modality: those utilizing only the
current timepoint single image (Cvt2DistilGPT2 (Nicolson et al., 2023), RGRG (Tanida et al., 2023),
MedGemma (Sellergren et al., 2025), Lingshu (Xu et al., 2025), CheXAgent (Chen et al., 2024)),
and those incorporating the current image plus prior context (e.g., history section or prior image)
(Medversa (Zhou et al., 2024), LIBRA (Zhang et al., 2025), MAIRA-2 (Bannur et al., 2024)).

Radiology report generation All models require frontal chest X-rays. MAIRA-2 additionally
uses lateral images when available. RGRG and Cvt2DistilGPT2 generate findings sections, while
Medversa, MedGemma, Lingshu, CheXAgent, and LIBRA produce full reports that include both
findings and impression; we standardize all outputs into complete reports. The single+prior group is
configured to consume both the current and a prior context. MAIRA-2 (standard) and Medversa also
incorporate the history/indication text as contextual input. Implementation details are provided in
Appendix E.

Single-report setting In this setting, we compare generated reports with ground-truth references
on a study-by-study basis using the same patient as in the sequential evaluation, restricted to the 67
studies that contain frontal images.5 Reference reports combine findings and impression. Table 3
summarizes results across metrics, including LUNGUAGESCORE. For LUNGUAGESCORE, we
use LUNGUAGE as ground truth and compare against outputs from the structuring framework in
Section 4. Overall, models that use both current and prior context perform better. MAIRA-2 (standard,
highest-performing), Medversa, and LIBRA achieve higher scores than the single-image baselines
on LunguageScore (single), indicating a clear benefit from incorporating longitudinal context even
when evaluating single reports. Notably, while their advantage over single-image models is relatively
modest under existing metrics, LunguageScore reveals a clearer gap between context-aware and
single-image systems.

Sequential Setting We use the same reports as in the single-report setting but additionally include
the history/indication section to provide context for patient trajectories. All models are evaluated in
this sequential setting, including those that only take the current image as input. This is because the
benchmark is organized around patient-level sequences: in routine practice, radiologists interpret
each study in light of previous examinations, and the resulting reports describe how findings evolve
over time rather than isolated snapshots. As a consequence, the reference reports form a temporally
coherent longitudinal narrative for each patient. Running any model independently at each timepoint
therefore induces its own predicted trajectory, which LUNGUAGESCORE can meaningfully compare
against this coherent reference sequence.

5Studies without frontal images were excluded, which created gaps in sequential analyses for 5 of 10 patients.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Evaluation of radiology report generation models using multiple metrics. Scores are averages
with 95% CIs.

Input Model Single-report setting Sequential

RaTEScore GREEN 1/FineRadScore RadGraph F1 LUNGUAGESCORE LUNGUAGESCORE

si
ng

le

Cvt2DistilGPT2 0.491 (0.46, 0.52) 0.240 (0.19, 0.29) 0.167 (0.14, 0.20) 0.179 (0.15, 0.21) 0.367 (0.34, 0.40) 0.371 (0.33, 0.41)

RGRG 0.547 (0.53, 0.57) 0.266 (0.23, 0.30) 0.139 (0.11, 0.17) 0.264 (0.23, 0.29) 0.406 (0.38, 0.43) 0.391 (0.36, 0.42)

MedGemma 0.495 (0.48, 0.51) 0.149 (0.10, 0.20) 0.127 (0.11, 0.14) 0.133 (0.12, 0.15) 0.318 (0.30, 0.34) 0.345 (0.32, 0.37)

Lingshu 0.483 (0.46, 0.50) 0.173 (0.13, 0.22) 0.141 (0.11, 0.17) 0.150 (0.13, 0.18) 0.344 (0.32, 0.37) 0.356 (0.33, 0.38)

CheXAgent 0.528 (0.50, 0.55) 0.241 (0.20, 0.29) 0.131 (0.12, 0.14) 0.228 (0.20, 0.26) 0.380 (0.35, 0.41) 0.388 (0.36, 0.42)

si
ng

le
+

pr
io

r Medversa 0.543 (0.52, 0.57) 0.314 (0.26, 0.37) 0.183 (0.15, 0.22) 0.238 (0.21, 0.27) 0.409 (0.38, 0.44) 0.410 (0.37, 0.45)

LIBRA 0.526 (0.50, 0.55) 0.266 (0.22, 0.30) 0.127 (0.12, 0.14) 0.227 (0.20, 0.26) 0.414 (0.38, 0.45) 0.417 (0.38, 0.43)

MAIRA-2 (standard) 0.564 (0.54, 0.59) 0.325 (0.28, 0.37) 0.156 (0.14, 0.18) 0.274 (0.25, 0.30) 0.429 (0.40, 0.46) 0.432 (0.41, 0.46)

MAIRA-2 (cascade) 0.547 (0.53, 0.57) 0.299 (0.25, 0.34) 0.171 (0.13, 0.21) 0.233 (0.21, 0.26) 0.419 (0.39, 0.45) 0.416 (0.38, 0.45)

As shown in Table 3, models that leverage prior context (single + prior) rank above the single-image
models, with MAIRA-2 achieving the best performance and Medversa second. Models that omit
this prior context (Cvt2DistilGPT2, RGRG, MedGemma, Lingshu, CheXAgent) perform worse;
notably, when comparing the single-report and sequential evaluations, the LUNGUAGESCORE scores
of RGRG and MAIRA-2 (cascade) decrease, whereas the scores of the other models improve. This
pattern indicates that models which appear strong in the single-report setting can still produce
temporally inconsistent diagnostic trajectories once their predictions are examined across the full
patient sequence. LUNGUAGESCORE makes these temporal inconsistencies explicit and highlights
the importance of evaluating report generators in the sequential setting. Further analysis of error
sensitivity is provided in Section D.

7 CONCLUSION

This work introduces a comprehensive pipeline for evaluating radiology reports, grounded in LUN-
GUAGE, a fine-grained benchmark for single and sequential structured chest X-ray reports. To our
knowledge, it is the first benchmark and evaluation framework explicitly designed for longitudinal
chest X-ray report generation and patient-level structured assessment. The dataset is intentionally
designed as a dense, expert-verified evaluation resource, comprising 1,473 single reports and longi-
tudinal patient trajectories with rich entity–attribute structure and temporal alignments curated by
board-certified radiologists. Building on this foundation, we propose a two-stage LLM-based struc-
turing framework that reliably maps free-text reports into schema-aligned representations across both
single and sequential settings, and LUNGUAGESCORE, a clinically grounded metric that evaluates
model outputs along semantic, structural, and temporal dimensions.

LUNGUAGESCORE operates on entity-centered representations that bundle attributes and temporal
links for each finding, enabling joint assessment of diagnostic status, spatial and descriptive attributes,
longitudinal change, and relevant context. Reports are first mapped by an LLM into schema-aligned
structures, then evaluated by a fixed scoring function over semantic, temporal, and attribute fields,
yielding transparent, attribute-wise interpretable scores that remain stable under small errors in
the structured inputs. Empirically, LUNGUAGESCORE correlates well with radiologist-annotated
errors on ReXVal in the single-report setting and, in the longitudinal setting, more clearly separates
context-aware models from single-image baselines while reducing penalties for clinically appropriate
but textually omitted findings. We expect our work to serve as a practical, interpretable testbed for
fine-grained single-report and longitudinal evaluation, and we discuss remaining limitations and
avenues for extension in Appendix F.
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A LUNGUAGE DETAILS

Dataset preparation LUNGUAGE aims to support patient-level evaluation of chest X-ray reports
by modeling longitudinal diagnostic scenarios. To this end, we curated a benchmark dataset from the
official test split of MIMIC-CXR, selecting patients with between 1 and 15 sequential studies. This
yielded 230 patients with a total of 1,473 reports.

We followed the official MIMIC-CXR preprocessing protocol to extract structured text from each
report. Specifically, we parsed the history (including “Indication”), findings, and impression
sections. The history/indication field provides contextual information relevant to diagnostic reasoning,
such as presenting symptoms (e.g., “fever,” “fatigue,” “cough”) or evaluation intents (e.g., “rule out
pneumonia”). In contrast, the findings and impression sections describe image-based observations
and interpretations.

Section-level coverage across the dataset is summarized as:

• History (i.e., Indication): 1,362 reports (92.5%)
• Findings: 1,224 reports (83.1%)
• Impression: 1,015 reports (68.9%)

Among the reports, 767 contained both findings and impression sections, 457 had findings only, 248
had impression only, and 1 contained only a history section. We excluded infrequently occurring
sections such as comparison (often containing anonymized metadata using placeholders like “__”),
and technique (e.g., “AP view”), as these appeared in fewer than 5% of cases and were not directly
relevant to diagnostic content.

To preserve diagnostic integrity and linguistic variability, we retained all reports in their original
form without content filtering. This includes templated reports (e.g., “No acute cardiopulmonary
process”) and incomplete notes. All reports were annotated using our schema-based pipeline with no
preprocessing beyond section parsing. Structured reports were constructed by directly using the raw
textual expressions from the original reports, rather than replacing them with normalized terms, to
maintain alignment with the radiologists’ source language.

Figure A.1: Distribution of the number of imaging studies per patient in LUNGUAGE. Skyblue
bars indicate the number of patients for each trajectory length (i.e., number of chest X-ray studies),
reflecting the single-report annotation coverage. Salmon bars represent the subset of patients whose
reports are also annotated at the longitudinal level. Values above the bars show the number of patients
per group (n =), and for salmon bars, the number of patients with sequential annotations. The legend
summarizes the total number of patients and reports included at each annotation level.
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A.1 SINGLE-REPORT SCHEMA: ENTITY AND RELATION DEFINITION

LUNGUAGE represents each radiology report as a structured collection of (entity, relation, attribute)
triplets. This schema is designed to encode the diagnostic content of reports in a form that supports
structured analysis, longitudinal reasoning, and machine-readable interpretation. It captures both
observable features from chest X-ray (CXR) images and additional contextual elements embedded in
clinical narratives.

A.1.1 ENTITY TYPES

Entities represent clinically meaningful units such as findings, diagnoses, objects, or background
context. Each entity is assigned one of six mutually exclusive Cat (category) labels, depending on
whether it originates from the CXR image or external clinical sources. These six labels fall into two
broad groups:

• Chest X-ray Findings are entities that can be directly visualized on the chest X-ray or
inferred through image-based interpretation, possibly with minimal supporting context.
These form the core of radiologic description and are divided into the following types:

– PF (Perceptual Findings): Visual features that are explicitly visible in the image and
correspond to anatomical or pathological structures (e.g., “opacity”, “pleural effusion”,
“pneumothorax”). These are the most direct and objective form of image evidence.

– CF (Contextual Findings): Diagnoses that require interpretation of visual findings in
light of limited contextual knowledge (e.g., “pneumonia”, “congestive heart failure”).
These may involve reasoning beyond the image but still rely primarily on radiographic
evidence.

