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ABSTRACT

Although self-/un-supervised methods have led to rapid progress in visual repre-
sentation learning, these methods generally treat objects and scenes using the same
lens. In this paper, we focus on learning representations for objects and scenes
that preserve the structure among them. Motivated by the observation that visually
similar objects are close in the representation space, we argue that the scenes and
objects should instead follow a hierarchical structure based on their composition-
ality. To exploit such a structure, we propose a contrastive learning framework
where a Euclidean loss is used to learn object representations and a hyperbolic
loss is used to encourage representations of scenes to lie close to representations
of their constituent objects in a hyperbolic space. This novel hyperbolic objective
encourages the scene-object hypernymy among the representations by optimizing
the magnitude of their norms. We show that when pretraining on the COCO and
OpenImages datasets, the hyperbolic loss improves downstream performance of
several baselines across multiple datasets and tasks, including image classification,
object detection, and semantic segmentation. We also show that the properties of
the learned representations allow us to solve various vision tasks that involve the
interaction between scenes and objects in a zero-shot way.

1 INTRODUCTION

Our visual world is diverse and structured. Imagine taking a close-up of a box of cereal in the morning.
If we zoom out slightly, we may see different nearby objects such as a pitcher of milk, a cup of hot
coffee, today’s newspaper, or reading glasses. Zooming out further, we will probably recognize that
these items are placed on a dining table with the kitchen as background rather than inside a bathroom.
Such scene-object structure is diverse, yet not completely random. In this paper, we aim at learning
visual representations of both the cereal box (objects) and the entire dining table (scenes) in the same
space while preserving such hierarchical structures.

Un-/self-supervised learning has become a standard method to learn visual representations (He et al.,
2020; Chen et al., 2020b; Grill et al., 2020; Caron et al., 2021; Radford et al., 2021; He et al., 2022).
Although these methods attain superior performance over supervised pretraining on object-centric
datasets such as ImageNet (Caron et al., 2020), inferior results are observed on images depicting
multiple objects such as OpenImages or COCO (Xie et al., 2021a). Several methods have been
proposed to mitigate this issue, but all focus either on learning improved object representations (Xie
et al., 2021a; Bai et al., 2022) or dense pixel representations (Xie et al., 2021b; Liu et al., 2021;
Wang et al., 2021b), instead of explicitly modeling representations for scene images. The object
representations learned by these methods present a natural topology (Wu et al., 2018). That is, the
objects from visually similar classes lie close to each other in the representation space. However, it is
not clear how the representations of scene images should fit into that topology. Directly applying
existing contrastive learning results in a sub-optimal topology of scenes and objects as well as
unsatisfactory performance, as we will show in the experiments. To this end, we argue that a
hierarchical structure can be naturally adopted. Considering that the same class of objects can be
placed in different scenes, we construct a hierarchical structure to describe such relationships, where
the root nodes are the visually similar objects, and the scene images consisting of them are placed as
the descendants. We call this structure the object-centric scene hierarchy.
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Figure 1: Illustration of the representation space
learned by our models. Object images of the
same class tend to gather near the center around
similar directions, while the scene images are far
away in these directions with larger norms.

The intermediate modeling difficulty induced by
this structure is the combinatorial explosion. A
finite number of objects leads to exponentially
many different possible scenes. Consequently, Eu-
clidean space may require an arbitrarily large num-
ber of dimensions to faithfully embed these scenes,
whereas it is known that any infinite trees can be
embedded without distortion in a 2D hyperbolic
space (Gromov, 1987). Therefore, we propose to
employ a hyperbolic objective to regularize the
scene representations. To learn representations of
scenes, in the general setting of contrastive learn-
ing, we sample co-occurring scene-object pairs as
positive pairs, and objects that are not part of that
scene as negative samples, and use these pairs to
compute an auxiliary hyperbolic contrastive objec-
tive. Our model is trained to reduce the distance
between positive pairs and push away the negative
pairs in a hyperbolic space.

Contrastive learning usually has objectives defined
on a hypersphere (He et al., 2020; Chen et al.,
2020b). By discarding the norm information, these
models circumvent the shortcut of minimizing
losses through tuning the norms and obtain better downstream performance. At the same time,
they lose freedom of the representative power in the magnitude of the norm and leave the images
disorganized. In hyperbolic space, the magnitude of the norm often plays the role of modeling
the hypernymy of the hierarchical structure (Nickel & Kiela, 2017; Tifrea et al., 2018; Sala et al.,
2018). When projecting the representations to the hyperbolic space, the norm information is pre-
served and used to determine the Riemannian distance, which eventually affects the loss. Since the
hyperbolic space is diffeomorphic and conformal to the Euclidean, our hyperbolic contrastive loss is
differentiable and complementary to the original contrastive objective.

