
Under review as a conference paper at ICLR 2022

RELATIVE MOLECULE SELF-ATTENTION TRANS-
FORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Pretraining using self-supervised learning holds promise to revolutionize molecule
property prediction – a central task to drug discovery and many more industries –
by enabling data efficient learning from scarce experimental data. However, despite
significant progress, non-pretrained methods can be still competitive in certain
settings. We reason that architecture might be a key bottleneck. In particular,
enriching the backbone architecture with domain-specific inductive biases has been
key for the success of self-supervised learning in other domains. Inspired by this,
we methodologically explore the design space of the self-attention mechanism for
molecular data. Our main contribution is Relative Molecule Attention Transformer
(R-MAT): a novel Transformer-based model that achieves state-of-the-art or very
competitive results across a wide range of molecule property prediction tasks.
Relative Molecule Attention Transformer uses a novel self-attention variant that
can be readily incorporated into future models for processing molecular data.

1 INTRODUCTION

Predicting molecular properties is central to applications such as drug discovery or material design.
Without accurate prediction of properties such as toxicity, a promising drug candidate is likely to
fail clinical trials. Many molecular properties cannot be feasibly computed (simulated) from first
principles and instead have to be extrapolated, from an often small experimental dataset (Chan et al.,
2019; Bender & Cortés-Ciriano, 2021). The prevailing approach is to train a machine learning model
such a random forest (Korotcov et al., 2017) or a graph neural network (Gilmer et al., 2017) from
scratch to predict the desired property for a new molecule.

Machine learning is moving away from training models purely from scratch. In natural language
processing (NLP), advances in large-scale pretraining (Devlin et al., 2018; Howard & Ruder, 2018)
and the development of the Transformer (Vaswani et al., 2017) architecture have culminated in large
gains in data efficiency across multiple tasks (Wang et al., 2019a). Instead of training models purely
from scratch, the models in NLP are commonly first pretrained on a large unsupervised corpora.
The chemistry domain might be at the brink of an analogous revolution, which could be especially
transformative due to the high cost of obtaining large experimental datasets. In particular, recent work
has proposed Molecule Attention Transformer (MAT), a Transformer-based architecture adapted to
processing molecular data (Maziarka et al., 2020) and pretrained using self-supervised learning for
graphs (Hu et al., 2020). Several works have shown further gains by improving network architecture
or the pretraining tasks (Chithrananda et al., 2020; Fabian et al., 2020; Rong et al., 2020).

However, pretraining has not yet led to such transformative data-efficiency gains in molecular property
prediction. For instance, non-pretrained models with extensive handcrafted featurization tend to
achieve very competitive results (Yang et al., 2019a). We reason that architecture might be a key bot-
tleneck. In particular, most Transformers for molecules do not encode the three dimensional structure
of the molecule (Chithrananda et al., 2020; Rong et al., 2020), which is a key factor determining many
molecular properties. On the other hand, performance has been significantly boosted in other domains
by enriching the Transformer architecture with proper inductive biases (Dosovitskiy et al., 2021; Shaw
et al., 2018; Dai et al., 2019; Ingraham et al., 2021; Huang et al., 2020; Romero & Cordonnier, 2021;
Khan et al., 2021; Ke et al., 2021). Motivated by this perspective, we methodologically explore the
design space of the self-attention layer, a key computational primitive of the Transformer architecture,
for molecular property prediction. In particular, we explore variants of relative self-attention, which
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has been shown to be effective in various domains such as protein design and NLP (Shaw et al., 2018;
Ingraham et al., 2021)

Our main contribution is a new self-attention layer for molecular graphs. We tackle the aforementioned
issues with Relative Molecule Attention Transformer (R-MAT), our pre-trained transformer-based
model, shown in Figure 1. We propose Relative Molecule Self-Attention, a novel variant of relative
self-attention, which allows us to effectively fuse distance and graph neighbourhood information
(see Figure 2). Our model achieves state-of-the-art or very competitive performance across a wide
range of tasks. Satisfyingly, R-MAT outperforms more specialized models without using extensive
handcrafted featurization or adapting the architecture specifically to perform well on quantum
prediction benchmarks. The importance of representing effectively distance and other relationships
in the attention layer is evidenced by large performance gains compared to MAT.

An important inspiration behind this work was to unlock the potential of large pretrained models
for the field, as they offer unique long-term benefits such as simplifying machine learning pipelines.
We show that R-MAT can be trained to state-of-the-art performance with only tuning the learning
rate. We also open-source weights and code as part of the Huggingmolecules (Gaiński et al., 2021)
package.

2 RELATED WORK
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Figure 1: Relative Molecule Attention
Transformer uses a novel relative self-
attention block tailored to molecule prop-
erty prediction. It fuses three types of
features: distance embedding, bond em-
bedding and neighbourhood embedding.

Pretraining coupled with the efficient Transformer archi-
tecture unlocked state-of-the-art performance in molecule
property prediction (Maziarka et al., 2020; Chithrananda
et al., 2020; Fabian et al., 2020; Rong et al., 2020; Wang
et al., 2019b; Honda et al., 2019). First applications of
deep learning did not offer large improvements over more
standard methods such as random forests (Wu et al., 2018;
Jiang et al., 2021; Robinson et al., 2020). Consistent im-
provements were enabled by more efficient architectures
adapted to this domain (Mayr et al., 2018; Yang et al.,
2019a; Klicpera et al., 2020). In this spirit, our goal is
to further advance modeling for any chemical task by re-
designing self-attention for molecular data.

Encoding efficiently the relation between tokens in self-
attention has been shown to substantially boost perfor-
mance of Transformers in vision, language, music and
biology (Shaw et al., 2018; Dai et al., 2019; Ingraham
et al., 2021; Huang et al., 2020; Romero & Cordonnier,
2021; Khan et al., 2021; Ke et al., 2021). The vanilla self-
attention includes absolute encoding of position, which
can hinder learning when the absolute position in the sen-
tence is not informative.1 Relative positional encoding
featurizes the relative distance between each pair of to-
kens, which led to substantial gains in the language and
music domains (Shang et al., 2018; Huang et al., 2020).
However, most Transformers for the chemical domain
predominantly used no positional encoding in the self-
attention layer (Chithrananda et al., 2020; Fabian et al., 2020; Rong et al., 2020; Wang et al., 2019b;
Honda et al., 2019; Schwaller et al., 2019), which gives rise to similar issues with representing
relations between atoms. We directly compare to (Maziarka et al., 2020), who introduced first
self-attention module tailored to molecular data, and show large improvements across different tasks.
Our work is also closely related to (Ingraham et al., 2021) that used relative self-attention fusing three
dimensional structure with positional and graph based embedding, in the context of protein design.

1This arises for example when input is an arbitrary chunks of the text (Huang et al., 2020) (e.g. in the next
sentence prediction task used in BERT pretraining).
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Figure 2: The Relative Molecule Self-Attention layer is based on the following features: (a) neigh-
bourhood embedding one-hot encodes graph distances (neighbourhood order) from the source node
marked with an arrow; (b) bond embedding one-hot encodes the bond order (numbers next to the
graph edges) and other bond features for neighbouring nodes; (c) distance embedding uses radial
basis functions to encode pairwise distances in the 3D space. These features are fused according to
Equation (4).

3 RELATIVE MOLECULE SELF-ATTENTION

3.1 MOLECULAR SELF-ATTENTIONS

We first give a short background on how prior work on adapting self-attention for molecular data, and
point out their potential shortcomings.

Text Transformers Multiple works have applied directly the Transformer to molecules encoded as
text using the SMILES representation (Chithrananda et al., 2020; Fabian et al., 2020; Wang et al.,
2019b; Honda et al., 2019; Schwaller et al., 2019). SMILES is a linear encoding of a molecule into
a string of characters according to a deterministic ordering algorithm (Weininger, 1988; Jastrzębski
et al., 2016). For example, the SMILES encoding of carbon dioxide is C(=O)=O.