– OTH (Other Objects): Non-anatomic elements such as medical devices, surgical
hardware, or foreign materials visible on the image (e.g., “endotracheal tube”, “central
venous catheter”, “foreign body”). These often require placement verification or
complication monitoring.

• Non Chest X-ray Findings are entities that cannot be determined from the image alone and
must be inferred from patient history, clinical documentation, or other diagnostic modalities:

– COF (Clinical Objective Findings): Structured clinical measurements or physical
findings derived from sources such as laboratory tests or vital signs (e.g., “elevated
white cell count”, “low oxygen saturation”). These provide objective support for
contextual interpretation.

– NCD (Non-CXR Diagnosis): Diagnoses that originate from non-CXR modalities
(e.g., CT, MRI, serology) and are either mentioned for completeness or used to explain
findings (e.g., “stroke”, “AIDS”).

– PATIENT INFO: Historical or subjective patient information, such as symptoms
or clinical background, that contributes to interpretation (e.g., “fever”, “history of
malignancy”, “recent trauma”).

Each entity is additionally annotated with the following attributes that define its diagnostic interpreta-
tion within the report:

• DxStatus: Indicates whether the entity is considered present or absent in the current study.
This label is determined from report language and includes implications from stability or
change. For example, “resolved effusion” is annotated as Positive, while “unchanged
opacity” is Positive unless the prior state was normal, in which case it is Negative.

• DxCertainty: Reflects the level of confidence expressed by the radiologist, labeled as either
Definitive or Tentative. Typical cues include phrases like “suggests”, “cannot exclude”,
or “possibly indicative of”, all leading to a tentative label.

A.1.2 RELATION TYPES

Relations describe either attributes of a single entity or clinically relevant links between multiple
entities. All relations must be grounded in the report text and can span across sentences within the
same section.
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1. Diagnostic Reasoning These relations connect semantically and clinically related entities. They
encode the logic behind diagnostic interpretation.

• Associate: A bidirectional, non-causal relationship between entities that co-occur or are
conceptually linked (e.g., “opacity” ↔ “consolidation”). When Evidence is used, a corre-
sponding Associate is also required in the reverse direction.

• Evidence: A unidirectional relation in which a finding supports a diagnosis (e.g., “pneumo-
nia” → “opacity”).

2. Spatial and Descriptive Attributes These relations describe intrinsic visual characteristics of an
entity as observed within a single chest X-ray image. Unlike temporal attributes, these do not require
comparison with prior studies. Instead, they provide descriptive detail that refines the interpretation
of a finding or object in terms of location, form, extent, intensity, and symmetry.

• Location: Specifies the anatomical or spatial position of the entity (e.g., “right upper lobe”,
“carina above 3 cm”). An entity may have multiple location labels, annotated as a comma-
separated list (e.g., “right upper lobe, suprahilar”). Location applies to both disease findings
and device placements (e.g., “fragmentation” of “sternal wires”).

• Morphology: Describes the shape, form, or structural appearance of the entity (e.g., “nodu-
lar”, “linear”, “reticular”, “confluent”). Morphological terms help differentiate types of
opacities or identify characteristic patterns of pathology.

• Distribution: Refers to the anatomical spread or pattern of the entity (e.g., “focal”, “dif-
fuse”, “multifocal”, “bilateral”). This helps characterize whether the finding is localized or
widespread, and whether it follows typical anatomical distributions.

• Measurement: Captures quantitative properties such as size, count, or volume (e.g., “2.5
cm”, “few”, “multiple”). These descriptors are typically numerical or ordinal and assist in
severity grading or follow-up comparison.

• Severity: Reflects the degree of abnormality or clinical impact, often based on radiologic
intensity or extent (e.g., “mild”, “moderate”, “severe”, “marked”).

• Comparison: Indicates asymmetry or difference across anatomical sides or regions within
the same image (e.g., “left greater than right”, “right lung appears denser”). This is distinct
from temporal comparison and only refers to spatial contrasts visible in the current image.

3. Temporal Change These relations capture how an entity has changed over time by comparing the
current study to previous imaging or known clinical baselines. Temporal attributes are essential for
longitudinal interpretation and reflect disease progression, treatment response, or clinical stability.
Unlike static descriptors, these attributes require temporal context and often imply clinical decision
points.

• Onset: Indicates the timing or duration of a finding as described in the report (e.g., “acute”,
“subacute”, “chronic”, “new”). These descriptors suggest whether a condition has recently
appeared or has been long-standing.

• Improved: Signals that a finding has regressed or resolved compared to a prior state (e.g.,
“resolved effusion”, “decreased consolidation”). It is typically associated with positive
treatment response or natural recovery.

• Worsened: Indicates that the condition has progressed, increased in extent, or become more
severe over time (e.g., “enlarging opacity”, “increased pleural effusion”). This is often
associated with disease progression or complications.

• No Change: Describes a finding that has remained stable since a prior study (e.g., “un-
changed opacity”, “persistent nodule”). Although these are annotated as Positive by
default, they are marked as Negative if the prior state was normal (i.e., continued absence
of disease).

• Placement: Applies specifically to entities labeled as OTH (devices). It describes both the
position (e.g., “in expected position”, “malpositioned”) and temporal actions involving the
device (e.g., “inserted”, “withdrawn”, “removed”). This attribute is crucial for monitoring
device-related interventions over time.
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4. Contextual Information This category captures auxiliary information that influences the interpre-
tation of findings but is not a primary descriptor of the radiologic appearance. These relations provide
critical contextual cues—such as modality constraints, patient factors, or historical references—that
support diagnostic interpretation. While not visual in the conventional sense, they are essential for
accurately situating radiologic findings within the broader clinical scenario.

• Past Hx: Refers to the patient’s prior medical or surgical history that contextualizes current
findings (e.g., “status post lobectomy”, “known tuberculosis”). These mentions often justify
or explain current observations or exclude certain diagnoses.

• Other Source: Indicates that part of the reported information is derived from modalities
other than chest X-ray (e.g., “seen on CT”, “confirmed on MRI”). This distinction is
important when findings cannot be visualized directly on the image being interpreted.

• Assessment Limitations: Describes technical or procedural factors that constrain the
radiologist’s ability to interpret the image accurately (e.g., “poor inspiration”, “rotated
patient position”, “limited view due to overlying hardware”). These limitations help qualify
the certainty or completeness of the report’s conclusions.

A.2 TASK-SPECIFIC VOCABULARY CONSTRUCTION

To systematically capture the range of descriptive, temporal, spatial, and contextual attributes in
radiologic reporting, we constructed a structured vocabulary of relation terms grounded in all schema-
defined relation types instantiated in LUNGUAGE. The process followed four stages: (1) automatic
candidate extraction, (2) expert review and refinement, (3) hierarchical organization into clinically
meaningful subcategories, and (4) normalization of lexical variants. This pipeline was designed to
maximize coverage while ensuring clinical interpretability and internal consistency.

Candidate extraction. We first piloted schema and prompt designs on 100 sample reports, iteratively
refining them before applying the finalized schema to the full set of 1,473 reports (see Appendix A.3
for details). Using GPT-4 (Achiam et al. (2023)), we produced initial structured outputs and extracted
candidate terms corresponding to each relation type. This step emphasized high recall to capture the
breadth of linguistic variation present in free-text radiology reports and provided a basis for analyzing
hierarchical consistency across categories.

Expert review and refinement. Four board-certified physicians independently reviewed the candidate
vocabularies for each relation category, verifying accurate categorization and eliminating spurious or
ambiguous expressions. Disagreements were adjudicated through consensus meetings (Figure A.6),
prioritizing clinical interpretability and reproducibility. This process was especially important
for borderline cases such as distinguishing between Condition terms under MORPHOLOGY and
subtle gradations of SEVERITY, or between filed-of-view limitations and patient-related
limitations.

Hierarchical organization of entity, location, and attribute taxonomies. All vocabularies were
organized hierarchically to reflect radiologic conventions and enable reasoning across different levels
of granularity. A comprehensive overview of the entity taxonomy (Figure A.2), location taxonomy
(Figure A.3), and attribute taxonomy (Figure A.4), together with representative examples, is provided
in Table A.1. They can be grouped into three major taxonomies:

• Entity taxonomy. Entities were first assigned to one of six mutually exclusive Cat labels:
PF (Perceptual Findings), CF (Contextual Findings), COF (Clinical Objective Findings),
NCD (Non-CXR Diagnosis), OTH (Other Objects), and PATIENT INFO (Patient Information).
Within each label, entities were further classified into subcategories such as Diagnostic
Observations, Anatomical Entities, Diseases and Disorders, Medical Devices, or Symptoms
& Signs. Representative examples include: “opacity” and “right hilum” (PF), “pneumonia”
and “congestive heart failure” (CF), “oxygen saturation” (COF), “stroke” (NCD), “central
venous catheter” (OTH), and “fever” or “chronic dyspnea” (PATIENT INFO). Normalization
ensured consistent representation, while diverse raw expressions were linked at the lowest
level (e.g., “pneumonia” → “PNA,” “pneumonias”).

• Location taxonomy. The most extensive vocabulary, comprising 546 terms, was organized
into hierarchical paths that mirror clinical localization practices. High-level systems included
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respiratory (229), musculoskeletal (84), cardiovascular (73), and others (160). Examples of
hierarchical paths include: “lung → lobe → right → upper,” “heart → chamber → atrium
→ left,” “spine → thoracic → vertebra → T4.” This structuring enables reasoning from
coarse system-level interpretation to fine-grained anatomical localization.

• Attribute taxonomy. Attributes were systematically organized into descriptive and temporal
axes. MORPHOLOGY (205) was divided into shape and structure, texture and density, and
condition. Temporal change included ONSET (57), IMPROVED (118), WORSENED (102),
and NO CHANGE (138), each stratified into graded interpretations (e.g., “moderate improve-
ment,” “minimal worsening”). Device-related metadata were captured under PLACEMENT
(74), describing both positional accuracy (e.g., “malpositioned”) and procedural changes
(e.g., “removed,” “repositioned”). Additional axes included MEASUREMENT (139), SEVER-
ITY (86), DISTRIBUTION (37), and COMPARISON (44). Auxiliary types captured contextual
but clinically relevant information: ASSESSMENT LIMITATIONS (233; e.g., “rotated pa-
tient,” “poor inspiration”), OTHER SOURCE (55; e.g., CT, MRI), and PAST HX (39; e.g.,
“status post,” “history of malignancy”). Our vocabulary was restricted to relation types that
correspond to lexically explicit attributes. Four relation types—EVIDENCE, ASSOCIATE,
DXSTATUS, and DXCERTAINTY—were excluded. These relations are critical to the an-
notation schema but represent pragmatic inference rather than explicit lexical expressions.
For instance, EVIDENCE and ASSOCIATE encode reasoning links between entities, often
spanning sentences, while DXSTATUS and DXCERTAINTY capture interpretive stance (e.g.,
presence vs. absence, tentative vs. definitive).

