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ABSTRACT

Diffusion generative models have emerged as a new challenger to popular deep neu-
ral generative models such as GANS, but have the drawback that they often require
a huge number of neural function evaluations (NFEs) during synthesis unless some
sophisticated sampling strategies are employed. This paper proposes new efficient
samplers based on the numerical schemes derived by the familiar Taylor expansion,
which directly solves the ODE/SDE of interest. In general, it is not easy to compute
the derivatives that are required in higher-order Taylor schemes, but in the case
of diffusion models, this difficulty is alleviated by the trick that the authors call
“ideal derivative substitution,” in which the higher-order derivatives are replaced
by tractable ones. To derive ideal derivatives, the authors argue the “single point
approximation,” in which the true score function is approximated by a conditional
one, holds in many cases, and considered the derivatives of this approximation.
Applying thus obtained new quasi-Taylor samplers to image generation tasks, the
authors experimentally confirmed that the proposed samplers could synthesize
plausible images in small number of NFEs, and that the performance was better or
at the same level as DDIM and Runge-Kutta methods. The paper also argues the
relevance of the proposed samplers to the existing ones mentioned above.

1 INTRODUCTION

Generative modeling based on deep neural networks is an important research subject for both
fundamental and applied purposes, and has been a major trend in machine learning studies for
several years. To date, various types of neural generative models have been studied including
GANSs (Goodfellow et al.l|2014), VAEs (Kingma et al., 2021} Kingma & Welling, [2019)), normalizing
flows (Rezende & Mohamed, |2015)), and autoregressive models (van den Oord et al.,[2016ba). In
addition to these popular models, a class of novel generative models based on the idea of iteratively
refinement using the diffusion process has been rapidly gaining attention recently as a challenger
that rivals the classics above (Sohl-Dickstein et al.||2015; |Song & Ermon, [2019} |Song et al., 2020b;
Song & Ermonl 2020; |Ho et al., [2020; [Dhariwal & Nichol, |2021). The diffusion-based generative
models have recently been showing impressive results in many fields including image (Ho et al.|
2020; |Vahdat et al.l [2021}; |Saharia et al., 2021 [Ho et al.,[2021} |Sasaki et al., 2021])), video (Ho et al.,
2022), text-to-image (Nichol et al.| [2021; Ramesh et al., [2022), speech (Chen et al.,2020; [2021; |Kong
et al.| 20215 [Popov et al.l 2021} Kameoka et al., 2020), symbolic music (Mittal et al., 2021)), natural
language (Hoogeboom et al., 2021} |Austin et al.,[2021]), chemoinformatics (Xu et al.| [2022), etc.

However, while the diffusion models have good synthesis quality, it has been said that they have a fatal
drawback that they often require a very large number of iterations (refinement steps) during synthesis,
ranging from hundreds to a thousand. In particular, the increase in refinement steps critically reduces
the synthesis speed, as each step involves at least one neural function evaluation (NFE). Therefore, it
has been a common research question how to establish a systematic method to stably generate good
data from diffusion models in a relatively small number of refinement steps, or NFEs in particular.
From this motivation, there have already been some studies aiming at reducing the NFEs (See §[2).
Among these, Probability Flow ODE (PF-ODE) (Song et al.}[2020b) enable efficient and deterministic
sampling, and is gaining attention. This framework has the merit of deriving a simple ODE by a
straightforward conceptual manipulation of diffusion process. However, the ODE is eventually solved
by using a black-box Runge-Kutta solver in the original paper, which requires several NFEs per
step and is clearly costly. Another PF-ODE solver includes DDIM (Song et al.,2020a)), and is also
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commonly used. It is certainly efficient and can generate plausible images. However, it was not
originally formulated as a PF-ODE solver, and the relationship between DDIM and PF-ODE is not
straightforward.

From these motivations, we provide another sampler to solve the same ODE, which performs better
than or on par with DDIM. The derivation outline is simple and intuitive: (1) consider the Taylor
expansion of the given system, and (2) replace the derivatives in the Taylor series with appropriate
functions; that’s all.

The contribution of this paper would be as follows: (1) We propose novel samplers for diffusion
models based on Taylor expansion of PF-ODE. They outperformed, or were on par with Runge-
Kutta methods. (2) To derive our algorithms, we show that the derivatives of score function can be
approximated by simple functions. We call this technique the ideal derivative substitution. (3) It has
been known that the 1st order term of DDIM is same as the Euler method for PF-ODE. This paper
gives further explanation for higher order terms of DDIM: we show that the proposed Quasi-Taylor
method and DDIM are identical at least up to 3rd order terms. (4) The same idea can be naturally
extended to derive a stochastic solver for a reverse-time SDE, which we call R-SDE in this paper.

2 BACKGROUND AND RELATED WORK

Diffusion Process to draw a new data from a target density: Let us first briefly summarize the
framework of the diffusion-based generative models. Following|Song et al.| (2020b), we describe the
mechanisms using the language of continuous-time diffusion process for later convenience. Let us
consider “particles” {x;} moving in a d-dim space obeying the following It6 diffusion,

SDE: dXt = f(Xt, t)dt + g(Xt, t)dBt, (1)

where B; is the d-dim Brownian motion whose temporal increments obeys the standard Gaussian.
The drift f(-, -) is d-dim vector, and the diffusion coefficient g(-, ) is scalar. The SDE describes the
microscopic dynamics of each particle. On the other hand, the “population” of the particles obeying
the above SDE, i.e. density function p(xy, ¢ | X5, s), (£ > s), follows the following PDEs, which are
known as Kolmogorov’s forward and backward equations (KFE and KBE); the former is also known
as the Fokker-Planck equation (FPE), see §@],

)2
FPE: atp(xtvt ‘ Xs7s) = _VXt : f(xht)p(xtvt | sts) + Axt g(xg ) p(Xtvt | sts)v (2)
g(X5,8)2
KBE: —0.p(x¢,t | xs,8) = f(Xs,9) - Vi D(Xt, t | X5, 8) + =———Ax.p(X¢,t | X5,8), (3)

2
where Ay = V-V is Laplacian. (FPE also holds for p(x;, t); consider the expectation E,(x_ «)[*].)
These PDEs enables us to understand the macroscopic behavior of the particle ensemble. For example,
if f(x,t) = —VU(x), g(x,t) = V2D, where U(x) a certain potential and D a constant, then we
may verify that the stationary solution of FPE is p(x) o< e=Y®)/P_ It means that we may draw a
sample x that follows the stationary density by evolving the SDE over time. This technique is often
referred to as the Langevin Monte Carlo method (Rossky et al., 1978} [Roberts & Tweedie} |1996).
Some of the diffusion generative models are based on this framework, e.g. (Song & Ermon, 2019;
2020), in which the potential gradient VU (x) is approximated by a neural network.

Another systematic approach is considering the reverse-time dynamics (Song et al., [2020b). An
approach is based on KBE eq. (3). Roughly speaking, FPE gives information about the future from
the initial density, while KBE gives information about what the past states were likely to be from the
terminal density. Here, instead of using KBE directly, it is useful to consider a variant of it which is
transformed into the form of FPE, because it has an associated SDE that enables the particle-wise

backward sampling (Stratonovich| [1965}; [Andersonl [1982); see also §[E.3.2]
r3 9(Xs, 8) §

2

R-FPE: —0,p(xs,s | x¢,t) = Vx, - (X, 8)p(Xs, 8 | x¢,1) + Ax, p(Xs,8 | x¢,t)  (4)

R-SDE: dx, = —f(xs,s)(—ds) + §(xs, s)dBs. 5)

Hereafter, let g(x¢,t) = g(t) for simplicity. Then the specific forms of drift and diffusion coefficients
are written as follows,

R-SDE coeffs: f(x;,t) = f3(xs,t) = f(x¢,t) — g(t)*Vx, logp(xs, 1), g(t) = g(t). (6)
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Starting from a certain random variable x7, then by evolving the R-SDE reverse in time, we may
obtain a X which follows p(xg,0 | x7,T) (i.e. the solution of R-FPE eq. ). Therefore, if the
initial density p(xg, 0) of the forward dynamics eq. (2) is the true density, then we may utilize this
mechanism as a generative model to draw a new sample X from it.

Another approach is based on FPE eq. (2)). By formally eliminating the diffusion term of the FPE
for the forward process, we can derive another backward FPE (see also § [E.3.1). Being diffusion-
free, the backward FPE yields a deterministic ODE, which is called the Probability Flow ODE
(PF-ODE) (Song et al.,2020b), and is an example of neural ODEs (Chen et al.,|2018)). The population
density obtained by evolving this system is exactly the same as the above R-SDE.

PF-ODE coeffs: f(x;,t) = f,(x;,t) == f(x;,1) — %g(t)2vxt logp(x¢,t). g(t) =0. (7)
Some extensions of this framework include as follows. |[Dockhorn et al.| (2021)) introduced the
velocity variable considering the Hamiltonian dynamics. Another extension is the introduction of a
conditioning parameter, and guidance techniques using it (Dhariwal & Nicholl, 2021; [Ho & Salimans|
2021} |Choi et al.l [2021) to promote the dynamics to go to a specific class of images, which has
achieved remarkable results in text-to-image tasks (Nichol et al., 2021; Ramesh et al.| [2022)).

Variance-Preserving Model (VP-SDE Model): The solution of unconditioned FPE is written as
the convolution with the initial density p(xo, 0) and the fundamental solution, or the heat kernel,
p(x¢,t | X0, 0), which is the solution of the conditional FPE under the assumption that the initial
density was delta function, p(xo,0) = d(xo—x5). Although it is still intractable to solve this problem
in general, a well-known exception is the (time-dependent) Ornstein-Uhlenbeck (OU) process where
f(x;,t) = —3Bx; and g(x;,t) = \/B;. B; = B(t) is a non-negative continuous function. The
specific form of diffusion coefficient 3; has some options: a simplest one would be the linear function,
and another would be the cosine schedule proposed in (Nichol & Dhariwal, 2021)); see also §@ In
any cases, if it is the OU process, the heat kernel is simply written as follows,

p(x4,t | x0,0) = N(x¢ | \/1 —02%x0,02I), where 02 =1 —exp (— fot Bt/dt’) . ®

Hereafter, we denote the noise variance by v; := o7. (In some literature, the signal level oy =
/1 —0? is used as a basic parameter instead of the variance.) This model is referred to as the
variance-preserving (VP) model by [Song et al.|(2020b). It has good properties such as the scale of
data ||x¢||2 is almost homogeneous, which is advantageous in neural models. However, the variance
exploding (VE) model (Song et al.,[2020b) in which the norm increases is also practicable, and the
theory can be developed in a similar manner.

Training Objective: In diffusion-based generative models, one estimates the score function
Vi, logp(xs,t) = Vi, logEpx,.0)[P(%¢,T | X0,0)] by a neural network Sy(x¢,t). This sort of
learning has been referred to as the score matching (Hyvirinen & Dayanl 2005} |[Vincent, 2011)).
However, the exact evaluation of this training target is clearly intractable because of the expectation
[E,(xo,0)[:]> 50 it has been common to consider a Variational Bayesian surrogate loss;|Ho & Salimans
(2021) showed that the following loss function approximates the negative ELBO,

L = E[|~ /¥ Vx, logp(xs,t | x0,0) — Sg(xe, 1)[3] = B[ == — Sy (x, 1) [3]  (9)

= E[[lw — So(vVT=vixo + y/vuw, 1) 3], (10)
where the expectation in eq. is taken w.r.t. xg ~ D, w ~ N(0,1), and ¢ ~ Uniform([0, 7).
Some variants of the score matching objectives are also studied. For example, |Chen et al.| (2020)

reported that the L, loss gave better results than the Lo loss in speech synthesis. Also, |Kingma et al.
(2021])) argued that the weighted loss with SNR-based weights improves the performance.

It should be noted that the above loss function will actually be very close to the ideal score matching
loss function in practice, where the probability is not conditioned on Xy, i.e.,

Lideat = E[|| =14V, log p(x¢,t) — Sa(x¢,t)|13]. (1)

This is because there almost always exists a point X on the data manifold such that V, log p(x,t) ~
Vi, log p(x¢,t | x0,0) holds with very high accuracy in very high-dim cases, because of the well-
known “log-sum-exp ~ max” law. For more details, see § [3.3]and § [A]
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Sampling Schemes for R-SDE and PF-ODE: Thus obtained Sy(x¢,t) is expected to finely ap-
proximate —./14 Vi, log p(x;,t), and we may use it in eq. (5). One of the simplest numerical
schemes for solving SDE:s is the Euler-Maruyama method (Maruyama), |1955, Theorem. 1) as follows,
and many diffusion generative models are actually using it.

Euler-Maruyama:  x;_p, < x; — hfy(x;,t) + Vhg(t)w, where w ~ N(0,I)  (12)

where h > 0 is the step size. The error of the Euler-Maruyama method is the order of O(v/h) in
general, though it is actually O(h) in our case; this is because Vy,g(t) = 0. As a better solver for
the R-SDE, the Predictor-Corrector (PC)-based sampler was proposed in (Song et al., 2020b). The
PC sampler outperformed the Predictor-only strategy, but it requires many NFEs in the correction
process, so we will exclude it in our discussion. Another R-SDE solver is the one proposed by
Jolicoeur-Martineau et al.|(2021)), whose NFE per refinement step is 2.

