
Under review as submission to TMLR

Inference- and Optimization-based Approximated Solver for
Dynamic Job-shop Scheduling Problem

Anonymous authors
Paper under double-blind review

Abstract

The Job-shop Scheduling Problem (JSP) is a well-known combinatorial optimization prob-
lem that arranges tasks for efficient processing. It is used in a broad range of industrial
applications, such as smart manufacturing and transportation. We focus on updating a
schedule in a situation where the number of jobs varies, and we propose an inference-based
model called JSPformer within data-driven scheme. JSPformer permits a solution inference
with a variable number of jobs by encoding input data into a set of job-wise feature vectors
and by using a neural network for set-structured data. Furthermore, for cases where a few
minutes of computation is possible, we propose JSPformer+Opt, a hybrid model of JSP-
former and a local optimization. The local optimization is intended to make a more efficient
schedule quickly from an inference solution. It uses part of the inference and optimizes the
rest to improve the solution quality while reducing the problem size for fast computation.
In numerical experiments, JSPformer+Opt produced better or more competitive solutions
for dynamic JSP instances within a minute compared to optimized solutions using an exact
solver for over 30 minutes.

1 Introduction

The Job-shop Scheduling Problem (JSP) is a well-known combinatorial optimization problem for determining
the most efficient processing order of tasks in jobs. Tasks are assigned to machines, and a machine cannot
process more than one task at the same time; consequently, we need to optimize the order of tasks for each
machine. JSP has broad industrial applications, such as smart manufacturing and transportation. In these
applications, schedules need to be modified according to a situation such as work delays and additional
jobs. Furthermore, in such applications, the schedule needs to be updated before the deviation from actual
operating status of machines increases. Therefore the optimization must be completed within a few minutes
at most. For example, in manufacturing products, we can assume that a task is processed in a dozen minutes
to an hour. Due to the randomness in job scheduling, including additional jobs and work delays, the schedule
should be updated at intervals of a few minutes. Similar problems occur in parcel delivery services. When
jobs are added over time, it is necessary to make a schedule under the constraints of the job release time in
addition to the constraints considered in standard (static) JSP. We call this problem dynamic JSP. It is an
extension of the static JSP, and reduces to the static JSP when all jobs are released simultaneously.
Many approaches have been proposed to solve the JSP. A typical exact methods is Branch and Bound
(B&B: Land & Doig (1960)), which iteratively updates the upper and lower bound. However, B&B is time-
consuming for large-scale instances. Therefore, many other studies have focused on heuristic methods to
obtain high-quality solutions in shorter time, such as rule-based methods (Dominic et al., 2004), local search
(e.g. shifting bottleneck (Adams et al., 1988)), or genetic algorithm (Lee et al., 1997)). While most of these
classical heuristics are intuitive and easy to understand, they tend to return sub-optimal solutions due to
their simplicity.
One reason for such sub-optimality is that the optimization process or the solution to a problem is not reused
to solve other problems. Therefore, a machine learning-based approach has been studied to quickly solve sim-
ilar optimization problems using a dataset containing optimization problems and their corresponding optimal

1

Under review as submission to TMLR

Minimize
Makespan !
w.r.t. "

#!! #"!##!

"!! = %!

time

Job 1
Job 2
Job 3

!

Release
time

Task Assignment (Processing time)
Task 3Task 2Task 1

%!(##!)(#"!)(#!!)Job 1

%"(##")(#"")(#!")Job 2

%#(###)(#"#)(#!#)Job 3

"!# = "!" + #!" > %#

Minimize
Makespan !
w.r.t. "

#!! #"!##!

"!! = %!

time

Job 1
Job 2

Release
time

Task Assignment (Processing time)
Task 3Task 2Task 1

%!(##!)(#"!)(#!!)Job 1

%"(##")(#"")(#!")Job 2

timeJob 3 Job 4Job 1 Job 2

"!" = %"
!

re-scheduling

Figure 1: Illustration of a solver for dynamic JSP in job-variant settings. Each task is assigned to a machine
visualized in the upper part. Colored rectangles represent tasks, where the color and width refer to the
assigned machine and the processing time, respectively. To complete each job, three tasks must be processed
in a specific order. The tasks are assigned to one of three machines at the same time, and they cannot
overlap in time on a single machine.

solutions. For example, several recent models (e.g., Cappart et al. (2021); Kotary et al. (2021; 2022)) can
output high-quality solutions by capturing features of the given instances. Notably, JSP-DNN (Kotary et al.,
2022) reported that the nearly optimal solution of the JSP could be inferred from the processing times by
learning solutions for similar instances with the same task assignment of all jobs. JSP-DNN can output a
solution within one second by inference with a neural network and a post-processing algorithm to guarantee
feasibility.
The disadvantage of such machine learning-based models is that the architecture is designed for a job-fixed
setting, a situation where the number of jobs and the task assignments of all jobs are fixed. The task
assignment defines the order of the machines for each job by assigning tasks to the machines. On the other
hand, the task assignment can vary when a new job appears or a portion of jobs is completed. Consequently,
handling dynamic JSP in applications requires training and inference in job-variant settings, situations where
the set of jobs varies over time. When there are many machines to process tasks, it is impractical to design
the architecture of existing models to tolerate all orders of the machines.
This paper focuses on solving dynamic JSP approximately in job-variant settings within a given time limit
(e.g. a few minutes; see Figure 1). In this paper, we propose JSPformer, a learning-based model for dynamic
JSP in job-variant settings. JSPformer uses the Set Transformer (Lee et al., 2019), a state-of-the-art model
for set-structured input data with variable length. In applying the Set Transformer to infer a solution of
dynamic JSP, we need to modify the input data to reflect the task assignment, the training procedure, and
the feasibility-recovery algorithm. Since the task assignment is represented as ordinal information, the Set
Transformer cannot be applied directly to the input data. Accordingly, we transform the input data into a
set of job-wise vectors that reflects the ordinal information by a cumulative processing time. After training
JSPformer, we can infer a high-quality solution for a variable number of jobs within a second; however, there
is no guarantee that the inference solution satisfies all constraints in dynamic JSP. Similar to JSP-DNN, we
use a feasibility-recovery algorithm to obtain a feasible solution from the inference.
Furthermore, as mentioned above, it is permitted to use a few minutes of computation time to search a
better solution of dynamic JSP in our assumed applications. In order to make the best use of the given
computation time limit, we also propose local optimization based on the JSPformer output, which we call