Normalization. The resulting vocabulary includes 14 relation types derived from lexical evidence,
each normalized to a preferred set of terms and organized into semantically coherent subcategories.
We additionally performed UMLS mapping wherever possible to align relation terms with existing
biomedical ontologies, while preserving terms that fall outside conventional coverage. This ensured
both lexical consistency and clinical validity, supporting future integration. Beyond its role in structur-
ing chest X-ray reports, this vocabulary provides a reusable lexicon for tasks such as query expansion,
ontology alignment, multimodal grounding, and patient-level reasoning, thereby establishing a clin-
ically grounded and internally consistent taxonomy of radiologic language. Detailed construction
procedures are explained in Appendix A.3.

Comparison with prior resources and applications. Compared to prior resources such as Rad-
Graph (Jain et al. (2021)), our vocabulary introduces a substantially more fine-grained taxonomy.
RadGraph defines only two entity types—Anatomy and Observation—and represents descriptive
information indirectly through coarse relations such as modify or suggestive of. In contrast, our
schema explicitly differentiates attributes such as MORPHOLOGY into shape and structure, texture
and density, and condition, and provides graded subtypes for both temporal progression and severity.
This level of granularity better reflects the linguistic practices of radiologists and enables more
nuanced downstream evaluation.
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Table A.1: Vocabulary Overview Taxonomy

Entity Categories

Category Subcategory Example terms

pf (Perceptual Findings) Diagnostic Observations, Anatomical Entities,
Diseases and Disorders

opacity, right hilum

cf (Contextual Findings) Diseases and Disorders, Diagnostic
Observations

congestive heart failure, pneumonia

cof (Clinical Objective Findings) Diagnostic Observations, Diseases and
Disorders

oxygen saturation, anti pd1 antibody

ncd (Non-CXR Diagnosis) Diseases and Disorders, Diagnostic
Observations

stroke, seizure disorder

oth (Other Objects) Medical Devices, Procedures & Surgeries,
Treatment & Medications

central venous catheter, lobectomy

patient info Symptoms & Signs, Diseases & Disorders,
Treatment & Medications, Procedures &
Surgeries

fever, cough, chronic dyspnea

Attribute Categories: Spatial and Descriptive

Category Subcategory Example terms

severity Extreme, Significant, Moderate, Mild, Minimal moderate, severe
measurement Size, Quantity, Normality 2.5 cm, multiple
morphology Shape & Structure, Texture & Density, Condition nodular, reticular
distribution Pattern, Extent, General Description diffuse, focal
comparison Location & Laterality, Degree & Description left greater than right

Attribute Categories: Temporal Change

Category Subcategory Example terms

onset Acute/Sudden, Chronic/Long-term, Progressive acute, chronic
improved Extreme, Significant, Moderate, Mild, Minimal resolved, decreased
worsened Extreme, Significant, Moderate, Mild, Minimal enlarging, increased
no change No Change, Minimal Change unchanged, persistent
placement Standard Position, Repositioning, New Placement,

Removal, Nonstandard Position
inserted, malpositioned

Attribute Categories: Contextual Information

Category Subcategory Example terms

assessment limitations Evaluation, Field-of-View, Patient-Related,
Technical

poor inspiration, rotated patient

other source Image, Signal, External Source CT, MRI
past hx Past Hx status post, known

Location Taxonomy and Coverage

Top-level Category Category distribution (%) Example Anatomical
Sites

Max Depth Example Location
Paths

Respiratory ≈42% Lungs, pleura, bronchi,
thoracic wall

up to 7 lung > lobes > right >
upper, pleura > left >
upper

Cardiovascular ≈13% Heart chambers &
valves, aorta, vena cava,
jugular/supra-cardiac
veins

up to 6 vessels > aorta > arch,
heart > chambers >
atrium > right, veins >
jugular > internal >
right

Musculoskeletal ≈15% Spine
(cervical—lumbar), ribs,
clavicle, shoulder &
acromioclavicular joints

up to 6 spine > thoracic, bones
> ribs > left, joints >
shoulder > right

Abdominal ≈6% Stomach, bowel
segments, abdominal
quadrants,
sub-diaphragmatic
spaces

up to 6 stomach > fundus,
quadrants > right,
organs > intestines >
duodenum

Mediastinum ≈4% Paratracheal, carinal,
paramediastinal
compartments

up to 5 paratracheal > right,
paramediastinal_region
> right, carina

Other structures / Descriptors ≈19% Axilla, neck, extremities,
directional descriptors,
device placements

up to 5 axilla > left, neck >
lower, medical_device
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(a) Entity taxonomy (simplified). Shows only Category (PF, CF,
OTH, COF, NCD, PATIENT INFO) and Subcategory (e.g., Diagnostic
Observation, Anatomical Entity, Disease and Disorder).

(b) Entity taxonomy (full). Extends the simplified view by adding
Normalized terms (canonical forms) and Raw terms (report expres-
sions). For example, “pneumonia” (PF, Diagnostic Observation) is
normalized to a standard form and may appear in reports as “PNA”
or “pneumonia.”

Figure A.2: Entity taxonomy. Comparison between simplified and full versions. The simplified
taxonomy shows only up to Subcategory, while the full taxonomy additionally captures normalized
terms and raw report expressions.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) Location taxonomy (simplified). Shows only up to depth 2 of
the hierarchy, where broad anatomical systems (e.g., respiratory,
cardiovascular) are subdivided into major regions.

(b) Location taxonomy (full). Extends the simplified view into
a full hierarchical tree, reaching the lowest level of specificity as
expressed in raw reports. For example, the respiratory system
branches into “lung” → “left lung” → “left lower lobe,” capturing
fine-grained terms systematically.

Figure A.3: Location taxonomy. Comparison between simplified and full versions. The simplified
taxonomy displays only the top levels of anatomical systems, while the full taxonomy represents the
entire structured hierarchy down to the raw report expressions.
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(a) Attribute taxonomy (simplified). Shows only Category (e.g.,
Severity, Morphology, Distribution, Temporal change, Contextual
information) and their Subcategories (e.g., “Extreme–Minimal”
scale for Severity, “Acute/Chronic” for Onset).

(b) Attribute taxonomy (full). Extends the simplified view by adding
Normalized terms and Raw report terms. For example, the category
Improved → subcategory Minimal improvement has normalized
terms like “minimally improve” and maps to diverse raw expres-
sions such as “somewhat better,” “somewhat improved,” or “slightly
improved.”

Figure A.4: Attribute taxonomy. Comparison between simplified and full versions. The simplified
taxonomy presents categories and subcategories only, while the full taxonomy systematically incor-
porates normalized forms and raw report expressions used in clinical texts.
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A.3 ANNOTATION PROCESS

This section outlines the protocol used to ensure consistency, clinical accuracy, and transparency in our
structured annotation process (Figure A.5). A key principle of our design was to adopt a vocabulary-
first approach. Instead of starting directly with report-level annotations, we first extracted all unique
candidate terms from the structured outputs and asked radiologists to evaluate them in isolation. Each
annotator independently assessed whether a term was correctly categorized under the schema (keep,
normalize, reassign, or remove) and proposed refinements when necessary. This strategy served two
purposes: (i) it ensured that the schema categories were well defined and clinically meaningful before
applying them at scale, and (ii) it minimized inconsistencies during report annotation by locking a
shared vocabulary in advance. Consensus was reached through majority voting and resolution of
edge cases, producing a stable schema–vocabulary foundation upon which high-quality single and
sequential report annotations were later built.

Figure A.5: Annotation protocol. The process begins with Stage1: Initial Structuring, where
radiologists design an initial schema based on 100 chest X-ray reports and iteratively update it
through prompt engineering. A large language model (LLM) then generates preliminary structured
outputs from 1,473 reports, from which candidate vocabulary terms are extracted. In Stage2: Schema
& Vocabulary, four board-certified radiologists conduct blinded annotation on all extracted terms
(keep, normalize, reassign, or remove), supplemented with UMLS term mapping for interoperability.
Consensus is reached through majority voting and resolution of edge cases, after which the schema
and vocabulary are refined and locked. In Stage3: Report Annotation, radiologists perform
expert review of non-overlapping subsets of single and sequential reports. This step includes
correction of hallucinations and omissions, validation of temporal and contextual dependencies
(including longitudinal structuring), and linking of cross-sentence relations such as ASSOCIATE and
EVIDENCE. The pipeline yields a final schema and vocabulary as well as high-quality single and
sequential structured reports (LUNGUAGE benchmark).

Schema and Vocabulary Development and Validation. The construction of the LUNGUAGE
schema followed a vocabulary-first process that combined expert-driven refinement with large-scale
automatic extraction. We began by randomly sampling 100 chest X-ray reports and manually drafting
an initial schema. This draft was iteratively refined through prompt engineering: categories and
relations were adjusted while repeatedly checking coverage against the same 100 reports. Once a
stable structure was established, the process was scaled to all 1,473 reports using schema-guided
prompts to a large language model, which produced preliminary structured drafts. These drafts were
not treated as final structure reports, but instead served to systematically collect the entire lexical
space of candidate terms across the ENTITY, ATTRIBUTE, and RELATION fields. This vocabulary-first
approach ensured that the schema was grounded in actual report variation while also capturing rare or
unconventional descriptors.
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Figure A.6: Example of consensus protocol for vocabulary validation. This figure illustrates
the vocabulary validation process using the morphology category as an example. For illustration,
only the results from two reviewers are shown, although in the real protocol, all four radiologists
independently reviewed every candidate term. The column Lemma (ori) represents raw vocabulary
extracted from the LLM. Reviewers evaluated each term to determine whether it should remain
in the category, be reassigned, merged as a synonym, or removed, and also identified appropriate
synonyms. Green highlights indicate terms where reviewer opinions diverged, requiring consensus
discussion. While not shown in this example, the full protocol also incorporated UMLS mappings
and subcategory assignments.

The candidate vocabulary was then subjected to blinded review by four board-certified radiologists
(an example is shown in Figure A.6). For each term, annotators determined whether to keep,
normalize, reassign, or remove, and assigned it to an appropriate schema category (e.g., PF, CF,
OTH). Disagreements were resolved through majority voting, while ambiguous cases were recorded
in an edge-case log and revisited during consensus meetings. To promote alignment with established
clinical practice and interoperability, raw terms were cross-checked against Fleischner Society
terminology (Bankier et al. (2024)), particularly during normalization, and mapped to UMLS concepts
when appropriate (e.g., UMLS TERM (CODE: C12345)).

Figure A.7: UMLS mapping tool. A custom interface was developed to retrieve candidate concepts
via the UMLS API. Radiologists manually reviewed suggested mappings to select the most semanti-
cally aligned concepts, while terms without clear matches were explicitly marked as unmapped (–).

We developed a custom UMLS mapping tool (Figure A.7) to retrieve candidate concepts via the
UMLS API, and radiologists manually reviewed these candidates to select the most semantically
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aligned concepts. Terms without a clear correspondence were not forced into external standards;
instead, they were explicitly marked as unmapped (– (CODE: -)). All mappings, including unmapped
entries, were preserved in the final vocabulary for transparency and reuse.