When training simultaneously with the original contrastive objective for objects and our proposed
hyperbolic contrastive objective for scenes, the resulting representation space exhibits a desired
hierarchical structure while leaving the object clustering topology intact as shown in Figure 1. We
demonstrate the effectiveness of the hyperbolic objective under several frameworks on multiple
downstream tasks. We also show that the properties possessed by the representations allow us to
perform various vision tasks in a zero-shot way, from label uncertainty quantification to out-of-context
object detection. Our contributions are summarized below:

1. We propose to learn representations for both object and scene images simultaneously using
un-/self-supervised methods. We propose to explore an object-centric scene hierarchy that
the representations are expected to follow.

2. We propose a novel hyperbolic contrastive loss to regularize the scene representations with
positive and negative pairs sampled from the hierarchy.

3. We show that the magnitude of representation norms effectively reflect the scene-objective
hypernymy, and such representations transfer better to multiple downstream tasks.

2 METHOD

In this section, we elaborate upon our approach to learning visual representations of object and scene
images. We start by describing the hierarchical structure between objects and scenes that we wish to
enforce in the learned representation space.

2.1 OBJECT-CENTRIC SCENE HIERARCHY

From simple object co-occurrence statistics (Galleguillos et al., 2008; Mensink et al., 2014) to finer
object relationships (Johnson et al., 2015; Krishna et al., 2017), using hierarchical relationships
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between objects and scenes to understand images is not new. Previous studies primarily work on
an image-level hierarchy by dividing an image into its lower-level elements recursively - a scene
contains multiple objects, an object has different parts, and each part may consist of even lower-level
features (Parikh & Chen, 2007; Choi et al., 2010; Hinton, 2021). While this is intuitive, it describes a
hierarchical structure contained in the individual images. Instead, we study the structure presented
among different images. Our goal is to learn a representation space for images of both objects
and scenes across the entire dataset. To this end, we argue that it is more natural to consider an
object-centric hierarchy.

It is known that when training an image classifier, the objects from visually similar classes often lie
close to each other in the representation space (Wu et al., 2018), which has become the cornerstone of
contrastive learning. Motivated by this observation, we believe that the representation of each scene
image should also be close to the object clusters it consists of. However, modeling scenes requires a
much larger volume due to the exponential number of possible compositions of objects. Another way
to think about the object-centric hierarchy is through the generality and specificity as often discussed
in the language literature (Miller et al., 1990; Nickel & Kiela, 2017). An object concept is general
when standing alone in the visual world, and it will become specific when a certain context is given.
For example, “a desk” is thought to be a more general concept than “a desk in a classroom with a boy
sitting on it”.

Therefore, we propose to study an object-centric hierarchy across the entire dataset. Formally,
given a set of images S = {s1, s2, · · · , sn}, Oi = {o1i , o2i , · · · , o

ni
i } are the object bounding

boxes contained in the image si. We define the regions of scene Ri = {r1i , r2i , · · · , r
mi
i } to be

partial areas of the image si that contain multiple objects such that rji = ∪ko
k
i , where oki ∈

Oi and object k is in the region j. We define the object-centric hierarchy T = (V,E) to be that
V = S ∪O∪R, where R = R1 ∪ · · · ∪Rn and O = O1 ∪ · · · ∪On. For u, v ∈ V , e = (u, v) is an
edge of T if u ⊆ v or v ⊆ u. Note that the natural scene images S are always put as the leaf nodes.

2.2 REPRESENTATION LEARNING BEYOND OBJECTS

To describe our proposed model based on this hierarchy, we begin with a brief review of hyperbolic
space and its properties used in our model. For comprehensive introductions to Riemannian geometry
and hyperbolic space, we refer the readers to Do Carmo & Flaherty Francis (1992); Lee (2018).

2.2.1 HYPERBOLIC SPACE

A hyperbolic space (Hm, g) is a complete, connected Riemannian manifold with constant negative
sectional curvature. These special manifolds are all isometric to each other with the isometries defined
as O+(m, 1). Among these isometries, there are five common models that previous studies often work
on (Cannon et al., 1997). In this paper, we choose the Poincaré ball Dn :=

{
p ∈ Rn | ∥p∥2 < r2

}
as

our basic model (Nickel & Kiela, 2017; Tifrea et al., 2018; Ganea et al., 2018b), where r > 0 is the
radius of the ball. The Poincaré ball is coupled with a Riemannian metric gD(p) =

4
(1−∥p∥2/r2)2

gE,
where p ∈ Dn and gE is the canonical metric of the Euclidean space. For p, q ∈ D, the Riemannian
distance on the Poincaré ball induced by its metric gD is defined as follows:

dD(p, q) = 2r tanh−1

(
∥−p⊕ q∥

r

)
, (1)

where ⊕ is the Möbius addition and it is clearly differentiable. In addition, the Poincaré ball can be
viewed as a natural counterpart of the hypersphere as it allows all directions, unlike the other models
such as the halfspace or hemisphere models that have constraints on the directions. The hyperbolic
space is globally differomorphic to the Euclidean space, which is stated in the theorem below:

Theorem 1. (Cartan–Hadamard). For every point p ∈ Hn the exponential map expp : TpHn ≈
Rn → Hn is a smooth covering map. Since Hn is simply connected, it is diffeomorphic to Rn.