2

Under review as submission to TMLR

JSPformer+Opt. After obtaining a schedule from JSPformer, JSPformer+Opt optimizes a simplified problem
by fixing a portion of the inferred solution. Using this simplification, we can avoid an explosive increase in
computation time and apply an exact algorithm since the computation time of the exact algorithm increases
exponentially with the number of jobs.
We evaluate our model through two experimental settings; namely, job-fixed and job-variant settings. In
contrast to job-variant settings, the task assignment is fixed in the job-fixed setting, and only the processing
time and the release time vary. By comparing our model with JSP-DNN or heuristics, we experimentally
showed that our model works well in both settings. Moreover, JSPformer+Opt produced better or more
competitive solutions for dynamic JSP instances within a minute compared to optimized solutions using an
exact solver for over 30 minutes.

2 Formulation of dynamic JSP

In this section, we formulate the dynamic JSP to optimize the schedule for a given set of jobs. In the dynamic
JSP, we consider J jobs to be processed by M machines, where each job j consists of T tasks and each task
can only be performed on a specific machine. According to the classical setting, we assume that the number
of tasks in each job is equal to the number of machines (T = M) and that each job uses all machines once.
If a job has fewer than M tasks, we can use a dummy task whose processing time is zero. In this way, we
can assume that the number of tasks T for each job is fixed at M , and only the number of jobs J varies. It
is also assumed that the processing time is given a priori. The objective is to find a schedule that minimizes
the latest completion time of all jobs, namely makespan. The dynamic JSP is formulated as a model that
considers three types of constraints:

(c1) task-precedence constraint: Tasks in a job have a fixed processing order; p + 1-th task processing
cannot be started until the p-th task processing is completed.

(c2) no-overlap constraint: no machine can process more than one job at a time.

(c3) release-time constraint: job j cannot be processed before its release time rj .

Different from static JSP, which considers only constraints (c1) and (c2), job-variant settings needs to
consider the fact that the number of jobs varies with time, which is reflected in the release-time constraint
(c3). Let σj

p ∈ {1, · · · , M} be the machine that processes the p-th task of job j, dj
p be its processing time,

and rj be the release time of job j. For simplicity, we denote by σ the J × M matrix with (j, p) component
as σj

p, by d the J × M matrix with (j, p) component as dj
p, and by r the J-dimensional vector with the j-th

component as rj . Accordingly, the dynamic JSP is formulated as

(P) minimize
s

u = max
j

(sj
T + dj

T)

subject to sj
p+1 ≥ sj

p + dj
p (∀p) (c1)

sj
p + dj

p ≤ sj′

p′ or sj′

p′ + dj′

p′ ≤ sj
p (c2)

(∀(j, p, j′, p′) s.t. σj
p = σj′

p′)
sj

1 ≥ rj (∀j) (c3)

where sj
p and u are variables that represent the task start times of the p-th process of job j and the makespan,

respectively. The notations are summarized in Table 1. Our goal is to obtain s ∈ RJ×M that minimizes u
from the input data consisting of the task assignment σ, the processing time of tasks d ∈ RJ×M , and the
release time of jobs r ∈ RJ , where s denotes the J ×M matrix with the (j, p) component as sj

p. This problem
has a combinatorial structure mainly due to the no-overlap constraint (c2); in the optimization process, it is
necessary to choose which constraints in (c2) should be satisfied. Figure 1 depicts an example of a dynamic
JSP instance with two or three jobs and three machines. The schedule s can be visualized through the Gantt
chart at the bottom of Figure 1 and we can see that this schedule satisfies the no-overlap constraint (c2).

3

Under review as submission to TMLR

3 Related work

Table 1: Notations

J number of jobs
j ∈ {1, · · · , J} job index

T number of tasks per job
M number of machines (generally T = M)

p ∈ {1, · · · , T} task index
σj

p ∈ {1, · · · , M} task assignment of p-th task of job j
dj

p ≥ 0 processing time of p-th task of job j
rj release time of job j

sj
p ≥ 0 start time of p-th task of job j

u ≥ 0 makespan

This section summarizes related work on
the JSP. We describe classical approaches
in Section 3.1 and then mention more re-
cent machine learning-based approaches
in Section 3.2.