Through this iterative adjudication and validation process, the vocabulary evolved from a raw set
of extracted terms into a clinically coherent schema encoding core entity categories, relation types
(e.g., DXCERTAINTY, ASSOCIATE, EVIDENCE), and detailed attributes (e.g., MORPHOLOGY,
MEASUREMENT, TECHNICAL LIMITATION). The outcome was a locked schema and vocabulary
that balanced comprehensive coverage with clinical precision, establishing the foundation for all
subsequent annotation in the LUNGUAGE benchmark.

Report Annotation and Validation. After the schema and vocabulary were finalized, structured
report annotation proceeded under a standardized workflow designed to ensure both consistency
and clinical reliability. Radiologists worked with shared resources, including (i) a finalized schema
document defining all entity, relation, and attribute types and their origin (image-derived vs. context-
derived), (ii) an evolving edge-case log recording ambiguous examples and their resolutions, and (iii)
a set of standardized decision rules for term normalization and schema assignment.

Using a custom annotation interface (Figure A.8), annotators reviewed non-overlapping subsets
of reports to avoid redundancy. Their responsibilities extended beyond sentence-level checks to
include linking observations across sentences (e.g., ASSOCIATE, EVIDENCE), validating temporal and
contextual dependencies, and identifying hallucinations or omissions introduced during LLM-based
structuring. This two-stage pipeline—automatic structuring followed by expert curation—yielded
high-quality annotations for all 1,473 single reports and 186 longitudinal cases over a six-month
period, with radiologists contributing multiple hours per week and participated in weekly review meet-
ings. The resulting resource demonstrates annotation consistency and clinical reliability, providing a
validated foundation for the LUNGUAGE benchmark.

A.3.1 SINGLE REPORT ANNOTATION DETAILS

Single Structured Report Statistics

• Total number of reports: 1,473 chest X-ray reports
• Total number of patients: 230
• Number of imaging studies per patient: Ranges from 1 to 15
• Total number of annotated entities: 17,949
• Total number of annotated relation–attribute pairs: 23,307

To construct a clinically reliable gold-standard dataset, we implemented a structured annotation
pipeline that reviewed and refined the initial triplets (entity-relation-attribute) generated by GPT-4
(0613). Unlike the vocabulary construction phase—which focused on individual terms without
considering report context—this stage involved section-by-section review of all structured outputs in
each report to ensure contextual accuracy and logical consistency.

All 1,473 chest X-ray reports in LUNGUAGE were divided evenly among annotators. Each annotator
independently reviewed approximately one-quarter of the dataset, ensuring balanced coverage and
minimizing reviewer bias across the annotated corpus. Within each report, annotators examined
the structured outputs across the history/indication, findings, and impression sections. The
goal was to verify whether the extracted (entity, relation, attribute) triplets accurately captured the
meaning of the source text and aligned with the predefined schema.

This review explicitly included schema elements that require contextual interpretation and cannot
be evaluated at the lexical level alone—namely, DXSTATUS, DXCERTAINTY, ASSOCIATE, and
EVIDENCE. These attributes reflect interpretive judgments, such as identifying when an “opacity”
supports a diagnosis of “pneumonia” or whether two entities should be linked through an associative
relation. Annotators verified whether such relations were correctly inferred from the surrounding
text and whether the attributes assigned to each entity (e.g., presence, uncertainty, temporal change)
matched the narrative context.

To support this process, we developed a custom annotation interface (Figure A.8) that displayed the
original report text alongside GPT-4’s predicted triplets and an editable table of structured fields.
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Each sentence in the report was paired with its associated annotations, including entity category,
relation type, and all relevant attributes. Annotators could directly add, edit, remove, or merge entries
to reflect clinically accurate interpretations. For example, terms like “ground glass opacity”—which
could be mistakenly split—were merged into a single PF (perceptual finding) entity based on
how radiologists commonly use the phrase. Annotation was conducted separately for each section
(history, findings, impression), and the interface supported sentence-level review within each
section to ensure consistent entity–relation mappings when terms appeared across multiple sentences.

As a result of this process, the finalized gold-standard dataset includes 17,949 validated entities
and 23,307 relation instances. These annotations encompass both explicit descriptive attributes
and contextually inferred diagnostic relationships, providing a robust benchmark for evaluating
schema-based information extraction systems in chest radiograph interpretation. As an illustration,
Figure A.9 shows the knowledge graph representation of a single annotated report drawn from the
dataset.

Figure A.8: Annotation interface used during gold dataset construction. Annotators reviewed GPT-
4-generated triplets per report section and refined the entity–relation structure to ensure schema
correctness and contextual validity.
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A.3.2 SEQUENTIAL REPORT ANNOTATION DETAILS

Sequential Structured Report Statistics

• Total number of reports: 186 chest X-ray reports

• Total number of patients: 30 (subset of the 230-patient cohort)

• Reports per patient: between 2 and 14

• Time intervals between reports: from 1 day to 1,200 days

• Observation pairs: 95,404 in total. This number comes from comparing every possible pair
of annotated entities (observations) within each patient trajectory (i.e., all

(
n
2

)
combinations).

For example, a patient trajectory containing 34 entities yields 561 pairwise comparisons,
while a dense case with 141 entities results in 9,870 pairs.

In contrast to the single-report structuring phase, which focused on refining schema-based annotations
within individual reports, the sequential annotation phase aimed to assess the longitudinal consis-
tency of entity-level interpretations across temporally ordered reports from the same patient. This
required global comparisons across all sections—history, findings, and impression—integrating
entity–relation triplets into clinically coherent sequences.

Unlike earlier phases that processed each report independently, this step involved exhaustive pairwise
comparisons of all annotated expressions across time. Annotators judged whether lexically distinct
phrases referred to the same underlying clinical entity by examining radiological terminology,
anatomical location, temporal modifiers (e.g., “resolving”, “unchanged”), and diagnostic specificity.
Expressions identified as referring to the same finding were grouped together; otherwise, they were
assigned to separate entity groups.

To further structure these entity groups, we assessed whether each represented a single episode of
care or multiple distinct episodes. This required examining the temporal order and interval between
observations. Intervals were computed using the StudyDate metadata from MIMIC-CXR, and
episode boundaries were assigned based on temporal coherence—considering factors such as time
gaps, patterns of resolution or worsening, and recurrence of findings.

For example, a progression from “moderate left effusion” (day 0) to “small effusion” (day 14) and
“trace effusion” (day 45) was treated as a single resolving episode. However, a subsequent “moderate
effusion” on day 180 was regarded as a separate episode, while all entities assigned to either episode
are grouped into the same Entity Group. Similarly, “right lower lobe opacity” followed by “resolving
infiltrate” was interpreted as one episode, whereas a new “opacity” on day 150 initiated a different
episode. This process was applied to 186 chest X-ray reports from 30 patients, yielding longitudinal
annotations that capture consistent entity grouping across lexical variations and clinically coherent
organization of episodes based on temporal reasoning.

To better characterize the annotation results, we summarize the distribution of entity groupings and
temporal episodes in Table A.2. The columns report:

• # Reports: The total number of reports per patient sequence.

• Entity Group Distribution: The number of findings assigned to each entity group (#Group),
after normalization and longitudinal reasoning. Some groups consist of a single unique
expression, while others aggregate multiple semantically related terms.

• Temporal Group Distribution: The number of findings assigned to each temporal group
(#Group), where each group represents a distinct clinical episode.
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Table A.2: Distribution of entity groups and temporal groups across annotated patient sequences.

Subject ID # Reports Entity Group Distribution (#Group:Count) Temporal Group Distribution (#Group:Count)

p10046166 6 1:26, 2:3, 3:3, 5:1, 7:1 1:32, 2:2
p10274145 5 1:19, 2:11, 3:2, 4:3 1:33, 2:2
p10523725 9 1:36, 2:6, 3:3, 4:2, 5:2, 7:2 1:47, 2:2, 3:1, 6:1
p10532326 5 1:36, 2:6, 6:1 1:42, 2:1
p10885696 8 1:33, 2:9, 3:5, 5:1, 6:2, 12:1 1:45, 2:2, 3:4
p10886362 10 1:26, 2:3, 3:6, 4:4, 6:1, 7:1, 9:1, 13:1 1:39, 2:4
p10959054 7 1:31, 2:6, 3:2, 4:2, 5:1, 6:1, 9:1 1:37, 2:5, 3:2
p11540283 5 1:26, 2:5, 3:1, 4:2 1:33, 4:1
p11607628 8 1:11, 2:2, 3:2, 4:4, 5:1, 6:2, 7:1, 8:1, 10:1 1:23, 2:2
p11879886 6 1:27, 2:10, 3:3, 4:3, 5:2, 6:1 1:39, 2:4, 3:2, 4:1
p12433421 13 1:49, 2:6, 3:10, 5:1, 7:1, 17:1 1:66, 2:2
p12966004 3 1:21, 2:10, 4:1, 5:1 1:27, 2:5, 3:1
p15094735 2 1:8, 2:5, 3:2, 4:1 1:13, 2:3
p15109122 4 1:11, 2:1, 3:4, 4:1 1:16, 2:1
p15207316 4 1:16, 2:6, 3:4 1:26
p15272972 5 1:10, 2:3, 3:3, 4:2, 5:1 1:17, 2:2
p15321868 6 1:24, 2:5, 3:2, 4:1, 5:2 1:32, 2:2
p15446959 5 1:29, 2:7, 3:3, 4:2 1:37, 2:4
p15881535 3 1:17, 2:2, 3:2, 5:1 1:20, 2:2
p16059470 4 1:29, 2:5, 3:3, 6:1 1:37, 2:1
p17270742 5 1:25, 2:4, 3:5, 4:2, 5:1 1:30, 2:4, 3:3
p17288844 6 1:42, 2:8, 3:2, 4:1, 5:1 1:54
p17396677 4 1:18, 2:3, 3:3, 4:1 1:23, 2:2
p17720924 8 1:30, 2:8, 3:5, 4:1, 5:1 1:41, 2:2, 4:2
p17962324 5 1:37, 2:4, 3:3, 4:1 1:43, 2:1, 3:1
p18079481 14 1:34, 2:10, 3:3, 4:2, 6:3, 7:3, 8:1 1:43, 2:10, 3:3
p18417750 7 1:41, 2:10, 3:5, 9:1 1:47, 2:7, 3:1, 6:2
p18517718 6 1:15, 2:2, 3:4, 4:2, 5:1, 7:1 1:25
p18570152 5 1:23, 2:4, 3:2, 4:1, 5:1, 6:2 1:25, 2:4, 3:3, 4:1
p19150427 8 1:42, 2:7, 3:2, 4:1, 6:1 1:49, 2:2, 3:1, 4:1