Adding a single atom can completely change the ordering of atoms in the SMILES encoding. Hence,
the relative positions of individual characters are not easily related to their proximity in the graph
or space. This is in contrast to natural language processing, where the distance between two words
in the sentence can be highly informative (Shaw et al., 2018; Huang et al., 2020; Ke et al., 2021).
We suspect this makes the use of self-attention in SMILES models less effective. Another readily
visible shortcoming is that the graph structure and distances between atoms of the molecule are either
completely encoded or entirely thrown out.

Graph Transformers Several works have proposed Transformers that operate directly on
a graph (Maziarka et al., 2020; Rong et al., 2020; Nguyen et al., 2019). The GROVER and the
U2GNN models take as input a molecule encoded as a graph (Rong et al., 2020; Nguyen et al., 2019).
In both of them, the self-attention layer does not have a direct access to the information about the
graph. Instead, the information about the relations between atoms (existence of a bond or distance in
the graph) is indirectly encoded by a graph convolutional layer that is run in GROVER within each
layer, and in U2GNN only at the beginning. Similarly to Text Transformers, Graph Transformers
also do not take into account the distances between atoms.

Structured Transformer introduced in (Ingraham et al., 2021) uses relative self-attention that operates
on amino-acids in the task of protein design. Self-attention proposed by (Ingraham et al., 2021),
similarly to our work, provides the model with information about the three dimensional structure
of the molecule. As R-MAT encodes the relative distances between pairs of atoms, Structured
Transformer also uses relative distances between modeled amino-acids. However, it encodes them
in a slightly different way. We incorporate their ideas, and extend them to enable processing of
molecular data.

3



Under review as a conference paper at ICLR 2022

Molecule Attention Transformer Our work is closely related to Molecule Attention Transformer
(MAT), a transformer-based model with self-attention tailored to processing molecular data (Maziarka
et al., 2020). In contrast to most of the aforementioned models, MAT incorporates the distance
information in its self-attention module. MAT stacks N Molecule Self-Attention blocks followed
by a mean pooling and a prediction layer. For a D-dimensional state x ∈ RD, the standard, vanilla
self-attention operation is defined as

A(x) = Softmax

(
QKT

√
dk

)
V, (1)

where Q = xWQ, K = xWK , and V = xWV . Molecule Self-Attention extends Equation (1) to
include additional information about bonds and distances between atoms in the molecule as

A(x) =

(
λa Softmax

(
QKT

√
dk

)
+ λd g(D) + λgA

)
V, (2)

where λa, λd, λg are the weights given to individual parts of the attention module, g is a function
given by either a softmax, or an element-wise g(d) = exp(−d), A is the adjacency matrix (with
A(i,j) = 1 if there exists a bond between atoms i and j and 0 otherwise) and D is the distance matrix,
where D(i,j) represents the distance between the atoms i and j in the 3D space.

Self-attention can relate input elements in a highly flexible manner. In contrast, there is little
flexibility in how Molecule Self-Attention can use the information about the distance between two
atoms. The strength of the attention between two atoms depends monotonically on their relative
distance. However, molecular properties can depend in a highly nonlinear way on the distance
between atoms. This has motivated works such as (Klicpera et al., 2020) to explicitly model the
interactions between atoms, using higher-order terms.

3.2 RELATIVE POSITIONAL ENCODING

In natural language processing, a vanilla self-attention layer does not take into account the positional
information of the input tokens (i.e. if we permute the layer input, the output will stay the same).
In order to add the positional information into the input data, a vanilla transformer enriches it with
encoding of the absolute position. On the other hand, relative positional encoding (Shaw et al.,
2018) adds the relative distance between each pair of tokens, which leads to substantial gains in
the learned task. In our work, we use relative self-attention to encode the information about the
relative neighbourhood, distances and physicochemical features between all pairs of atoms in the
input molecule (See Figure 2).

3.3 ATOM RELATION EMBEDDING

Our core idea to improve Molecule Self-Attention is to add flexibility in how it processes graph and dis-
tance information. Specifically, we adapt positional relative encoding to processing molecules (Shaw
et al., 2018; Dai et al., 2019; Huang et al., 2020; Ke et al., 2021), which we note was already hinted
at in (Shaw et al., 2018) as a high-level future direction. The key idea in these works is to enrich the
self-attention block to efficiently represent information about relative positions of items in the input
sequence.

What reflects the relative position of two atoms in a molecule? Similarly to MAT, we delineate three
inter-related factors: (1) their relative distance, (2) their distance in the molecular graph, and (3) their
physiochemical relationship (e.g. are they within the same aromatic ring).

In the next step, we depart from Molecule Self-Attention (Maziarka et al., 2020) and introduce new
factors to the relation embedding. Given two atoms, represented by vectors xi,xj ∈ RD, we encode
their relation using an atom relation embedding bij ∈ RD′

. This embedding will then be used
in the self-attention module after a projection layer. Next, we describe three components that are
concatenated to form the embedding bij .
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Neighbourhood embeddings First, we encode the neighbourhood order between two atoms as
a 6 dimensional one hot encoding, with information about how many other vertices are between
nodes i and j in the original molecular graph (see Figure 2 and Table 4 from Appendix A).

Distance embeddings As we discussed earlier, we hypothesize that a much more flexible represen-
tation of the distance information should be facilitated in MAT. To achieve this, we use a radial basis
distance encoding proposed by (Klicpera et al., 2020):

en(d) =

√
2

c
·

sin (nπc d)

d
,

where d is the distance between two atoms, c is the predefined cutoff distance, n ∈ {1, . . . ,Nemb}
and Nemb is the total number of radial basis functions that we use. Then obtained numbers are passed
to the polynomial envelope function u(d) = 1− (p+1)(p+2)

2 dp + p(p+ 2)dp+1 − p(p+1)
2 dp+2, with

p = 6, in order to get the final distance embedding.

Bond embeddings Finally, we featurize each bond to reflect the physical relation between pairs of
atoms that might arise from, for example, being part of the same aromatic structure in the molecule.
Molecular bonds are embedded in as a 7 dimensional vector following (Coley et al., 2017) (see
Table 5 from Appendix A). When the two atoms are not connected by a true molecular bond, all 7
dimensions are set to zeros. We note that while these features can be easily learned in pretraining, we
hypothesize that this featurization might be highly useful for training R-MAT on smaller datasets.

3.4 RELATIVE MOLECULE SELF-ATTENTION

Equipped with the embedding bij for each pair of atoms in the molecule, we now use it to define
a novel self-attention layer that we refer to as Relative Molecule Self-Attention.

First, mirroring the key-query-value design in the vanilla self-attention (c.f. Equation (1)), we
transform bij into a key and value specific vectors bVij , b

K
ij using two neural networks φV and φK .

Each neural network consists of two layers. A hidden layer, shared between all attention heads and
output layer, that create a separate relative embedding for different attention heads.

Consider Equation (1) in index notation:

A(x)i =

n∑
j=1

Softmax

(
eij√
dz

)T
(xjW

V ),

where the unnormalized attention is eij = (xiW
Q)(xjW

K)T . By analogy, in Relative Molecule
Self-Attention, we compute eij as

eij = (xiW
Q)(xjW

K)T︸ ︷︷ ︸
vanilla self-attention

+ (xiW
Q)bKij︸ ︷︷ ︸

content-dependent
positional bias

for query

+ (xjW
K)bKij︸ ︷︷ ︸

content-dependent
positional bias

for key

+uT (xjW
K)︸ ︷︷ ︸

global content
bias

+ vT bKij︸ ︷︷ ︸
global positional

bias

, (3)

where u,v ∈ RD′
are trainable vectors. We then define Relative Molecule Self-Attention operation:

Ai =

n∑
j=1

Softmax

(
eij√
dz

)T
(xjW

V + bVij). (4)

In other words, we enrich the self-attention layer with atom relations embedding. In the phase of
attention weights calculation, we add content-dependent positional bias, global context bias and
global positional bias (Dai et al., 2019; Huang et al., 2020) (that are calculated based on bKij ) to the
layer. Then, during calculation of the attention weighted average, we also include the information
about the other embedding bVij .
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3.5 RELATIVE MOLECULE ATTENTION TRANSFORMER

Finally, we use Relative Molecule Self-Attention to construct Relative Molecule Attention Trans-
former (R-MAT). The key changes compared to MAT are: (1) the use of Relative Molecule Self-
Attention, (2) extended atom featurization, and (3) extended pretraining procedure. Figure 1 illustrates
the R-MAT architecture.

