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Abstract

The Job-shop Scheduling Problem (JSP) is a well-known combinatorial optimization prob-
lem that arranges tasks for efficient processing. It is used in a broad range of industrial
applications, such as smart manufacturing and transportation. We focus on repeatedly
solving scheduling instances with variable sets of jobs for real-world applications,
and we propose an inference-based model called JSPformer based on a data-driven scheme.
Our main contribution lies in enabling the training and inference of schedules
for variable sets of jobs by encoding input data into job-wise feature vectors and
utilizing a neural network for set-structured data. Furthermore, for cases where a
few minutes of additional computation is available, we propose JSPformer+Opt, a hybrid
model of JSPformer and a local optimization. The local optimization is intended to make
a more efficient schedule quickly from an inference solution. It uses part of the inference
and optimizes the rest to improve the solution quality while reducing the problem size for
fast computation. In numerical experiments, we validated that JSPformer outper-
formed existing inference-based models and demonstrated its ability to handle
instances with variable sets of jobs.

1 Introduction

The Job-shop Scheduling Problem (JSP) is a well-known combinatorial optimization problem for determining
the most efficient processing order of tasks in jobs. Tasks are assigned to machines, and a machine cannot
process more than one task at the same time; consequently, we need to optimize the order of tasks for each
machine. JSP has broad industrial applications, such as smart manufacturing and transportation. In these
applications, schedules need to be modified according to a situation such as work delays and additional
jobs. Furthermore, in such applications, the schedule needs to be updated before the deviation from actual
operating status of machines increases. Therefore the optimization must be completed within a few minutes
at most. For example, in manufacturing products, we can assume that a task is processed in a dozen minutes
to an hour. Due to the randomness in job scheduling, including additional jobs and work delays, the schedule
should be updated at intervals of a few minutes. Similar problems occur in parcel delivery services. When
jobs are added over time, it is necessary to make a schedule under the constraints of the job release time in
addition to the constraints considered in standard JSP. We call this problem JSPRT (JSP with Release
Time). It is an extension of the JSP, and reduces to the JSP when all jobs are released simultaneously.
This paper focuses on solving JSPRT within a given time limit after information about jobs
arrives (Figure 1).
Many approaches have been proposed to solve such a scheduling problem as summarized in Figure 2,
and classical algorithms struggle to overcome the trade-off between computation speed and
solution accuracy. As a general-purpose exact method (Figure 2(i)), one can use Branch and
Bound (B&B: Land & Doig (1960)) to solve the JSP, which iteratively updates the upper and
lower bound. A more specific exact solution method for the JSP is CP-SAT solver1, which

1A free CP-SAT solver is available through Google OR-tools:
https://developers.google.com/optimization/cp/cp_solver
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Figure 1: Illustration of a solver for JSPRT in job-variant settings. Each task is assigned to a machine
visualized in the upper part. Colored rectangles represent tasks, where the color and width refer to the
assigned machine and the processing time, respectively. To complete each job, three tasks must be processed
in a specific order. The tasks are assigned to one of three machines at the same time, and they cannot overlap
in time on a single machine. After the job information arrives, we need to obtain a nearly-optimal
schedule before the job arrival.