Across the 30 patients in the sequential evaluation phase, the number of temporal groups assigned
to a single entity group ranged from 1 to 6, indicating that some findings were observed in multiple
distinct clinical episodes over time. Likewise, the number of distinct entity groups varied significantly.
Most entity groups consisted of a single mention, but some aggregated up to 17 lexically different
expressions. For example, subject p12433421 exhibited the most diverse entity grouping, with 17
distinct phrases all referring to variations of pleural effusion (e.g., “effusion,” “pleural effusion,”
“pleural effusion left”) unified under one normalized cluster. Similarly, subjects p10523725 and
p18417750 exhibited high temporal discontinuity, with single entity groups spanning up to 6 distinct
episodes (e.g., recurrent dyspnea separated by periods of resolution). These results highlight the
complexity and variability of radiologic expression in longitudinal reporting, and underscore the
necessity of models and metrics capable of robustly handling both semantic variation and episodic
continuity in time-aware clinical tasks.
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A.4 DETAILED COMPARISON WITH EXISTING STRUCTURED-REPORT DATASETS

To clarify the design of our schema, we compare it against prior structured-report datasets using
a common criterion. For fair comparison, all resources are re-aligned to a unified Named Entity
Recognition (NER) / Relation Extraction (RE) standard: core clinical concepts are retained as entities,
while descriptive aspects (e.g., status, measurement, severity) are recategorized as relation labels.
This alignment can differ from the original dataset definitions. For example, RadGraph (Jain et al.
(2021)) defines Anatomy and Observation as entities, but further subdivides observations into three
uncertainty levels (Definitely Present, Uncertain, Definitely Absent), yielding four entity categories.
In our comparison, however, only Anatomy and Observation are retained as entities, while the
uncertainty levels are reassigned as relation labels linked to the observation entity. Consequently,
the counts in Table A.3 may not exactly match those in the original papers, since all datasets are
reorganized under a single consistent criterion to enable direct side-by-side comparison.

Table A.3: Comparison of schema coverage across major structured-report datasets. Numbers
indicate the count of categories after re-aligning each schema under a unified NER/RE schema.
Entities represent the number of core concept types defined in each dataset. Entity-Entity relations
are semantic links between two entities (e.g., located at, associate, evidence). Entity-Attribute
relations describe properties attached to a single entity (e.g., status, certainty, location, severity,
morphology). Sequential relation indicates whether temporal continuity across multiple reports is
explicitly modeled. Because each dataset originally adopted its own definitions, the numbers here
may not match the original papers exactly.

Dataset #Entities #Entity-Entity Relations #Entity-Attribute Relations Sequential Relation

RadGraph 2 3 2 ×
RadGraph-XL 2 3 3 ×
RadGraph-2 3 3 9 ×
Rate-NER 3 0 1 ×
CAD-Chest 1 0 4 ×
LUNGUAGESCORE 6 2 16 ✓

(1) ENTITY-LEVEL DIAGNOSTIC SOURCE

Existing structured-report datasets define only a limited range of entity types and do not explicitly
distinguish whether a concept is directly inferable from chest radiographs. For example, RadGraph
(Jain et al. (2021)) and RadGraph-XL (Delbrouck et al. (2024)) include only anatomy and observation,
while RadGraph-2 (Khanna et al. (2023)) adds device. Rate-NER (Zhao et al. (2024)) defines anatomy,
abnormality, and disease, whereas CAD-Chest (Zhang et al. (2023)) reduces coverage to a single
entity type (disease).

This design mixes image-grounded findings (e.g., opacity, atelectasis) with contextual or diagnostic
terms (e.g., pneumonia, heart failure). As a result, models may hallucinate unsupported content or be
penalized unfairly when generating clinically valid but context-dependent descriptors.

Our schema introduces six categories with an explicit separation by visual inferability: PF, CF,
and OTH represent image-grounded entities, while COF, NCD, and PATIENT INFO capture
information that cannot be reliably inferred from the image itself. This distinction improves training
relevance, enables fairer evaluation, and reduces hallucination risk.

(2) RELATION-LEVEL SEMANTIC PRECISION

Relation definitions in prior datasets are generally coarse. RadGraph variants restrict entity–entity
links to three types (modify, located at, suggestive of ) and entity–attribute links to status and certainty
(later including measurement). Rate-NER and CAD-Chest define only one to four relation categories
in total.

Such limited taxonomies conflate distinct clinical reasoning cues. For instance, RadGraph’s suggestive
of combines associative reasoning (e.g., “right lung opacity may be nipple shadow”) with evidential
claims (e.g., “opacity suggests pneumonia”), which are clinically distinct. Temporal descriptors such
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as “improved,” “worsened,” or “no change” are also collapsed into generic status labels, obscuring
clinically meaningful differences.

Our schema expands this design to 18 relation labels that provide more fine-grained semantic
distinctions. This includes entity–entity relations such as associate and evidence, as well as a rich set
of entity–attribute relations covering status, certainty, severity, location, morphology, measurement,
onset, improved, worsened, no change, placement, past history, other source, and assessment
limitation. This expanded taxonomy enables more precise error analysis and ensures that distinct
error types (e.g., incorrect severity vs. incorrect negation) are penalized appropriately.

(3) PATIENT-LEVEL LONGITUDINAL LINKAGE

All prior structured-report datasets treat each report in isolation, preventing validation of temporal
descriptors or consistency across multiple studies. They cannot verify whether a reported improvement
aligns with prior findings, nor can they unify lexical variants (e.g., “opacity” vs. “consolidation”)
across timepoints.

Our schema explicitly incorporates longitudinal structure through two constructs: ENTITYGROUPS
and TEMPORALGROUPS. ENTITYGROUPS unify lexically different mentions of the same
clinical finding across reports of a patient, ensuring consistent recognition of semantically equivalent
terms. TEMPORALGROUPS segment patient trajectories into clinical episodes, reflecting disease
progression, resolution, or chronic persistence.

Together, these mechanisms allow evaluation to assess whether generated findings remain temporally
coherent across multiple visits, aligning with radiological practice where longitudinal comparison is
central. By introducing sequential linkage, our schema enables structured evaluation of longitudinal
reasoning—an ability absent from prior resources.
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B TWO-STAGE STRUCTURING FRAMEWORK DETAILS

B.1 SINGLE STRUCTURING PROMPT

Prompt Template for Single Structuring

You are a high-precision relation-extraction engine for chest X-ray report sections.
Given a structured input, extract clinical relations between entities while strictly
conforming to the provided schema and labeling rules.

Your task:
- Identify valid entity pairs and annotate appropriate relation types between them.
- Assign Cat, Dx_Status, and Dx_Certainty labels to subject entities.
- Use the provided "candidates" field to guide your extraction and ensure spelling/casing consistency.
- For each identified relation, include:
- subject_ent: unique index of subject entity
- subject_cat: entity type
- obj_ent_idx: unique index of related object
- relation: relation type (must be one of the allowed relations)
- sent_idx: sentence index from which the relation is derived

- Output a JSON object that conforms to the "PyraDict StructuredOutput" schema.
- Do not return natural language commentary or raw triples.

Input JSON format:
{
"report_sections": [
{
"sent_idx": 1,
"sentence": "Findings suggest possible pneumonia in the right lower lobe with opacity.",
"candidates": [
["Pneumonia", ["Entity1"]],
["Findings", ["Entity1"]],
["Right lower lobe", ["Location1"]],
["Opacity", ["Entity1"]]

]
},
{
"sent_idx": 2,
"sentence": "A new small pleural effusion is seen on the left side.",
"candidates": [
["Pleural effusion", ["Entity1"]],
["Left side", ["Location1"]],
["New", ["None"]],
["Small", ["Measurement1"]]

]
}

]
}

Allowed Relation Types:
- Cat, Status, Location, Placement, Associate, Evidence,
Morphology, Distribution, Measurement, Severity, Comparison,
Onset, No Change, Improved, Worsened, Past Hx, Other Source, Assessment Limitations

Labeling Rules Summary:
- Every subject entity must be assigned exactly one of: Cat, Dx_Status, Dx_Certainty.
- Placement is used only for spatial position.
- Placement is disallowed for devices (Cat = OTH).
- Evidence relations must point from diagnoses to radiological findings.
- Attribute relations must be explicitly stated in the sentence.

Output:
- A list of structured entries containing entity and relation annotations.
- Output must be a single valid JSON object.
- Include only entities mentioned in the text but not in the candidates, following the ent_idx order of

appearance.

For example:
Input: <related_example>
Output: <structured_report>.
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B.1.1 VOCABULARY MATCHING ALGORITHM

To improve consistency in entity extraction and reduce hallucinations in schema-based structuring, we
implemented a vocabulary-guided span matching algorithm (see Appendix A.2 for details on vocabu-
lary construction). This algorithm processes each section of the radiology report (e.g., findings) to
identify candidate entity spans by directly matching contiguous token sequences against entries in a
schema-defined vocabulary, without normalization such as lowercasing or punctuation removal. Each
sentence is evaluated independently, and multiple overlapping matches are retained—e.g., “left lung”
may correspond to both PF and LOCATION.

Importantly, the matched vocabulary spans are not assumed to constitute a complete or authoritative
set of entities. Instead, they serve as reference cues for the LLM, which remains responsible for
the final relation extraction. The LLM is expected to leverage the matched terms as guidance while
retaining the flexibility to identify additional entities or values not covered by the vocabulary. This
design accommodates incompleteness in the vocabulary and enables the model to make context-
sensitive inferences based on both the prompt and observed patterns in the data.

The matching algorithm is summarized below:

Algorithm 1 Span-Based Vocabulary Matching

1: Input: Curated vocabulary V ; report section T composed of multiple sentences.
2: Output: List of matched word spans in T , each labeled with one or more schema categories.
3: Build a dictionary Vlookup from surface forms in V , mapping each to one or more associated

schema categories.
4: for each sentence s in T do
5: Split s into a sequence of n words, each with character-level start and end offsets
6: for span length l from n down to 1 do
7: for start index i = 0 to n− l do
8: Extract word span si:i+l and its character range from original sentence
9: Query Vlookup for exact match of the word span

10: if match found then
11: for each schema category linked to the matched term do
12: Record span text, character start/end indices, matched term, and category
13: end for
14: end if
15: end for
16: end for
17: end for
18: return List of matched spans with associated categories

This procedure constrains entity recognition to schema-aligned expressions, allowing the LLM to
focus on inferring relational structure rather than determining precise span boundaries. By anchoring
extraction to predefined lexical targets, it reduces ambiguity and ensures consistent treatment of
clinically equivalent yet lexically variable expressions.
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B.2 SEQUENTIAL STRUCTURING PROMPT

Prompt Template for Sequential Structuring

You are an expert radiologist specializing in chest X-ray interpretation.
Your task is to normalize and properly group sequential CXR findings through a systematic three-step

approach.

## TASK OVERVIEW - THREE-STEP ANALYSIS

1) GROUPING ANALYSIS (TERMINOLOGY MATCHING)
- Purpose: Identify when different terminology describes the same underlying radiological entity.
- Key question: "Do these terms represent the same radiological entity described differently?"