The input is embedded as a matrix of size Natom × 36 where each atom of the input is embedded
following (Coley et al., 2017; Pocha et al., 2020), see Table 6 of Appendix A. We process the input
using N stacked Relative Molecule Self-Attention attention layers. Each attention layer is followed
by position-wise feed-forward Network (similar as in the classical transformer model (Vaswani et al.,
2017)), which consists of 2 linear layers with a leaky-ReLU nonlinearity between them.

After processing the input using attention layers, we pool the representation into a constant-sized
vector. We replace simple mean pooling with an attention-based pooling layer. After applying N
self-attention layers, we use the following self-attention pooling (Lin et al., 2017) in order to get the
graph-level embedding of the molecule:

P = Softmax(W2 tanh(W1H
T )),

g = Flatten(PH),

where H is the hidden state obtained from self-attention layers, W1 ∈ RP×D and W2 ∈ RS×P are
pooling attention weights, with P equal to the pooling hidden dimension and S equal to the number
of pooling attention heads. Finally, the graph embedding g is then passed to the two layer MLP, with
leaky-ReLU activation in order to make the prediction.

Pretraining We used two-step pretraining procedure. In the first step, network is trained with the
contextual property prediction task proposed by (Rong et al., 2020), where we mask not only selected
atoms, but also their neighbours. The goal of the task is to predict the whole atom context. This task
is much more demanding for the network than the classical masking approach presented by (Maziarka
et al., 2020) since the network has to encode more specific information about the masked atom
neighbourhood. Furthermore, the size of the context vocabulary is much bigger than the size of the
atoms vocabulary in the MAT pretraining approach. The second task is a graph-level prediction
proposed by (Fabian et al., 2020) in which the goal is to predict a set of real-valued descriptors
of physicochemical properties. For more detailed information about the pretraining procedure and
ablations, see Appendix B.

Other details Similarly to (Maziarka et al., 2020), we add an artificial dummy node to the input
molecule. The distance of the dummy node to any other atom in the molecule is set to the maximal
cutoff distance, and the edge connecting the dummy node with any other atom has its unique index
(see index 5 in Table 4 of Appendix A). Moreover, the dummy node has its own index in the input
atom embedding. We calculate distance information in the similar manner as (Maziarka et al., 2020).
The 3D molecular conformations that are used to obtain distance matrices are calculated using
UFFOPTIMIZEMOLECULE function from the RDKit package (Landrum, 2016) with the default
parameters. Finally, we consider a variant of the model extended with 200 rdkit features as in (Rong
et al., 2020). The features are concatenated to the final embedding g and processed using a prediction
MLP.

4 EXPERIMENTS

4.1 SMALL HYPERPARAMETER BUDGET

The industrial drug discovery pipelines focus on fast iterations of compound screenings and adjusting
the models to new data incoming from the laboratory. We start by comparing in this setting R-MAT
to DMPNN (Yang et al., 2019a), MAT (Maziarka et al., 2020) and GROVER (Rong et al., 2020),
representative state-of-the-art models on popular molecular property prediction tasks. We followed
the evaluation in (Maziarka et al., 2020), where the only changeable hyperparameter is the learning
rate, which was checked with 7 different values.

The BBBP and Estrogen-β datasets use scaffold splits, while all the other datasets use random splits.
Splits were proposed by (Maziarka et al., 2020). For every dataset we calculate scores based on 6
different splits, we report the mean test score based on the hyperparameters that obtained the best
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validation score, in parentheses we include the standard deviation. In this and the next experiments,
we denote models extended with additional rdkit features (see Section 3.5) as GROVERrdkit and
R-MAT rdkit. More information about the models and datasets used in this benchmark are given in
Appendix C.4.

Table 1 shows that R-MAT outperforms other methods in 3 out of 6 tasks. For comparison, we also
cite representative results of other methods from (Maziarka et al., 2020). Satisfyingly, we observe
a marked improvement on the solubility prediction tasks (ESOL and FreeSolv). Understanding
solubility depends to a large degree on a detailed understanding of spatial relationships between
atoms. This suggests that the improvement in performance might be related to better utilization of
the distance or graph information.

Table 1: Results on molecule property prediction benchmark from (Maziarka et al., 2020). We only
tune the learning rate for models in the first group. First two datasets are regression tasks (lower
is better), other datasets are classification tasks (higher is better). For reference, we include results
for non-pretrained baselines (SVM, RF, GCN (Duvenaud et al., 2015), and DMPNN (Yang et al.,
2019a)) from (Maziarka et al., 2020). We also include SVMrdkit and RFrdkit as two baseline methods
with added rdkit features. Rank-plot for these experiments is in Appendix D.1.

ESOL FreeSolv BBBP Estrogen-β MetStablow MetStabhigh

MAT .278(.020) .265(.042) .737(.009) .773(.012) .862(.025) .884(.030)
GROVER .303(.048) .270(.033) .726(.007) .758(.006) .892(.031) .887(.019)
GROVERrdkit .288(.021) .308(.058) .726(.003) .788(.009) .873(.033) .881(.039)
R-MAT .252(.030) .232(.071) .745(.010) .788(.007) .887(.028) .880(.027)
R-MAT rdkit .246(.024) .239(.066) .746(.007) .791(.010) .884(.032) .886(.031)

SVM .479(.055) .461(.077) .723(.000) .772(.000) .893(.030) .890(.029)

SVMrdkit .279(.024) .285(.049) .741(.001) .781(.001) .895(.029) .884(.031)
RF .534(.073) .524(.098) .721(.003) .791(.012) .892(.026) .888(.030)
RFrdkit .289(.035) .337(.026) .743(.002) .807(.003) .903(.025) .886(.028)
GCN .369(.032) .299(.068) .695(.013) .730(.006) .884(.033) .875(.036)
DMPNN .297(.046) .252(.044) .709(.001) .776(.006) .885(.026) .889(.018)

4.2 LARGE HYPERPARAMETER BUDGET

In contrast to the previous setting, we test R-MAT against a similar set of models but using a
large-scale hyperparameter search (300 different hyperparameter combinations). This setting has
been proposed in (Rong et al., 2020). For comparison, we include results under small (7 different
learning rates) hyperparameter budget. All datasets use a scaffold split. Scores are calculated
based on 3 different data splits. While the ESOL and FreeSolv datasets are the same as in the
previous paragraph, here they use a scaffold split and labels are not normalized (unlike in the previous
paragraph). Additional information about the models and datasets used in this benchmark are given
in Appendix C.5.

Table 2 summmarizes the experiment. Results show that for large hyperparameters budget R-MAT
outperforms other methods in 2 tasks and along with GROVER are the best in one more task. In
overall in this setting our method achieves comparable results to GROVER, having the same median
rank and being slightly worse in terms of mean rank (see left side of Figure 7). On the other hand, for
small hyperparameters budget R-MAT achieves the best results, both in terms of the mean and the
median ranks (see right side of Figure 7).