is based on constraint programming and SAT solver. However, such exact algorithms are time-
consuming for large-scale instances; since JSP is an NP-hard problem, the computation time for
obtaining an exact solution increases exponentially with the problem size. Therefore, many other
studies have focused on heuristic methods (Figure 2(ii)) to obtain high-quality solutions in shorter time,
such as rule-based methods (Dominic et al., 2004), local search, e.g. shifting bottleneck (Adams et al., 1988)
or genetic algorithm (Lee et al., 1997). While most of these classical heuristics are intuitive and easy to
understand, they tend to return sub-optimal solutions due to their simplicity.
Considering scenarios of repeatedlly solving similar instances, it is promising to reuse the
optimization process or the solution to an instance for other similar instances to obtain better
solutions. Based on this idea, data-driven approaches have been explored to quickly infer
high-quality solutions. They can be categorized into reinforcement learning and supervised
learning. The reinforcement learning model (Figure 2(iii)), such as (Zhang et al., 2020), learns
an appropriate dispatching rule using a dataset containing similar instances. However, it still
produces sub-optimal solutions because it does not learn the solutions of these instances.When
we can use datasets containing solutions of similar instances, supervised learning is expected to
infer better quality solutions. For example, several recent models, e.g., Kotary et al. (2021; 2022), can
output high-quality solutions by capturing features of the given instances and their solutions. Notably,
JSP-DNN (Kotary et al., 2022) (Figure 2(iv)) reported that the nearly optimal solution of the JSP could be
inferred from the processing times by learning solutions for similar instances with the same task assignment
of all jobs. JSP-DNN can output a solution within one second by inference with a neural network and a
post-processing algorithm to guarantee feasibility.
The disadvantage of such supervised learning-based models is that the architecture is designed for a job-
fixed setting, a situation where the number of jobs and the task assignments of all jobs are fixed. The task
assignment defines the order of the machines for each job by assigning tasks to the machines. On the
other hand, our aim is to solve JSPRT after the information about jobs arrives, and we cannot
know the number of jobs and the task assignments. Consequently, handling JSPRT in applications
requires training and inference in job-variant settings, situations where the set of jobs varies depending
on the instances. In our assuming applications, the task assignments of all possible jobs are
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Figure 2: The methods for solving JSPRT are classified as the binary tree. Our model adopts a supervised
learning approach to achieve a high-quality solution within a given time limit. Our model can handle job-
variant settings by the capability of learning and inference on variable sets of jobs.

known, but it is uncertain which jobs will arrive, requiring the ability to handle variable sets
of jobs.
To solve JSPRT within a given time limit in job-variant settings, we propose JSPformer (Figure 2(v)),
a supervised learning-based model, using solution datasets for similar instances. JSPformer uses
the Set Transformer (Lee et al., 2019), a state-of-the-art model for set-structured input data with variable
length. To apply the Set Transformer to infer a solution of JSPRT, we need to modify the input data to
reflect the task assignment, the training procedure, and the feasibility-recovery algorithm. Since the task
assignment is represented as ordinal information, the Set Transformer cannot be applied directly to the input
data. Accordingly, we propose a method to transform the input data into a set of job-wise vectors that
reflects the ordinal information by a cumulative processing time. After training JSPformer, we can infer
a high-quality solution for a variable number of jobs within a second; however, there is no guarantee that
the inference solution satisfies all constraints in JSPRT. Similar to JSP-DNN, we use a feasibility-recovery
algorithm to obtain a feasible solution from the inference.
Furthermore, as mentioned above, it is permitted to use a few minutes of computation time to search a better
solution of JSPRT in our assumed applications. In order to make the best use of the given computation time
limit, we also propose local optimization based on the JSPformer output, which we call JSPformer+Opt.
After obtaining a schedule from JSPformer, JSPformer+Opt optimizes a simplified problem by fixing a
portion of the inferred solution. Using this simplification, we can avoid an explosive increase in computation
time and apply an exact algorithm since the computation time of the exact algorithm increases exponentially
with the number of jobs.
We evaluate our model through two experimental settings; namely, job-fixed and job-variant settings. In
contrast to job-variant setting, the task assignment is fixed in the job-fixed setting, and only the processing
time and the release time vary. By comparing our model with JSP-DNN or heuristics, we experimentally
showed that our model works well in both settings. Moreover, JSPformer+Opt produced better or more
competitive solutions for JSPRT instances within a minute compared to optimized solutions using an exact
solver for over 30 minutes.