2) STATUS ANALYSIS (NORMAL/ABNORMAL DISTINCTION)
- Purpose: Separate normal findings from abnormal findings within the same group.
- Key question: "Is this finding normal (negative) or abnormal (positive)?"

3) EPISODE ANALYSIS (TIME INTERVAL ASSESSMENT)
- Purpose: Determine if grouped findings occur within the same clinical episode based on time.
- Key question: "Do these findings represent the same episode of clinical care?"

---

Grouping Criteria:
- Group together when:
- Terminological variants are used (e.g., "opacity" = "consolidation").
- Size or progression is described (e.g., "small effusion" ~ "resolving effusion").
- Locations are adjacent or overlapping.
- The same device is observed across time.

- Separate when:
- Descriptive vs. diagnostic terms differ (e.g., "opacity" vs "pneumonia").
- Anatomical locations or laterality differ.
- Pathologies are distinct.
- Different devices are involved.

---

Episode Criteria:
- Normal findings: one episode regardless of interval.
- Abnormal findings: split by resolution or long time gaps.
- Devices: one episode unless explicitly removed and reinserted.
- Symptoms: each occurrence is treated as a new episode unless continuity is stated.

---

## OUTPUT FORMAT:
Provide your analysis in this JSON format:
{
"results": [
{
"group_name": "<Entity + Location + temporal descriptors>",
"findings": [
{ "IDX": <number>, "DAY": <number>, "finding": "<description>" }

],
"episodes": [
{ "episode_1": { "days": [<number>, <number>, ...] } },
{ "episode_2": { "days": [<number>, ...] } }

],
"rationale": "<Concise explanation of grouping decisions>"

}
]

}

---

IMPORTANT NOTES:
- Every finding must be included in exactly one group.
- Use terminology that appears in the findings.
- Name each group using "<Entity + Location + temporal descriptor>" format (e.g., "Effusion left improving",

"Nodule right upper lobe worsening").
- For temporal descriptors, use the most recent or predominant qualifier (e.g., "improving", "worsened", "

stable", "resolved").
- If no temporal descriptor is available in the findings, omit it from the group name.
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B.3 SINGLE STRUCTURING ANALYSIS

Table B.1: Ablation results of GPT-4.1 under varying prompt-shot configurations and vocabulary
matching. We report precision (P), recall (R), and F1 scores for both entity-relation pair extraction
and complete triplet extraction tasks.

entity-relation entity-relation-attribute

Shot Vocab Usage F1 P R F1 P R

Zero
No 0.79 0.65 1.00 0.52 0.65 0.44
Yes 0.92 0.85 1.00 0.78 0.80 0.77

5-shot
No 0.93 0.87 1.00 0.84 0.85 0.83
Yes 0.94 0.89 1.00 0.87 0.87 0.86

10-shot
No 0.94 0.88 1.00 0.86 0.86 0.85
Yes 0.96 0.91 1.00 0.89 0.90 0.87

We conducted an ablation study to quantify the individual and combined effects of vocabulary
matching and in-context demonstrations on single-report structuring. Using 80 radiology reports from
30 patients, previously annotated for sequential evaluation, this subset enabled consistent evaluation
across controlled input conditions.

Six configurations were tested by varying two factors: (1) whether span-to-category alignment via
vocabulary matching was applied, and (2) the number of in-context examples provided in the prompt
(0, 5, or 10). Vocabulary matching involved matching contiguous text spans against a predefined
lexicon and retrieving all associated schema categories, ensuring lexical consistency and reducing
ambiguity in span interpretation, as described in Appendix B.1.1. In-context demonstrations consisted
of structured examples retrieved from the gold set of structured reports using BM25 retrieval, based
on textual similarity to the input report. These examples illustrate appropriate usage of entity types
and relations under the schema.

As shown in Table B.1, vocabulary matching consistently enhanced performance across all prompt
configurations. Under the zero-shot setting, incorporating vocabulary guidance raised the triplet-level
F1 score from 0.52 to 0.78, and the entity-relation F1 from 0.79 to 0.92. When five in-context
demonstrations were provided, the triplet F1 increased further—reaching 0.84 without vocabulary
and 0.87 with vocabulary. The highest accuracy was achieved by combining both components: the
10-shot setting with vocabulary matching attained a triplet F1 of 0.89.

These results indicate that vocabulary matching and in-context demonstrations offer complementary
benefits. Vocabulary alignment improves lexical grounding and category consistency, while prompting
with examples strengthens structural fidelity across varying linguistic expressions. Together, they
establish a robust configuration for producing schema-compliant structured outputs from free-text
radiology reports.

To illustrate the qualitative impact of vocabulary matching and prompt-based demonstrations, we
examined example outputs across configurations with and without these components. In the sentence

“there is no focal consolidation”, the model without vocabulary and prompt guidance extracted “focal
consolidation” as the entity, conflating the modifier and the core clinical concept. In contrast, all
other configurations correctly identified “consolidation” as the schema-aligned entity. A similar
pattern was observed in “there are no new focal opacities concerning for pneumonia”, where the
no-guidance setup extracted “focal opacities”, whereas guided configurations yielded the correct
entity “opacities”.

These examples underscore the importance of explicitly aligning model outputs to a predefined
schema. Linguistically valid but structurally inconsistent extractions can hinder downstream applica-
tions, where precise interpretation and reliable information linkage are essential. By providing lexical
anchoring through vocabulary and structural demonstrations via prompts, our approach ensures that
model predictions are not only accurate but also semantically coherent and clinically usable.
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B.4 SEQUENTIAL STRUCTURING ANALYSIS

We qualitatively evaluated model behavior in the sequential setting by analyzing entity grouping
outputs over time. Using longitudinal chest X-ray reports from representative patients, we assessed
how well the predicted entity groupings aligned with gold-standard annotations. As illustrated in
Figure B.1, we examined diverse cases to understand temporal consistency and grouping granularity.

In general, clinical observations were consistently grouped across both annotations. For instance, in
Patient p15881535, three lexical variants—orthopedic side plate right clavicular unchanged, right
clavicle hardware, and internal fixation hardware—were all correctly assigned to the same entity
group in both the gold standard and the model output. Although the representative phrase differed,
the group identity was preserved, indicating successful recognition of referential equivalence across
timepoints.

Discrepancies primarily arose from differences in granularity rather than semantic errors. In the case
of Patient p15881535, temporally separated mentions of pneumonia were grouped together in the
gold annotations but split into separate groups in the model output. Rather than a failure to track
entities, this divergence suggests the model applies a stricter granularity, distinguishing findings based
on specific attributes (e.g., diagnostic status or precise location) where human annotators might merge
them. Similarly, regarding opacity in the right cardiophrenic sulcus, the model separated instances
based on their evolving descriptions (e.g., “resolving”), prioritizing attribute precision over broad
grouping.

Conversely, the model demonstrated the capability for semantic unification where appropriate. As
seen in Patient p18517718, the model successfully reduced redundancy found in human annotations.
For example, while the gold standard labeled specific attributes of a single medical device (e.g.,
feeding tube, tip location) as separate groups, the model unified them into a single coherent entity. This
highlights the model’s ability to identify core clinical concepts and organize fragmented descriptions
effectively.

Overall, despite these variations in granularity, the grouping performance remained robust. The
model preserved the essential semantic structure, balancing fine-grained distinctions for evolving
pathologies with the integration of redundant observations. These findings support the reliability of
our sequential annotation approach for tracking clinically meaningful entities over longitudinal report
timelines.
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(a) Patient p15881535: Gold standard 22 groups vs Model 25 groups. Overall, the model aligns closely with
the human gold standard. The slight difference in count stems from the model making more fine-grained
distinctions—such as separating a diagnosis from its specific location (e.g., in Pneumonia or Cardiac Silhou-
ette)—whereas human annotators tended to group them. These variations reflect a rigorous interpretation of the
criteria while maintaining full semantic consistency.

Figure B.1: Entity grouping results for three sample patients based on sequential chest X-ray reports.
The figures compare human-annotated gold-standard groupings (rows) with GPT-4.1 model predic-
tions (columns). Numbered cells represent individual findings. Despite slight wording variations, the
model demonstrates strong adherence to semantic grouping criteria. (Continued on next page)
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(b) Patient p18517718: Gold standard 25 groups vs Model 22 groups. While the model achieves high overall
alignment with the gold standard, subtle discrepancies arise due to differences in granularity levels regarding
semantically overlapping entities. In contrast to the previous case, where human annotators separated specific
attributes of a single medical device (e.g., feeding tube, tip location, side port), the model interpreted them as
components of a single coherent entity (‘Nasogastric tube stomach‘). This illustrates that mismatches often
result from legitimate variations in how granularly overlapping concepts are defined, rather than semantic errors.

Figure B.1: Continued.
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C LUNGUAGESCORE DETAILS

C.1 ATTRIBUTE WEIGHTS OF LUNGUAGESCORE

To reflect the clinical importance of structured attributes in radiology reports, LUNGUAGESCORE
applies attribute-specific weights when measuring similarity between predicted and reference struc-
tures. Each comparison is performed at the level of relational triplets, jointly assessing both temporal
and structural alignment. For structural attributes, we assign weights based on expert consensus from
the four board-certified radiologists who participated in the data annotation process, reflecting each
attribute’s diagnostic significance. Although the initial weights are unnormalized, they are rescaled
such that their total contribution sums to 1.0 during evaluation (see Table C.1).

For the sequential setting, temporal alignment contributes a fixed weight of 1.0, divided equally
between two components: whether the predicted and reference findings belong to the same study
timepoint (0.5), and whether they fall within the same temporal group (0.5).

Although our schema includes inferential relations such as ASSOCIATE and EVIDENCE, these are
intentionally excluded from the evaluation metric. Such relations capture diagnostic reasoning—e.g.,
linking “opacity” as supporting evidence for “pneumonia”—but do not directly reflect the correctness
of factual information. Scoring them would conflate interpretive inference with structural accuracy.
Instead, our metric focuses on clinically grounded descriptors and attributes that define the diagnostic
content of the report. Future extensions may consider integrating reasoning-based relations in settings
that explicitly target causal or explanatory fidelity.

Table C.1: Weights used in LUNGUAGESCORE for evaluating structural similarity. Temporal
weights apply only in the sequential setting, while structural attribute weights reflect the diagnostic
importance of each relation type. All values are normalized such that their respective groups (temporal
or structural) sum to 1.0 during evaluation.