4.3 LARGE-SCALE EXPERIMENTS

Finally, to better understand how R-MAT performs in a setting where pretraining is likely to less
influence results, we include results on QM9 dataset (Ramakrishnan et al., 2014). QM9 is a quantum
mechanics benchmark that encompasses prediction of 12 simulated properties across around 130k
small molecules with at most 9 heavy (non-hydrogen) atoms. The molecules are provided with their
atomic 3D positions for which the quantum properties were initially calculated. For these experiments,
we used learning rate equal to 0.015 (we selected this learning rate value as it returned the best results
for α dataset among 4 different learning rates that we tested: {0.005,0.01,0.015,0.02}). Additional
information about the dataset and models used in this benchmark are given in Appendix C.6
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Table 2: Results on the benchmark from (Rong et al., 2020). Models are fine-tuned under a large
hyperparameters budget. Additionally, models fine-tuned with only tuning the learning rate are
presented in the last group. The last two datasets are classification tasks (higher is better), the
remaining datasets are regression tasks (lower is better). For reference, we include results for
non-pretrained baselines (GraphConv (Kipf & Welling, 2016), Weave (Kearnes et al., 2016) and
DMPNN (Yang et al., 2019a)) from (Rong et al., 2020). We also include RFrdkit as a baseline method
with added rdkit features. Rank-plot for these experiments is in Appendix D.2. We bold the best
scores over all models and underline the best scores for learning rate tuned models only.

ESOL FreeSolv Lipo QM7 BACE BBBP

RFrdkit .942(.196) 2.625(.509) .739(.038) 124.3(3.5) .884(.030) .928(.025)
GraphConv 1.068(.050) 2.900(.135) .712(.049) 118.9(20.2) .854(.011) .877(.036)
Weave 1.158(.055) 2.398(.250) .813(.042) 94.7(2.7) .791(.008) .837(.065)
DMPNN .980(.258) 2.177(.914) .653(.046) 105.8(13.2) .852(.053) .919(.030)
GROVERrdkit .888(.116) 1.592(.072) .563(.030) 72.5(5.9) .878(.016) .936(.008)

R-MAT rdkit .786(.133) 2.044(.662) .574(.028) 68.692(1.123) .871(.028) .936(.020)

MAT .853(.159) 1.744(.425) .608(.017) 102.8(2.94) .846(.025) .920(.039)
GROVER .927(.110) 2.262(.407) .604(.015) 82.623(3.833) .867(.022) .908(.053)
GROVERrdkit .924(.129) 2.096(.496) .593(.029) 84.625(4.174) .873(.031) .931(.021)
R-MAT .801(.132) 1.912(0.364) .585(.029) 77.248(2.819) .858(.041) .931(.016)
R-MAT rdkit .819(.145) 2.057(.434) .580(.019) 70.929(3.568) .858(.021) .920(.021)

Figure 3 compares R-MAT performance with various models. More detailed results could be find
in Table 10 from Appendix D.3. R-MAT achieves highly competitive results, with state-of-the-art
performance on 4 out of the 12 tasks. We attribute higher variability of performance to the limited
small hyperparameter search we performed.

4.4 EXPLORING THE DESIGN SPACE OF SELF-ATTENTION LAYER

Figure 3: Rank plot of scores obtained on the QM9 bench-
mark, which consists of 12 different quantum property pre-
diction tasks.

Achieving strong empirical results
hinged on a methodologically explo-
ration the design space of different
variants of the self-attention layer. We
document here this exploration and
relevant ablations. Due to space lim-
itations, we defer most results to the
Appendix E. We perform all exper-
iments on the ESOL, FreeSolv and
BBBP datasets with 3 different scaf-
fold splits. We did not use any pre-
training for these experiments. We
follow the same fine-tuning methodol-
ogy as in Section 4.1.

Importance of different sources of
information in self-attention The self-attention module in R-MAT incorporates three auxiliary
sources of information: (1) distance information, (2) graph information (encoded using neighbourhood
order), and (3) bond features. In Table 3 (Left), we show the effect on performance of ablating each
of this elements. Importantly, we find that each component is important to R-MAT performance,
including the distance matrix.

Maximum neighbourhood order We take a closer look at how we encode the molecular graph.
(Maziarka et al., 2020) used a simple binary adjacency matrix to encode the edges. We enriched this
representation by adding one-hot encoding of the neighbourhood order. For example, the order of 3
for a pair of atoms means that there are two other vertices on the shortest path between this pair of
atoms. In R-MAT we used 4 as the maximum order of neighbourhood distance. That is, we encoded
as separate features if two atoms are 1, 2, 3 or 4 hops away in the molecular graph. In Table 3 (Right)
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Table 3: Ablations of Relative Molecule Self-Attention; other ablations are included in the Appendix.

(a) Test set performances of R-MAT for different rela-
tive attention features.

BBBP ESOL FreeSolv

R-MAT .908(.039) .378(.027) .438(.036)

distance .858(.064) .412(.038) .468(.022)
neighbourhood .867(.043) .390(.020) .545(.023)
bond features .860(.032) .395(.020) .536(.035)

(b) Test set performances of R-MAT for different
choices of maximum neighbourhood order.

BBBP ESOL FreeSolv

R-MAT .908(.039) .378(.027) .438(.036)

Max order = 1 .847(.081) .372(.018) .461(.049)
Max order = 2 .890(.068) .382(.040) .519(.036)
Max order = 3 .873(.053) .455(.005) .492(.055)

we ablate this choice. The result suggests that R-MAT performance benefits from including separate
feature for all the considered orders.

0 4 8

0
4

8

Adjacency

0 4 8

0
4

8

Distances

(a) Molecule

(b) Relative Molecule Attention Transformer

(c) Molecule Attention Transformer

Figure 4: Visualization of the learned self-attention
for each of the first 3 attention heads in the second
layer of pretrained R-MAT (middle) and the first 4 atten-
tion heads in pretrained MAT (bottom), for a molecule
from the ESOL dataset. The top Figure visualizes the
molecule and its adjacency and distance matrices. The
self-attention pattern in MAT is dominated by the adja-
cency and distance matrix, while R-MAT seems capable
of learning more complex attention patterns.

Closer comparison to Molecule Atten-
tion Transformer Our main motivation
for improving self-attention in MAT was
to make it easier to represent attention pat-
terns that depend in a more complex way
on the distance and graph information. We
qualitatively explore here whether R-MAT
achieves this goal, comparing its attention
patterns to that of MAT. From the Figure 4
one can see that indeed R-MAT seems ca-
pable of learning more complex attention
patterns than MAT. We add a more detailed
comparison, with more visualised attention
heads in Appendix D.4.

5 CONCLUSIONS

Transformer has been successfuly adapted
to various domain by incorporating into
its architecture a minimal set of inductive
biases. In a similar spirit, we methodolog-
ically explored the design space of the self-
attention layer, and identified a highly ef-
fective Relative Molecule Self-Attention.

Relative Molecule Attention Transformer,
a model based on Relative Molecule Self-
Attention, achieves state-of-the-art or very
competitive results across a wide range of
molecular property prediction tasks. R-MAT is a highly versatile model, showing state-of-the-art
results in both quantum property prediction tasks, as well as on biological datasets. We also show
that R-MAT is easy to train and requires tuning only the learning rate to achieve competitive results,
which together with open-sourced weight and code, makes it is highly accessible.

Relative Molecule Self-Attention encodes an inductive bias to consider relationships between atoms
that are commonly relevant to a chemist, but on the other hand leaves flexibility to unlearn them if
needed. Relatedly, Vision Transformers learn global processing in early layers despite being equipped
with a locality inductive bias (Dosovitskiy et al., 2021). Our empirical results show in a new context
that picking the right set of inductive biases is key for self-supervised learning to work well. We also
how that Relative Molecule Self-Attention will help improve other models for molecular property
prediction.

Learning useful representations for molecular property prediction is far from solved. Achieving state-
of-the-art results, while less dependent on them, still relied on using certain large sets of handcrafted
features both in fine-tuning and pretraining. At the same time, these features are beyond doubt
learnable from data. Developing methods that will push representation learning towards discovering
these and better features automatically from data is an exciting challenge for the future.
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A R-MAT NODE AND EDGE FEATURES

In the following section, we present the node and edge features used by R-MAT.