3.1 Classical Approaches

Since the JSP can be formulated as a
mixed integer optimization problem, it
is possible to use Branch and Bound
(B&B) (Land & Doig, 1960), a well-
known exact algorithm for combinatorial
optimization problems including scheduling problems (Brucker et al., 1994; Peterkofsky & Daganzo, 1990;
D ’ariano et al., 2007; Brucker et al., 1998). Due to its wide applicability, B&B is at the core of combina-
torial optimization solvers such as CBC1, CPLEX2, and Gurobi3 and can be applied to other combinatorial
optimization problems, such as the traveling salesman problem (Balas & Toth, 1983), the vehicle routing
problem (Lysgaard et al., 2004), and the bin-packing problem (Valério de Carvalho, 1999). B&B can work
as a useful solution when the problem size is small enough for the given computation time, but it is not
suitable for obtaining good solutions to large-scale problems.
For fast approximation, we can use heuristic approaches. The simplest way is to use dispatching rules that
determine a processing order (e.g., (Dominic et al., 2004)). Although there are several types of dispatching
rules such as shortest processing time or least work remaining, these rules basically output a schedule with
much lower efficiency than one by an exact solution method. According to previous work (Zhang et al.,
2020; Kotary et al., 2022), a rule-based schedule is more than 20% worse than a schedule made using an
exact algorithm. As another heuristic, local search algorithms aim to improve such a sub-optimal solution
by altering the solution locally. As in the dispatching rules, there are several local search algorithms, such as
shifting-bottleneck methods (Adams et al., 1988) and genetic algorithms (Lee et al., 1997). As mentioned in
Section 1, these local search algorithms do not use an implicit pattern in the dataset, so they are inefficient
for solving similar problems repeatedly.

3.2 Machine Learning-based Approaches

Unlike classical methods, some recent studies apply machine learning models for combinatorial optimization
problems by capturing a pattern in the optimal solutions contained in a dataset. For example, a super-
vised learning model has been proposed to solve general mixed integer quadratic optimization problems
by predicting tight constraints and discrete variables (Bertsimas & Stellato, 2022). Another approach is to
construct an approximated solver by jointly training a prediction and an optimization models (Wilder, 2019;
Mandi et al., 2022).
Machine learning methods specified for JSP have also been studied. One method (Zhang et al., 2020) tried
to find an appropriate dispatching rule from a solution dataset of the JSP, enabling more efficient scheduling
than other rule-based scheduling. Similarly, a different approach (Ingimundardottir & Runarsson, 2018) used
imitation learning to learn an efficient dispatching rule for the JSP.
While these models learn dispatching rules instead of the optimal schedule itself, JSP-DNN (Kotary et al.,
2022) learns the optimal schedules and the problem constraints directly by deep neural networks in the
job-fixed setting. The numerical experiments in the paper have shown that in some cases, JSP-DNN outputs
a high-quality solution as well as a 30-minute application of an exact algorithm while, on the other hand,
rule-based algorithms output a worse solution than a 1-minute application of an exact algorithm. This

1https://github.com/coin-or/Cbc
2https://www.ibm.com/products/ilog-cplex-optimization-studio
3https://www.gurobi.com

4

Under review as submission to TMLR

Shared layer:
ℝ!"# → ℝ"×#

Feasibility
Recovery

(§4.3)

input
!!! ⋯ !"!
⋮ ⋱ ⋮
!!# ⋯ !"#

⋯

Machine-wise
NN: ℝ" → ℝ"

(#: fixed)

Job-wise
NN: ℝ# → ℝ#

%!! ⋯ %"!
⋮ ⋱ ⋮
%!# ⋯ %"#

(a) JSP-DNN

!×#

!×#

⋯

%!! ⋯ %"!
⋮ ⋱ ⋮
%!# ⋯ %"#

(b) JSPformer

output

input 			
'$ (!
⋮ ⋮
'% (#!× # + 1

Job-
Shared NN:
ℝ!# → ℝ%Input Modification

(§4.2): ℝ#&' → ℝ!#

!×#output

Self-attention (#: variable)

Feasibility
Recovery

(§4.3)

⋯

Set Transformer

Job-
Shared NN:
ℝ% → ℝ#

⋯

Sort: task index → machine index

Figure 2: Architecture of JSP-DNN (a) and our model, JSPformer (b). J and M denote the number of
jobs and that of machines, respectively. Since JSP-DNN holds job-wise neural networks, JSP-DNN cannot
be used for dynamic JSP with a variable number of jobs J . To tackle this problem, JSPformer adopts Set
Transformer, which enables training and inference with a variable set of jobs. JSPformer focuses on the
dynamic JSP and release times r1, · · · , rJ are added to the input.

Feasibility
Recovery

Modifying
Input

Set
Transformer

Local
Optimization

JSPformer (within a second)

JSPformer+Opt (within a given time limit; e.g., a few minutes)

Release
time

Task Assignment (Processing time)
Task 3Task 2Task 1

!!(""!)("#!)("!!)Job 1

!#(""#)("##)("!#)Job 2

!"(""")("#")("!")Job 3

§4.2 §4.3 §4.4

Figure 3: Procedures of JSPformer and JSPformer+Opt, with a dynamic JSP instance having three jobs
and three machines. Given the input data, JSPformer infers a feasible solution through an input modifi-
cation (Section 4.2), an inference with Set Transformer (Section 4.2), and a feasibility-recovery algorithm
(Section 4.3). JSPformer+Opt improves the solution of JSPformer by local optimization (Section 4.4). JSP-
former can infer a solution within a second, whereas JSPformer+Opt improves the solution quality in a short
time (e.g. a few minutes), and thus we can choose either of these two models according to the application.

comparison demonstrates the solution quality of JSP-DNN. JSP-DNN learns the solutions for static JSP in
the job-fixed setting with M machines and J jobs by preparing three types of neural networks: M machine-
wise neural networks, J job-wise neural networks, and a shared layer (Figure 2(a)). The machine(job)-wise
network encodes J(M)-dimensional vectors of processing times corresponding to the machine(job) into a
feature vector, and the shared layer infers a solution from these features. Each layer is implemented as a
two-layer perceptron and the input dimension of the machine-wise networks and the number of job-wise
networks are fixed to J . In the training procedure, the task assignment σ is fixed and implicitly learned by
job-wise networks; the j-th job-wise network for the j-th job is trained for the corresponding task assignment
(σ1

j , · · · , σM
j). Since the inferred solution may not satisfy some of the constraints, the paper also proposed a