Temporal Weights Value

Study Timepoint 0.5
Temporal Group 0.5

Structural Attribute Weights Value

DXSTATUS 0.50
DXCERTAINTY 0.10
LOCATION 0.20
SEVERITY 0.15
ONSET 0.15
IMPROVED 0.15
WORSENED 0.15
PLACEMENT 0.15
NO CHANGE 0.10
MORPHOLOGY 0.05
DISTRIBUTION 0.05
MEASUREMENT 0.05
COMPARISON 0.03
PAST HX 0.01
OTHER SOURCE 0.01
ASSESSMENT LIMITATIONS 0.01

C.2 LUNGUAGESCORE EXAMPLES

Single-Report Assessment To illustrate how LUNGUAGESCORE evaluates structured prediction
quality in the single-report setting, we present detailed examples of pairwise comparisons between
predicted and gold-standard structured reports. As detailed in Section 5 in the main text, each
comparison is decomposed into two complementary components:

• Semantic Score: Computed as the cosine similarity between embedded linearized entity
phrases. These phrases are formed by concatenating free-text attributes, including LOCA-
TION, MORPHOLOGY, DISTRIBUTION, MEASUREMENT, SEVERITY, ONSET, IMPROVED,
WORSENED, NO CHANGE, and PLACEMENT. This representation captures the semantic
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content of the entity and its descriptive qualifiers, allowing similarity to be measured in an
integrated manner.

• Structural Score: A weighted sum of attribute-wise comparisons. Categorical attributes
(DXSTATUS and DXCERTAINTY) are scored in binary fashion (1.0 for exact match, 0.0
otherwise), while all other attributes are evaluated via cosine similarity of their embeddings.
The relative importance of each attribute is determined by expert-defined weights (see
Table C.1).

The final similarity between a predicted and reference finding is calculated as the product of the
semantic and structural scores:

TOTAL SCORE = Semantic Score × Structural Score

Note: Entity refers to the linearized phrase comprising the core entity and its attributes. Avg. Cosine
indicates cosine similarity averaged over MedCPTJin et al. (2023) and BioLORD23Remy et al.
(2024) embeddings of the phrases. Weights shown in the table reflect unnormalized values; the
final STRUCTURAL SCORE is computed by normalizing the weighted sum by the total weight of all
included attributes. For a more formal explanation of the scoring method, we refer to Section 5 in the
main text.

Example 1: Moderate Match with Attribute-Level Divergence

Attribute GT Value Pred Value Match Type Score Weight

Entity effusions bilateral small pleural effusion left-sided pleural small
stable

Avg. Cosine 0.743 —

DxStatus positive positive Exact match 1.00 0.50
DxCertainty definitive definitive Exact match 1.00 0.10
Location bilateral left-sided pleural Avg. Cosine 0.54 0.20
Severity small small Exact match 1.00 0.15
Improved — stable Avg. Cosine 0.00 0.15

Semantic Score = 0.743, Structural Score = 0.681, Total Score = 0.506

Example 2: Partial Match with Location and Severity Differences

Attribute GT Value Pred Value Match Type Score Weight

Entity opacification left retrocardiac pleural effusion left moderate Avg. Cosine 0.447 —
DxStatus positive positive Exact match 1.00 0.50
DxCertainty definitive definitive Exact match 1.00 0.10
Location left retrocardiac left Avg. Cosine 0.60 0.20
Severity — moderate Avg. Cosine 0.00 0.15

Semantic Score = 0.447, Structural Score = 0.758, Total Score = 0.339

Example 3: Strong Match with Minor Lexical Variants

Attribute GT Value Pred Value Match Type Score Weight

Entity opacity right lung base opacity right lower lung base stable Avg. Cosine 0.842 —
DxStatus positive positive Exact match 1.00 0.50
DxCertainty definitive definitive Exact match 1.00 0.10
Location right lung base right lower lung base Avg. Cosine 0.95 0.20
Improved — stable Avg. Cosine 0.00 0.15

Semantic Score = 0.842, Structural Score = 0.902, Total Score = 0.759

Sequential-Report Assessment To clarify how LUNGUAGESCORE computes similarity in the
sequential setting, we present illustrative examples comparing gold-standard and predicted findings.
Each score is computed from three components:
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• Semantic Score: In the sequential-report setting, semantic similarity is computed between
ENTITYGROUP representations, which group together lexically variable but conceptually
equivalent findings observed at different timepoints.

• Temporal Score: Value of 1.0 if both findings appear in the same study timepoint and in the
same TEMPORAL GROUP, or 0.5 if they belong to the same broader TEMPORAL GROUP but
from different studies, or vice versa. If neither matches, the score is 0.

• Structural Score: Weighted average of attribute-level matches (exact for binary attributes,
cosine similarity for textual ones).

The overall similarity score is computed as:

Total Score = Semantic Score × Temporal Score × Structural Score

Table C.2: Examples of LUNGUAGESCORE computations in the sequential setting. Each row
compares a predicted finding against the corresponding ground-truth reference. Total Score is
computed as the product of semantic similarity, temporal alignment, and structural accuracy. Time
denotes the study timepoint, and TG indicates the assigned temporal group.

GT Prediction Explanation Total (Sem × Temp × Str)
Case EntityGroup Time TG EntityGroup Time TG

1 pleural effusion
subpulmonic
moderate

2 1 pleural effusion
right subpulmonic
layering moderate
stable

2 1 Minor semantic variation in
anatomical modifiers and
progression terms

0.68 (0.82 × 1.0 × 0.83)

2 hilar contours stable 3 1 hilar contours
unchanged

3 1 Semantically equivalent;
lexical variation in stability
descriptor

0.90 (0.93 × 1.0 × 0.97)

3 atelectasis left lower
lobe
mild-to-moderate

1 1 atelectasis left lower
lobe unchanged

2 1 Different timepoints (0.5),
severity term vs. stability term
mismatch

0.35 (0.92 × 0.50 × 0.76)

4 PICC mid SVC 2 1 left PICC mid SVC 1 1 Core entity match with
modifier discrepancy; higher
specificity in prediction;
different timepoints

0.45 (0.90 × 0.50 × 1.00)

5 hilar contours
unchanged

2 1 cardiomediastinal
silhouette
unchanged

3 1 Semantically related
anatomical terms; timepoint
mismatch (0.5)

0.34 (0.68 × 0.50 × 1.00)

Final Scoring and Interpretability LUNGUAGESCORE calculates a TOTAL SCORE for each
matched pair of predicted and reference findings by combining semantic similarity and structural
alignment. In the single-report setting, the total score is defined as the product of cosine similarity
over linearized entity phrases and a weighted score of attribute-level matches. In the sequential
setting, the metric further incorporates a temporal alignment factor, distinguishing between exact
study-time matches and broader temporal group continuity.

These component-wise scores are then aggregated across matched pairs to compute the overall F1
metric, as detailed in Section 5. Crucially, each comparison yields interpretable diagnostics: the
semantic score quantifies lexical alignment of free-text descriptors; the structural score exposes
attribute-level agreement or divergence; and in longitudinal contexts, the temporal score reveals
whether grouping decisions respect continuity over time.

By exposing this granularity, LUNGUAGESCORE not only delivers a robust scalar evaluation,
but also supports nuanced error analysis—highlighting which components of a model’s output (e.g.,
misassigned severity, incorrect timing, lexical drift) most strongly influenced final performance. This
interpretability makes the metric especially valuable to understand model’s behavior.
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C.3 CLINICAL BERT MODEL SELECTION

We considered multiple clinical BERT models for computing contextual semantic embeddings. The
candidate models we compared were BioLORD (Remy et al. (2024)), BiomedBERT (Gu et al.
(2020)), MedCPT (Jin et al. (2023)), BioClinicalBERT (Alsentzer et al. (2019)), ClinicalBERT (Liu
et al. (2025)) and BioBERT (Lee et al. (2020)). To decide which models to use in the semantic
similarity step of LUNGUAGESCORE, we conducted an experiment over ReXVal, a subset of the
MIMIC-CXR test set encompassing 50 randomly selected studies. We structured each individual
study according to our framework described in Section 4(i), and then generated all linearized phrases
derived from entity–location–attribute triplets for both the reference report and the candidate report.
We then used each candidate BERT embedding model to generate an embedding for each phrase,
and computed the pairwise cosine similarity for all pairs of phrases (one from the reference report
and one from the candidate report). Figure C.1 shows the distribution of this similarity score for the
different BERT embedding models. We find that BiomedBERT, BioClinicalBERT, ClinicalBERT
and BioBERT lack variety, always scoring pairs of phrases as highly related. BioLORD manages to
capture the most diversity in semantic similarity, followed by MedCPT. For this reason, we choose to
use both BioLORD and MedCPT to calculate semantic similarity, by taking the average over both
models.

Figure C.1: Distribution of pairwise cosine similarity scores for different BERT embedding models,
calculated between pairs of embedded linearized phrases taken from the ReXVal datset.
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D METRIC VALIDATION

Metric Implementation Details Whenever not further specified, we used default settings for
all the metrics as provided by their respective libraries. For BLEU, we use the implementation
provided in the huggingface/evaluate library. For BERTScore, we also use the implementation
from the huggingface/evaluate library, with distilroberta-base as an embedding model. For
GREEN, we use StanfordAIMI/GREEN-radllama2-7b as a language model. For FineRadScore,
we use GPT-4 as a language model, which responds with a list of errors each linked to a severity
level. To turn this into a score, we associate each severity level with a number, and sum these scores,
forming FineRadScore as proposed by (Huang et al. (2024)). In our tables, we report 1/FineRadScore,
inverting the total sum to ensure that a higher score is associated with higher quality. For RaTEScore,
we use their default weight matrix. Note that in their own comparison with ReXVal, the authors used
a custom weight matrix trained specifically for long reports instead of the default, explaining the
slight discrepancy between their reported Kendall Tau correlation with ReXVal radiologists and the
one we report in Table 2. We also report results for RadGraph and its newer version RadGraph-XL,
using the RG_EG setting to calculate the F1 score as proposed in (Delbrouck et al. (2022)).

ReXVal Analysis To assess the consistency of our metric with established evaluation standards,
we conducted a correlation analysis across the ReXVal benchmark, which includes expert-annotated
radiology reports and associated error counts. Specifically, we computed pairwise Pearson cor-
relations between all single-report metrics over the ReXVal dataset. As presented in Figure D.1,
our metric exhibits strong positive correlations with BLEU (0.73), BERTScore (0.77), GREEN
(0.84), RaTEScore (0.77), 1/FineRadScore (0.73), RadGraph F1 (0.80) and RadGraph-XL F1 (0.80).
Notably, among all evaluated metrics, our score achieves the highest average correlation across
all pairwise comparisons, indicating strong alignment with multiple evaluation perspectives and
suggesting broader generalizability.

Furthermore, Figure D.2 illustrates the linear relationship between each metric and the number of
radiologist-identified errors per ReXVal report. Although 1/FineRadScore shows the highest overall
correlation, its relationship with error counts is not consistently linear, especially when the number of
errors is low. In these cases where distinguishing between high-quality outputs is most crucial, its
ability to make fine-grained distinctions is limited. In contrast, our metric not only maintains strong
correlation but also demonstrates stable linear responsiveness across the full error range, underscoring
its robustness and reliability as a clinically aligned evaluation measure.
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Figure D.1: Pairwise Pearson correlations between our metric (LUNGUAGESCORE), and the metrics
BLEU, BERTScore, GREEN, 1/FineRadScore, RaTEScore, RadGraph F1 and RadGraph-XL F1.