2 Formulation of JSPRT

In this section, we formulate the JSPRT to optimize the schedule for a given set of jobs. In the JSPRT,
we consider J jobs to be processed by M machines, where each job j consists of T tasks and each task can
only be performed on a specific machine. According to the classical setting, we assume that the number of
tasks in each job is equal to the number of machines (T = M) and that each job uses all machines once. If
a job has fewer than M tasks, we can use a dummy task whose processing time is zero. In this way, we can
assume that the number of tasks T for each job is fixed at M , and only the number of jobs J varies. It is also
assumed that the processing time is given a priori. The objective is to find a schedule that minimizes the
latest completion time of all jobs, namely makespan. The JSPRT is formulated as a model that considers
three types of constraints:

3



Under review as submission to TMLR

(c1) task-precedence constraint: Tasks in a job have a fixed processing order; p + 1-th task processing
cannot be started until the p-th task processing is completed.

(c2) no-overlap constraint: no machine can process more than one job at a time.

(c3) release-time constraint: job j cannot be processed before its release time rj .

Different from JSP, which considers only constraints (c1) and (c2), job-variant settings needs to consider
the fact that the number of jobs varies with time, which is reflected in the release-time constraint (c3). Let
σj

p ∈ {1, · · · , M} be the machine that processes the p-th task of job j, dj
p be its processing time, and rj be

the release time of job j. For simplicity, we denote by σ the J × M matrix with (j, p) component as σj
p, by d

the J × M matrix with (j, p) component as dj
p, and by r the J-dimensional vector with the j-th component

as rj . Accordingly, the JSPRT is formulated as

(P ) minimize
s

u = max
j

(sj
T + dj

T )

subject to sj
p+1 ≥ sj

p + dj
p (∀p, j) (c1)

sj
p + dj

p ≤ sj′

p′ or sj′

p′ + dj′

p′ ≤ sj
p (c2)

(∀(j, p, j′, p′) s.t. σj
p = σj′

p′)
sj

1 ≥ rj (∀j) (c3)

where sj
p and u are variables that represent the task start times of the p-th process of job j and the makespan,

respectively. The notations are summarized in Table 1 and (P) can be re-formulated as a mixed integer
optimization problem (see Appendix A). Our goal is to obtain s ∈ RJ×M that minimizes u from the
input data consisting of the task assignment σ, the processing time of tasks d ∈ RJ×M , and the release
time of jobs r ∈ RJ , where s denotes the J × M matrix with the (j, p) component as sj

p. This problem
has a combinatorial structure mainly due to the no-overlap constraint (c2); in the optimization process, it is
necessary to choose which constraints in (c2) should be satisfied. Figure 1 depicts an example of a JSPRT
instance with two or three jobs and three machines. The schedule s can be visualized through the Gantt
chart at the bottom of Figure 1 and we can see that this schedule satisfies the no-overlap constraint (c2).

3 Related work

Table 1: Notations

J number of jobs
j ∈ {1, · · · , J} job index

T number of tasks per job
M number of machines (generally T = M)

p ∈ {1, · · · , T} task index
σj

p ∈ {1, · · · , M} task assignment of p-th task of job j
dj

p ≥ 0 processing time of p-th task of job j
rj release time of job j

sj
p ≥ 0 start time of p-th task of job j

u ≥ 0 makespan

This section summarizes related work on
the JSP. We describe classical approaches
in Section 3.1 and then mention more re-
cent machine learning-based approaches
in Section 3.2.

3.1 Classical Approaches

Since the JSP can be formulated as a
mixed integer optimization problem, it
is possible to use Branch and Bound
(B&B) (Land & Doig, 1960), a well-
known exact algorithm for combinatorial
optimization problems including scheduling problems (Brucker et al., 1994; Peterkofsky & Daganzo, 1990;
D ’ariano et al., 2007; Brucker et al., 1998). Due to its wide applicability, B&B is at the core of combina-
torial optimization solvers such as CBC2, CPLEX3, and Gurobi4 and can be applied to other combinatorial
optimization problems, such as the traveling salesman problem (Balas & Toth, 1983), the vehicle routing

2https://github.com/coin-or/Cbc
3https://www.ibm.com/products/ilog-cplex-optimization-studio
4https://www.gurobi.com