post-processing algorithm to recover a feasible solution from the inference. The feasibility-recovery algorithm
uses the inference to define an order of tasks by comparing the inferred task start time (Kotary et al., 2021) or
the middle value between the inferred task start and end times (Kotary et al., 2022). This order determines
which constraints of (c2) are satisfied, thus making the problem much easier. By combining the inference
and the feasibility-recovery algorithm, JSP-DNN can output a solution that is much closer to the optimal
solution than a rule-based solution. From the viewpoints of computational speed and accuracy, our study
uses JSP-DNN, a supervised learning model for JSP, as the baseline.
While JSP-DNN performs well in the job-fixed setting, it faces limitations when applied to job-variant
settings. JSP-DNN assumes that the task assignment σ is fixed since JSP-DNN has a job-wise neural
network (Figure 2(a)) that implicitly reflects σ. This is not applicable in job-variant settings, such that σ
varies with the set of jobs. If we applied JSP-DNN to job-variant settings, we needed to determine the set
of jobs in order to prepare job-wise networks in advance. For example, considering three jobs with different
task assignments, JSP-DNN needs three job-wise networks for each job, even if each instance in the dataset
has two jobs. One could assume a set of all possible jobs Jub, and employ JSP-DNN for a job-variant

5

Under review as submission to TMLR

setting with the fixed task assignment σ consisting all task assignments of jobs in Jub. However, there
would be many redundant and inefficient cases where the actual number of jobs ends up being much smaller
than |Jub|. Thus, JSP-DNN cannot be applicable for job-variant settings. In addition, JSP-DNN can infer
a high-quality solution within about a second, while we are able to spend a few minutes in our assumed
applications, introduced in Section 1. This means that we have time to improve the solution quality from
the inference.

4 Proposed method

In this section, we propose JSPformer and JSPformer+Opt to address the following two issues: (i1) con-
structing an inference model for a variable number of jobs and (i2) improving the solution quality. JSPformer
is a data-driven model for the dynamic JSP that addresses the first issue (i1) by encoding the input data
(d, r, σ) into a set of job-wise feature vectors and using a neural network for set-structured data (to check
the architecture, see Figure 2(b)). The second issue (i2) is addressed by JSPformer+Opt, a hybrid model of
JSPformer and the local optimization. The local optimization improves the solution quality by optimizing
a portion of the inference solution. Depending on the given time available, the problem size can be adjusted
in the local optimization. In the following section, we give an overview of the proposed methods.

4.1 Overview

Figure 3 gives an overview of the proposed models. JSPformer focuses on rapid computation that combines
a neural network for solution inference and a feasibility-recovery algorithm. JSPformer basically follows the
same training procedure as JSP-DNN (detailed in Appendix A). Moreover, we propose JSPformer+Opt, a
hybrid model of JSPformer and local optimization, under the assumption that we have more than a few
seconds to spend on the optimization. From the next subsection, we give details on the JSPformer inference
model (Section 4.2), an algorithm to recover feasibility (Section 4.3), and the local optimization method
(Section 4.4).

4.2 Inference with Set Transformer from Modified Input Data

JSPformer addresses the first issue (i1) by regarding input (d, r, σ) and output s as job-wise set-structured
data. In this way, we can use a neural network model for set-structured data that support variable-size
inputs. As an implementation, we adopted Set Transformer (Lee et al., 2019), a state-of-the-art model for
set-structured data.

!!! !"! !#! "! + !!! "! + !!! + !"! "! + !!! + !"! + !#!
!#" !!" !"" "! + !!" + !"" + !#" "! + !!" "! + !!" + !""

$ (sorted) %

Job 1
Job 2

Release
time

Task Assignment (Processing time)
Task 3Task 2Task 1

!!(""!)("#!)("!!)Job 1

!#(""#)("##)("!#)Job 2

= "!! "#! ""!
"!# "## ""#

% = 1 2 3
2 3 1) = !!

!#

Machine 1

Machine 2

Machine 3

Modifying Input

Figure 4: Detailed process used to modify inputs for
the solution inference with a variable number of jobs.
Modified input data reflect the task assigmnent. We
use the matrix at the bottom of this figure which is
indexed by the job index and the machine index (black
→ green → blue) instead of the task index.

Given a set of processing times d ∈ RJ×M , a job-
release time r ∈ RM , and a task assignment for
jobs σ ∈ {1, · · · , M}J×M , we regard (d, r) as a
set of job-wise input data D :=

{(
dj , rj

)}J

j=1, and
JSPformer first infers job-wise start time

{
sj

}J

j=1
with a neural network fθ parametrized by θ, where
dj = (dj

1, · · · , dj
M) ∈ RM and sj = (sj

1, · · · , sj
M) ∈

RM denote the vectors of the processing time and
the start time of the job j, respectively. As ex-
plained in Section 3, we cannot use the same archi-
tecture as JSP-DNN for job-variant settings. Con-
sequently, we instead use Set Transformer, a model
designed to handle set-structured variable-size in-
put data consisting of self-attention and row-wise
transformation. Self-attention can be computed re-
gardless of the number of input vectors, making it
applicable to our targeted dynamic JSP. Intuitively,
the self-attention reflects the no-overlap constraint

6

Under review as submission to TMLR

(c2), while the row-wise transformation reflects the
task-precedence constraint (c1) and the release-time constraint (c3).
Since D has no information on task assignment σ, we need to modify the input data; given the input D,
we constructed a cumulative processing time γ =

{
γj

}J

j=1, defined as γj
1 = rj + dj

1 and γj
p+1 = γj

p + dj
p,

and reordered γj according to the machine index. Since inequality γj
p+1 > γj

p reflects the task sequence
of each job, we can input the task assignments to machines by sorting γj ∈ RM and dj ∈ RM according
to the machine indices. Additionally, γ has release-time information by γj

1. Figure 4 shows an example
of the modification; in this example, the input data reflects the task assignments by the column indices.
Set Transformer can learn the task-precedence constraints (c1) and release-time constraints (c3) in a row-
wise transformation. Our input modification may be interpreted as a proposition for positional encoding in
Transformer architecture for dynamic JSP; just as the positional encoding represents an order of sequential
data, the modified input γ represents the processing order derived from the task-precedence constraint (c1).