Specifically, for p ∈ Dn and v ∈ TpDn ≈ Rn, the exponential map of the Poincaré ball expp :
TpDn → Dn is defined as

expp(v) := p⊕
(
tanh

(
r∥v∥

r2 − ∥p∥2

)
rv

∥v∥

)
, (2)
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Figure 2: Our Hyperbolic Contrastive Learning (HCL) framework has two branches: given a scene
image, two object regions are cropped to learn the object representations with a loss defined in the
Euclidean space focusing on the representation directions. A scene region as well as a contained
object region are used to learn the scene representations with a loss defined in the hyperbolic space
that affects the representation norms.

The exponential map gives us a way to map the output of a network, which is in the Euclidean space,
to the Poincaré ball. In practice, to avoid numerical issues, we clip the maximal norm of v with r − ε
before the projection, where ε > 0. During the backpropagation, we perform RSGD (Bonnabel,
2013) by scaling the gradients by gD(p)

−1. Intuitively, this forces the optimizer to take a smaller step
when p is closer to the boundary. The scaling factor is lower bounded by O(ε2).

The immediate consequence of the negative curvature is that for any point p ∈ Hm, there are no
conjugate points along any geodesic starting from p. Therefore, the volume grows exponentially
faster in hyperbolic space than in Euclidean space. Such a property makes it suitable to embed the
hierarchical structure that has constant branching factors and exponential number of nodes. This is
formally stated in the theorem below:

Theorem 2. (Gromov, 1987) Given a Poincaré ball Dn with an arbitrary dimension n ≥ 2 and
any set of points p1, · · · , pm ∈ Dn, there exists a finite weighted tree (T, dT ) and an embedding
f : T → Dn such that for all i, j,∣∣dT (

f−1 (xi) , f
−1 (xj)

)
− dD (xi, xj)

∣∣ = O(log(1 +
√
2) log(m))

Intuitively, the theorem states that any tree can be embedded into a Poincaré disk (n = 2) with
low distortion. On the contrary, it is known that the Euclidean space with unbounded number of
dimensions is not able to achieve such a low distortion (Linial et al., 1995). One useful intuition (Sala
et al., 2018) to help understand the advantage of the hyperbolic space is given two points p, q ∈ Dn

s.t. ∥p∥ = ∥q∥,
dD(p, q) → dD(p, 0) + dD(0, q), as ∥p∥ = ∥q∥ → r (3)

This property basically reflects the fact that the shortest path in a tree is the path through the earliest
common ancestor, and it is reproduced in the Poincaré when points are both close to the boundary.

2.2.2 HYPERBOLIC CONTRASTIVE LEARNING

Given the theoretical benefits of the hyperbolic space stated above, we propose a contrastive learning
framework as shown in Figure 2. We adopt two losses to learn the object and scene representations.
First, to learn object representations, we use the standard normalized temperature-scaled cross-entropy
loss, which operates on the hypersphere in Euclidean space. As shown in the top branch of Figure 2,
we crop two views of a jittered and slightly expanded object region as the positive pairs and feed into
the base and momentum encoders to calculate the object representations. We denote the output after
the normalization to be z1euc and z2euc. We follow MoCo (He et al., 2020) and leverage a memory bank
to store the negative representations zn

euc, which are the features z2euc from the previous batches. Note
that our framework can be readily extended to other contrastive learning models. The Euclidean loss
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for each image is then calculated as:

Leuc = − log
exp

(
z1euc · z2euc/τ

)
exp (z1euc · z2euc/τ) +

∑
n exp (z

1
euc · zneuc/τ)

,

where τ is a temperature parameter.

While the loss above aims to learn object representations, we propose a hyperbolic contrastive
objective to learn the representations for scene images. We sample positive region pairs u and v from
object-centric scene hierarchy T such that (u, v) ∈ E. In other words, as shown in the bottom branch
of Figure 2, the objects contained in one region are required to be a subset of the objects in the other.
We sample the negative samples of u to be Nu = {v|(u, v) ̸∈ E}. However, building and sampling
exhaustively from the entire hierarchy explicitly is tricky. In practice, given an image s, we always
sample u ∈ R ∪ {s} to be a scene region, v ∈ O to be an object that occurs in u, and Nu to be the
other objects that are not in u.