4



Under review as submission to TMLR

problem (Lysgaard et al., 2004), and the bin-packing problem (Valério de Carvalho, 1999). As another
exact algorithm for the JSP, CP-SAT (Ohrimenko et al., 2009) solves the problem by reduc-
ing the search space through deriving new constraints from several constraints. These exact
algorithms can work as useful solutions when the problem size is small enough for the given computation
time, but it is not suitable for obtaining good solutions to large-scale problems.
For fast approximation, we can use heuristic approaches. The simplest way is to use dispatching rules that
determine a processing order (e.g., (Dominic et al., 2004)). Although there are several types of dispatching
rules such as shortest processing time or least work remaining, these rules basically output a schedule with
much lower efficiency than one by an exact solution method. According to previous work (Zhang et al.,
2020; Kotary et al., 2022), a rule-based schedule is more than 20% worse than a schedule made using an
exact algorithm. As another heuristic, local search algorithms aim to improve such a sub-optimal solution
by altering the solution locally. As in the dispatching rules, there are several local search algorithms, such
as shifting-bottleneck methods (Adams et al., 1988), genetic algorithms (Lee et al., 1997), large neighbor-
hood search (Godard et al., 2005). In cases where the local search algorithms cannot improve
the solution, failure-directed search (Vilím et al., 2015) is proposed by to avoid unnecessary
exploration of the search space. As mentioned in Section 1, these algorithms do not use an implicit
pattern in the dataset, so they are inefficient for solving similar problems repeatedly.

3.2 Machine Learning-based Approaches

Unlike classical methods, some recent studies apply machine learning models for combinatorial optimization
problems by capturing a pattern in the optimal solutions contained in a dataset. For example, a supervised
learning model has been proposed to solve general mixed integer quadratic optimization problems by predict-
ing tight constraints and discrete variables (Bertsimas & Stellato, 2022). Another approach is to construct an
approximated solver by jointly training a prediction and an optimization models (Wilder, 2019; Mandi et al.,
2022). Another direction for integrating machine learning and optimization is decision-focused
learning(e.g. (Mandi et al., 2023)), where the input parameters of an optimization problem
are uncertain and machine learning model predicts the parameters to minimize the effect of
uncertainty; however, this setting is out of the scope of this paper and we focus on learning
about the optimization process itself under the input parameters are known.
Machine learning methods specified for JSP have also been studied. One method (Zhang et al., 2020) tried
to find an appropriate dispatching rule from a solution dataset of the JSP, enabling more efficient scheduling
than other rule-based scheduling. Similarly, a different approach (Ingimundardottir & Runarsson, 2018) used
imitation learning to learn an efficient dispatching rule for the JSP. Also, there are several models based
on reinforcement learning (Song et al., 2023; Chen et al., 2022) to handle dynamic events such
as machine breakdown or work delays. Furthermore, there are machine learning-based studies
for other types of scheduling problems such as resource-constrained scheduling (Mao et al.,
2016; Teichteil-Königsbuch et al., 2023; Chen & Tian, 2019).
While these models learn dispatching rules instead of the optimal schedule itself, JSP-DNN (Kotary et al.,
2022) learns the optimal schedules and the problem constraints directly by deep neural networks in the
job-fixed setting. The numerical experiments in the paper have shown that in some cases, JSP-DNN outputs
a high-quality solution as well as a 30-minute application of an exact algorithm while, on the other hand,
rule-based algorithms output a worse solution than a 1-minute application of an exact algorithm. This
comparison demonstrates the solution quality of JSP-DNN. JSP-DNN learns the solutions for JSP in the
job-fixed setting with M machines and J jobs by preparing three types of neural networks: M machine-
wise neural networks, J job-wise neural networks, and a shared layer (Figure 3(a)). The machine(job)-wise
network encodes J(M)-dimensional vectors of processing times corresponding to the machine(job) into a
feature vector, and the shared layer infers a solution from these features. Each layer is implemented as a
two-layer perceptron and the input dimension of the machine-wise networks and the number of job-wise
networks are fixed to J . In the training procedure, the task assignment σ is fixed and implicitly learned by
job-wise networks; the j-th job-wise network for the j-th job is trained for the corresponding task assignment
(σ1