4.3 Feasibility Recovery

Although JSPformer is trained to satisfy constraints (c1)-(c3), there is no guarantee that the inference result
ŝ satisfies these constraints. We used a procedure similar to JSP-DNN to recover a feasible solution from the
inference. If rj = 0 for every job j, the feasibility-recovery algorithm is the same as that of JSP-DNN. By
using ŝ, we could define the order of tasks ≤ŝ as ŝp

j ≤ ŝp′

j′ ⇐⇒ (j, p) ≤ŝ (j′, p′) for two tasks (j, p), (j′, p′)
that share the same machine. Since this order only reflects the no-overlap constraint (c2), it may contradict
the task-precedence constraint (c1). If not, we can obtain a feasible solution of (P) by optimizing the
following problem.

(P ′) minimize
s

u = max
j

(sj
T + dj

T)

subject to sj
p+1 ≥ sj

p + dj
p (∀p) (c1)

sj
p + dj

p ≤ sj′

p′ (c2’)
(∀(j, p), (j′, p′) s.t. (j, p) ≤ŝ (j′, p′))

sj
1 ≥ rj (∀j) (c3)

This problem (P’) belongs to the linear optimization problems and can be optimized in a much shorter
time than the original problem (P) (e.g., within a second for 20 jobs). In the case where ≤ŝ contradicts
the task-precedence constraint (c1), we use a greedy algorithm in the same way as JSP-DNN (detailed in
Algorithm 2 in Appendix B), which gives a feasible solution to (P) by reconstructing an order≤ŝ based on
the inference ŝ.

4.4 Local Optimization from Inference Solution

We can obtain a high-quality feasible solution by recovering feasibility using the order of tasks from the
inference. After that, we can further refine this solution by local optimization defined below. In the local
optimization, we divided the set of jobs into inference-based jobs and optimization-based jobs and then
fixed the order of tasks for the inference-based jobs. In this way, we could reduce the size of problem (P)
significantly, and the solution could be refined by applying the solver over a few minutes. Given an order ≤ŝ

between the inference-based jobs and the set of optimization-based jobs Jo, we could formulate a simplified
version of (P) by replacing (c2) with (c2’) for any two tasks in the inference-based jobs. This simplification
reduces the problem complexity; the original problem (P) has at most (J !)M patterns, which is reduced to
(J !/(J − K)!)M in the simplified problem, where K = |Jo|.

5 Experiments

To verify the effectiveness of the proposed method, we evaluated it in two experimental settings. The
first setting is inherited from JSP-DNN; namely, the neural network is trained in the job-fixed setting.

7

Under review as submission to TMLR

The aim of this experiment was to investigate differences between JSPformer(+Opt) and JSP-DNN(+Opt),
where JSP-DNN+Opt refers to a hybrid model of JSP-DNN and local optimization for fair evaluation with
JSPformer+Opt.
In the second setting, an experiment shows that our model is applicable to job-variant settings, as defined at
the beginning of Section 1. In the second experiment, we randomly removed a part of jobs from the original
instances in the dataset construction. In this way, we could check whether JSPformer was able to handle a
variable number of jobs while maintaining regularity in the dataset.
In this section, we numerically compare JSPformer(+Opt) to JSP-DNN(+Opt) and classical heuristics.

5.1 Data Generation

For experiments in both job-fixed and job-variant settings, we prepared three types of datasets based on
three JSP benchmark instances from JSPLIB4, namely, La21 with 15 jobs and 10 machines, La16 with 10
jobs and 10 machines, and La11 with 20 jobs and 5 machines.
In the job-fixed setting, we used these instances to prepare the datasets, as in the experiment of JSP-
DNN (Kotary et al., 2022). For all instances in each dataset, the number of jobs and the number of machines
are the same as in the original instance. For each instance, we generated 1,500 individual instances by slowing
down the processing time; as in the original experiment of JSP-DNN (Kotary et al., 2022), the processing
time was randomly slowed down up to 50% from the original processing time. The instances were divided
into 1,490 training data and 10 test data.
Conversely, in job-variant settings, a dataset containing instances with different sets of jobs is required. To
construct such a dataset, we created a dataset consisting of variable-size instances by randomly removing jobs
from La21, La16, and La11 instances. As in the job-fixed setting, we randomly varied the job-release time
and processing time. For each instance, we prepared a total of 3,000 instances with up to 3 jobs removed.
For example, the La21 dataset for job-variant settings contains instances with 12-15 jobs. In the dataset
creation, we uniformly choose the number of jobs removed. For each of the three datasets and each number
of removed jobs, we prepared 10 test data, and trained JSPformer on the remaining 2,960 training data.
It should be emphasized that, unlike datasets for images or audio, the preparation of training data requires
computation time to run an exact algorithm for optimization. Following the experimental settings in the
study of JSP-DNN, we set a time limit of 1,800 seconds for each instance and used the best solutions within
the time limits, resulting in 93.75 days of computation time (3 types of datasets × 1,500 instances × 1,800
seconds). The original instances from JSPLIB do not have the release time constraint (c3), so we randomly
generated the release times. We sorted the generated release time according to the job index in order to
give regularity to the release times as well as to the processing time. As an exact algorithm, we used CBC,
an open-source mixed-integer program (MIP) solver. CBC is widely used as a default solver, such as in
PuLP (Python modeling library for optimization) or Google OR-tools. Due to the time limit, the datasets
contained sub-optimal solutions; consequently, there is the possibility that JSP-DNN and JSPformer output
better solutions than the dataset solutions. We prepared the three datasets for both job-fixed and job-variant
settings.