The pair of scene and object images are fed into the base and momentum encoders that share the
weights with the Euclidean branch. However, instead of normalizing the output of the encoders, we
use the exponential map defined in the equation 2 to project these features in the Euclidean space to
the Poincaré ball, which are denoted as z1hyp and z2hyp. Further, we replace the inner product in the
cross-entropy loss with the negative hyperbolic distance as defined in equation 1. We calculate the
hyperbolic contrastive loss as follows:

Lhyp = − log
exp

(
−dD(z

1
hyp, z

2
hyp)/τ

)
exp

(
−dD(z1hyp, z

2
hyp)/τ

)
+
∑

n exp
(
−dD(z1hyp, z

n
hyp)/τ

) ,
When minimizing the distances of all the positive pairs, with the intuition from equation 3, it would
be beneficial to put the nodes near the root, i.e. objects, close to the center to achieve a overall lower
loss. The overall loss function of our model is as follows:

L = Leuc + λLhyp,

where λ is an scaling parameter to control the trade-off between hyperbolic and Euclidean losses.

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

Pre-training phase. We pre-train our method on three datasets: COCO (Lin et al., 2014) , full
OpenImages dataset (Kuznetsova et al., 2020) and a subset of OpenImages (Mishra et al., 2021).
All these datasets are multi-object datasets; OpenImages contains 12 objects on average per image
and COCO contains 6 objects on average. We experiment with both the ground truth bounding box
(GT) and using selective search (Uijlings et al., 2013) following the previous method (Xie et al.,
2021a) (SS) to acquire objects. As the goal of this paper is not to present another state-of-the-art
self-supervised learning method, we show comparison based on 3 popular contrastive learning
methods: MoCo-v2 (Chen et al., 2020c), Dense-CL (Wang et al., 2021b), and ORL (Xie et al.,
2021a). Dense-CL is a contrastive learning framework which extracts dense features from scene
images and generally achieves better object detection results than MoCo-v2. ORL is a pipeline that
learns improved object representations from scene images. We also consider our model without the
hyperbolic loss Lhyp. This model, which we denote as HCL/Lhyp, learns object representations with
the advantage of bounding box annotations. More details on the datasets as well as training setups
can be found in Appendix A.

Downstream tasks. We evaluate our pre-trained models on image classification, object-detection and
semantic segmentation. For classification, we show linear evaluation (lineval) accuracy with MoCo-
v2, i.e. we freeze the backbone and only train the final linear layer. We test on VOC (Everingham
et al., 2010), ImageNet-100 (Tian et al., 2020) and ImageNet-1k (Deng et al., 2009) datasets. For
object detection and semantic segmentation, we show results with all 3 baselines on the COCO
datasets using Mask R-CNN, following Chen et al. (2020c). We closely follow the common protocols
listed in Detectron2 (Wu et al., 2019).
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Pre-train Bbox VOC IN-100 IN-1k

MoCo-v2 COCO - 64.79 64.84 51.17
HCL/Lhyp COCO SS 73.13 73.84 54.21
HCL/Lhyp COCO GT 75.55 76.22 54.52
HCL COCO SS 74.19 75.16 55.03
HCL COCO GT 76.51 76.74 55.63

MoCo-v2 OpenImages - 69.95 72.80 54.12
HCL/Lhyp OpenImages SS 71.82 75.33 56.58
HCL/Lhyp OpenImages GT 73.79 77.36 57.57
HCL OpenImages SS 74.31 78.14 58.12
HCL OpenImages GT 75.40 79.08 58.51

Table 1: Classification results with linear evalua-
tion. Our model improves scene-level classification
on the VOC dataset, and object-level classification
on ImageNet-100 and ImageNet-1k datasets. We
see improved peformances by using both Ground
Truth (GT) boxes and Selective Search (SS) boxes.

AP AP50 AP75 APs APl APm

MoCo-v2 34.6 53.5 37.0 30.4 50.1 32.3
HCL/Lhyp 36.1 55.2 37.9 31.5 52.0 33.8
HCL 37.0 56.1 39.8 32.5 52.9 34.6
Dense-CL 39.6 59.3 43.3 35.7 56.5 38.4
HCL/Lhyp 41.3 61.5 44.7 37.5 59.5 40.4
HCL 42.5 62.5 45.8 38.5 60.6 41.4
ORL 40.3 60.2 44.4 36.3 57.3 38.9
HCL 41.4 61.4 45.5 37.3 58.5 40.0
Dense-CL(OI) 38.2 58.9 42.6 34.8 55.3 37.8
HCL/Lhyp(OI) 41.1 61.5 44.4 37.2 58.3 39.7
HCL(OI) 42.1 62.6 45.5 38.3 59.4 40.6

Table 2: Object detection and semantic seg-
mentation results on COCO. Our model con-
sistently improves both object detection and se-
mantic segmentation tasks across multiple con-
trastive learning baselines by pre-training on
both COCO and OpenImages (last 3 rows).