On the other hand, there are also deterministic samplers for PF-ODE eqgs. @) @) as follows,
Euler: x;_j < x; — hf, (x4, 1) (13)
Runge-Kutta:  x¢_p, < x; —hy .-, bk;, where k; = £,(x; — h Z;;ll aijkj, t —he;)  (14)

where {a;;}, {b;},{c;} are coefficients of the Runge-Kutta (RK) method (see § [E.5). The error of
the Euler method is O(h), and that of the RK method is O(h?), p < m in general (Press et al., 2007,
§ 16). Another deterministic sampler is DDIM (Song et al.,2020al Eq. (13)), and is also understood
as a PF-ODE solver (Salimans & Ho, [2022). Its NFE per step is only 1, and is capable of efficiently
generate samples.

DDIM: x;_j < a;—:"xt + (at_h — a;—:“ot) So(xs,1). (15)

In addition, as a concurrent work as ours, [Lu et al.|(2022)) proposed the DPM-solver, which is based
on the Taylor expansion of PF-ODE. However, as the gradient is evaluated using several different
points, the NFE per step is greater than 1 in general. |Liu et al.|(2022)) proposed a sampler based on
the linear multi-step method, in which the NFE/step is reduced to 1 except initial 3 steps. Another
PF-ODE solver is the DEIS (Zhang & Chen| |2022)) which is based on the exponential integrator with
some non-trivial approximations such as the polynomial interpolation of score function.

Other techniques that aimed to make sampling faster include as follows. [Song & Ermon| (2020)
proposed a variety of techniques to accelerate the sampling. [Watson et al.|(2021) proposed a DP-based
optimization method to tune noise schedules for faster sampling. |Luhman & Luhman|(2021) and
Salimans & Ho|(2022)) proposed distilling the pretrained teacher model to a student model that can
predict teacher’s several steps in a single step, which is efficient during the sampling but extra training
for distillation is required. |Bao et al.|(2022afb) derived some analytic expressions of reverse dynamics
to enable faster sampling.

3 PROPOSED METHOD: QUASI-TAYLOR SAMPLERS

3.1 MOTIVATION: HIGHER-ORDER STRAIGHTFORWARD SOLVERS FOR R-SDE AND PF-ODE

As mentioned above, DDIM already exists as an efficient solver for PF-ODE, but it can only be
considered a PF-ODE solver up to first-order terms (Song et al.l 2020a} [Salimans & Ho| [2022]),
and it would not be clear enough whether it can be considered a higher-order solver for PF-ODE.
Some other techniques (Lu et al., 2022} [Liu et al., |2022; [Zhang & Chenl 2022) were designed as
higher-order PF-ODE solvers, though their derivations are rather sophisticated and less simple. Since
PF-ODE and R-SDE provide the basis for the diffusion generative models, it would be beneficial to
develop samplers that directly solve them through intuitive and straightforward arguments.

From these motivations, we propose a simple but efficient sampler based on the Taylor expansion, a
very basic technique that is familiar to many researchers and practitioners. In general, Taylor methods
are not very popular as numerical schemes because they require higher-order derivatives, which
are not always tractable. However, in diffusion models, the derivatives are easily and effectively
evaluated, albeit approximately. The validity of this approximation requires some consideration
(see §[A]l §[B), but once accepted, an efficient sampler can be derived simply by substituting this
approximation formula into the Taylor series. This section describes the details of the idea, and
derives solvers for both PF-ODE and R-SDE. Entire sampling procedures are summarized in §[F
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3.2 TAYLOR SCHEME FOR ODE AND ITO-TAYLOR SCHEME FOR SDE

Taylor Scheme for Deterministic Systems For simplicity, we consider the 1-dim case here, but
we can easily generalized it to multidimensional cases. (See §) Given a ODE &y = a(xy,t),
where the function a is sufficiently smooth, then we can consider the Taylor expansion of it, using a
differential operator L, := (9, + a(t, z;)d,, ). We can write the Taylor expansion of the path z; as
follows. Ignoring o(hP) terms of the series, we obtain a numerical scheme of order p.

h? h3
Tirn = x¢ + ha(xg, t) + nga(:ct,t) + yLEa(xt,t) 4 (16)

It6-Taylor Scheme for Stochastic Systems In stochastic systems, the Taylor expansion requires
modifications because of the relation E[dB?] = dt. If z; obeys a stochastic system dz; = a(x,t)dt+
b(x,t)d By, then the path is written in a stochastic version of Taylor-like series, which is often called
the Itd6-Taylor expansion, a.k.a. Wagner-Platen expansion (Platen & Wagner, [1982);(Kloeden et al.|
1994, § 2.3.B);(Sarkka & Solin, 2019} § 8.2). The It6-Taylor expansion is based on the following
differential operators Ly, Gy, which are based on Itd’s formula (Itd) [1944).

1
Ly =0, + a(z,t)0, + ib(m,t)Qaz, Gy = b(z,1)0, (17)

In (Kloeden & Platen, |1992), a number of higher order numerical schemes for SDEs based on the
Itd-Taylor expansion are presented. One of the simplest of them is as follows. See also § [E.1.2]

Theorem 1 (Kloeden & Platen| (1992, § 14.2): An It6-Taylor scheme of weak order 3 = 2). Let
xy obeys the above SDE, and let the differential operators Ly, Gy be given by eq. (17_7[) Then, the
following numerical scheme weakly converges with the order of 8 = 2 (see §[E-4). Furthermore, in a
special case where GﬁQb = 0, the strong v = 1.5 convergence is also guaranteed (Kloeden & Platen|
1992 § 10.4).

~2 2
w; — h h

Tyyn < Ty + ha + Wb + ’f2 Gib+ 5 Lya+ (Wih — 2) Lyb + £,Gya (18)
where W; = \/Ewt, %, = hv/hz are correlated Gaussian random variables, and Wy, 2¢ are given by
wy = uy and zy = %ul + ﬁug, where uy, us ~ N(0,1) (i.i.d.). The notations a, Lya, etc. are the

abbreviations for a(zy,t), (Lya)(z¢,t), etc.

3.3 SINGLE POINT APPROXIMATION OF THE SCORE FUNCTION

Before proceeding, let us introduce the single point approximation of score function that
Vi, log p(x¢,t) almost certainly has a some point xo on the data manifold such that the following
approximation holds,

VXf, logp(xtat) = VXt log/p(xtat | X0, O)p(XOa O)dXO ~ er, logp(xtat ‘ X0, O) (19)

To date, this approximation has often been understood as a tractable variational surrogate. However,
the error between the integral and the single point approximation is actually very small in practical
scenarios. More specifically, the following facts can be shown under some assumptions.

1. The relative Ly distance between Vy, log p(xy,t) and Vy, log p(xy,t | Xo,0) is bounded
above by /(1 — v;) /v, for any point X on the “data manifold” in practical scenarios.

2. When the noise level is low v, =~ 0, and the data space is sufficiently high-dimensional, the
distant points far from x; do not contribute to the integral. If the data manifold is locally
a k-dim subspace of the entire d-dim data space, where 1 < k < d, then the relative Lo

distance is bounded above by around 2+/k/d.

Of course, the single point approximation is not always valid. In fact, the approximation tends to
break down when the noise level v is around 0.9 (SNR = (1 — v4) /14 is around 0.1). In this region,
the single point approximation can deviates from the true gradient by about 20% in some cases.
Conversely, however, it would be also said that the error is as small as this level even in the worst
empirical cases. For more details on this approximation, see § [A]
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3.4 IDEAL DERIVATIVE SUBSTITUTION

In order to adopt the above Taylor schemes to our problem setting where the base SDE is eq. (3)), and
f;, f, are given by eqs. (6), @) we need to consider the following differential operators. Note that the
time evolves backward in time in our case, the temporal derivative should be —0,,

L, = _at - (fb(xfdt) : th) ’ Lﬁ = _at - (?ﬁ(xfmt) ’ vXt) + %Axﬁ Gﬁ = \/E(]' ’ th)’

where B,(x,t) = — Dty + P Sp(xt), Byl t) = x4 LlSpxint).  (20)

2 2\/vy 2 N

It is not easy in general to evaluate expressions involving such many derivatives. Indeed, for example,
L, (—f,) has the derivatives of the learned score function, viz. 9,S¢(x¢,t) and (e - Vy,)Sg(xy,t),
which are costly to evaluate exactly, whether in approaches based on finite differences (as in
[2022))), back-propagation, or the JAX paradigm (Bradbury et al [2018)), because they even-
tually require extra evaluation of a deeply nested function other than Sy (x;,t), and extra memory
consumption. Fortunately, however, by using the trick which the authors call the “ideal derivative
substitution", we may write all of the derivatives as a simple combination of known values, only
consisting of x;, Sp(x¢,t), v, B and derivatives of f;, and no extra computation is needed. Since
the score function has a single point approximation eq. (I9) we may assume that the derivatives
should ideally hold following equalities. For derivation, see §[B.1]

Conjecture 1 (Ideal Derivatives). Under assumptions in § E— i.e. the data space R® is sufficiently
high dimensional d > 1, the data manifold M C R is also sufficiently high dimensional but much
smaller than the entire space (1 < dim M < d), M is bounded, M is sufficiently smooth locally,
and the variance parameter vy is close to 0 or 1; — then it is likely that the following approximations
hold, where a € R% is an arbitrary vector. We call them the “ideal derivatives”.

o _ B, Sebxwt)
(a~th)Sg(xt,t)—ﬁa, —0,S¢(xy,t) = NG (Xt NG ) 21

To confirm the accuracy of this approximation, we compared empirical and ideal derivatives using
MNIST (LeCun et al.l 2010) and CIFAR10 (Krizhevskyl [2009). As a result, it was confirmed that
the approximation of spatial derivative, i.e. (a - V), is usually very accurate; the cosine similarity
between the empirical and ideal derivatives is nearly always > 0.99 (Figure[I0). On the other hand,
for the time derivative Jy, it was confirmed that it is quite accurate when the time parameter ¢ (and
the variance 1) are small, but the error increases when the time parameter ¢ (and the variance v;)
become larger (Figure[9). See §[B.2]for more details.

3.5 QUASI-TAYLOR AND QUASI-ITO-TAYLOR SCHEMES WITH IDEAL DERIVATIVES

As we can see in §[B.2] the ideal derivative approximation is sometimes very accurate while sometimes
not. In any case, however, the error in the ideal derivative only affects the second or higher order
terms of Taylor series, and it will not be the dominant error in the whole. As there is an overall
correlation between the true and ideal derivatives, the advantages will outweigh the disadvantages on
average, and we can regularly use this approximation on a speculative basis, even though there exist
some cases where the approximation is not accurate.

If we accept the ideal derivative approximation, we can formally compute the symbolic expressions
for the derivatives L,(—f,), Ly(—f;), Ls(g), G3(—f;) and G4(g) that appear in the Taylor and It6-
Taylor series by routine calculations, which can be easily automated by computer algebra systems
such as SymPy (Meurer et al., 2017) as shown in § [B:3] By substituting thus obtained symbolic
expressions into the above Taylor series, we can derive Taylor schemes for both PF-ODE and R-SDE
as follows.

Algorithm 1 (Quasi-Taylor Sampler with Ideal Derivatives for PF-ODE). Starting from a Gaussian
noise x1 ~ N(0,1), iterate the following refinement steps until xq is obtained.

Xi_p = P?;hXt + Mi)hSQ(Xt, t)/\/Vt, where (22)
2 . 3 ; 5
gk (o A) e n (B8,
2 /. 2 3 3 2 _ ; 5
pa= =Bl (B )+ (RO g - ) e @
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Using terms up to O(h?), the sampler will have 2nd-order convergence (henceforth referred to as
Taylor 2nd), and using terms up to O(h?), the sampler will 3rd-order convergent (similarly, Taylor
3rd). If we use up to the O(h) terms, the algorithm is same as the Euler method.

Algorithm 2 (Quasi-Itd-Taylor Sampler with Ideal Derivatives for R-SDE). Starting from a Gaussian
noise x ~ N (0,1), iterate the following refinement steps until X is obtained.

Xi_p = pg)hxt + /,L§7h89(xt, t)/\/ve + ng)h, where (25)
2 2 o . 2
Aa=1+%h+%(5-8), ul,=—Bh+2, 26)
; 3/2, _
ng,h = VBivVhwy + h3/? <—2\B/f3j(wt —z) + 2(1,2 2) ZT) : (27)

The Gaussian variables w; and z; have dimension-wise correlations, and each dimension is sampled
similarly to Theorem([l)

Computation Cost: At first glance, these algorithms may appear to be very complex. However,
the computational complexity hardly increases compared to the Euler or Euler-Maruyama methods,

because almost all of the computational cost is accounted for by the neural network Sg(x;, t), and

the costs for scalar values pj ;, 117 ;, and noise generation nﬁ ;, are almost negligible. It should also be

noted that these scalar values can be pre-computed and stored in the memory before synthesis. Thus
the computational complexity of these methods are practically equal to Euler, Euler-Maruyama, and
DDIM methods.