5.2 Training Details

In the job-fixed setting, we used an inference model for each dataset, as in the experimental setup of JSP-
DNN.
While JSPformer can handle both job-fixed and job-variant settings, the vanilla JSP-DNN is only available in
the job-fixed setting because JSP-DNN cannot consider the job-release time. To use JSP-DNN as a baseline
for JSPformer, we modified JSP-DNN to address this problem by using the input modification; we used the
modified input data (d, γ) as the input of JSP-DNN to reflect the job-release time.

4https://github.com/tamy0612/JSPLIB

8

Under review as submission to TMLR

The training and evaluation processes were conducted using an Apple M2 MacBook Pro with 16 GB RAM.
We report the best results after tuning several hyperparameters such as the learning rate (detailed in Ap-
pendix C).

5.3 Experimental Settings

Since we aim to update the schedule within a period of a few minutes, we set one minute as the time limit for
local optimization. In the local optimization, the number of optimization-based jobs K should be adjusted
to this computation time limit. According to the estimated problem complexity (J !/(J − K)!)M , we use
relatively small K when J or M is large (Table 2, 3). To ensure that computation time minimally affected
processing, we chose K jobs with late release times as the optimization-based jobs in the experiment.

5.4 Evaluation Metrics

In the experiments, we used the following four metrics to measure inference and optimization performance.
Here, ↑ or ↓ indicates that a higher or lower value is more favorable, respectively.

• Prediction Error ↓: To measure how well the inference models fit the datasets, the columns for prediction
error report the L2 distance between the output of the inference ŝ and the target solution s obtained by
CBC solver.

• Constraint Violation ↓: To measure the magnitude of the constraint violations (c1)-(c3), the columns for
constraint violation report the L2 distance between the output of the inference before the feasibility recovery
ŝ and the solution after the feasibility recovery s̃.

• Optimality Gap (the same definition as (Kotary et al., 2022)) ↓: Optimality gap measures the gap of
objective values between the two solutions, one obtained by the CBC solver and the other obtained by the
inference model or the hybrid model. Since the CBC solver has a time limit of 1,800 seconds as mentioned
in Section 5.1, the solutions by the CBC solver are not always optimal. In some cases, the inference solution
is better than the solution by the CBC solver, in which case the optimality gap becomes negative.

• #Better Solutions ↑: As mentioned above, the inference model or the hybrid model may output a better
solution than that by the CBC solver. We count such instances and report them in the column of #better
solutions.

5.5 Experimental Results for Job-fixed Setting

Table 2 shows the numerical results of JSPformer(+Opt), JSP-DNN(+Opt), and MWR+SB, a classical
heuristics consisted of dispatching rule (Most Work Remained: MWR) (Dominic et al., 2004) and shifting
bottleneck (SB) (Adams et al., 1988). In Appendix D, we report numerical results with other several dis-
patching rules (SPT, LWR, LOR, and MOR) and shifting bottleneck. For a fair comparison, we report
the results of JSP-DNN+Opt, a hybrid model of JSP-DNN with 1-minute local optimization (computation
time discussed in Section 6.1). From this table, we can see that JSPformer+Opt produced the best results
compared to the other models. Especially, classical heuristics output sub-optimal solutions, as mentioned
in Section 1. Comparing the results for inference (K = 0) of JSPformer and JSP-DNN, JSPformer inferred
more accurate solutions (prediction error and constraint violation) and performed as well as or better than
JSP-DNN (optimality gap).
In combination with local optimization, we obtained an even better solution. Except for La16, JSP-
former+Opt output better solutions for the 30-minute application of the CBC solver, which was not achieved
solely by the inference models.
By carefully reviewing Table 2, we can see that the neighborhood of the inference of JSPformer is better
than that of JSP-DNN. With the La11 dataset, JSP-DNN inferred better solutions than JSPformer, but the
opposite result was obtained when incorporating local optimization. This result means that it is difficult
to find a better solution in the neighborhood of the inference solution of JSP-DNN, while a better solution

9

Under review as submission to TMLR

Table 2: Experimental Results of JSPformer(+Opt), JSP-DNN(+Opt), and classical heuristics in the job-
fixed setting. For a fair comparison, a hybrid model of JSP-DNN and the local optimization is also presented
as JSP-DNN+Opt. K denotes the number of jobs to optimize after the inference and K = 0 refers to the
results of inference solutions.

base instance model K Prediction Error ↓ Constraint Violation ↓ Optimality Gap ↓ # Better Sol. ↑

La21 JSPformer 0 1,963 1,031 0.010±0.034 4/10
(J=15, M=10)

JSPformer+Opt
2 - - -0.045±0.026 10/10
3 - - -0.056±0.025 10/10
4 - - -0.049±0.034 9/10

JSP-DNN 0 2,112 2,026 0.165±0.046 0/10

JSP-DNN+Opt
2 - - 0.070±0.048 0/10
3 - - 0.027±0.049 2/10
4 - - -0.013±0.036 6/10

MWR+SB - - - 0.367±0.086 0/10
La16 JSPformer 0 1,187 1,482 0.176±0.043 0/10

(J=10, M=10)
JSPformer+Opt

2 - - 0.146±0.043 0/10
4 - - 0.054±0.021 0/10
6 - - 0.032±0.014 0/10

JSP-DNN 0 1,327 2,003 0.266±0.014 0/10

JSP-DNN+Opt
2 - - 0.265±0.018 0/10
4 - - 0.127±0.034 0/10
6 - - 0.044±0.024 0/10

MWR+SB - - - 0.299±0.080 0/10
La11 JSPformer 0 2,492 1,234 -0.042±0.051 8/10

(J=20, M=5)
JSPformer+Opt

2 - - -0.080±0.044 10/10
4 - - -0.084±0.041 10/10
6 - - -0.040±0.076 7/10

JSP-DNN 0 2,722 1,166 -0.051±0.035 10/10

JSP-DNN+Opt
2 - - -0.052±0.036 10/10
4 - - -0.046±0.059 6/10
6 - - -0.006±0.072 6/10

MWR+SB - - - 0.128±0.107 1/10

can be easily obtained in the neighborhood of the inference solution of JSPformer. The same tendency can
be observed for the other datasets; when using JSP-DNN+Opt, the performance is better with a relatively
large K. This suggests the necessity to search for solutions that are far from the inference of JSP-DNN.