j , · · · , σM
j ). Since the inferred solution may not satisfy some of the constraints, the paper also proposed a

post-processing algorithm to recover a feasible solution from the inference. The feasibility-recovery algorithm
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Figure 4: Procedures of JSPformer and JSPformer+Opt, with a JSPRT instance having three jobs and three
machines. Given the input data, JSPformer infers a feasible solution through an input modification (Sec-
tion 4.2), an inference with Set Transformer (Section 4.2), and a feasibility-recovery algorithm (Section 4.3).
JSPformer+Opt improves the solution of JSPformer by local optimization (Section 4.4). JSPformer can
infer a solution within a second, whereas JSPformer+Opt improves the solution quality in a short time (e.g.
a few minutes), and thus we can choose either of these two models according to the application.

uses the inference to define an order of tasks by comparing the inferred task start time (Kotary et al., 2021) or
the middle value between the inferred task start and end times (Kotary et al., 2022). This order determines
which constraints of (c2) are satisfied, thus making the problem much easier. By combining the inference
and the feasibility-recovery algorithm, JSP-DNN can output a solution that is much closer to the optimal
solution than a rule-based solution. From the viewpoints of computational speed and accuracy, our study
uses JSP-DNN, a supervised learning model for JSP, as the baseline.
While JSP-DNN performs well in the job-fixed setting, it faces limitations when applied to job-variant
settings. JSP-DNN assumes that the task assignment σ is fixed since JSP-DNN has a job-wise neural
network (Figure 3(a)) that implicitly reflects σ. This is not applicable in job-variant settings, such that σ
varies with the set of jobs. If we applied JSP-DNN to job-variant settings, we needed to determine the set
of jobs in order to prepare job-wise networks in advance. For example, considering three jobs with different
task assignments, JSP-DNN needs three job-wise networks for each job, even if each instance in the dataset
has two jobs. One could assume a set of all possible jobs Jub, and employ JSP-DNN for a job-variant
setting with the fixed task assignment σ consisting all task assignments of jobs in Jub. However, there
would be many redundant and inefficient cases where the actual number of jobs ends up being much smaller
than |Jub|. Thus, JSP-DNN cannot be applicable for job-variant settings. In addition, JSP-DNN can infer
a high-quality solution within about a second, while we are able to spend a few minutes in our assumed
applications, introduced in Section 1. This means that we have time to improve the solution quality from
the inference.
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4 Proposed method

In this section, we propose JSPformer and JSPformer+Opt to address the following two issues: (i1) con-
structing an inference model for a variable number of jobs and (i2) improving the solution quality. JSPformer
is a data-driven model for the JSPRT that addresses the first issue (i1) by encoding the input data (d, r, σ)
into a set of job-wise feature vectors and using a neural network for set-structured data (to check the architec-
ture, see Figure 3(b)). The second issue (i2) is addressed by JSPformer+Opt, a hybrid model of JSPformer
and the local optimization. The local optimization improves the solution quality by optimizing a portion of
the inference solution. Depending on the given time available, the problem size can be adjusted in the local
optimization. In the following section, we give an overview of the proposed methods.

4.1 Overview

Figure 4 gives an overview of the proposed models. JSPformer focuses on rapid computation that combines
a neural network for solution inference and a feasibility-recovery algorithm. JSPformer basically follows the
same training procedure as JSP-DNN (detailed in Appendix C). Moreover, we propose JSPformer+Opt, a
hybrid model of JSPformer and local optimization, under the assumption that we have more than a few
seconds to spend on the optimization. From the next subsection, we give details on the JSPformer inference
model (Section 4.2), an algorithm to recover feasibility (Section 4.3), and the local optimization method
(Section 4.4).

4.2 Inference with Set Transformer from Modified Input Data

JSPformer addresses the first issue (i1) by regarding input (d, r, σ) and output s as job-wise set-structured
data. In this way, we can use a neural network model for set-structured data that support variable-size
inputs. As an implementation, we adopted Set Transformer (Lee et al., 2019), a state-of-the-art model for
set-structured data.