Error from the Exact Solution of PF-ODE: The numerical error of the Quasi-Taylor method
from the exact solution increases depending on the following factors: (1) The truncation error of the
Taylor series in each step, i.e. O(hPT1), (2) The number of the steps i.e. O(1/h), (3) The training and
generalization error of the score function, i.e. & £, and (4) The average error between the frue and
ideal derivatives of the score function =: ||4]|. If the factors 3 and 4 could be zero, then the numerical
error is the order of O(hP). Otherwise, the expected numerical error is roughly evaluated as follows,

error = O (W~ (RL + B> (L + ||8])) + B3 (L + [|8]) + - - + hPTT))
=0 (L+hL+|8])+R*(LA+0])+ -+ hP). (28)

That is, the error of Euler method is O(£L + h), the Heun method (2nd order Runge-Kutta) will be
O(L+ hL+ h?), and the Taylor-2nd method is O (L + h(L + ||5]|) +h?). As long as £, ||6]| > 0, the
predominant O(h) term will not disappear. Therefore, the overall order of the error will not decrease
even if we increase the order of Taylor series greater than p > 3. Nevertheless, beyond such an order
evaluation, specific coefficients in higher order terms can still affect the performance, which should
be validated empirically.

4 IMAGE SYNTHESIS EXPERIMENT

Experimental Configuration: In this section, we conduct experiments to verify the effectiveness
of the methods developed in this paper. Specifically, we compare the performance of the Euler
scheme eq. , Taylor 2nd & Taylor 3rd (Alg. , DDIM (Song et al., |2020a), and the Runge
Kutta methods (Heun and RK4 § [E-3} these are less efficient than others because of NFEs per step)
for PF-ODE, as well as the Euler-Maruyama scheme eq. (I2) and Ité-Taylor (Alg.[2) for R-SDE.
The datasets we used were CIFAR-10 (32 x 32) (Krizhevskyl [2009) and CelebA (64 x 64) (Liu et al.|
2015).

The network structure was not novel but was based on an existing open source implementation; we
used the “NCSN++" implemented in the official PyTorch code by Song et al.| (2020b)). The network
consisted of 4 levels of resolution, with the feature dimension of each level being 128 — 128 —
256 — 256 — 256. Each level consisted of BigGAN-type ResBlocks, and the number of ResBlocks
in each level was 8 (CIFAR-10) and 4 (CelebA). The loss function we used was the unweighted Lo
loss similarly to (Ho et al.| [2020). The optimizer was Adam (Kingma & Bal [2014). The machine
used for training was an in-house Linux server dedicated to medium-scale machine learning training
with four GPUs (NVIDIA Tesla V100). The batch size was 256. The number of training steps was
0.1 M steps, and the training took about a day for each dataset.
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(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 1: Comparison of the synthesis results of CelebA (64 x 64) data. The number of refinement
steps is NV = 12.

The noising schedule was also the same as the existing one, the default configuration of VP-SDE
2020b): B; = 0.1+19.9¢ and vy = 1 —exp(—0.1¢ — 9.95¢2) eq. . The integration duration
was T' = 1, and the step size h was constant, i.e. h = T'/N where N is the number of refinement
steps.

As a quality assessment metric, we used the Fréchet Inception Distance (FID) (Heusel et all 2017).
To evaluate FIDs, we used the pretrained Inception v3 checkpoint (Szegedy et al.,[2016), and resized
all images to 299 x 299 x 3 by bilinear interpolation before feeding them to the Inception network.
For each condition, 10,000 images were randomly generated to compute the FID score. Note that
in this experiment, the computational resources for training were limited, and training was stopped
before it fully converged (only 0.1 M steps, while in some other papers the number of training steps
was e.g. 1.3 M steps in (Song et al.}2020b)). Therefore, it would be necessary to observe relative
comparisons between samplers rather than directly comparing these FID value to those presented in
other papers.

Results: Figure [T] and Figure [2] show random samples for each sampler. More examples are
available in § [G] The deterministic samplers considered in this paper generated plausible images
much faster than the vanilla Euler-Maruyama sampler.

Figure [3a]and Figure [3b]reports the FID scores. From these figures, the following observations can be
made. First, the proposed Quasi-Taylor methods have about the same or slightly better than DDIM.
The reason for this is discussed in the next section § 5] We also found that the Runge-Kutta methods
reduces FID in fewer steps overall. However, they also hit bottom faster. This may be due to the
effect of the singularity at the time origin (see § D) in the final step. (This can be seen in Figure[T6] In
the second right column, the Runge-Kutta methods produce images similar to the other deterministic
samplers, but the rightmost ones seem to be slightly noisier than the others).

Even though the ideal derivatives are only approximations and contain some errors, the convergence
destinations of Quasi-Taylor methods were almost the same as the Runge-Kutta methods. This
suggests that the error in the ideal derivatives is actually hardly a problem, because in regions where
the approximation error is large, the state x; is noisy to begin with (e.g. left 2/3 figures in Figure [T6),
and the approximation error is negligible compared to the noise that was originally there.

The proposed stochastic sampler (It6-Taylor) also showed sufficiently competitive results, in terms of
both FID scores and visual impression. Comparison of the figures in §[G](e.g. Figure[21)) confirms
that the It6-Taylor method empirically reaches almost the same target as Euler-Maruyama method
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(a) DDIM (b) RK4 (NFE=4) (c) Taylor (3rd) (d) Ité-Taylor

Figure 2: Comparison of the synthesis results of CIFAR-10 (32 x 32) data. The number of refinement
steps is NV = 30.
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Figure 3: Comparison of FID scores ().

much more accurately, and it could be expected to be a safe alternative to Euler-Maruyama method
when stochastic sampling is important.

5 DISCUSSION: RELATIONSHIP WITH DDIM

In the above experiment, the performance of the proposed Quasi-Taylor methods are found to be
almost equivalent to that of DDIM. In fact, despite having distinctly different derivation logics, the
proposed method and DDIM actually agree, at least up to the 3rd order terms of h. Therefore, it is not
surprising the results are similar; and the smaller A is, the closer the results are. This can be quickly
verified by doing a Taylor expansion of the coefficients of eq. (15), i.e., a;{—jh and (oy_p, — a;—;“at),
w.r.t. h. Although it is tedious to perform this calculation by hand, the computer algebra systems e.g.
SymPy immediately calculate it. For this computation, see § [C|

This finding that truncating DDIM at the 2nd or 3rd order of h yields exactly the same algorithms
as the proposed Quasi-Taylor methods may be a useful insight for DDIM users, even if it does not
lead them to switch the regular sampler from DDIM to Quasi-Taylor. That is, it offers an option of
truncating the higher-order terms of DDIM.

6 CONCLUDING REMARKS

This paper proposed a Taylor-expansion approach for diffusion generative models, particularly the
Probability Flow ODE (PF-ODE) and the reverse-time SDE (R-SDE) solvers. The assumptions
to derive our sampler were minimalistic, and the derivation process was straightforward. We just
substituted the derivatives in the Taylor series by ideal ones.

The obtained Quasi-Taylor and Quasi-Itd-Taylor samplers performed better than or on par with
DDIM and Runge-Kutta methods. This fact implicitly supports the validity of our approximations.
Conversely, if we could find some examples where the Quasi-Taylor methods, DDIM and RK methods
gave decisively different results, we might be able to gain a deeper understanding of the structure of
data manifold and the fundamentals of diffusion models by investigating the causes of discrepancy.
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Reproducibility Statement Pseudocodes of the proposed methods are available in § [F and the
derivation of the proposed method is described in § [B.T} § B.3] The experiment is based on open
source code with minimal modifications to match the proposed method, and all the data used in this
paper are publicly available. Experimental conditions are elaborated in § 4}

Ethics Statement As a final note, negative aspects of generative models are generally pointed out,
such as the risk of reproducing bias and discrimination in training data and the risk of being misused
for deep fakes. Since this method only provides a solution to existing generative models, it does not
take special measures against these problems. Maximum ethical care should be taken in the practical
application of this method.
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A ON THE APPROXIMATION Vy, log p(x:,t) = Vy, log p(x,t | X0, 0)

Although Vy, log p(x;,t) and Vy, log p(x¢,t | xo,0) are clearly distinct concepts, they are nearly
equivalent in practical situations that the data space is high-dimensional and the data are distributed
in a small subset (low-dimensional manifold) of the space. That is, in such a case, the integrated
gradient Vi, log p(x¢, t), given by

vxt 1ng(xt7 t) = th IOg /p(xt7t | X0, 0)p(XO7 O)dXO

_ vxt fp(xtvt | XOaO)p(X07O)dXO
fp(xtv t | X0, 0)p(X07 O)dx()
_ EP(XO) [vti(Xt’t ‘ X0, 0)]
Ep(xp) [P(X¢, T | X0, 0)]
Ep(xo) |:_xf,—\/1—y,,x0

vt

p(xht ‘ X0, O)

Ep(xo) [P(xt, T | X0,0)]

_E _xt — MXO e‘“xt—\/l—'/txo\lz/QW (29)
p(x0) v Ep(xo)[efﬂxtf\/ilfl/tonQ/QVt] ’

=Vx, log p(x¢,t]x0,0) =q(xo|x¢)

almost always has a single point approximation which is written as Vy, log p(x¢, ¢ | xéi), 0), where

x((f) is a certain point on the data manifold. There are two phases depending on the noise scale

&y = 1 — v, and both phases have different reasons for the validity of the approximation.
A.l PHASE (1): ANYONE CAN BE A REPRESENTATIVE (@; =1 — v ~ 0)

If x; is far from any of {MXS) | x(()i) ~ p(x0)}, the gradients from each scaled data points are
almost the same. Therefore, the integrated one viz. V log p(x;,t) can be approximated by any of
Vlog p(x¢,t | xg), 0) for any xg’) ~ p(xo). Figure@intuitively illustrates the reason.

More quantitatively, noting that the weight function ¢(-) satisfies E,(x,)[q(x0 | x¢)] = 1, the Lo

distance between V log p(x¢,t) and V log p(x¢, t | xéi), 0) is bounded above as follows,
|V log p(xi. t) — Vlogp(xe. t | x§.0)]1
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where R, is the radius of the smallest ball that covers the data manifold M. The radius R4 will be
a finite constant in most practical scenarios we are interested in. For example, if the data space is

d-dim box, i.e., M C [0,1]%, then R4 is bounded above by R < v/d/2.
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gradient V log p(x¢, t)~ Vlog p(xy, t | x(()i), 0) @
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Figure 4: Intuitive reasons why a single point approximation is valid. The case where 1 — 14 ~ 0

Noting that ||V log p(x¢,t | x((f), 0)||2 & y/d/v; (this is actually a random variable that follows the
X-distributiorﬂ), the relative L error is evaluated as follows,

1 t) - V1 tx,0 1
(relative Lo error) = [V 1ogp(xi,t) = V ng(():)t’ [ %07, O)ll2 = ‘- (31)
[V 1ogp(xt,t | %57, 0)[l2 %
Similarly, the cosine similarity is evaluated as
; 1 1— 1—
cossim(V log p(x¢, t), Vlog p(x¢, t | Xéz),())) Z1- 5 <1 + Vt) . (32)
V¢ V¢

These bounds suggest that the relative error between the true gradient and the single point approxi-
mation approaches to 0, and the cosine similarity goes to 1, as v, — 1 (& — 0). That is, the single
point approximation is largely valid when the noise level v; is high.

Proofs for some facts used in this section

B Jensen’s inequality: A sketchy proof of Jensen’s inequality for Lo-norm is as follows:

Tt T[] =3 (T

2 [ i

<33 wa @) = wn Y (@) = wallx™ 3 (33)

i

2

B Cosine similarity: Given the relative distance between x and y as ||x — y||2/||x||2 = r (for
simplicity, let 7 < 1) then the cosine similarity between the vectors are evaluated as follows,

1 2 2l — vlI2
cossim(ry) = ¥ _ Il foy) _ Ukl Il + vl ~ e~ vIB
Ixll2llyllz Iyl [xlZ 2yl %13
1 3 1
o A N
2 |lyll2 %13 2\ |yl Ixllz iyl
Noting that the triangle inequality implies that the Ly norm of y is bounded as follows,
(L =7r)llxll2 < llyll2 < (1 +7)[Ix]l2, (35)
we can put ||y||2/||x|l2 = 146, (0 < |6] < r < 1), and can evaluate the cosine similarity as follows,
1 1 1
cossim(x,y) = 3 (1-1-(5 +(1+496)— T 6r2>
1 1
%5((175)+(1+5)7(175)r2)>1f§(1+7')7’2. (36)

'Given Gaussian random variables X; ~ N(0, 1), then the squared sum of them Z;izl X7 follows the
x2-distribution with d degrees of freedom. It is well known that x? distribution converges to A/ (d,2d) as
d increases. Therefore, If d is sufficiently large, ||x||2 = (3¢, X})¥? ~ Vd++v2d = Vd + \/1/2.
Thus the Ly norm of d-dim Gaussian variable is approximated by v/d, and the error is as small as the scale

of \/1/2. It implies that Gaussian distribution looks like a sphere in high-dimensional space, contrary to
our low-dimensional intuition. Indeed, the following inequality holds (Laurent & Massart, 2000, Lem. 1):

p((1=2/y/d)"? < |Ix]l2/Vd < (1 +2¢/y/d + 2y/d)"/?) 2 1 — 277

15



Under review as a conference paper at ICLR 2023

Xt

-] )
’ PR x\(;ﬂ) -

X e

(a) Discrete case (b) Continuous case

Figure 5: Intuitive reasons why a single point approximation is valid. The case where 1 — vy, =~ 1

A.2 PHASE (2): WINNER TAKES ALL (a; = 1 — 1 > 0)

The above bounds suggest that the single point approximation is valid only when the noise level v; is
high (1, = 1). However, we can also show that the approximation is also valid because of another
reason when the noise level v; is low (v; =~ 0).