A.1 EDGE FEATURES

In R-MAT, all atoms are connected with an edge. The vector representation of every edge contains
information about atoms neighbourhood, distances between them and physicochemical features of a
bond if it exists (see Figure 2)

Neighbourhood embeddings The neighbourhood information of an atom pair is represented by
a 6-dimensional one-hot encoded vector, with features presented in Table 4. Every neighbourhood
embedding contains the information about how many other vertices are between nodes i and j in the
original molecular graph.

Table 4: Featurization used to embed neighbourhood order in R-MAT.

Indices Description

0 i = j

1 Atoms i and j are connected with a bond

2
In the shortest path between atoms i and j

there is one atom

3
In the shortest path between atoms i and j

there are two atoms

4
In the shortest path between atoms i and j

there are three or more atoms
5 Any of the atoms i or j is a dummy node

Bond embeddings Molecular bonds are embedded in a 7-dimensional vector following (Coley
et al., 2017), with features specified in Table 5. When the two atoms are not connected by a true
molecular bond, all 7 dimensions are set to zeros.

Table 5: Featurization used to embed molecular bonds in R-MAT.

Indices Description

0− 3 Bond order as one-hot vector of 1, 1.5, 2, 3
4 Is aromatic
5 Is conjugated
6 Is in a ring

A.2 NODE FEATURES

The input molecule is embedded as a matrix of size Natom × 36 where each atom of the input is
embedded following (Coley et al., 2017; Pocha et al., 2020). All features are presented in Table 6.

B PRETRAINING

We extend the pretraining procedure of (Maziarka et al., 2020), who used a masking task based
on (Devlin et al., 2018; Hu et al., 2020); they masked types of some of the graph atoms and treat them
as the label, that should be predicted by the neural network. Such approach works well in NLP where
models pretrained with the masking task create the state-of-the-art representation (Devlin et al., 2018;
Liu et al., 2019; Yang et al., 2019b). However in chemistry, otherwise than in NLP, the size of atoms
vocabulary is much smaller. Moreover, usually only one type of atom fits a given place and thus the
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Table 6: Featurization used to embed atoms in R-MAT.

Indices Description

0− 11
Atomic identity as a one-hot vector of

B, N, C, O, F, P, S, Cl, Br, I, Dummy, other

12− 17
Number of heavy neighbors as one-hot

vector of 0, 1, 2, 3, 4, 5

18− 22
Number of hydrogen atoms as
one-hot vector of 0, 1, 2, 3, 4

23− 33
Formal charge as

one-hot vector of -5, -4, ..., 4, 5

34 Is in a ring
35 Is aromatic

representation trained with the masking task has problems with encoding meaningful information in
chemistry.

B.1 CONTEXTUAL PRETRAINING

Instead of atom masking, we used a two-step pretraining that combines the procedures proposed
by (Rong et al., 2020; Fabian et al., 2020). In the first step, the network is trained with the contextual
property prediction task (Rong et al., 2020), where we mask not only the selected atoms, but also
their neighbours. The task is then to predict the whole atom context, e.g. if the selected atom’s type
is carbon connected with a nitrogen with a double bond and with an oxygen with a single bond, we
encode the atom neighbourhood as C_N-DOUBLE1_O-SINGLE1 (we list all the node-edge counts
terms in the alphabetical order), then the network has to predict the specific type of the masked
neighbourhood for every masked atom. This task is much more demanding for the network than
the classical masking approach presented by (Maziarka et al., 2020) as the network has to encode
more specific information about the masked atom’s neighbourhood. Furthermore, the size of context
vocabulary is much bigger than the size of atoms vocabulary in the MAT pretraining approach (2925
for R-MAT vs 35 for MAT).

B.2 GRAPH-LEVEL PRETRAINING

The second task is the graph-level property prediction proposed by (Fabian et al., 2020). In this pre-
training procedure, the task is to predict 200 real-valued descriptors of physicochemical characteristics
of every given molecule.

The list of all 200 descriptors from RDKit is as follows:
BalabanJ, BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n,
Chi2v, Chi3n, Chi3v, Chi4n, Chi4v, EState_VSA1, EState_VSA10,
EState_VSA11, EState_VSA2, EState_VSA3, EState_VSA4, EState_VSA5,
EState_VSA6, EState_VSA7, EState_VSA8, EState_VSA9, ExactMolWt,
FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3, FractionCSP3,
HallKierAlpha, HeavyAtomCount, HeavyAtomMolWt, Ipc, Kappa1, Kappa2,
Kappa3, LabuteASA, MaxAbsEStateIndex, MaxAbsPartialCharge, MaxEStateIndex,
MaxPartialCharge, MinAbsEStateIndex, MinAbsPartialCharge, MinEStateIndex,
MinPartialCharge, MolLogP, MolMR, MolWt, NHOHCount, NOCount,
NumAliphaticCarbocycles, NumAliphaticHeterocycles, NumAliphaticRings,
NumAromaticCarbocycles, NumAromaticHeterocycles, NumAromaticRings,
NumHAcceptors, NumHDonors, NumHeteroatoms, NumRadicalElectrons,
NumRotatableBonds, NumSaturatedCarbocycles, NumSaturatedHeterocycles,
NumSaturatedRings, NumValenceElectrons, PEOE_VSA1, PEOE_VSA10,
PEOE_VSA11, PEOE_VSA12, PEOE_VSA13, PEOE_VSA14, PEOE_VSA2, PEOE_VSA3,
PEOE_VSA4, PEOE_VSA5, PEOE_VSA6, PEOE_VSA7, PEOE_VSA8, PEOE_VSA9,
RingCount, SMR_VSA1, SMR_VSA10, SMR_VSA2, SMR_VSA3, SMR_VSA4, SMR_VSA5,
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SMR_VSA6, SMR_VSA7, SMR_VSA8, SMR_VSA9, SlogP_VSA1, SlogP_VSA10,
SlogP_VSA11, SlogP_VSA12, SlogP_VSA2, SlogP_VSA3, SlogP_VSA4, SlogP_VSA5,
SlogP_VSA6, SlogP_VSA7, SlogP_VSA8, SlogP_VSA9, TPSA, VSA_EState1,
VSA_EState10, VSA_EState2, VSA_EState3, VSA_EState4, VSA_EState5,
VSA_EState6, VSA_EState7, VSA_EState8, VSA_EState9, fr_Al_COO, fr_Al_OH,
fr_Al_OH_noTert, fr_ArN, fr_Ar_COO, fr_Ar_N, fr_Ar_NH, fr_Ar_OH,
fr_COO, fr_COO2, fr_C_O, fr_C_O_noCOO, fr_C_S, fr_HOCCN, fr_Imine,
fr_NH0, fr_NH1, fr_NH2, fr_N_O, fr_Ndealkylation1, fr_Ndealkylation2,
fr_Nhpyrrole, fr_SH, fr_aldehyde, fr_alkyl_carbamate, fr_alkyl_halide,
fr_allylic_oxid, fr_amide, fr_amidine, fr_aniline, fr_aryl_methyl,
fr_azide, fr_azo, fr_barbitur, fr_benzene, fr_benzodiazepine,
fr_bicyclic, fr_diazo, fr_dihydropyridine, fr_epoxide, fr_ester, fr_ether,
fr_furan, fr_guanido, fr_halogen, fr_hdrzine, fr_hdrzone, fr_imidazole,
fr_imide, fr_isocyan, fr_isothiocyan, fr_ketone, fr_ketone_Topliss,
fr_lactam, fr_lactone, fr_methoxy, fr_morpholine, fr_nitrile, fr_nitro,
fr_nitro_arom, fr_nitro_arom_nonortho, fr_nitroso, fr_oxazole,
fr_oxime, fr_para_hydroxylation, fr_phenol, fr_phenol_noOrthoHbond,
fr_phos_acid, fr_phos_ester, fr_piperdine, fr_piperzine, fr_priamide,
fr_prisulfonamd, fr_pyridine, fr_quatN, fr_sulfide, fr_sulfonamd,
fr_sulfone, fr_term_acetylene, fr_tetrazole, fr_thiazole, fr_thiocyan,
fr_thiophene, fr_unbrch_alkane, fr_urea, qed

C EXPERIMENTAL SETTING

C.1 MODEL HYPERPARAMETERS

R-MAT model consists of 10 layers with 12 attention heads in each, dmodel = 768. The distance
layer consists of 32 radial functions (Nemb = 32) and cutoff distance c is set to 20 Å. Attention
pooling consists of 4 pooling heads and pooling hidden dimension is set to 128. Prediction MLP
consists of one hidden layer with dimension set to 1024 and dropout 0.1. R-MAT uses leaky-ReLU
with slope 0.1 as a non-linearity in all experiments. This set of hyperparameters defines a model with
48 millions of parameters, which is equal to the number of parameters of GROVERbase and is slightly
higher than the number of parameters of MAT (42M).