!!! !"! !#! "! + !!! "! + !!! + !"! "! + !!! + !"! + !#!
!#" !!" !"" "! + !!" + !"" + !#" "! + !!" "! + !!" + !""

$ (sorted) %

Job 1
Job 2

Release 
time

Task Assignment (Processing time)
Task 3Task 2Task 1

!!(""!)("#!)("!!)Job 1

!#(""#)("##)("!#)Job 2

# = "!! "#! ""!
"!# "## ""#

% = 1 2 3
2 3 1 ) = !!

!#

Machine 1

Machine 2

Machine 3

Modifying Input 

Figure 5: Detailed process used to modify inputs for
the solution inference with a variable number of jobs.
Modified input data reflect the task assignment. We
use the matrix at the bottom of this figure which is
indexed by the job index and the machine index (black
→ green → blue) instead of the task index.

Given a set of processing times d ∈ RJ×M , a job-
release time r ∈ RM , and a task assignment for
jobs σ ∈ {1, · · · , M}J×M , we regard (d, r) as a
set of job-wise input data D :=

{(
dj , rj

)}J

j=1, and
JSPformer first infers job-wise start time

{
sj

}J

j=1
with a neural network fθ parametrized by θ, where
dj = (dj

1, · · · , dj
M ) ∈ RM and sj = (sj

1, · · · , sj
M ) ∈

RM denote the vectors of the processing time and
the start time of the job j, respectively. As ex-
plained in Section 3, we cannot use the same archi-
tecture as JSP-DNN for job-variant settings. Con-
sequently, we instead use Set Transformer, a model
designed to handle set-structured variable-size in-
put data consisting of self-attention and row-wise
transformation. Self-attention can be computed re-
gardless of the number of input vectors, making it
applicable to our targeted JSPRT. Intuitively, the
self-attention reflects the no-overlap constraint (c2),
while the row-wise transformation reflects the task-
precedence constraint (c1) and the release-time constraint (c3).
Since D has no information on task assignment σ, we need to modify the input data; given the input D,
we constructed a cumulative processing time γ =

{
γj

}J

j=1, defined as γj
1 = rj + dj

1 and γj
p+1 = γj

p + dj
p,

and reordered γj according to the machine index. Since inequality γj
p+1 > γj

p reflects the task sequence
of each job, we can input the task assignments to machines by sorting γj ∈ RM and dj ∈ RM according
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to the machine indices. Additionally, γ has release-time information by γj
1. Figure 5 shows an example

of the modification; in this example, the input data reflects the task assignments by the column indices.
Set Transformer can learn the task-precedence constraints (c1) and release-time constraints (c3) in a row-
wise transformation. Our input modification may be interpreted as a proposition for positional encoding in
Transformer architecture for JSPRT; just as the positional encoding represents an order of sequential data,
the modified input γ represents the processing order derived from the task-precedence constraint (c1).

4.3 Feasibility Recovery

Although JSPformer is trained to satisfy constraints (c1)-(c3), there is no guarantee that the inference result
ŝ satisfies these constraints. We used a procedure similar to JSP-DNN to recover a feasible solution from the
inference. Although the original algorithm does not support the release-time constraint (c3), the
modified version of it supports (c3) and if rj = 0 for every job j, the feasibility-recovery algorithm is the
same as that of JSP-DNN. By using ŝ, we could define the order of tasks ≤ŝ as ŝp

j ≤ ŝp′

j′ ⇐⇒ (j, p) ≤ŝ (j′, p′)
for two tasks (j, p), (j′, p′) that share the same machine. Since this order only reflects the no-overlap constraint
(c2), it may contradict the task-precedence constraint (c1). If not, we can obtain a feasible solution of (P)
by optimizing the following problem.