Figure D.2: Scatter plot illustrating the correlation between the total number of errors identified by
radiologists per report, and each of the single-report metrics, including our LUNGUAGESCORE. r
indicates the Pearson correlation as reported in Table 2.
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Error Sensitivity Analysis with ReXErr (Rao et al. (2024)) To assess the error sensitivity of our
metric across diverse failure types in radiology report generation, we use the ReXErr-v1 dataset (Rao
et al. (2025)), which contains synthetic reports with systematically injected clinical errors. These
errors are categorized into content addition, context-dependent, and linguistic quality types, covering
a broad spectrum of realistic mistakes. We focus on the subset of ReXErr aligned with our sequential
structured report dataset, comprising 57 MIMIC-CXR reference reports paired with corresponding
error-injected versions. Each manipulated report contains three injected errors, drawn from 12 defined
error categories using a context-sensitive sampling method.

For each pair, we extract the Findings and Impression sections and evaluate them independently using
our single-report LUNGUAGESCORE, along with established alternatives: GREEN, FineRadScore,
and RaTEScore. Figure D.3 displays the score distributions for each of the 12 error types, relative to
the average score across the subset. Our metric demonstrates differentiated sensitivity across error
types, with notably larger penalizations for false predictions, incorrect negations, and changes in
severity—reflecting its alignment with clinically meaningful deviations.

Sequential Sensitivity Analysis We further assessed the sensitivity of LUNGUAGESCORE to
clinically meaningful disruptions in temporal coherence by constructing a synthetic evaluation set in
which longitudinal progression cues were deliberately inverted. Specifically, we selected 8 patient
sequences from our sequential-report dataset that contained explicit temporal descriptors—such as
improved or worsened—and manually reversed these attributes to simulate a contradiction in the
clinical trajectory. For example, a statement like “the previously seen right lower lobe opacification
has decreased substantially” was changed to “increased substantially,” thereby inverting its semantic
implication. Two patient sequences that lacked any such temporal expressions were excluded.

Both the single-report and sequential variants of LUNGUAGESCORE were applied to these perturbed
sequences. To quantify the metric’s responsiveness, we introduce the Effect Rate, which captures the
average score reduction per flipped attribute:

Effect Rate (%) =
1− score

#flipped attributes
× 100

A perfect score of 1.0 indicates complete semantic and structural agreement with the gold standard.
Deviations from this ideal reflect the metric’s sensitivity to reversed temporal directionality. The
normalization by the number of flipped attributes allows us to measure the per-attribute impact on the
similarity score.

Table D.1: Effect Rate for each manipulated patient sequence. W/I denotes the number of
worsened/improved attributes flipped.

Patient ID # Attr. (W/I) Single Score Effect Rate (S, %) Sequential Score Effect Rate (Seq, %)

p10274145 5 (0/5) 0.981 0.38 0.979 0.42
p10523725 3 (1/2) 0.989 0.37 0.987 0.43
p10886362 8 (5/3) 0.983 0.21 0.979 0.26
p10959054 13 (9/4) 0.967 0.25 0.963 0.28
p12433421 15 (8/7) 0.968 0.21 0.971 0.19
p15321868 2 (1/1) 0.982 0.90 0.988 0.60
p15881535 1 (0/1) 0.992 0.80 0.992 0.80
p18079481 10 (2/8) 0.976 0.24 0.980 0.20

While the absolute Effect Rates are relatively small (typically below 0.5%), they scale proportionally
with the number of flipped attributes, indicating that LUNGUAGESCORE reliably captures the semantic
impact of trend reversals. Notably, even sequences with a single flipped term exhibited pronounced
per-attribute degradation, highlighting the metric’s granularity and responsiveness. These results
affirm that LUNGUAGESCORE can effectively detect inconsistencies in longitudinal directionality,
even when the surface fluency of the report remains intact.
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Figure D.3: Distribution of the scores for each of the twelve error types in ReXErr, relative to the
average score across the 57 ReXErr reports.
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E SYNTHETIC REPORT GENERATION DETAILS

MAIRA-2 (Bannur et al. (2024)) At the input, we feed in a frontal chest X-ray image for the
current study. If there is no frontal available for the patient, we do not generate a report. If there are
multiple frontals, we randomly choose one. We also pass along a random lateral chest X-ray image
for the current study, should it be available. MAIRA-2 additionally accepts the indication, technique
and comparison sections. We therefore input the history for the current study in the “indication” field,
if there is one. For the comparison, we input “Chest radiography dated _.” if there is a previous study,
to comply with the anonymised dates in the MIMIC-CXR dataset. We do not input a technique, since
this field could not be reliably extracted for the MIMIC-CXR test set. We explore two distinct ways
for including prior information in the generation setup. In the standard setting, we input the ground
truth reference report that is available for the previous study. This report is structured following
the template “INDICATION: <prior_history> COMPARISON: <prior_comparison> FINDINGS:
<prior_findings> IMPRESSION: <prior_impression>.”, where <prior_history>, <prior_impression>
and <prior_findings> are all taken from the previous study’s ground truth reference report, and
substituted by “N/A” if they are missing. If there is no prior study, the prior report field is set to
“None”. If the previous study was the first one in the sequence, then <prior_comparison> is set to
“N/A”, otherwise it is set to “Chest radiograph dated _.” In the cascaded setting, <prior_findings>
is set to the findings report that was generated in the previous study (if there is one, otherwise the
prior report field is set to “None”), while <prior_impression> is left blank (because MAIRA-2 only
generates findings), and the other inputs remain the same. In both settings, we input the frontal view
from the prior study, if there is one, and if there are multiple options, we choose the same one that
was used to generate the previous report. We ask MAIRA-2 to generate the findings section for the
current study, using their default settings, without grounding.

Medversa (Zhou et al. (2024)) Next to the current frontal image, we also fill in the additional input
fields expected by Medversa, which are context, prompt, modality and task. For context, we follow
the template “Age: None. Gender: None. Indication: <current_history>”. For <current_history>,
we pass along the “history” section of the reference report, should it be available, and otherwise we
set it to “None”. The modality and task are set to “cxr” and “report generation” respectively. All
language generation parameters are left as default. The prompt is set to “Can you provide a report of
<img0> with findings and impression?”. Note that this is the only model with the ability to generate
an impression section, and it will therefore naturally have an advantage over the other models when
we compare it to the reference report, where both the findings and impression section are included
based on their availability in the ground truth.

LIBRA (Zhang et al. (2025)) For LIBRA, a general-purpose medical vision–language model, we
use the authors’ public implementation in its image–text report generation mode. For each study,
we provide the current frontal chest X-ray as the primary input image; if multiple frontal views are
available, we randomly select one, and if no frontal is available, we do not generate a report. When
a previous study exists, we additionally pass the frontal image from the most recent prior study as
a second input so that LIBRA can jointly attend to the current and prior examinations; otherwise,
only the current image is used. We use a fixed, generic instruction prompt asking the model to
produce a detailed description of the radiographic findings, and keep all decoding hyperparameters at
their default values. The resulting text is taken as the model’s report for evaluation without further
post-processing or templating.

RGRG (Tanida et al. (2023)), Cvt2DistilGPT2 (Nicolson et al. (2023)), MedGemma (Sellergren
et al. (2025)), ChexAgentChen et al. (2024), and Lingshu (Xu et al. (2025)) For these models,
we input the current frontal chest X-ray image, randomly selecting one when multiple views were
available and skipping generation when none were present. We used the vision–language variant
google/medgemma-27b-it for MedGemma and the MIMIC-CXR–trained version with default
configuration for Cvt2DistilGPT2. RGRG and Cvt2DistilGPT2 generated only findings without a
separate impression section, whereas MedGemma and Lingshu produced full reports containing both
findings and impressions. The exact prompt templates for MedGemma and Lingshu, as specified in
their original papers, are shown below.
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Prompt Templates for MedGemma and Lingshu

[MedGemma]
You are an expert radiologist. Please succinctly describe
the findings for the above chest X-ray.

[Lingshu]
You are a helpful assistant. Please generate a report
for the given images, including both findings and impressions.
Return the report in the following format:
Findings: {} Impression: {}

F LIMITATIONS AND FUTURE DIRECTIONS

While LUNGUAGE defines the fine-grained evaluation dataset, the structuring framework produces
schema-aligned representations, and LUNGUAGESCORE provides the scoring function for both
single-report and longitudinal evaluation, the current work also has several limitations that suggest
concrete directions for extension.

First, although LUNGUAGE provides fine-grained entity-, attribute-, and longitudinally interpreted
annotations, its patient coverage remains modest: the longitudinal subset currently comprises 30
patients and 186 reports drawn from a single public MIMIC-CXR dataset. Both the dataset and the
underlying schema were developed on this subset, so the current vocabulary and relation set may
underrepresent findings, reporting conventions, and temporal patterns present in other institutions
or populations. To support broader use, future work should scale and stress-test the schema and
pipeline on the full MIMIC-CXR dataset as well as other large longitudinal datasets, and develop
complementary benchmarks on multi-center, multi-country cohorts and additional imaging modalities.
Because the schema, prompts, and implementation are publicly released, researchers can adapt the
framework to local reporting conventions, extend the taxonomy, or substitute alternative structuring
models while retaining a comparable evaluation protocol. The same tooling can also be used to
generate large “silver-standard” structured sets from unlabeled reports, enabling end-to-end pipelines
where models are trained and evaluated under a consistent schema, and to derive downstream
resources such as QA or instruction-tuning datasets grounded in structured longitudinal trajectories.
We hope this work will serve as a starting point for a broader community effort toward clinically
grounded, temporally aware evaluation standards for radiology report generation.

As a second limitation and direction for future work, we note that advancing patient-centered
reporting will require integrating structured EHR information alongside chest X-rays, including
laboratory data, vital signs, procedures, and free-text clinical notes. Current image-based generation
approaches struggle with context-rich sections such as patient history, and models that lack access
to these contextual signals remain fundamentally limited in longitudinal reasoning and diagnostic
continuity. A natural next step is therefore to extend our schema, structuring framework, and
LUNGUAGESCORE to multimodal trajectories that couple images, reports, and EHR data, and to
examine how the same design principles can be adapted to other imaging domains and healthcare
settings. Key challenges for this extension include defining clinically reliable ground truth for
multimodal trajectories, aligning heterogeneous temporal signals across modalities, and ensuring that
extended versions of LUNGUAGESCORE remain interpretable and robust at EHR scale.

Third, in this work our structuring and evaluation operate purely at the report level. Although the
schema explicitly distinguishes image-groundable entities (for example, perceptual findings and
devices) from non-chest x-ray findings (for example, clinical history or laboratory results), we do not
yet link these entities to the underlying images. An important next step is to ground LUNGUAGE in the
pixel space by associating structured findings with spatial annotations, such as view-specific bounding
boxes or pixel-level masks for lesions, devices, and other relevant regions. This would enable joint
evaluation of whether a generated report is not only semantically and temporally consistent, but
also spatially aligned with the visual evidence, and would support the construction of downstream
vision–language tasks such as grounding, question answering, and instruction tuning based on the
same structured representation.
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