If p(xo) is a discrete distribution, and if v; = 0, the weight factor q(xéi) | x;) in eq. is almost
certainly a “one-hot vector” such that

gx [ x)~1, and (x5 | x,) =0 #). (37)

That is, the entropy of g(x¢ | x;) is nearly zero (see Figure[). It is almost certain (prob ~ 1), since

the converse is quite rare; i.e., there exists another data point x(()j ) near Xt ~ p(x¢, 1 | x(()j ), 0) in such
a situationﬂ Figure|5alintuitively shows the reason.

If p(xg) is a continuous distribution, very small area (almost a single point) of the data manifold
contributes to the integration eq. (29). Figure [5b|intuitively shows the situation. The weight function
will become nearly the delta function, and the integration will be almost the same as the single point
approximation,

q(x0 | x¢) =~ d(x0 — X3). (38)
where xj is a certain point close to the perpendicular projection of x; on the data manifold. These
are related to the well-known formulae € log } exp(-/¢) and € log [ exp(-/e) goes to max(-) when
€ — 0. Naturally, this is more likely to be true for high-dimensional space and is expected to break
down for low-dimensional toy data.

Now let us elaborate the above discussion. As the scale we are interested in now is very small, the
data manifold is approximated as a flat k-dim space. In addition, as ¢(- | x;) is a Gaussian function,
it decays rapidly with distance from the center (perpendicular projection of x;, € R? to the k-dim

?Let us evaluate the probability more qualitatively using a toy model. Let us denote a k-dim ball of radius
r by B*(r), and let D; be the Ly distance between x; and /T — v4x\", i.e., D; = ||x¢ — vT — ix||2 ~
V/ved. The question is whether there exists another data point xéj ) (j # 4) in the discrete data distribution
D= {xéi) }; such that D; < D;. In other words, whether there exists another data point in B%(y/v;d) centered
at+/1 — I/tX(()i). If it is the case, q(xéj ) | x+) has significantly large value compared to q(x(()“ | x¢), and it will
have strong effects on the result of integration eq. (29). Now let us show that it is unlikely in a high-dimensional
data space. As it is difficult evaluating the probability for general cases, let us consider a toy model that the all
the n points are uniformly distributed in a k-dim ball (k < d). That is, we assume that the data manifold is
M = B*(\/k) which satisfies D C M C R%. Then, the probability we are interested in is roughly evaluated
as

k¢ /o \ ™ k(ST "
p(3j#i,D; <Di)~1— (1 _ yol[B7(vvik)] ) 1o (1o YB (Vuk)]
vol[v/1 — veM]| vol[B*(1/(1 — v)k)]
Remembering that the volume of k-dim ball is given by vol[B*(r)] = #ﬁl)rk, the probability is approxi-

mated as follows,

vk k/2\ ™ » k/2
hs=1—-|1—( —— ~ if ~0,k 1.
o (u—mw> "(1—w> e

Thus, when v, is sufficiently small and the data manifold is sufficiently high-dimensional, it is almost unlikely
that there exists such a point xéj ) (j # 1) unless n is very large.
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subspace). For this reason, only a small ball around the perpendicular foot of x; contributes to the
integration. As the majority of k-dim Gaussian variables of variance oI are distributed on a sphere

of radius v/ko, it would be sufficient to consider a ball of radius (v/& + 2)\/7r.

Now the integration eq. (29) is approximated as follows,

eq. @9) ~ / [V, log p(xe, ¢ | %0, 0)a(x0 | x)p(x0)] dxo,
B

where B = {xq | |[V1 — rix0 — x¢|l2 < (Vk +2)y7i}. (39)

As B is small, the gradient vector Vi, log p(x¢,t | X¢, 0) is almost constant in this region. Quanti-

tatively, let x(()l)7 x((f) € B, then the distance between these points is evidently bounded above by

%Y = x@ 5 < 2(Vk + 2),/77, which implies
Vlogp(xi,t | x{,0) = Viogp(xe. t | xi,0) |
xi —VI=vxy)  xi—VT=wxy

147 147 9
(1) (2)
Vv1— — V1—
_ V(% Xy ) < Vt.Q(\/%+2)\/V—t
V¢ 5 Uy
1—
=2(VE+2)/ — . (40)
t

Noting that |V logp(x,t | X0,0)|l2 &~ +/d/v, the relative Lo error between two gradients is
bounded above by

IV log p(xs, ¢ | x§”,0) — Vieg p(xs, t | x(P,0)]|2 < 2(\/%+ VI —v 2\/? @)
[V 1log p(x, 1t | X(()2)70)||2 - Vd - d

By integrating both sides [’| w.r.t. xgl), ie. [ (-)q(xél) | xt)p(xgl))dxél), we obtain the following
inequality for any point xj € B,

IV 1og plxi, ) = Viog (st | x6: 0l 2\/?_ )
IV log (1.t x5,0)1: d

Now, let us recall that a noised data x; ~ p(xy, t) is generated in the following procedure.

1. Draw a data x((f) from p(xq, 0).

2. Draw a Gaussian x; ~ p(x;, t | x7,0) = N(vT = x{, 41a).

Here, the data point x(()i) € M is in the ball BB, because the distance between /1 — utx((f) and the

perpendicular foot of x; is about v/v;k, which is clearly smaller than (\/E + 2)/V;. Thus we can
write the following inequality.

|V log p(x¢, 1) —Vlogp(éc)mt | x”,0)]l2 éQ\/E, 43)
IV log p(xct, t | %57, 0)2 d

and we may conclude that the following approximation is largely valid if 1, ~ 0, k < d,

Vlogp(xt,t) = Vlog p(x:, 1t | xéi),O). (44)

3We used the following relation: IEx[f(x)] = ¥ll2 = [|Ex[f(x) — ¥]ll2 < Ex[||f(x) — yl|2]-
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A.3 COMPARISON OF THE EMPIRICAL SCORE FUNCTION AND THE SINGLE POINT
APPROXIMATION

Let us empirically validate the accuracy of single point approximation using real data as follows,

* D = {MNIST (LeCun et al.,[2010) 60,000 samples},
* D = {CIFAR-10 (Krizhevsky} 2009) 50,000 samples}.

Since the true score function cannot be determined without knowing the true density (which will be
possible with synthetic data, but discussing such data will not be very interesting here), the empirical
score function was calculated using the real data D above as follows,

True Score = V log p(xy, t)
= Ep(Xo)[Q(XO | x¢)V log p(x¢,t | X0,0)]
1
~ 2] > la(xo | %)V log p(xy,t | x0,0)] =t Empirical Score. (45)
x0ED

The evaluation of empirical score function using the entire dataset is unrealistic if the dataset D is
large, but it is feasible if D is a small dataset like MNIST and CIFAR-10.

In order to evaluate the accuracy of single point approximation, we evaluated following three metrics.

* Relative Lo error between the empirical score function and V log p(xy, t | X, 0),
* Cosine similarity between the empirical score function and V log p(x;, t | X0, 0),

* Entropy of q(x¢ | x¢).

Figure [6] shows the relative L, distance, for both datasets. Figure[7]similarly show the distribution
(random 10,000 trials) of the cosine similarity, and Figure (8| shows the entropy. Dashed curves
indicate the bounds evaluated in eq. (31)) and eq. (32).

These figures show that the range of intermediate region between Phase (1) and Phase (2) will not
have impact in practical situations since we do not evaluate the neural network Sy (-, -) in this range
so many times (i.e., @ ~ 1072 to 107! < 14 ~ 0.999 to 0.9). Moreover, the approximation
accuracy is still very high even in this region. Furthermore, although MNIST and CIFAR-10 are quite
“low-dimensional” for real-world images, approximations are established with such high accuracy.
Therefore, it is expected to be established with higher accuracy for more realistic images.
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Figure 6: Relative L, distance ({) between the empirical score function eq. (@) and the single point
approximation, depending on the noise level 1;. Dashed curves indicate the upper bounds evaluated

in eq. (31).
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Figure 7: Cosine similarity (1) between the empirical score function and the single point approx-
imation depending on the noise level v;. Dashed curves indicate the lower bounds evaluated in

eq. (32)
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Figure 8: Entropy of ¢(x¢ | x;) depending on the noise level v;.

19



Under review as a conference paper at ICLR 2023

B ON THE IDEAL DERIVATIVE APPROXIMATION
Thus, we can assume that the single point approximation almost always holds practically.
89 (Xt, t) mPSel almost equal

(%)
i —V1—myx
A Vi, 1 1) R v, 1 ¢ x0) = XLV T %0
\/ITt t ng(xt7 ) t ng(xt7 |XO ) ) v

Therefore, we may also expect that the similar approximation will be valid for their derivatives.

Of course, strictly speaking, such an expectation is mathematically incorrect. For example, let
g(x) = f(z) + esinwa, then the difference g(x) — f(z) = esinwx goes to zero as € — 0, but
the difference of derivatives ¢'(z) — f’(x) = ew cos wzx does not if w — oo faster than 1/e. If the
error between them in the Fourier domain is written as F(w) = G(w) — F(w), then the Ly error
between the derivatives is ||¢/(z) — f/(2)|3 = ||[wE(w)||% x const (Parseval’s theorem). In other
words, the single point approximation does not necessarily imply the ideal derivative approximation.
If it is to be mathematically rigorous, it must be supported by other nontrivial knowledge on the
data manifold. This nontrivial leap is the most important “conjecture” made in this paper and its
theoretical background should be more closely evaluated in the future.

B.1 DERIVATION OF THE “IDEAL DERIVATIVES”

Because of the discussion in § the true score function Vi, log p(x¢, t) is finely approximated by a
single point approximation Vy, log p(x:,t | Xg,0). Now we may also assume that the derivatives of
both will also be close.

In this paper, we are interested in the Taylor expansion of the following form (see also § [E.1.T)),

© 1k
P(xn, h) = (x0,0) + > % (0, +alxi, 1) - Vi) Plxi, 1) (46)
k=1 "

t=0

If the function v (x,t) is separable in each dimension (i.e., d, v; = 0 for i # j), the following
relation holds,

(a(xi,) - Vi, ) (%1, 8) = a(x4, 1) © Vi, © P4, 1), 47

where @ is the element-wise product or operation. If a(x;, t) is also separable in each dimensiorﬂ
the Taylor series is formally rewritten as follows,

) tk A
(i, 1) = (x0,0) + > 71 (10,2l 1) ©0,,)" (. 1) (48)

k=1"" t=0
where 0,, = Vx, © is the element-wise derivative operator. This is formally the same as the 1-dim

Taylor series. Therefore, it is sufficient to consider the 1-dim Taylor series first, and parallelize each
dimension later. Thus the derivatives we actually need are the following two.

8xtS(9(Xt,t) = th ® S()(Xt,t), 3th(xt7t) = (1at) ® Sg(Xt,t). (49)

B.1.1 SPATIAL DERIVATIVE 0,,Sp(x¢,1) == Vyx, © Sg(x¢,t)

Let us first compute the spatial derivative of the conditional score function.

x: — /1 — Xg
Ve

“In general, (a - V)? = (¥, a:0;)* = (X, a:0;) (225 a;0;) = >2;ai 32 ;(0ia; + a;0;0;). 1f ais
separable in each dimension, the 0;a;(i # j) terms vanish, and (a - V)? = 3, (a;0;a; + >; @ia;0;0;). If
the function 4 (x¢, t) is separable in each dimension, then (a - V)*¢ = >, (a:d;a; + > aia;0;0;) ke =
(axOpar + a307)x. Thus we can formally write (a- V)?1) = (a©@Vea+ac®aoOVoOV)oy =
a0 (Voa+adVoV)oy=aoVoe(@aoV)oy = (a0 V)Y = (a® dx)*p. (Note that the
operator (a - V) is scalar while (a ® dy) is d-dim vector.) We can similarly show (a - V)¥tp = (a ® dy)"
for k > 3.

(a' vXt)(_mvxt logp(xt7t ‘ X070)) = <Z aiaﬁ?ﬂ)
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aq

Here, we used the notation z;' to denotes the i-th component of a vector x;. Note that up to this point
in the discussion, there have been no approximations, but strict ones.

Now let us consider the approximation. Because of the single point approximation, we may assume
that the derivative of the integrated score function will also be approximated by the derivative of the
conditional score function, i.e.,

(a . vxt)(f\/l/»tvxt logp(xta t)) ~ (a : vxt)(i\/V»tht logp(xt,t | X(),O)). (51)

As the neural network Sy (x;, t) is trained so that it approximates the integrated score function, we
can also assume the following relation,

(8- Vi) (X1 1) & (2~ Vi) (—v/7r Vs, log pl(xe. ¢ | X0,0)) = }a (52)

Thus we have obtained the ideal spatial derivative of the neural network.