3.2 MAIN RESULTS

Image classification. As shown in Table 1, HCL improves image classification on both scene-level
(VOC) and object-level (ImageNet) datasets. When pretraining on OpenImages, HCL improves
ImageNet lineval accuracy by 0.94% and VOC lineval classification accuracy by 1.61 mAP. We
observe similar improvements when pretraining on COCO. HCL improves accuracy whether we use
ground truth object bounding boxes or boxes generated by selective search. In general, we observe a
larger improvement of using HCL on OpenImages than COCO, which supports our observation that
HCL would improve more on the dataset with more objects per images.

Object detection and semantic segmentation. Table 2 reports the object detection and seman-
tic segmentation results by pre-training on COCO and full OpenImages dataset (last 3 rows). It
shows consistent improvements over the baselines on COCO object detection and COCO semantic
segmentation. Although Dense-CL and ORL improve the object-level downstream performance
over MoCo-v2 through improved object representations or dense pixel representations, they still
lack the direct modeling of scene images. We show that learning representations for scene images
in hyperbolic space is beneficial to object-level downstream performance. Note that pre-training
Dense-CL on ImageNet for 200 epochs gives 40.3 mAP (Wang et al., 2021b), while pre-trainng on
OpenImages for only 75 epochs with our method gives 42.1 mAP. This shows the importance of
efficient pre-training on datasets like OpenImages.

3.3 PROPERTIES OF MODELS TRAINED WITH HCL

The visual representations learned by HCL have several useful properties. In this section, we evaluate
the representation norm as an measure of the label uncertainty for image classification datasets, and
evaluate the object-scene similarity in terms of out-of-context detection.

3.3.1 LABEL UNCERTAINTY QUANTIFICATION

Figure 3: Average representation
norms of images with different num-
ber of labels in ImageNet-ReaL.

Method Indicator Datasets
IN-Real COCO

MoCo Entropy 0.633 0.791
Supervised Entropy 0.671 0.793
HCL Norm 0.655 0.839
Ensemble Entropy+Norm 0.717 0.823

Table 3: NDCG scores of the image rankings based on
the different indicators and models, and evaluated by the
the number of labels per image.
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Smallest norms (objects) Largest norms (scenes)

Figure 4: Images from ImageNet training set. The 5 images on the left have the smallest representation
norms among all the images from the same class, and the 5 on the right have the largest norms.

ImageNet (Deng et al., 2009) is an image classification dataset consisting of object-centered images,
each of which has a single label. As the performance on this dataset has gradually saturated, the
original labels have been scrutinized more carefully (Recht et al., 2019; Tsipras et al., 2020; Shankar
et al., 2020; Beyer et al., 2020; Vasudevan et al., 2022). Prevailing labeling issues in the validation set
have been recently identified, including labeling errors, multi-label images with only a single label
provided, and so on. Although Beyer et al. (2020) provides reassessed labels for the entire validation
set, relabeling the entire training set can be infeasible.

Our learned representations provide a potential automatic way to identify images with multiple labels
from datasets like ImageNet. Specifically, we first show in Figure 3 that there is a strong correlation
between the representation norms and the number of labels per image according to the reassessed
labels. For each class of the ImageNet training set, we rank the images according to their norms. The
extreme images of some classes are shown in Figure 4 and also in the Appendix. Images with smaller
norms tend to capture a single object, while those with larger norms are likely to depict a scene.

To quantitatively evaluate this property, we report the NDCG metric on the ranked images as shown
in Table 3. NDCG assesses how often the scene images are ranked at the top. As a baseline, we
rank the images based on the entropy of the class probability predicted by a classifier, which is a
widely adopted indicator of label uncertainty (Chen et al., 2019; Northcutt et al., 2021). We use both
MoCo-v2 and supervised ResNet-50 as the classifier. As shown in Table 3, using norms with HCL
achieves similar rank quality as using entropy with the supervised ResNet-50 on the ImageNet-ReaL
dataset. In addition, when combining two ranks using simple ensemble methods such as Borda
count, the score is further improved to 0.717. This shows that the entropy and the norm provide
complimentary signals regarding the existence of multiple labels. For example, the entropy indicator
can be affected by the bias of the model and the norm indicator can be wrong on the images with
multiple objects from the same class.

Compared to supervised indicators of label uncertainty, HCL has the additional advantage that it is
dataset-agnostic and can be applied to new data without further training. To demonstrate this benefit,
we report the same metric on the COCO validation, where we also have the number of labels for each
image. Our method achieves much better NDCG scores than the supervised ResNet-50 as shown in
Table 3. This finding can be potentially useful to guide label reassessment, or provide an extra signal
for model training.