5.6 Experimental Results for Job-variant Setting

The experimental results for job-variant settings are shown in Table 3, which lists the optimality gap for
each number of removed jobs L in addition to the overall results. As a baseline, we also reported numerical
results with MWR and a shifting bottleneck which performed best among classical heuristics in the previous
experiment. Comparing Table 3 with Table 2, we can see that JSPformer worked well for training with a
variable number of jobs. For the La21 and La11 datasets, the accuracy tended to decrease as the number
of removed jobs L increased. Considering the fact that JSPformer worked well for these two datasets in the
job-fixed setting, the decrease was caused by the number of instances per set of jobs. The larger L results
in more patterns of a set of jobs; for example, 3!=6 patterns of a set of jobs are created from the original
instance by removing 3 jobs. In contrast, the optimality gap remained large for the La16 dataset. In this
dataset, the number of machines is equal to or less than the number of jobs; therefore, the machines are
relatively free when L is large. In such a condition, many schedules are nearly optimal, resulting in a smaller
gap when L is large. After local optimization, the effect of L became smaller, which implies that the local
optimization efficiently compensates for the small datasets during the training. Particularly in the La21 and

10

Under review as submission to TMLR

Table 3: Experimental Results of JSPformer and JSPformer+Opt in job-variant settings. K denotes the
number of jobs to optimize after the inference and K = 0 refers to the results of JSPformer. L denotes
the number of removed jobs. Gap refers to the optimality gap. As a baseline, results of a heuristic method
(MWR+SB) are also reported.

base instance K / model Gap(total) Gap(L = 0) ↓ Gap(L = 1) ↓ Gap(L = 2) ↓ Gap(L = 3) ↓ # Better Sol. ↑

La21
(J=15, M=10)

0 0.069±0.068 0.003±0.048 0.084±0.062 0.072±0.034 0.118±0.065 5/40
2 0.007±0.061 -0.035±0.061 0.021±0.068 0.002±0.027 0.039±0.052 15/40
3 -0.014±0.052 -0.042±0.060 -0.016±0.049 -0.011±0.029 0.014±0.046 26/40
4 0.013±0.062 0.006±0.064 0.028±0.076 0.022±0.043 -0.003±0.052 20/40

MWR+SB 0.323±0.131 0.356±0.168 0.362±0.107 0.287±0.069 0.288±0.137 0/40

La16
(J=10, M=10)

0 0.136±0.065 0.176±0.051 0.135±0.048 0.155±0.061 0.078±0.052 0/40
2 0.064±0.037 0.105±0.029 0.056±0.028 0.073±0.015 0.022±0.016 0/40
4 0.030±0.026 0.053±0.031 0.036±0.013 0.026±0.019 0.007±0.009 0/40
6 0.032±0.039 0.076±0.045 0.041±0.017 0.010±0.015 -0.000±0.000 1/40

MWR+SB 0.380±0.118 0.308±0.092 0.456±0.123 0.380±0.096 0.377±0.107 0/40

La11
(J=20, M=5)

0 -0.009±0.046 -0.028±0.033 -0.026±0.038 -0.005±0.039 0.025±0.051 22/40
2 -0.018±0.045 -0.009±0.061 -0.022±0.044 -0.020±0.033 -0.021±0.033 27/40
4 0.020±0.052 0.003±0.036 0.019±0.063 0.039±0.041 0.019±0.056 15/40
6 0.029±0.086 0.020±0.103 0.036±0.090 0.016±0.075 0.046±0.068 17/40

MWR+SB 0.225±0.108 0.183±0.123 0.172±0.077 0.265±0.091 0.279±0.089 1/40

La16 datasets, better results were produced with a larger K when using L = 3. This suggests that when
the number of training data is small, it is effective to use relatively large K for the local optimization to
supplement the solution accuracy.

6 Discussions

6.1 Relations among Optimization Time Limit, Problem Size, and Solution Quality

Figure 5: Evolution of objective value and its
lower bound over time calculated by CBC while
changing the number of optimization-based jobs
K = |Jo|. Incumbent refers to the best objective
value at the time. Calculation is finished when
the time limit is reached or the objective value
matches the lower bound.

Figure 5 shows an example of the evolution of the ob-
jective value and its lower bound over time while chang-
ing the time limit from one minute to five minutes and
changing the number of optimization-based jobs K = |Jo|
using an La21 instance. In application, it is reasonable
to choose an appropriate K after testing with several in-
stances and checking their objective values and their best
bounds. We can see that a too-small K causes the simpli-
fied problem (P’) to have a worse optimal solution than
(P), while a too-large K causes a larger gap to remain
between the incumbent (the best solution found) and the
best bound. For this instance, the local optimization with
K = 4 output the best solution of 1,563 compared to other
solutions (1,631 for K = 2, 1,569 for K = 3, and 1,637
for K = 6). In general, the size of K affects the computa-
tion time exponentially. In our computing environment,
however, the objective values after five minutes were not
much better than the solutions at one minute; for this
reason, we experimented with the computation time set
to one minute for the local optimization.