We can also formally write the spatial derivative as follows using the above notation,

1
0, S t)) = —1. 53
a® ( Xt 9(xt7 )) a® \/7t ( )
‘We can also write it as )
0y, S0(x¢,t) = —=1. (54)

N

B.1.2 TIME DERIVATIVE —0,S¢(X¢,t)
Next, let us compute —0,(—/v¢Vx, log p(x¢,t | X0, 0)). During the computation, X is replaced by
the relation

Xp =

1
i (x¢ + 14 Vi, log p(x4, t | x0,0)). (55)
We also use the following relations between v, 3, which is immediately obtained from the definition
of v,

ﬂt = (1 — Vt)ﬁt' (56)

Using the above information, we may compute the temporal derivative of the conditional score
function as follows.

— 0,(—/vtVx, log p(x¢,t | X0, 0))
x: — /1 — Xg

= _8t \/yt
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1. _ 1. _:
=—— <2yt(1 — 1) 1/2x0) — (xt — V1 —wxg) (—QVtVt 3/2)

" (\/%XO —(x¢ — mxo)>

v, 1 1
= —27;/2 (_Xt + (x¢ + 1V, log p(x4, t | X0, 0)))

— Vi 1 1
Y7 (<—1 + 1 Vt> Xt + - (vt Vx, log p(x¢,t | xo,())))
t

1 I
= Vi, | ,t ,0
zyf/g 11—, (ix¢ + 14 Vx, log p(x¢,t | x0,0))
1
= *73/2@ (vex¢ + 14V, log p(x¢,t | X0,0))
2v,;
Bt
2\/vy
(Note that this calculation is exact, and no approximation is injected.) Because of the single point
approximation, we may assume

—0,(— TV, log p(x1, 1)) & —0y(—/71V, logp(xi.t | x0,0))
_ B
-2
B
~

and therefore, we can also assume that the temporal derivative of the neural network is approximated

as
B 1

The “derivatives" have some good points. For example, the partial derivatives commute,

Oy, 0,S0(x1, 1) = 0,0, Sp(x1, 1). (60)

(xt + Vx, log p(x¢,t | x0,0)). (57)

(Xt + vxt Ing(Xtvt | X, 0))

(Xt + vxf, Ing(Xt, t)) ; (58)

_atSQ(Xt7 t) ~
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B.2 COMPARISON OF THE EMPIRICAL SCORE DERIVATIVES AND IDEAL DERIVATIVES

Let us empirically validate that idela approximation using real data similarly as above. However,
since the equations will become very complicated if we evaluate the exact empirical score derivatives,
we instead used finite differences as the ground truths. That is, let S(x, ¢) be the routine that computes
the empirical score function as follows,

1%
S0x.6) = =2t 3 latxa | )9 log (s ¢ x0,0)] 1)
x0E€D
and we evaluated the empirical score derivatives by the finite differences as followsﬂ

S(xe,t +) = S(xi, )

Empirical t Deriv: 0:S =~ (62)
€
S t) — S(xy,t
Empirical x; Deriv:  (a-Vy,)S ~ (x: + ea, 6) (xt,?) , where a ~ NV(0,1).  (63)

where ¢ should be a sufficiently small value, and we used ¢ = 1073 here. We compared these
empirical derivatives with the ideal derivatives using MNIST and CIFAR-10.

: Bt 1 Bt xt — V1 — X
Ideal t Deriv: 0+Sp = - —S t) ] = —
ea eriv :So NG Xy N o(x¢,1) NG Xy "
1
Ideal x; Deriv: (a-Vy,)Sgp = ——a

N

As the ideal derivatives require the specific function forms of diffusion and variance schedules, we
tested on following two noise schedules.

Linear schedule We first tested on the linear schedule eq. , where o = 0.1 and 3; = 9.95.
This is the same schedule as the one used in the main text.

Figure[Q]shows the relative L error and the cosine similarity between the ideal ¢ derivative eq. (2T)) and
the empirical ¢ derivative eq. , in which it is observed that they are very close when 0 < ¢ < 0.5,
while the approximation accuracy decreases as ¢ increases. However, even in that case, there tends to
be an overall positive correlation. It can also be observed that there is an error that seems to originate
from the singularity of time origin when ¢ ~ 0. (See also §[D.2])

For the x derivative (Figure E[), on the other hand, we can confirm that the errors between the ideal x
derivative eq. (ZT)) and empirical x derivative eq. (62)) are generally very highly correlated, except
around t =~ 0.5.

Modified tanh schedule We also tested on another noise schedule, the modified tanh schedule
eq. which does not have the singularity at the time origin. The parameters A, k were determined
so that vy = 0.001 and v, = 0.999. Figure[TT]and Figure[I2]show the results. In this case, the overall
trend is similar to the linear schedule, but we can observe that the singularity of the time origin of the
t derivative is eliminated.

>To verify the empirical x; derivative, let us consider a simple case of three-variable function f(z,v, 2).
As its total derivative is df = 0, fdx + Oy fdy + 0. fdz, we have f(x + a,y + b,z + ¢) — f(z,y,2) =
(ady + b0y + cd.)f(x,y, z) for small a,b,c. Leta = ea’,b = eb’ and ¢ = &c, then f(x + ea’,y +
et z+ecd) — f(z,y,2) =e(a’0s + '8y + '0,) f(z,y, 2). Therefore, we can write the spatial derivative as
(a0 + 60y + '0:) f(w,y,2) =limeso L(f(z +ea’,y + b,z +ec) — f(z,y,2)).
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ideal ¢ derivative. (Linear schedule.)
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Figure 11: Relative Lo Error (|) and Cosine similarity (1) between the empirical ¢ derivative and the
ideal ¢ derivative. (Modified tanh schedule.)
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B.3 THE DERIVATIVES L,(—f,), Ly(—f£;), Li(9), G¢(—£:), G(9)

The computation of the derivative L,(—f,), Ls(—£;), Ly (g), G4(—£;), Gy(g) does not require any
particular nontrivial process. All we have to do is rewrite a term every time we encounter a derivative
of Sg(x¢,t) or v, and the rest is at the level of elementary exercises in introductory calculus. To
execute this symbolic computation, the use of computer algebra systems will be a good option. It
should be noted, however, that some implementation tricks to process such custom derivatives are
required (in other words, the term-rewriting system should be customized).

The results are shown below. Although these expressions appear complex at first glance, the code
generation system can automatically generate code for such expressions.

. B2 B B ?
Lb(_fb)<$t>t) = <4t — 2) Tt + (2\/17t —_ 4V§/2) S@(xt,t) (64)
Lﬁ(—fﬁ)(l‘t,t) (% — 5;) Ty + j;tse(fl'ht) (65)
Gy(—£) (e, t) = (; - ;) 3/ (66)
Liglt) = —5 1= (67)
Gyg(t) = 0. (68)

We may also compute higher order derivatives, though we do not use them in this paper except
L,L,(—f1,),

L) (a1, 1) = (58 -5 @) "

BE(—vE + 3, — 3) 3854 By
' ( s T agm) Y0 @

S(9 (‘rta t)

. .
LyLy(—f;)(24,1) = <5f - 352@ + ﬁ;) T — ﬂt4?;%@

LﬁGﬁ(—fﬁ)(ajt’t) = @ (W _ 52 3v; 5t>

[\

t

B t) = VB (B0 _ P B
Gy Ly(~E)wnt) = VB [ - D+

GﬁGu(—fﬁ)(m‘t, t)=0

288 — b7
LyLyg(t) = W/Qt
LyGyg(t) =0
GyLyg(t) =0
GyGyg(t) = 0.

As we can see, no factors other than integers, z;, Sg(x¢,t), v4, ¢ and derivatives of 3; appear. This
is also true for higher order derivatives, which can be easily shown.
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SymPy Code Snippet for Automatic Symbolic Computation of Derivatives The following code
snippet is a minimalistic example of SymPy code to compute the above derivatives using the
customized derivative method. We used SymPy 1.11 to test the following code snippet.

from sympy import Function, symbols, sqgrt, simplify

x, t = symbols(’'x t’) # z=,1
B = Function(’beta’) # [¢

# define customized derivatives of vg
class nu(Function):
def fdiff (self, argindex=1):
t, = self.args
return (1 - nu(t)) = B(t) # v = (1 —v4)Be

# define customized derivatives of Sg(z,t)
class S_theta (Function) :
def fdiff (self, argindex=1):
x, t = self.args
if argindex == 1: # 0/0x
d= 1/ sgrt(nu(t))
elif argindex == 2: # 9/0t
d = (x - S_theta(x, t)/sgrt(nu(t))) = B(t) / (2 % sqgrt(nu(t)))
return d

# define f,
class f_flat (Function):
@classmethod
def eval(cls, x, t):
return - B(t) * x / 2 + S_theta(x, t) * B(t) / (2 » sgrt(nu(t)))

# define differential operator L,
class L_flat (Function) :
@classmethod
def eval(cls, fxt):
return —-fxt.diff(t) - f_flat(x, t) » fxt.diff (x)

# show each derivative

print (f_flat (x, t))

print (simplify (L_flat (f_flat (x,t)))) # L,f, (z¢,t); see eq. ([ED

print (simplify (L_flat (L_flat (f_flat(x,t))))) # L,Lyf,(z¢,t); see eq. (D,

# we can similarly define Fj,Lt,Gt and compute other derivatives.

The result will look like

zB(t) n So(,1)B(t)

[Out 1] — 5 2\/@

L afP(t) | w&B) | Se(x,t)BA()  Solw,t)EB(H)
[Out 2] 1 + 5 + Wi N0
outy - W 3B AW TiB(t) | Solw, B

8 4 2 8\/@
_ 38p(@.18(1) , Sp(w.0)F*(1)  3Se(w BWEBE) | So(w,1) B
8v3 () 83 (t) 403 (t) 2,/v(t)

and so on. Some additional coding techniques can further improve the readability of these expressions,
but there will be no need to go any deeper into such subsidiary issues here.

Thus obtained symbolic expressions can be automatically converted into executable code in practical
programming languages including Python and C++ using a code generator, though the authors
hand-coded the obtained expressions in Python for the experiments in this paper.
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C TRUNCATED DDIM IS EQUIVALENT TO THE QUASI-TAYLOR SAMPLER

Using SymPy, we can easily compute the Taylor expansion of a given function. For example, the
following code

sympy.series (B(t+h), h, 0, 4)

yields the result like

W f@)|, P ighE)

L+ = 4 S=0 L0 (kY.

B(t) + h dfl 1=t 9 6

Similarly, using the relation o, = (1 — v4)3;, we can easily compute the Taylor expansion of v;_, as
follows.

‘sympy.series(nu(t—h), h, 0, 3) ‘

52@) (t) 52(75) v(t) %ﬂ(gl) %B(gl)

Ve = V()+h (B () = BO)+h? | =5 - S gy |0 (W)

Using this functionality of SymPy, we can easily compute the Taylor expansion of the DDIM (Song
et al.l [2020a). Let us recall that the DDIM algorithm is given by eq. (I3)), and using our notation
a=+1—-—vando = \/V, it can be written as follows,

1—v_ 1—vy_
DDIM: x;_j ¢ # X + (,/Vth — Vthl/t> So(x¢,1).
—

1_Vt

—.,DDIM __.,,DDIM
pt h }Lt h

DDIM DDIM

Then using SymPy, the Taylor expansion of p;’,™ and p;p,

gy By 12 (@ ~e)+1 <ﬁt Bk, ﬁt) T o(h?), (70)

are computed as follows,

2 4 12 2 3

VPP = 5th+<‘tﬂt2)+h3<f§+5§ﬁthrﬂtﬂt%)Jro(h?’).

4 2u; 4 4y 41/t2 2u;
(71)

Although it has been known that DDIM corresponds to the Euler method up to 1st order terms (Song
et al., [2020a}; |Salimans & Hol 2022), this expansion gives better understanding of higher order terms.
That is, these are exactly equivalent to our deterministic Quasi-Taylor sampler eq. (23) and eq. (24)
up to 3rd-order terms. This fact may suggest that the assumptions behind the DDIM derivation will
be logically equivalent to our assumptions of ideal derivatives.

The advantage of the proposed Quasi-Taylor method is that we can decide the hyperparameter at
which order the Taylor expansion is truncated. On the other hand, DDIM automatically incorporates
terms of much higher order, leaving no room for order tuning.
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D ON THE NOISE SCHEDULE

D.1 BACKGROUND: PICARD-LINDELOF THEOREM

Let us consider a 1-dim deterministic system @(t) = a(x(t), t). It is well known that this ODE has
a unique solution if a(z, t) is Lipschitz continuous w.r.t. z and continuous w.r.t. ¢ (Picard-Lindel6f
Theorem). Otherwise, ODEs often behave less favorably. (Similar Lipschitz conditions are also
required for SDEs.)
Example 1. For example, the ODE i = x?,x(0) = 1 has the solution x = 1/(1 —t) when t < 1,
and it blows up at t = 1. It is usually impossible to consider what happens after t > 1 in ordinary
contexts.
Example 2. Another well-known example is @ = \/x,2(0) = 0. It has a solution x = t>/4, but
x = 0 is also a solution. It actually has infinitely many solutions v = 0 (ift < to), v = (t — t9)?/4
(if t > to), where to > 0 is an arbitrary constant.
Example 3. Let us consider the following ODE

t—1

FpprasyERE z(0) =1, (72)

i=—

which is a simplified model of the Linear schedule eq. (76)). The exact solution is as follows,

e—1
o , 73
x 1 (73)
which diverges att = 1. In this case, a(x,t) = —x-(t—1)/(1 767(#1)2) is not Lipschitz continuous,

as the Taylor expansion of the denominatoris 1 — e~ (t=1" = (t — 1)2 + O((t—1)Y), and a(x,t) is
approximately —x /(t — 1) near t = 1.