3.3.2 OUT-OF-CONTEXT DETECTION

Our hyperbolic loss Lhyp encourages the model to capture the similarity between the object and
scene. We apply the resulting representations to detect out-of-context objects, which can be useful in
designing data augmentation for object detection (Dvornik et al., 2019). We are especially interested
in out-of-context images with conflicting backgrounds. To this end, we use the out-of-context images
proposed in the SUN09 dataset (Choi et al., 2010). We first compute the representations of each
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Figure 5: Out-of-context images from the SUN09 dataset. The bounding box of each object, as well as
its hyperbolic distance to the scene are shown. The regular objects are in blue and the out-of-context
objects are in purple. Note that the out-of-context objects tend to have large distances.

object and entire scene image with that object masked out. We then calculate the hyperbolic distance
between the representations mapped to the Poincaré ball. Some example images from this dataset as
well as the distance of each contained object are shown in Figure 5. We find that the out-of-context
objects generally have a large distance, i.e. smaller similarity, to the overall scene image. To quantify
this finding, we compute the mAP of the object ranking on each image and obtain 0.61 for HCL. As
a comparison, the MoCo similarity gives mAP = 0.52 and the random ranking gives mAP = 0.44.

4 MAIN ABLATION STUDIES

In this section, we report the results of several important ablation studies with respect to HCL.
All the models are trained on the subset of the OpenImages dataset and linearly evaluated on the
ImageNet-100 dataset. The top-1 accuracy is reported.

Distance Center IN-100 Acc.

- - 77.36
Hyperbolic Scene 79.08
Hyperbolic Object 76.96
Euclidean Scene 76.68

Table 4: Ablation on the similarity
measure and hierarchy center.

λ IN-100 Acc.

0.01 77.70
0.1 79.08
0.2 78.64
0.5 0

Table 5: Ablation on the
losses trade-off.

Optimizer λ IN-100 Acc.

RSGD 0.1 79.08
RSGD 0.5 0
SGD 0.1 70.16
SGD 0.5 74.18

Table 6: Ablation on the RSGD ver-
sus SGD optimizers.

Similarity measure and the center of the scene-object hierarchy. We propose to use the negative
hyperbolic distance as the similarity measure of the scene-object pairs. As an alternative, one can
use cosine similarity on the hypersphere as the measure as in the original contrastive objective.
However, this is basically maximizing the similarity between a single object and multiple objects.
It is likely that these objects belong to different classes, and hence this strategy impairs the quality
of the representation. As shown in Table 4, replacing the negative hyperbolic distance with the
Euclidean similarity impairs downstream performance. The resulting model performs even worse
than the baseline without loss function on the scene-object pairs, demonstrating the necessity of
using hyperbolic distance. We also validate our choice of an object-centric hierarchy by comparing
its performance with that of a scene-centric hierarchy (Parikh & Chen, 2007; Parikh et al., 2009)
generated by sampling the negative pairs as objects and unpaired scenes. This scene-centric hierarchy
leads to substantially lower accuracy (Table 4).

Trade-off between the Euclidean and hyperbolic losses. We adopt the Euclidean loss to learn
object-object similarity and the hyperbolic loss to learn object-scene similarity. A hyperparameter λ
controls the trade-off between them. As shown in Table 4, we find that a smaller λ = 0.01 leads to
marginal improvement. However, we also observe that larger λs can lead to unstable and even stalled
training. With careful inspection, we find that in the early stage of the training, the gradient provided
by the hyperbolic loss can be inaccurate but strong, which pushes the representations to be close to
the boundary. As a result, since Riemannian SGD divides gradients by the distance to the boundary,
updates become small and training ceases to make progress.

Optimizer. Given the observation above, we ask whether RSGD is necessary for practical usage. We
replace the RSGD optimizer with SGD. To avoid numerical issues when the representations are too
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close to the boundary, we increase ε from 1e−5 to 1e−1. This allows a larger λ to be used as opposed
to the RSGD. However, SGD always yields inferior performance compared to RSGD.