C.2 3D CONFORMATIONS

The 3D molecular conformations that are used to obtain distance matrices were calculated using
UFFOPTIMIZEMOLECULE function from the RDKit package (Landrum, 2016) with the default
parameters (MAXITERS=200, VDWTHRESH=10.0, CONFID=−1, IGNOREINTERFRAGINTERAC-
TIONS=True).

One disadvantage of this approach is the costly calculation of the distance matrix. Which is not
burdensome for small datasets with small molecules (e.g FreeSolv), however, they can be a problem
with larger ones (e.g. dataset for pretraining). In Table 7 we present dataset sizes and molecular
statistics for three different datasets (FreeSolv, ESOL, BBBP), as well as time needed for molecular
conformations calculation. In Figure 5 we present these times for every single molecule from
these datasets. Based on these results one can see, that the larger the molecule, the longer the
conformation calculation time. Moreover even for BBBP, that is not rather a large dataset, calculating
the conformations could take almost 5 minutes. We leave exploring other conformation methods
(more accurate or faster) as an interesting topic for the future.

Table 7: Time needed for molecular conformations calculation for different datasets.

Dataset size Average number of atoms Calculation time (s) Average calculation time (s)

FreeSolv 622 8.72 5.225 0.008
ESOL 1128 13.28 27.865 0.024
BBBP 2037 24.02 267.084 0.131
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Figure 5: Time needed for conformations calculation for every single molecule for different datasets.

C.3 PRETRAINING

We pretrained R-MAT on 4 millions of unlabelled molecules. Molecules were obtained from the
ZINC15 (Sterling & Irwin, 2015) and ChEMBL (Gaulton et al., 2011) datasets, by first taking a
sample of 10M molecules and then filtering them using the Lipinski’s rule of five (Lipinski et al.,
1997). We have split the data into training and validation datasets, where validation dataset consists
of 5% of the data. We pretrained R-MAT for 150 epochs. We used dropout equal to 0.1, learning
rate 0.001, the Noam optimizer (Vaswani et al., 2017) trained with 20000 warm-up steps and batch
size 256. We pretrained R-MAT with 8 Nvidia A100 GPUs, using the Horovod package (Sergeev &
Del Balso, 2018).

Overlap between pre-trained and task datasets In Table 8 we provide the information about
number of atoms that overlaps between pre-trained dataset and all tasks datasets used in this paper.
One can see that usually the overlap is at most few percent of all dataset molecules. This overlap does
not affect the test performance, as pre-training consists of semi-supervised task of context prediction
and other task, associated with the prediction of simple physico-chemical characteristics, loosely
related to the fine-tuning tasks, which are additionally added to the final graph embedding during the
prediction.

Table 8: Overlap between pre-trained dataset and different tasks datasets.

dataset overlap molecules overlap percentage

bbbp 34 1.6%
bace 0 0.0%
esol 83 7.3%
estrogen-beta 45 2.2%
freesolv 2 0.3%
lipo 128 3.0%
mesta-high 608 28.5%
mesta-low 608 28.5%
qm7 0 0.0%
qm9 0 0.0%

C.4 SMALL HYPERPARAMETER BUDGET

Models We compared R-MAT with four models trained from scratch: Support Vector Machine
with RBF kernel (SVM) and Random Forest (RF) that both works on ECFP fingerprints (Rogers &
Hahn, 2010), Graph Convolutional Network (Duvenaud et al., 2015) (GCN) and Directed Message
Passing Neural Network (Yang et al., 2019a) (DMPNN).

The comparison also includes two different pretrained models: MAT (Maziarka et al., 2020) and
GROVER (Rong et al., 2020).

Datasets The benchmark is based on important molecule property tasks in the drug discovery
domain. The first two datasets are ESOL and FreeSolv, in which the task is to predict the solubility of
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a molecule in water – a key property of any drug – and the error is measured using RMSE. The goal in
BBBP and Estrogen−β is to classify correctly whether a given molecule is active against a biological
target. For details on other tasks please see (Maziarka et al., 2020). BBBP and Estrogen−β used
scaffold split, rest datasets used random split method. For every dataset 6 different splits were created.
Labels of regression datasets (ESOL and FreeSolv) were normalized before training. We did not
include the Estrogen−α dataset that was also presented by (Maziarka et al., 2020), due to the GPU
memory limitations (as the biggest molecule from this dataset consists of over 500 atoms).

Training hyperparameters We fine-tune R-MAT on the target tasks for 100 epochs, with batch
size equal to 32 and Noam optimizer with warm-up equal to 30% of all steps. The only hyper-
parameter that we tune is the learning rate, which is selected from the set of 7 possible options:
{1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6}. This small budget for hyperparameter selection
reflects the long-term goal of this paper of developing easy to use models for molecule property
prediction. The fine-tuning was conducted using Nvidia V100 GPU.

C.5 LARGE HYPERPARAMETER BUDGET

Models For large hyperparameters budget we compared R-MAT with three models trained from
scratch: GraphConv (Kipf & Welling, 2016), Weave (Kearnes et al., 2016) and DMPNN (Yang
et al., 2019a) and two pre-trained models: MAT (Maziarka et al., 2020) and GROVER (Rong et al.,
2020). For small hyperparameters budget we compared R-MAT to MAT and GROVER. We note
that R-MAT, MAT and GROVER use different pretraining methods. MAT was pretrained with 2M
molecules from ZINC database and GROVER was pretrained with 10M molecules from the ZINC
and ChEMBL databases.

Datasets All datasets were splitted using a scaffold split. The resulting splits are different than
in the MAT benchmark. For every dataset, 3 different splits were created. In our comparison we
included only the subset of single-task datasets from original GROVER work (Rong et al., 2020).
This is the reason why we use a smaller number of datasets. The obtained regression scores for ESOL
differs significantly from the small hyperparameters budget benchmark because this time labels are
not normalized.

Training hyperparameters For learning rate tuning we used the same hyperparameters settings as
in the MAT benchmark (see Appendix C.4).

For large hyperparameters budget we run random search with the hyperparameters listed in a Table 9.