In these cases, the coefficient a(-,-) is not Lipschitz continuous. Even these seemingly simplest
ODE:s behave very complexly unless the coefficients are carefully designed.

In PF-ODE, the Lipschitz condition is written as follows,

Lip(f,) =

0y, <ﬁ2tl't - 2%89(%,15))‘ < 00. (74)

Using the ideal derivative of Sy (x4, t), this condition translates as

Lip(f,) = |B:(1 — 1/vy)| = ’ZZ < o0. (75)

D.2 SPECIFIC SCHEDULES

Including this point, the necessary conditions for a variance schedule 14, will be summarized as
follows.

1. vy =~ 0 so that the initial density p(xg, 0) is close to the true data density.

2. vp & 1 so that the terminal density p(xp,T') is close to the Gaussian.

3. Sufficiently smooth so that 8, = — 4 log(1 — 1) is well defined.

e In addition, 3; should also be smooth so that the Taylor schemes can be used.
4. Monotonic (s <t = vy < 1) to make ; non-negative.
5. Preferably, make the drift coefficient f, Lipschitz continuous so that PE-ODE has a unique

solution, i.e., Lip(f,) ~ | /14| < oc.

The following two scheduling functions which are common in diffusion generative models satisfy the
conditions 1, 2, 4 above (the linear schedule also satisfies the 3rd condition),
Linear: v, =1— e‘ﬂot—ﬁth, Br = Bo + 2p1t, (76)

™ 7 t/T+< .
Cosine: vy = 1—CCOS2 (ﬂ't/T-‘r§>’ 5t _ Ttan (if/lthg) ifo<t<T o
2 1+4+¢ S if T/<t<T
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where ¢ > 0 is a small constant, C = 1/ cos?(m¢/2(1 + <)) is a constant to make v = 0, and the
threshold constant is © = .

However, these common schedules do not satisfy the Sth condition that the drift coefficient f'b is
Lipschitz continuous. Indeed, it is easily verified that lim,_,( v; /14 = oo in both cases, since vy = 0
but 7y > 0. Nevertheless, ¢ = 0 is the only singular point, and since no function value or derivative
at t = 0 is evaluated by numerical methods (except by the Runge-Kutta method), this point can
practically be ignored.

Note that, we can also consider some other schedule functions such as the sigmoid function and
the hyperbolic tangent, which satisfy the condition 2, 3, 4, 5 but do not satisfy the 1st condition
rigorously (but if v is less than or equal to the level of the quantization error in the data, we may
consider the first condition to be essentially satisfied),

L 1
Sigmoid: Vp = 1§ - AR B = Awy, (78)
Modified Tanh: v, = tanh?(\(1)/2), By = A(t) tanh(\(2)/2), (79)

where the parameter function \(¢) has some options, such as \(¢) = log(1 + Ae**), and A > 0,
k > 0 are hyperparameters.

D.3 How TO AvVOID THE TIME ORIGIN SINGULARITY IN THE RUNGE-KUTTA METHODS

When using the Heun and Classical RK4 methods, the function f, (x;, t) is evaluated at time ¢ = 0.
However, since the function f, (x;, t) contains the term proportional to 1/,/1, it will diverge at time
t = 0 if the linear eq. (76) or cosine schedule eq. (77) is used. The simplest way to avoid this is to
replace the function f, (xo, 0) with f,(x., €) where ¢ > 0 is a sufficiently small constant, only when
the need to evaluate the function at time ¢ = 0 arises.

The same thing could happen at ¢ = T' if the cosine schedule and DDIM were used simultaneously,
but this can be handled in the same way.

If we use the sigmoid eq. (78) or modified tanh schedules, eq. (79) these problems do not occur unless
the hyperparameters A and k are chosen to be very extreme values.
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E SUPPLEMENT ON FUNDAMENTALS

For convenience, let us summarize some basics behind the ideas in this paper. The contents of
this section are not particularly novel, but the authors expect that this section will give a better
understanding of the ideas of this paper and the continuous-time approach to diffusion generative
models.

E.1 TAYLOR EXPANSION AND ITO-TAYLOR EXPANSION

E.1.1 TAYLOR EXPANSION OF DETERMINISTIC SYSTEMS

1-dimensional case Let us first consider a 1-dim deterministic system @(t) = a(z(t),t), where
a(-, -) is sufficiently smooth, and let us derive the Taylor series expression of the solution of this ODE.
Let p(z(t), t) be a differentiable function. Its total derivative is written as

Oy de dp Oy dx [
dp = 5t ——dt + 8md 5t —dt + — B dtdt 9 + o a(z,t) ) dt
d 13}
( 0 bazn > - (80)
:ZLb

By integrating both sides from 0 to ¢, we have

(1), 1) = (2(0),0) + / (Lop)((s), 5)ds. @81)

We use this formula recursively to obtain the Taylor series of the above system. Let p(x(t),t) = x(t),
then we have

2(t) = 2(0) + /O (Lyz) (2(s), 5)ds

= z(0) +/0 a(x(s), s)ds. (82)
Let p(x(t),t) = a(xz(t),t), then we have
a(z(t),t) = a(z(0),0) —l—/o (Lya)(z(s), s)ds. (33)

Using the above two equations, we have

z(t) = z(0) +/0t <a(x(0),0) -l-/Otl(Lba)(m(tg),tg)db)dtl

:$(0)+/ G(I’(O),O)dt1+/ /I(Lba)(z(tg),tz)dtgdtl

= 2(0) + ta(x / / (Lya)(z(ta), t2)dtadt; . (84)
We can expand again the term inside of the integral by using the following relation,
(Lya)(x(t), ) = (Lya)(x(0),0) + /Ot(Lfa)(x(S)as)d& (85)
and obtain the expansion as follows,
2(t) = 2(0) + ta(2(0),0) + t; (Lya)(z / / / (L2a)(2(ts), ts)dtsdtadtr.  (86)

Applying this argument recursively, we can obtain the Taylor series of the deterministic system, if
a(-, ) is sufficiently smooth.

z(t) = 2(0) + ta(z +§: (LF~'a)(2(0),0). (87)
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Since the above discussion is valid when the integration interval is (¢, ¢ + h) instead of (0, ¢), it can
be written as follows,

x(t+h) = z(t) + ha(z i— L~ ta)(z(t),t). (88)
k=2

??‘3

Multi-dimensional case Let us consider the multi-dimensional ODE x = a(x,t). The total
derivative of a smooth scalar function cp(x7 t) is written as

Iy Iy Op dzi \, _ Op 0
= —dt dz; dt —dt i(x,t dt
ot Jr;@a:z +Zam, at ™= ot ;a(x oz ) ?
dp 0
<8t + (a(x,1) - V)<p> dt = (8t +a(x,t) - V> pdt. (89)
Let ¢(x, t) be a vector-valued smooth function, then we immediately have
= (0, + a(x,t) - V) pdt. (90)

Using the scalar operator L, = (0, + a(x,t) - V), we can obtain the following Taylor expansion
similarly to the 1-dim case,

2

t
x(t) = x(0) + t(Lpx) + —(LEx) + e
=0 2 t=0
2
=x(0) +t(9, +a(x1) V)x| +5 (9 +alxt) Vx| 4
t=0 t=0
2
=x(0) + ta(x(0),0) + 5 (0, + a(x,t) - V) a(x,1t) +-- 1)
=0
The second order term (a - V)a is written as follows,
aq (X, t) a18$1a1 tee adﬁxd a1 1
(aV)a:(Zaia@) A e N Y N )
g aq(x,t) a10,,a4 -+ aqdy,aq] |1

In a special case where each dimension is separable, i.e. 0, a; = 0(i # j), the above d x d matrix is
diagonal, and we have

alawlal a1 8,£l aq

(a-V)a= : =l |o|l o] =a0Voa (93)

adazl Qaq Qaq 89:,1 Qaq

where © is the element-wise product or operation. In this case, it is sufficient to consider each
dimension separately, and it is formally equivalent to the 1-dim case.

E.1.2 ITO-TAYLOR EXPANSION OF STOCHASTIC SYSTEMS

For the above reasons, it is sufficient to consider the 1-dim case even in the stochastic case. As is
well known, Taylor expansion is not valid for stochastic systems z; = a(x,t)dt + b(xy,t)dBy. This
is because of the relation “dBt2 ~ dt”. This effect is taken into account in the celebrated 1t6’s lemma,
i.e., the stochastic version of eq. ,

(0 0 bz, t)? 62 0
dp = (875 +a(z,t)— o + = 92 > dt + (b( )835) wdBy. (94)
~—_——
=Ly =Gy

By using It6’s formula recursively, we can obtain the following higher-order expansion of a stochastic
system, which is called the Itd-Taylor expansion.

h h
T = To +/ a(ft,t)le'/ bz, t)dBy ©3)
0

0
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:xo-i-/oh (a(l‘o,O)+/Ot(Lﬁa)(xs7s)ds—|—/Ot(Gﬁa)(xS7s)st>dt
+/h (b(xo,O) /t(Lﬁb)(Ig, )ds+/t(Gﬁb)(azg, s)dB >dBt

=z + a(zo, 0 / dt—i—/h/ (Lya)(zs, s dsdt+/ / (Gya)(zs, s)dBsdt
b(o, 0) /O dB, + /O /O (Leb) (s, 5)dsd By + /O /0 (Gyb) (s, 5)dB,dB,
h h
=x0+a(x0,0)/0 dt+b(x0,0)/0 iB,
+/Oh/0t ((Lua)(mo,O)+~-~>d5dt+/0h/0t ((Gna)(xo,0)+~-->stdt
+/Oh/0t ((Lﬁb)(ato,o)+~-~>dsdBt—|—/Oh/0t <(Gﬁb)(x070)+---)stdBt

= z9 + a(zg, 0)h + b(x0,0) By

+ (Lya)(xo,0 / /dsdt—&—(Gﬁa %0, 0 / /dB dt
+ (Lyd) (0,0 / /dsdBt+ (Gyb) (0,0 / /dB dB;

+ Remainder, (96)

where the remainder consists of triple integrals as follows,

h rt ps
Remainder = / / / (L?a)(xu, w)dudsdt + -+ - . 97)
o Jo Jo

We ignore these terms now. If we also ignore the double integrals, we obtain the Euler-Maruyama
scheme.

Evaluation of Each Integral in eq. Let us evaluate the double integrals.

oot
/ / dsdt - - - (deterministic)
/ / dBgdt - - - (stochastic 1)
/ / dsd By - - - (stochastic 2)

//dB dBy; - - - (stochastic 3)

. L bt )
B Deterministic: The deterministic one, fo fo dsdt, is easy to evaluate.

h t h 1
/ / dsdt = / tdt = =h2. (98)
0 0 0 2

B Stochastic 1: Other integrals contain stochastic integrations. Let us denote the first one by Z.

oot h
Z= / / dBsdt = Bydt. (99)
o Jo 0

33



Under review as a conference paper at ICLR 2023

As Z is the limit of a sum of Gaussian variables, i.e.,

n—1 n—1 1
= hm Y h . h 3
o 7111_{20 i=0 EBM/” - nh—>120 n i=0 j:1(th/n - Bh(jil)/n))
h n—1 1 h
= lim — W;, W; ~N(0,— 100
S 2 2 W Wi N0, (100)

S0 Z is also a Gaussian, whose mean is 0. The variance, however, requires some discussions, which
shall be seen later. In addition, we shall also see that Z is correlated with B;y,,

E[2 - By] # 0. (101)

W Stochastic 2: The second one has the correlation with the first one as follows. Here, we use the
integral-by-parts formula. See e.g. (@ksendall [2013| Theorem 4.1.5).

h pt h
/ / deBt = / tdBt = tBt
0 0 0

B Stochastic 3: The third one is computed as follows, using a famous formula of It6 integral.

h t h
1
/ / dBsdB; :/ BB, = = (B; — h). (103)
0 0 0 2

This is derived by substituting ¢(z,t) = x? and z; = B; (i.e., dry = 0 - dt + 1 - dB;) into 1td’s
formula eq. (94).

B Substituting the Integrals to the It6-Taylor Expansion: Let us denote w == By, ~ N (0, 1), and let
us shift the integral interval from (0, i) to (¢,¢ + h). Then, we may rewrite the above second order
expansion as follows, which we have already seen in the main text,

h h
- / B,dt = hBy, — . (102)
0

0

Ti+h = Tt + ha(xt, t) + UN/b(I’t, t)
+ (Lya)(w,t) - h? )2 + (Gya) (x4, t) - 2
+ (Lgb) (w1, t) - (0h = 2) + (Gyb) (w4, 1) - (0* — h) /2. (104)

Covariance of the Random Variables w,Z Next, let us evaluate the the variance of zZ, and the
correlation between the Gaussian variables w and Z. Let us first calculate the variance of (wh — Z).