5 RELATED WORK

Representation Learning with Hyperbolic Space. Representations are typically learned in Eu-
clidean space. Hyperbolic space has been adopted for its expressiveness in modeling tree-like
structures existing in various domains such as language (Sala et al., 2018; Nickel & Kiela, 2017;
2018), graphs (Balazevic et al., 2019; Chami et al., 2020; Park et al., 2021), and vision (Chen et al.,
2020a; Surís et al., 2021). The corresponding deep neural network modules have been designed to
boost the progress of such applications (Chami et al., 2019; Ganea et al., 2018b; Liu et al., 2019;
Shimizu et al., 2021). The hierarchical structure presented in the datasets can arise from three factors
that together motivate the use of hyperbolic space. The first factor is generality: the hypernym-
hyponym property is a natural feature of words (e.g. WordNet (Miller et al., 1990)) and the hyperbolic
space is extensively exploited to learn word and image embeddings that preserve that property (Tifrea
et al., 2018; Ganea et al., 2018a; Sala et al., 2018; Liu et al., 2020; Yan et al., 2021; Long et al.,
2020). The second factor is uncertainty: Several studies have found that applying hyperbolic neural
network modules to different tasks leads to a natural modeling of the uncertainty (GhadimiAtigh
et al., 2022; Khrulkov et al., 2020; Surís et al., 2021). The third factor is compositionality of different
basic elements to form a natural hierarchy. Motivated by these factors, previous work in computer
vision has applied hierarchical representations learned in the hyperbolic space to various tasks such
as image classification (Khrulkov et al., 2020) or segmentation (Weng et al., 2021), zero-/few-shot
learning (Liu et al., 2020), action recognition (Long et al., 2020), and video prediction (Surís et al.,
2021). In this paper, we focus on learning the representations that capture the hierarchy between the
objects and scenes with the goal of learning general-purpose image representations that can transfer
to various downstream tasks.

Self-Supervised Learning on Scenes. Self-Supervised Learning (SSL) has made great strides in
closing the performance with supervised methods (Chen et al., 2020b;c) when pretrained on the object-
centric datasets like ImageNet. However, recent work has shown that SSL is limited on multi-object
datasets like COCO (Selvaraju et al., 2017; Wang et al., 2021b) and OpenImages (Kuznetsova et al.,
2020). Several papers have tried to address this issue by proposing different techniques. Dense-CL
(Wang et al., 2021b) operates on pre-average pool features and uses dense features on pixel level to
show improved performance on dense tasks such as semantic segmentation. DetCon (Hénaff et al.,
2021) uses unsupervised semantic segmentation masks to generate features for the corresponding
objects in the two views. PixContrast (Xie et al., 2021b) uses pixel-to-propagation consistency pretext
task to build features for both dense downstream tasks and discriminative downstream tasks. Pixel-to-
Pixel Contrast (Wang et al., 2021a) uses pixel-level contrastive learning to learn better features for
semantic segmentation. Self-EMD (Liu et al., 2021) uses earth mover distance with BYOL (Grill
et al., 2020) for pretraining on the COCO dataset. ORL (Xie et al., 2021a) uses selective search to
generate object proposals, then applies object-level contrastive loss to enforce object-level consistency.
Below-par performance of SSL methods can be attributed to treating scenes and objects using similar
techniques, which often results in similar representations. In our work, instead of treating scenes and
objects similarly, we use a hyperbolic loss, which builds representation that disambiguates scenes
and objects based on the norm of the embeddings. Our method not only separates scenes and objects,
but also improves downstream tasks such as image classification.

6 CONCLUSION

We present HCL, a contrastive learning framework that learns visual representation for both objects
and scenes in the same representation space. The major novelty of our method is a hyperbolic
contrastive objective built on an object-centric scene hierarchy. We show the effectiveness of HCL
on several benchmarks including image classification, object detection, and semantic segmentation.
We also demonstrate useful properties of the representations under several zero-shot settings, from
detecting out-of-context objects to quantifying the label uncertainty in the datasets like ImageNet.
More generally, we hope this paper will encourage future work towards building a more holistic
visual representation space, and draw attention to the power of non-Euclidean representation learning.
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A EXPERIMENT SETUPS

In this section, we provide additional details of our experiments.

Unsupervised object proposals. When pretraining on uncurated datasets, acquiring ground truth
object bounding boxes using human annotations can be expensive. However, automatically generating
unsupervised region proposal is well studied. We use Selective Search as the unsupervised proposal
generation method. Following ORL (Xie et al., 2021a) we first generate the proposals using selective
search. Then we filter the proposals with 96 pixels as the minimal scale, maximum IOU of 0.5 and
aspect ratio between 1/3 to 3. For every image we generate maximum of 100 proposals and randomly
select any image as the object image.

OpenImages dataset. We use the full OpenImages dataset which have bounding box annotations
(∼ 1.9 million images). We also use a subset proposed in Mishra et al. (2021). This is a subset created
from the OpenImages dataset where each image has at least 2 classes present and each class has at
least 900 instances. This subset is a balanced subset of OpenImages with an average of 12 object
present in an image, making it a good proxy for real-world multi-object images.

Object and Scene image augmentations. We find that small objects are always detrimental to
performance. Therefore, when sampling object bounding boxes, we drop bounding boxes with size
width × height ≤ 56× 56. Further, when sampling objects for the Euclidean branch, if the size
of a bounding box width × height ≤ 256 × 256, we slightly expand it to either 256 × 256 or
the maximal size allowed by the original image size. We also apply a small jittering to the width
and height to include different contexts around the objects. Next, we apply random cropping and
resizing with the same scale (0.2, 1.) as in MoCo (He et al., 2020). When sampling objects for the
hyperbolic branch, we do not apply jittering and random cropping, but only filter the small boxes
and resize to ≤ 224× 224. To crop the scene images, we sample another 1 to 5 bounding boxes and
merge with the selected object bounding box.