Table 9: Relative Molecule Attention Transformer large grid hyperparameters ranges

parameters

warmup 0.05, 0.1, 0.2, 0.3
learning rate 0.005, 0.001, 0.0005, 0.0001,

0.00005, 0.00001, 0.000005, 0.000001
epochs 100
pooling hidden dimension 64, 128, 256, 512, 1024
pooling attention heads 2, 4, 8
prediction MLP layers 1, 2, 3
prediction MLP dim 256, 512, 1024, 2048
prediction MLP dropout 0.0, 0.1, 0.2

C.6 LARGE-SCALE EXPERIMENTS

Models We compared our R-MAT with 8 different models: NMP (Gilmer et al., 2017),
Schnet (Schütt et al., 2017), Cormorant (Anderson et al., 2019), L1Net (Miller et al., 2020),
LieConv (Finzi et al., 2020), TFN (Thomas et al., 2018), SE(3)-Tr. (Fuchs et al., 2020), EGNN (Sator-
ras et al., 2021).
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Datasets The QM9 dataset (Ramakrishnan et al., 2014) is a dataset that consists of molecules, with
up to 9 heavy atoms (H, C, N, O, F) and up to 29 atoms overall per molecule. Each atom from this
dataset is additionally associated with 3D position. The dataset consists of 12 different regression
tasks named: α, ∆ε, εHOMO, εLUMO, µ, Cν , G, H , R2, U , U0, ZPVE, for which the mean absolute
error is a standard metric. The dataset has over 130k molecules. We use data splits proposed by
(Anderson et al., 2019), which gives us 100k trainin molecules, 18k molecules for validation and 13k
molecules for testing.

Training hyperparameters We trained R-MAT for 1000 epochs, with batch size equal to 256 and
learning rate equal to 0.015. We report the test set MAE for the epoch with the lowest validation
MAE. We selected this learning rate value as it returned the best results for α among 4 different
learning rates that we tested: {0.005, 0.01, 0.015, 0.02}.

C.7 ABLATIONS

Datasets For the ablations section, we used the BBBP, ESOL and FreeSolv datasets, splitted using
a scaffold split, with 3 different splits. Labels of the regression datasets (ESOL and FreeSolv) were
normalized before training. Scores obtained in this section differ significantly from the previous
benchmarks due to the different data splits, different model hyperparameters and no pretraining used.

Training hyperparameters Similarly as for our main benchmarks, we tuned
only the learning rate, which was selected from the set of 7 possible options:
{1e−3, 5e−4, 1e−4, 5e−5, 1e−5, 5e−6, 1e−6}. We used batch size equal to 32 and Noam
optimizer with warm-up equal to 20% of all steps. Moreover we use single layer, instead of
two-layers MLP as our classification part.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 SMALL HYPERPARAMETER BUDGET

In Figure 6 one can find rank plots for results from Table 1. R-MAT and R-MAT rdkit obtained the
best median rank among all compared models. The performance gain of RFrdkit over RF and SVMrdkit
over SVM is interesting. Overall these two baseline models are worse only than R-MAT.

Figure 6: Rank plot for small hyperparameter budget experiments.

D.2 LARGE HYPERPARAMETER BUDGET

In Figure 7 one can find rank plots for results from Table 2. We present separate plots for models
trained with the large grid search (Left) and for models with only learning rate tuning (Right).
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(a) Large grid-search (b) Learning rate only grid-search

Figure 7: Rank plot for large hyperparameter budget (Left) as well as for models trained with only
the learning rate tunning (Right).

D.3 LARGE-SCALE EXPERIMENTS

In Table 10 one can find detailed results of comparison R-MAT performance with other various
models. R-MAT achieves highly competitive results, with state-of-the-art performance on 4 out of
the 12 tasks, which proves how universal this model is.

Table 10: Mean absolute error on QM9, a benchmark including various quantum prediction tasks.
Results are cited from literature.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE
Units bohr3 meV meV meV D cal/mol K meV meV bohr3 meV meV meV

NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50
Schnet .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.03
L1Net .088 68 46 35 .043 .031 14 14 .354 14 13 1.56
LieConv .084 49 30 25 .032 .038 22 24 .800 19 19 2.28
TFN .223 58 40 38 .064 .101 - - - - - -
SE(3)-Tr. .142 53 35 33 .051 .054 - - - - - -
EGNN .071 48 29 25 .029 .031 12 12 .106 12 11 1.55

R-MAT rdkit .082 48 31 29 .110 .036 10 10 .676 10 12 2.23

D.4 CLOSER COMPARISON TO MOLECULE ATTENTION TRANSFORMER

Our main motivation for improving self-attention in MAT was to make it easier to represent attention
patterns that depend in a more complex way on the distance and graph information. We qualitatively
explore here whether R-MAT achieves this goal, comparing its attention patterns to that of MAT.

For this purpose we compared attention patterns learned by pretrained MAT (weights taken
from (Maziarka et al., 2020)) and R-MAT for a selected molecule from the ESOL dataset. Fig-
ure 8 shows that different heads of Relative Molecule Self-Attention are focusing on different atoms
in the input molecule. We can see that self-attention strength is concentrated on the input atom
(head 5), on the closest neighbours (heads 0 and 11), on the second order neighbours (head 7), on
the dummy node (head 1) or on some substructure that occurs in the molecule (heads 6 and 10 are
concentrated on atoms 1 and 2). In contrast, self-attention in MAT focuses mainly on the input
atoms and its closest neighbours, the information from other regions of the molecule is not strongly
propagated. This likely happens due to the construction of the Molecule Self-Attention in MAT (c.f.
Equation (2)), where the output atom representation is calculated from equally weighted messages
based on the adjacency matrix, distance matrix and self-attention. Due to its construction, it is more
challenging for MAT than for R-MAT to learn to attend to a distant neighbour.

E EXPLORING THE DESIGN SPACE OF MOLECULAR SELF-ATTENTION

Identifying the Relative Molecule Self-Attention layer required a large-scale and methodological
exploration of the self-attention design space. In this section, we present experimental data that
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(c) Molecule Attention Transformer

Figure 8: Visualization of the learned self-attention for each of all attention heads in the second layer
of pretrained R-MAT (left) and all attention heads in pretrained MAT (right), for a molecule from
the ESOL dataset. The top Figure visualizes the molecule and its adjacency and distance matrices.
The self-attention pattern in MAT is dominated by the adjacency and distance matrix, while R-MAT
seems capable of learning more complex attention patterns.

informed our choices. We also hope it will inform future efforts in designing attention mechanism
for molecular data. We follow here the same evaluation protocol as in Section 4.4 and show how
different natural variants compare against R-MAT.

E.1 SELF-ATTENTION VARIANTS

Relative Molecule Self-Attention is designed to better incorporate the relative spatial position of
atoms in the molecule. The first step is embedding each pair of atoms. Then, the embedding is used
to re-weight self-attention. To achieve this, Relative Molecule Self-Attention combines ideas from
natural language processing (Shaw et al., 2018; Dai et al., 2019; Huang et al., 2020). These works
focus on encoding better relative positions of tokens in the input.

We compare to three specific variants from these works that can be written using our previously
introduced notation as:

1. Relative self attention (Shaw et al., 2018):
eij = (xiW

Q)(xjW
K)T + (xiW

Q)bKij .

2. Relative self attention with attentive bias (Dai et al., 2019):

eij = (xiW
Q)(xjW

K)T + (xiW
Q)bKij+

+uT (xjW
K) + vT bKij .

3. Improved relative self-attention (Huang et al., 2020):

eij = (xiW
Q)(xjW

K)T + (xiW
Q)bKij+

+(xjW
K)bKij .
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Table 11 shows that the attention operation used in R-MAT outperforms variants 2 and 3 across all
three tasks and variant 1 on two tasks, being comparable on the third one. This might be expected
given that Relative Molecule Self-Attention combines these ideas (c.f. Equation (3)).

Table 11: Test set performances of R-MAT for different choices of the relative self-attention.

BBBP ESOL FreeSolv

R-MAT .908(.039) .378(.027) .438(.036)

Relative type = 1 .859(.057) .371(.041) .509(.028)
Relative type = 2 .856(.049) .424(.014) .472(.057)
Relative type = 3 .882(.051) .389(.040) .441(.021)

E.2 ENRICHING BOND FEATURES WITH ATOM FEATURES

In Relative Molecule Self-Attention, we use a small number of bond features to construct the atom
pair embedding. We investigate here the effect of extending bond featurization.