6.2 Limitations

We have discussed the advantages of JSPformer for both job-fixed and job-variant settings, but our model
also has limitations. We currently recognize two main difficulties: (d1) preparing a dataset with a more

11

Under review as submission to TMLR

accurate solution and more complex instances and (d2) preparing a more practical dataset for job-variant
settings. The first difficulty derives from the fact that it takes a great deal of time to compute the optimal
solution. To tackle this problem, we need to improve the exact algorithm or reduce the problem size that can
be solved within a few hours. This difficulty also implies that it is challenging to make evaluation metrics
using optimal solutions. As for the second difficulty, learning a wider range of patterns requires the creation
of a huge dataset that can contain such a wide range, which may appear in applications. For instance, when
J jobs arrive in a completely random order, we need to consider J ! patterns according to the job order. This
is why we constructed the dataset by removing jobs from the original instances; by doing this, we can use a
dataset that contains different numbers of jobs while sharing patterns of job arrival. In the future, it would
be desirable to establish benchmarks for evaluating models that infer solutions to a wider range of patterns
in job-variant settings.

7 Conclusion and Future Work

In this paper, we have proposed JSPformer, a data-driven inference model for the dynamic JSP, and JSP-
former+Opt, a hybrid model of JSPformer and local optimization, to solve the dynamic JSP within a few
minutes. We have addressed the two issues of (i1) handling a variable number of jobs by JSPformer and (i2)
improving the solution quality within the given time limit using local optimization. JSPformer addresses
the first issue by encoding the input data to job-wise features and using Set Transformer, and the local
optimization addresses the second issue by adjusting the problem size appropriately. Numerical experiments
show that JSPformer+Opt inferred a better solution than the baseline, JSP-DNN(+Opt). Furthermore,
in many cases, the solution of JSPformer+Opt within a minute outperformed the solution of a 30-minute
application of the exact algorithm, which also demonstrates the usefulness of JSPformer+Opt.
We believe there are two main directions for future work. The first direction is to address the limitation
mentioned in Section 6.2 concerning the preparation of the dataset. Since it takes a long time to prepare
a solution for the dynamic JSP, it is necessary to develop a method for faster dataset construction or a
few-shot learning model for the dynamic JSP. The second direction is to apply the same framework to other
types of industrial problems. We will investigate the usefulness of data-driven approach for other industrial
applications.

References
Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job shop scheduling. Manage-

ment science, 34(3):391–401, 1988.

Egon Balas and Paolo Toth. Branch and bound methods for the traveling salesman problem. 1983.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds. INFORMS Journal
on Computing, 34(4):2229–2248, 2022.

Peter Brucker, Bernd Jurisch, and Bernd Sievers. A branch and bound algorithm for the job-shop scheduling
problem. Discrete Applied Mathematics, 49(1):107–127, 1994. ISSN 0166-218X. doi: https://doi.org/10.1016/
0166-218X(94)90204-6. URL https://www.sciencedirect.com/science/article/pii/0166218X94902046. Spe-
cial Volume Viewpoints on Optimization.

Peter Brucker, Sigrid Knust, Arno Schoo, and Olaf Thiele. A branch and bound algorithm for the resource-constrained
project scheduling problem. European journal of operational research, 107(2):272–288, 1998.

Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and Andre A Cire. Combining
reinforcement learning and constraint programming for combinatorial optimization. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 3677–3687, 2021.

Panneer DD Dominic, Sathya Kaliyamoorthy, and M Saravana Kumar. Efficient dispatching rules for dynamic job
shop scheduling. The International Journal of Advanced Manufacturing Technology, 24:70–75, 2004.

Andrea D ’ariano, Dario Pacciarelli, and Marco Pranzo. A branch and bound algorithm for scheduling trains in a
railway network. European journal of operational research, 183(2):643–657, 2007.

12

Under review as submission to TMLR

Helga Ingimundardottir and Thomas Philip Runarsson. Discovering dispatching rules from data using imitation
learning: A case study for the job-shop problem. Journal of Scheduling, 21:413–428, 2018.

James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Learning hard optimization problems: A data
generation perspective. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=2zO2lb7ykMD.

James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Fast approximations for job shop scheduling: A
lagrangian dual deep learning method. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36,
pp. 7239–7246, 2022.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems. Econometrica, 28(3):
497–520, 1960. ISSN 00129682, 14680262. URL http://www.jstor.org/stable/1910129.

C-Y Lee, Selwyn Piramuthu, and Y-K Tsai. Job shop scheduling with a genetic algorithm and machine learning.
International Journal of production research, 35(4):1171–1191, 1997.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set transformer: A
framework for attention-based permutation-invariant neural networks. In Proceedings of the 36th International
Conference on Machine Learning, pp. 3744–3753, 2019.

Jens Lysgaard, Adam N Letchford, and Richard W Eglese. A new branch-and-cut algorithm for the capacitated
vehicle routing problem. Mathematical programming, 100:423–445, 2004.

Jayanta Mandi, Víctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused learning: Through
the lens of learning to rank. In Proceedings of the 39th International Conference on Machine Learning, volume
162, pp. 14935–14947, 17–23 Jul 2022.

Roy I Peterkofsky and Carlos F Daganzo. A branch and bound solution method for the crane scheduling problem.
Transportation Research Part B: Methodological, 24(3):159–172, 1990.

JM Valério de Carvalho. Exact solution of bin-packing problems using column generation and branch-and-bound.
Annals of Operations Research, 86(0):629–659, 1999.

Bryan Wilder. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch for job shop
scheduling via deep reinforcement learning. Advances in Neural Information Processing Systems, 33:1621–1632,
2020.

13