Model details of pre-training. For the optimizer setups and augmentation recipes, we follow the
standard protocol described in MoCo-v2 (Chen et al., 2020c). We find that a base learning rate of 0.3
works better when pre-training on COCO and OpenImage datasets as compared to 0.03. We adopt
the linear learning rate scaling receipt that lr = 0.3× BatchSize/256 (Goyal et al., 2017) and batch
size of 128 by default on 4 NVIDIA p6000 gpus. To ensure fair comparison, we also pre-train the
baselines with a learning rate of 0.3. We train our models on COCO and the subset of OpenImage
datasets for 200 epochs and full OpenImage dataset for 75 epochs. We also note that calculating
hyperbolic loss itself takes nearly the same time as a normal contrastive loss. The only overhead in
pre-training is one additional forward pass to get scene representations. In our setting, MoCo takes
0.616 sec/iter while HCL takes 0.757 sec/iter. For the hyperparameters of our hyperbolic objective,
we use r = 4.5, λ = 0.1, and ε = 1e−5 as our default setting.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ROBUSTNESS UNDER CORRUPTION.

We calculate the mCE error as in Hendrycks et al. (Hendrycks & Dietterich, 2019). We compare our
HCL model trained on OpenImages and lineval on ImageNet dataset with the baseline model without
using HCL loss. We see an improvement of 1.9 mCE over the baseline model, demonstrating that our
HCL model learns more robust representations as compared to the vanilla MoCo.

B.2 FINE-GRAINED CLASS CLASSIFICATION

In Table 7 we show results on fine-grained classification datasets. We can see that on fine-grained
classification our model provides little performance improvement. This could be due to the fact that
all classes in these datasets have very similar scene contexts, and hence the hyperbolic objective does
not help very much.

B.3 MORE IMAGENET EXAMPLES
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Method Cars (Krause et al., 2013) DTD (Cimpoi et al., 2014) Food (Bossard et al., 2014)

HCL/Lhyp 31.92 68.46 58.66
HCL 32.02 68.19 58.79

Table 7: Fine grained classification results.

Smallest norms (objects) Largest norms (scenes)

Figure 6: More images from ImageNet training set sorted by their representation norms.
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Smallest norms (objects) Largest norms (scenes)

Figure 7: More images from ImageNet training set sorted by their representation norms.
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C ADDITIONAL ABLATION STUDIES

In this section, we provide more ablation experiments on hyperbolic linear evaluation, model archi-
tecture, and the radius of Poincare ball. All the models are trained on the OpenImages dataset and
evaluated on the ImageNet-100 (IN-100) or ImageNet-1k (IN-1k) the top-1 accuracy reported.

Radius of the Poincare ball. In Table 8 we show results by varying the radius of Poincaré ball.
The hyperbolic objective improves the performance over all the tested radius. We find that a too small
radius may lead to a smaller improvement due to the stronger regularization.

Configuration of the encoder head. In our experiments, the Euclidean and hyperbolic branches
share the weights in both the backbone and the head of the encoders. We also try using a separate
head for the hyperbolic branch. As shown in Table 9, this leads to a more stable training when larger
learning rate is applied. However, we did not see any improvements brought by this modification.

Hyperbolic linear evaluation. Apart from the common linear evaluation in the Euclidean space,
we show the hyperbolic linear evaluation results with different optimizers and learning rates in Table
10. The idea is to test if the representations are more linearly separable in the hyperbolic space. We
follow the same setting of hyperbolic softmax regression (Ganea et al., 2018b) and train a single
hyperbolic linear layer. However, we find the optimization with SGD can easily cause overflow. By
contrast, Adam is much more stable with appropriate learning rates.

c IN-1k Acc.

1 58.08
0.5 58.31
0.1 58.29
0.05 58.51
0.01 58.49

Table 8: Results by
varying the radius r of
Poincaré ball. c = 1

r2 .

Head λ IN-100 Acc.

N/A 0 77.36

shared 0.1 79.08
0.5 0

splitted 0.1 77.88
0.5 77.58

Table 9: Different configurations
of head in the the Euclidean and
hyperbolic branches.

SGD Adam
lr IN-100 lr IN-100

0.1 63.82 0.001 67.64
0.2 64.22 0.0005 70.32
0.3 1 0.0001 72.58
0.4 1 0.00005 70.5

Table 10: Results of hyperbolic lin-
ear evaluation with different opti-
mizers and learning rates.
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