By It6’s isometry, we have
h 1
/ s’ds| = h®. (105)
0 3

E[(wh — 2)?] = E (/Oh sst> =E

The correlation between @ and Z is similarly evaluated by It6’s isometry (see (@ksendall, 2013} Proof

of Lemma 3.1.5)) as follows,
h h h 1
/ dB, / sdBs || =F / sds| = =h%.  (106)
0 0 0 2

E[@?] = E =E

h
Bh/ s5dBs
0

Using the above variance and covariance, we can calculate the variance of Z as follows,

1 Rz 1
E[2?] = E[(wh — 2)? — h?w? + 2hb3] = gh?’ — K2 h+2h- 5 = §h3~ (107)

We need to find random variables 1, Z that satisfy the requirements for (co)variances that E[w?] = h,
E[wz] = h?/2 and E[2?] = h?/3, and we can easily verify that the following ones do,

m N [h\%hﬁm h\/ﬁ(}Qﬁ} {Zj (108)
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where uy, uz "% N(0, 1). Let us compute the covariance matrix just to be sure.

B R VA e R v A

_[ va 0 u? wug]| [V hVR/2

= a2 M/wﬁ]EHmuz w3 ” {o hﬂ/m}

[ Vh 0 Vh  hvh)2

= |Wh/2 h\/ﬁ/z\/ﬁ] [0 h\/E/2\/§]

i )

35



Under review as a conference paper at ICLR 2023

E.2 DIFFUSION PROCESS AND FOKKER-PLANCK EQUATION

Derivation of Fokker-Planck Equation In this section, let us derive the Fokker-Planck equation

1
Op(xi,t) = =V, (f (X6, )p(x0, ) + 5.9(8)° Ve, (1, ). (110)
from the Itd SDE,
dx; = f(x;,t)dt + g(t)dB,. (111)
For simplicity, we consider a 1-dim case here. The following approach using the Fourier methods

(characteristic function) will be easy and intuitive. See also e.g. (Cox & Miller, 1965 § 5),(Karlin &
Taylor, [1981], § 15),(Shrevel 2004} § 6) and (Sarkka & Solin, 2019, § 5).

Let us consider an infinitesimal time step h. Then z;., is written as follows,
l't_;,_h = Tt +U)t, Wt NN(f(iL't,t)h,g(t)2h) (112)

Let us consider the characteristic function ¢, (w) = E,,)[expiwz] (Where i = /—1), which is
the Fourier transform of the density function p(z). Because of the convolution theorem ¢, 4, (w) =
¢z (w) - ¢y (w), the characteristic functions of p(z444,t + h), p(xy, t), and p(w,) have the following

relation,
¢$t+h (w) = Qu, (w)¢1t (w) (113)
It is easily shown that the characteristic function of the above Gaussian is given by
1
Pu, (w) = exp (z‘wf(xt,t)h - 2g(t)2hw2) : (114)

Expanding the r.h.s. up to the first order terms of h, we have
1
buw, (W) =14 iwf(z,, t)h — 5g(t)Qth + O(h?). (115)

Thus we obtain

¢3¢t+h (W)h_ ¢xt ((.U) _ <—(—7;w>f($t,t) + (—ZW)Qg(;)Q) th(W) + O(h) (116)
When h — 0,
. . 29(t)2
0y, (W) = —(—iw) f(z¢, 1) Pt (w) + (—iw) T‘bt(w)- (117)

Since (—iw) in the Fourier domain corresponds to the spatial derivative d,,, in the real domain ﬂ, it
translates as follows,

2
Ol t) = 0, (F(wep(ee )) + 82, 20 p(a 1), 118

and thus we have obtained the Fokker-Planck equation. In particular, if f = 0, this equation is called
the heat equation, which was also first developed by Fourier.
Example: Overdamped Langevin Dynamics When the drift term is the gradient of a potential

function U (-), the SDE is often called the overdampled Langevin equatimﬂ
dXt = —thU(Xt)dt—i— \/2DdBt7 (119)

®Integral by parts and p(—o0) = p(co) = 0. Formally writing,
. © 4 o0 . .
E%p(x)[e = /_oo e %p(m)dx =— /_oo iwe“ p(r)de = (—iw)Ep [e7].

"The Langevin equation should actually be the following equation system, which is called the underdamped
Langevin equation,
dB,

dt’

where v is the velocity (momentum) variable, M is the mass of particle, and ~ is a constant called friction
or viscosity coefficient. In this case, the energy function should also be modified as E = 1 M||v||* + U(x).
Assuming that the mass is very small compared to the friction, the derivative of momentum M v; can be ignored
(i.e., if the force F' is constant, the ODE M© = —~wv + F has the solution v = Ce /M 4 F/~, and the
velocity immediately converges to F'/~ if M < ) and the overdamped equation is obtained.

Xt = Vi, Mvt:—’YVt—thU(xt)+ V2D
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Gradient field, —VU (x)

Potential function, U (x) Probability, p(x) o< exp(—U(x)/D)

Figure 13: Force field (potential gradient, score function) —V U (x), potential function U (x), and the
Boltzmann distribution p(x) = +e~Y()/D_ The scalar potential U (x) is given by eq. (122)

" o > T > g -

Figure 14: Numerical simulation of Langevin and Fokker-Planck equations. (Top: microscopic
particle-wise dynamics) Time evolution of 1000 random samples {x\"”}19%0 obeying the Langevin
equation. Paths of four particular samples are shown in color. The time evolves from left to right.
(Bottom: macroscopic population dynamics) Time evolution of the density function p(x t) obeying

the Fokker-Planck equation.

- g 7 g o s o .
R

where D is a scalar constant. Its associated Fokker-Planck equation is
Oip(x¢,t) = Vi, - (Ve ,U(Xe) - p(xt, 1) + Vi, Dp(xt, 1))
=V,  [Vx, (U(xt) + Dlogp(xt,t)) - p(xs,t)] . (120)
If U(x:) + Dlog p(x¢,t) is constant, the r.h.s. will be zero, and therefore, 9,p(x¢,t) = 0. That is,
p(x) = = VP where Z :/ e U/Dgx (121)
Rd
is the stationary solution of the FPE, and it does no longer evolve over time. Therefore, it is expected

that the particles obeying the Langevin equation will eventually follow this Boltzmann distribution.

Let us compare the microscopic dynamics of each particle obeying the Langevin equation with the
macroscopic dynamics of the population obeying the FPE using a 2-dim toy model. The energy
function we use here is the following Gaussian mixture model,

T — COS %T“)Q + (y — sin 2’;“)2]
b

5o (122)

5
U(z,y) = —logy_exp l(
k=1
where o = 0.1. The diffusion parameter was D = 5. Figureshows the force field —VU (x) where
x = (z,y), potential function U (x), and the Boltzmann distribution p(x) = £e~V()/D,

Figure [I4] shows the time evolution of Langevin and Fokker-Planck equations, where the initial
density was p(xg,0) = N(0,I). The time step size was h = 5 x 1075, and the figures are plotted
every 50 steps. These figures will be helpful to intuitively understand that the SDE (Langevin
equation) and the FPE are describing the same phenomenon from different perspectives: individual
description or population description.
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E.3 DERIVATION OF THE PROBABILITY FLOW ODE AND REVERSE-SDE
E.3.1 DERIVATION OF THE PROBABILITY FLOW ODE

For convenience, the derivation of the PF-ODE is briefly described here. For more general case
details where g(t) is a matrix-valued coefficient which is dependent on x;, i.e. G(x, t), please refer
to the original paper (Song et al.,|2020b).

Firstly, let us consider an SDE,
The associated FPE is,
1
Op(xi,t) = =V - (£(x0, )p(x1, 1)) + A5 g()*p(xu, ). (124)

Here, let us forcibly incorporate the diffusion term (i.e., the second-order derivative) into the drift
term (first-order derivative). Noting that the Laplacian is the inner product of two V-s,i.e. A =V -V,

ths. = V- [£(x,, Op(xi 1) — v%g(t)Qp(xt,t)}

== [(f60.1) = s a0 p000) (e )
=~V (S0 1) = 5007V logplxi, ) ol 1)]. (125)

=, (x,t)

Thus we have obtained a diffusion-free version of the FPE of the form,

Op(x4,t) = =V - (£ (x4, t)p(x¢, 1)) — A(0-pfxz; T)). (126)
Since it is an ‘FPE’, it has an associated ‘SDE’ as follows,
dx; = £,(x;, t)dt +0-dB7. (127)

Although this ‘SDE’ does not give the same particle-wise dynamics as the original SDE, its macro-
scopic dynamics of population is exactly the same as the original one, since the associated FPE
has not changed from the original one at all. That is, the density evolves from p(xg, 0) to p(x7,T")
exactly the same way.

Since the obtained ‘SDE’ is actually a deterministic ODE, its time-reversal is simply obtained by
flipping the sign, i.e., B

dx; = (=1, (x¢, 1)) (—dt). (128)
Thus the Probability Flow ODE is obtained. If the terminal random variables are drawn from p(x7,T'),
then the particles obeying this ODE will reconstruct the initial density p(xg, 0) as a population.

Note that the vector field of the form j := pv is often referred to as the flux, particularly in physical
contexts e.g. fluid dynamics, where p is density and v is a vector field (such as the velocity field), and
the PDE of the form

dp+V-j=0 (129)
is often called the continuity equation, which is closely related to the conservation laws; in the fluid
case, the mass conservation law. Another well known example is the charge conservation law in
electromagnetism, where p is the charge density and j is the current density. In the present case
eq. , j = pf, is understood as the flux, and therefore, f, could be understood as a sort of velocity
field, and the conservation law corresponds to the fact that the sum of probability mass is constant.
This will give an intuitive understanding why the method is called the Probability “Flow” ODE.

E.3.2 DERIVATION OF R-FPE FROM KBE

In this section, let us show that R-FPE eq. (@) is the same as the KBE eq. (3)). Let us consider the
case where the diffusion coefficient is independent of the spatial variable, i.e., g(x;,¢) = g(t). The
overall discussion is based on (Anderson,|1982] § 5), though the following calculation is not explicitly
written in the paper.
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Firstly, the KBE is
g(s)?

- sp(xtat ‘ XS,S) = f(XS7S) : vx5p<xt7t ‘ sts) + TAXSP(Xtat | Xsas)a

and what we need to show is that this is equivalent as the R-FPE,

g(s)*

—0,p(Xs, 8 | x¢,t) = sz~(f(xs,t)—g(s)2vxs log p(xs, $))p(Xs, 8 | X¢,t)+Ax. 5

p(Xs, 5 | x¢,1)

For simplicity, we derive the former from the latter. By the Bayes theorem, we may substitute each
P(Xs,5 | %4,2) With p(xe, ¢ | Xq, 8)p(Xs, 5)/p(x, £), and obtain

o POt Xy plxes)
VXS ' (f(XS7t) - g(S)QVXS 10gp(XS7 5))

p(xt7t | Xs, s)p(XS7 S)
plert]
(5)2 p(xta t | Xs, S)p(xsa S) .

2 Dl )

To simplify the notation, let us denote p, = p(Xs, 5), py|s = p(X¢,t | X5, 5), and drop the variables
xs and s (that is, 0 always means J, and V always means V). Let us also recall the Leibniz rule
of the divergence of vector field. Let a be a vector-valued function and let v be a scalar function, then
the following relation holdsﬁ

ALY (130)

Leibniz rule: V-(au) =a-Vu+ (V-a)u (131)

Now let us evaluate each term. The l.h.s. is

— Oy(p(xt, t | X, 8)p(Xs, 8)) = —O(py|sPs) = —(Ope)s)Ps — Pe|sOPs
2
= —(Opy|s)Ps — Py)s (—V - (fps) + Ag2p3> (. FPE)

2
= —(Op4|s)Ps — Py)s (—f (Vps) = (V- £)ps + A%ps) (. Leibniz rule). (132)
The drift term is

V- [(f — ¢°V 1og ps)pysps)

Vps
=V- ng2 pp )ptsps}

=V - [fpysps — (VDs)g?pyys)

= [V fpysps] — [V - (VDs)g?pyys)

= [f- V(pysps) + (V- O)pysps] — [(VDs) - (Vg°peis) + (Aps)g°pys)

= [+ (psVDejs + ejsVDs) + (V- £)pysps| — [97(Vps) - (Vpus) + 62 (Aps)pys] - (133)
Finally, the diffision term is

9 g9
A(?pt\sps) =V v(?pﬂsps)
2

= %V ((Vpeis)ps + (Vps)pe)s)
2
= %(psApﬂs + pisAps + 2Vps - Vpys)- (134)

$This is also written as div(au) = a - gradu + u(diva). This is just expressing the relation, >, 9;(a;u) =

Zi (az(azu) + (&az)u) .
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Now let us simplify the R-FPE using the above relations.

2
Opejs + V- [(£ = ¢?V1ogpo)psye] + ATpy

2
X a(pt|sps) +V- [(f - g2v Ings)pﬂsps} + A(%pt\sps)

2

+ [£- (0sVPys + pysVrs) + (V- Dpiiaps] — [9°(Vps) - (Vpys) + ¢ (Apaipirs)
2
+ ?(psApt\s ""_M“r 2Vp, - vptls)

2
= (aptIS)ps +f- (psttls) + %(Apt\s)ps

2
= Ps (8pt|s + £ Vpys + gz(Apﬂs)) : (135)

It implies that if the following relation holds, then the R-FPE also holds,

2
Ospy)s + £ Vpys + %(Apﬂs) =0.

This equation is nothing other than the KBE. Hence, KBE implies R-FPE.