Inspired by (Shang et al., 2018), we added information about the atoms that an edge connects. We
tried three different variants. In the first one, we extend the bond representation with concatenated
input features of atoms that the bond connects. In the second one, instead of raw atoms’ features, we
tried the one-hot-encoding of the type of the bond connection (i.e. when the bond connects atoms C
and N, we encode it as a bond ’C_N’ and take the one-hot-encoding of this information). Finally, we
combined these two approaches together.

Table 12: Test set performances of R-MAT for different choices of bond featurization.

BBBP ESOL FreeSolv

R-MAT .908(.039) .378(.027) .438(.036)

Connected atoms features .866(.073) .406(.048) .489(.046)
Connection type one-hot .863(.012) .411(.028) .510(.055)
Both .873(.034) .390(.020) .502(.044)

The results are shown in Table 12. Surprisingly, we find that adding this type of information to the
bond features negatively affects performance of R-MAT. This suggests that R-MAT can already
access these features efficiently from the input (which we featurize using the same set of features).
This could also happen due to the fact that after a few layers, the attention is not calculated over the
input atoms anymore. Instead, it works over hidden embeddings, which themselves can be mixed
representations of multiple atom embeddings (Brunner et al., 2019), where the proposed additional
representation contains only information about the input features.

E.3 DISTANCE ENCODING VARIANTS

R-MAT uses a specific radial base distance encoding proposed by (Klicpera et al., 2020), followed by
the envelope function, with Nemb = 32. We compare here to several other natural choices.

We tested the following distance encoding variants : (1) removal of the envelope function, (2)
increasing the number of distance radial functions to 128, (3) using distance embedding from the
popular MAT model (Maziarka et al., 2020), (4) using distance embedding from the popular SchNet
model (Schütt et al., 2017). The distance in MAT is encoded as e(d) = exp(−d). The distance in
SchNet is encoded as en(d) = exp(−γ‖d− µn‖2), for γ = 10Å and 0Å ≤ µn ≤ 30Å divided into
Nemb equal sections, with Nemb set to 32 or 128.

The results are shown in Table 13. These results corroborate that a proper representation of distance
information is a key in adapting self-attention to molecular data. We observe that all variants under-
perform compared to the radial base encoding used in Relative Molecule Self-Attention. Noteworthy
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is the fact that encoding distances in MAT way caused a lot of instability during the training of
R-MAT.

Table 13: Test set performances of R-MAT for different choices of distance modeling.

BBBP ESOL FreeSolv

R-MAT .908(.039) .378(.027) .438(.036)

Nemb = 128 .850(.102) .417(.025) .427(.016)
no envelope .887(.025) .397(.047) .473(.019)
Nemb = 128, no envelope .901(.030) .416(.014) .452(.008)
MAT dist .886(.024) .404(.045) .444(.012)
SchNet dist .883(.065) .398(.043) .490(.033)
Nemb = 128, SchNet dist .888(.054) .400(.043) .445(.010)

F ADDITIONAL COMPARISON OF GRAPH PRETRAINING

F.1 PRETRAINING METHODS BENCHMARK

As pretraining is nowadays the main component of big Transformer architectures (Devlin et al., 2018;
Liu et al., 2019; Clark et al., 2020), we decided to devote more attention to this issue. For this purpose
we compared various graph pretraining methods to identify the best one and use it in the final R-MAT
model.

Pretraining methods We used various pretraining methods proposed in the molecular property
prediction literature (Hu et al., 2020; Maziarka et al., 2020; Rong et al., 2020; Fabian et al., 2020).
To be more specific, we tried R-MAT with the following pretraining procedures:

• No pretraining – as a baseline we include reuslts for R-MAT fine-tuned from scratch, without
any pretraining.

• Masking – masked pretraining used in (Maziarka et al., 2020). This is an adaptation of
standard MLM pretraining used in NLP (Devlin et al., 2018) to the graphical data. In this
approach, we mask features of 15% of all atoms in the molecule and then pass it throught
the model. The goal is to predict what was the masked features.

• Contextual – contextual pretraining method proposed by (Rong et al., 2020). We described
it further in Appendix B.

• Graph-motifs – graph-level motif prediction method proposed by (Rong et al., 2020), where
for every molecule we obtain the fingerprint with information whether specified molecular
functional groups are present in our molecule. The network’s task is multi-label classification,
where it has to predict, whether every predefined functional group is in the given molecule.

• Physicochemical – graph-level prediction method proposed by (Fabian et al., 2020). We
described it further in Appendix B.

• GROVER – pretraining used by authors of GROVER (Rong et al., 2020). Combination of
two pretraining methods: contextual and graph-motifs.

• R-MAT– pretraining used in this paper. Combination of two pretraining methods: contextual
and physicochemical.

Experimental setting We pretrained every model using described earlier dataset with 4M
molecules. For every pretraining choice, we trained the model for 50 epochs, using the same
training settings as for our standard pretraining (see Appendix C.3).

Model hyperparameters and fine-tuning settings were the same as for MAT and GROVER benchmarks.
We used the BBBP, ESOL and FreeSolv datasets, splitted using a scaffold split, with 3 different data
splits. Data splits are different than in previous experiments, and this causes the fact that the results
are differs from the results from other paragraphs’.
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Results Results of this benchmark are presented in Table 14. We can draw some interesting
conclusions from them. One can see, that using any kind of pretraining helps in obtaining better results
than for the model trained from scratch. Using physicochemical features for graph-level training
gives better results than graph-motifs. Therefore R-MAT pretraining (contextual + physicochemical)
is better than GROVER pretraining (contextual + graph-motfis). Moreover combination of two tasks
in pretraining usually gives better results than pretraining using only one task. Interestingly, both
node-level pretraining methods (masking and contextual pretraining), returns similar results.

Table 14: Test set performances of R-MAT for different choices of pretraining used.

BBBP ESOL FreeSolv

No pretraining .855(.081) .423(.021) .495(.016)
Masking .867(.046) .377(.016) .407(.074)
Contextual .901(.039) .382(.034) .413(.047)
Graph-motifs .876(.035) .389(.041) .473(.092)
Physiochemical .897(.042) .406(.072) .400(.085)
GROVER .897(.022) .378(.027) .455(.062)
R-MAT .893(.045) .360(.012) .402(.029)

F.2 PRETRAINING LEARNING CURVES

In Figure 9 we present learning curves for R-MAT pretrained with our procedure (contextual +
physiochemical). Left-side image shows that training loss flattens out quite quickly, however it slowly
decreases until the end of the training. Moreover one can see that contextual task is harder for the
network than graph-level property prediction, as their losses vary by several orders of magnitude.
Left and middle images shows that R-MAT predictions for validation datasets are of good quality,
moreover these curves also presents that our model learns all the time, reaching the best values at the
end of training

(a) Train loss (b) Validation RMSE for graph-
level property prediction task

(c) Validation ROC AUC for con-
textual task

Figure 9: Learning curves for R-MAT pretraining. On the left-side figure one can see train losses
for both contextual and graph-level property prediction tasks. On the middle figure one can see
the RMSE for graph-level property prediction for validation dataset obtained by R-MAT during
pretraining. On the right-side figure one can see ROC AUC for the classification task of contextual
prediction for validation dataset obtained by R-MAT during pretraining.

We also tested, whether longer pretraining allows R-MAT to get better results during the fine-tuning
process. In Figure 10 we present fine-tuning scores obtained by models pretrained with different
number of pretraining epochs, for FreeSolv and ESOL datasets. Interestingly, longer training does not
always results in better fine-tuning scores. This is indeed the case for the FreeSolv dataset (left-side
image), however for ESOL (right-side image) we cannot draw such a conclusion.
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(a) FreeSolv score for R-MAT pretrained for given
numbers of pretraining epochs

(b) ESOL score for R-MAT pretrained for given
numbers of pretraining epochs

Figure 10: Fine-tuning scores obtained by R-MAT pretrained with a different number of pretraining
epochs.
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