We may also do the same thing for the case where the diffusion coefficient g(x;, ¢) is dependent on
the spatial variable x;. In this case, the target R-FPE is modified as

2

1
—Opsje =V - [(f - pV(gzps)) pst] +A <g2ps|t)

2
— V- [(f— Vg® — *Vlogp,) pap] + A (%zm) : (136)

but we can also show that the KBE implies this relation. The use of computer algebra systems such
as SymPy can reduce the calculation effort for checking this fact.
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E.4 ON THE CONVERGENCE OF NUMERICAL SDE SCHEMES.

Let us introduce two convergence concepts which are commonly used in numerical SDE studies. See
also (Kloeden et al.,{1994] § 3.3, § 3.4)

Definition 1 (Strong Convergence). Let X; be the path at the continuous limit h — 0, and x; be the
discretized numerical path, computed by a numerical scheme with the step size h > 0. Then, it is
said the numerical scheme has the strong order of convergence  if the following inequality holds for
a certain constant K; > 0,

Definition 2 (Weak Convergence). Similarly, it is said that the scheme has the weak order of
convergence 3, if the following inequality holds for any test functions ¢(-) in a certain class of
functions, and a certain constant K,, > 0,

IE[¢(x:)] — E[p(%:)]| < Kb (138)

It is known that the Euler-Maruyama scheme has the strong convergence of order v = 0.5, and weak
order of # = 1, in general. However, for more specific cases including the diffusion generative
models that the diffusion coefficient g(¢) is not dependent on x;, the Euler-Maruyama scheme has a
little better strong convergence of order v = 1.

The strong convergence is concerned with the precision of the path, while the weak convergence
is with the precision of the moments. In our case, we are not much interested in whether a data
X( generated using a finite 4 > 0 approximates the continuous limit Xg, (h — 0) driven by the
same Brownian motion. Instead, we are more interested in whether the density p(Xo) of the samples
generated with a finite step size h > 0 approximates the ideal density p(Xo), (h — 0) which is
supposed to approximate the true density p(xg). In this sense, the concept of strong convergence is
not much important for us, but the weak convergence would be sufficient.
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E.5 RUNGE-KUTTA METHODS

Let us briefly introduce the derivation of Runge-Kutta methods for a 1-dim ODE & = f(x,t). We are
interested in deriving the following derivative-free formula

Topn =+ Y hbiki+o(hP), where ki = f(z + > hagkj, t+he;), n>p. (139)

i=1 j<i

The array of coefficients are often shown in the following form, which is called the Butcher tableau.

0
C2 | G21
C3 | az1 Q32
(140)
Cpn | Qpn1 Ap2 ' Qpnp—1
bl b2 T bn—l bn

Now the problem is how to design each value in this tableau. First, for simplicity, let us consider the
following 2nd order case,

Tiph = Ty + hblkl + hb2k2 + O(hz)
]’Cl - f(xht)
ko = f(x¢ 4 hagiky,t + hea),

or,
Titp = Tt + hblf(l't7 t) + hbgf(l‘t + haglf(l't7 t), t+ hCQ) + O(hQ). (141)

Noting that the Taylor expansions of the l.h.s. and the third term in r.h.s. are written as follows,
h? .
(Lhss.) = @, 4+ hf(z,t) + ?(f + fF) (@, t) + o(h?), (142)
(third term of r.h.s.) = hby (f(xh t) + hagy f (x4, t) f' (24, ) + hea f (24, 1) + o(h)) ,  (143)

we obtain the following relation.

2 .
v W)+ (4 S ) =
¢+ hby f(4,) + hbs (f(:vt, £) + hasy f (e, ) f (x4, ) + hea f(zy, t)) Fo(h?). (144)

Comparing both sides, we can find that the derivatives in both sides can be eliminated if the following
equation are satisfied,

hf(xtat) = hblf(xt,t) + hb?f(xtat)a (145)
h? . .
?(f + ff) (@, t) = hby (ha21f(xtat)f/(xtvt) + hC2f(~Tt7t)> . (146)
By simplifying the above equations, we obtain the following relations of coefficients.
1 1
bi +ba=1, beas = > baco = > (147)
and thus we obtain the following Butcher tableau.
0 0
ca | a2 = ¢ C2 (148)
‘ b1 bg ‘ 1— 1/(202) 1/(2C2)

(When ¢, = 1, the method is particularly called Heun’s method.) Thus we have confirmed that
the second order Taylor expansion of x,, is expressed as eq. (I41)), which is independent of any
derivatives of f.
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We can similarly consider higher-order methods. In the 3rd-order case, following relations are
automatically obtained after a little effort of symbolic math programming using e.g. SymPy,

1 1 1 1
bi+ba+bg =1, baco+bscs = > bach + bsci = 3’ azzaz1b3 = 5’ azzbzce = 5’
1 1 1
ag1ba + (as1 + az2)bs = 2 a3,by + (azy + az;)?bs = 3’ as1baca + (az1 + aszz)bzcs = 3
By solving this equation system using SymPy, the following Butcher tableau is obtained.

0 0

cy | as ca(#2/3) L2

€3 | a31  a32 c3(# c2) 03(3?3_3022—503) C3E§2_C§; (149)

c2(3ca— co(3co—
b bs b [ S T 2—3c 3 =2
‘ ! 2 3 ‘ 1 2co 2cs3 + 3cacs 662(627363) 6¢:3(¢:22—c3)

It will naturally become much more complicated when we consider higher-order methods, though
it can be simpler if substituting specific values. In the 4th-order case, when the Butcher tableau
is written as follows, the method is particularly called the Classical 4th-order Runge-Kutta (RK4)
method.

0 0
Co | 21 1/2 ]./2
C3 | az1 Qa3z2 = 1/2 0 1/2 (150)
Cq | Qg1 Q42 Q43 1 0 0 1
o1 b2 b3 ba '1/6 1/3 1/3 1/6

Numerical Example Let us consider a toy example # = xsint,zg = 1. The exact solution is
xy = el ™05t Figure compares the numerical solutions of the Euler, Heun, Classical RK4 and
Taylor 2nd methods, where the step size is h = 0.5. It is clearly observed that the Euler method
immediately deviates significantly from the exact solution but higher-order methods follow it for
longer periods; while 2nd-order methods (Heun and Taylor 2nd) gradually deviate from the exact
solution, the Classical 4th-order Runge-Kutta method more finely approximates the exact solution.

mm—— Exact

* Euler
Heun

@ RK4

@+ Taylor 2nd

0 Seee Coeesee® e ne 0009°%%00400000000000000

T T T T T T T T
0 5 10 15 20 25 30 35

t

Figure 15: Comparison of numerical solutions of the ODE & = xsint, xg = 1.

Note that the Taylor 2nd method is given as follows,

h2
Tirn = x¢ + h(zsint) + 5 (z¢cost + x¢ sin® t). (151)

derivative of z sin ¢

In this case the computation of the derivative (0, + x sintd,)(z sint) is tractable. However, it will
be infeasible if this term is a little more complicated. The Runge-Kutta method is advantageous if the
derivatives are not easy to compute.
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F PSEUDOCODE

F.1 QUASI-TAYLOR SAMPLER

The following pseudocode shows the proposed Quasi-Taylor sampler.

Algorithm 1 Quasi-Taylor Sampling Scheme with Ideal Derivatives

Require:
Trained neural network model S¢(x¢, ¢, c) f The conditioning information c is optional.
Datasized >0 ---Int

Total time 7" > 0 - - - Float
Number of steps N >0 ---Int

Variance schedule function vy - - - Float — Float
Diffusion schedule function 8; = — % log(1 — 14) - - - Float — Float
(Optional) Conditioning information ¢
Step size schedule hi, he, -+ ,hy  --- List of Float
Begin
x ~ N(0g4, 14) f# Draw a d-dimensional Gaussian noise with unit variance

forn =1to N do

[Step size and time parameter]
h < hnp

n—1

t(—T—Zhi
i=1

[Compute the Noise Level]

Compute, or get from lookup table, the values of vy, (¢, ,Bt, ﬂf
[Compute Coefficients]

Compute p° using eq. |)

Compute /,Lb using eq. li

[Update Data]
x < p’x+ 1’So(x,t,¢) /v ﬁeq.
end for
Clip outliers of x so thate.g. —1 < x < 1.
End
Output: x

Note that, p, and u,, as well as vy, Ay, B¢ and their derivatives, are only dependent on 7" and h.
Therefore, they can be pre-computed before the actual synthesis.
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F.2 QUASI-ITO-TAYLOR SAMPLER

The following pseudocode shows the proposed Quasi-It6-Taylor sampler.

Algorithm 2 Quasi-Itd-Taylor Sampling Scheme with Ideal Derivatives

Require:
Trained neural network model Sg(x¢, ¢, c) # The conditioning information c is optional.
Datasized >0 ---Int

Total time T" > 0 - - - Float
Number of steps N >0 ---Int

Variance schedule function v, - - - Float — Float
Diffusion schedule function 8; = —% log(1 —11) - - Float — Float
(Optional) Conditioning information c
Step size schedule hi, ho, -+ ,hn .- List of Float
Begin
x~N (04,14) # Draw a d-dimensional Gaussian noise with unit variance

forn =1to N do

[Step size and time parameter]
h <+ hn

n—1
teT=> h
=1
[Compute the Noise Level]

Compute, or get from lookup table, the values of vy, 3, B¢

[Compute Coefficients]
Compute p* using eq. l)

Compute 1* using eq. li

[Draw a Correlated Driving Noise]
if n = N then

nf =04 # No noise is injected at the final step

else
1 1

WNN(Od7Ifi)a uNN(Od,Id), zZ = §W+ﬁu

Compute n’ using eq. and w, z above.
end if

[Update Data]
X  p'x + 'S (x,t,¢)/v/v + n*

end for

Clip outliers of x so thate.g. —1 < x < 1.
End
Output: x

ff See eq. 1! and Theorem
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F.3 TRAINING

The following pseudocode shows an example for the training of diffusion-based generative models.

Algorithm 3 Training of Diffusion models

Require:
Datasized >0 ---Int i
Training Data D = {xf)l)7 c® }, where xéz) € R? # The conditioning information c is optional.

Neural network model Sy (x¢, t, c), parameterized by 6.
Neural network optimizer (Adam) and its parameters (e.g. learning rate)

Total time " > 0 - - - Float # Not necessarily the same as the one for the synthesis.
Variance schedule function vy - - - Float — Float £ Not necessarily the same as the one for the synthesis.
Batchsizeb >0 ---Int
Begin
for sufficiently many times until convergence do
[Draw a Batch]
batch + [ ] # Empty list
for b times (batch size) do
(x0,¢) ~ D #f Draw a data from the set of training data; the conditioning c is optional.
t ~ Uniform(0, T") # Draw a time parameter ¢ from the uniform distribution.
Compute v
w ~ N (04,14) f Draw a d-dimensional Gaussian noise with unit variance.

Append the tuple (xo, ¢, t, v, w) to batch
end for

[Forward Computation]
([X0]7 [C]1 [tL [V]u [W] < batch

[s] = So([v1 = v] O [xo] + [v¥] © [w], [1], [e]) t See also eq. (10).
[Back-propagation]
L Eouen [[|[W] — [s]]I5] # Loss. See also eq. 1i
Compute Vg L by the back-propagation.
0 < Adam(0,VoL) # Update the parameters of Sg(, -, ).
end for
End

Output: The network parameter 6.
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G ADDITIONAL RESULTS OF IMAGE SYNTHESIS

G.1 SAMPLING EXAMPLES

Euler

DDIM

Heun

RK4

Taylor (2nd)
Taylor (3rd)
Euler-Maruyama

It6-Taylor

Euler

DDIM

Heun

RK4

Taylor (2nd)
Taylor (3rd)
Euler-Maruyama

[t6-Taylor

Euler

DDIM

Heun

RK4

Taylor (2nd)
Taylor (3rd)
Euler-Maruyama

[t6-Taylor

Figure 16: Comparison of the image synthesis process. The dataset is CelebA (64 x 64). All the
conditions but the sampling algorithm are the same including the random seed. The number of
refinement steps is N = 16.
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G.2 RANDOM SAMPLES

e

(e) Taylor (2nd) (f) Taylor (3rd) (h) Ito6-Taylor

Figure 17: CelebA (64 x 64) synthesis samples. N = 4.

HPIETS
(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) Ito-Taylor

Figure 18: CelebA (64 x 64) synthesis samples. N = 8.
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(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 19: CelebA (64 x 64) synthesis samples. N = 16.

(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 20: CelebA (64 x 64) synthesis samples. N = 20.
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(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 21: CelebA (64 x 64) synthesis samples. N = 30.

(c) Heun (NFE=2)

alle)s | Ll

(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 22: CelebA (64 x 64) synthesis samples. N = 100.
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(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 23: CIFAR-10(32 x 32) synthesis samples. N = 4.

(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 24: CIFAR-10 (32 x 32) synthesis samples. N = 8.
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BB
(d) RK4 (NFE=4)
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(a) Euler (b) DDIM

(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 25: CIFAR-10 (32 x 32) synthesis samples. N = 20.
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(a) Euler
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(e) Taylor (2nd) (f) Taylor (3rd) (g) Euler-Maruyama (h) It6-Taylor

Figure 26: CIFAR-10 (32 x 32) synthesis samples. N = 100.
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