(P ′) minimize
s

u = max
j

(sj
T + dj

T )

subject to sj
p+1 ≥ sj

p + dj
p (∀p) (c1)

sj
p + dj

p ≤ sj′

p′ (c2’)
(∀(j, p), (j′, p′) s.t. (j, p) ≤ŝ (j′, p′))

sj
1 ≥ rj (∀j) (c3)

This problem (P’) belongs to the linear optimization problems and can be optimized in a much shorter
time than the original problem (P) (e.g., within a second for 20 jobs). In the case where ≤ŝ contradicts
the task-precedence constraint (c1), we use a greedy algorithm in the same way as JSP-DNN (detailed in
Algorithm 2 in Appendix B), which gives a feasible solution to (P) by reconstructing an order≤ŝ based on
the inference ŝ.

4.4 Local Optimization from Inference Solution

We can obtain a high-quality feasible solution by recovering feasibility using the order of tasks from the
inference. After that, we can further refine this solution by local optimization defined below. In the local
optimization, we divided the set of jobs into inference-based jobs and optimization-based jobs and then
fixed the order of tasks for the inference-based jobs. In this way, we could reduce the size of problem (P)
significantly, and the solution could be refined by applying the solver over a few minutes. Given an order ≤ŝ

between the inference-based jobs and the set of optimization-based jobs Jo, we could formulate a simplified
version of (P) by replacing (c2) with (c2’) for any two tasks in the inference-based jobs. This simplification
reduces the problem complexity; the original problem (P) has at most (J !)M patterns, which is reduced to
(J !/(J − K)!)M in the simplified problem, where K = |Jo|.

5 Experiments

To verify the effectiveness of the proposed method, we evaluated it in two experimental settings. The
first setting is inherited from JSP-DNN; namely, the neural network is trained in the job-fixed setting.
The aim of this experiment was to investigate differences between JSPformer(+Opt) and JSP-DNN(+Opt),
where JSP-DNN+Opt refers to a hybrid model of JSP-DNN and local optimization for fair evaluation with
JSPformer+Opt. To compare our model to other methods in Figure 2, we also evaluated (i) an
exact solver, (ii) a classical heuristic, and (iii) a reinforcement learning-based model.
In the second setting, an experiment shows that our model is applicable to job-variant settings, as defined
at the beginning of Section 1. In the second experiment, we randomly removed a part of jobs from the
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original instances in the dataset construction. In this way, we could check whether JSPformer was able to
handle a variable number of jobs while maintaining that JSPformer knows the task assignments of
all possible jobs.

5.1 Data Generation

For experiments in both job-fixed and job-variant settings, we prepared three types of datasets based on
three JSP benchmark instances from JSPLIB5, namely, La21 with 15 jobs and 10 machines, La16 with 10
jobs and 10 machines, and La11 with 20 jobs and 5 machines.
In the job-fixed setting, we used these instances to prepare the datasets, as in the experiment of JSP-
DNN (Kotary et al., 2022). For all instances in each dataset, the number of jobs and the number of machines
are the same as in the original instance. For each instance, we generated 1,500 individual instances by slowing
down the processing time; as in the original experiment of JSP-DNN (Kotary et al., 2022), the processing
time was randomly slowed down up to 50% from the original processing time. The instances were divided
into 1,490 training data and 10 test data.
Conversely, in job-variant settings, a dataset containing instances with different sets of jobs is required. To
construct such a dataset, we created a dataset consisting of variable-size instances by randomly removing jobs
from La21, La16, and La11 instances. As in the job-fixed setting, we randomly varied the job-release time
and processing time. For each instance, we prepared a total of 3,000 instances with up to 3 jobs removed.
For example, the La21 dataset for job-variant settings contains instances with 12-15 jobs. In the dataset
creation, we uniformly choose the number of jobs removed. For each of the three datasets and each number
of removed jobs, we prepared 10 test data, and trained JSPformer on the remaining 2,960 training data.
It should be emphasized that, unlike datasets for images or audio, the preparation of training data requires
computation time to run an exact algorithm for optimization. Following the experimental settings in the
study of JSP-DNN, we set a time limit of 1,800 seconds for each instance and used the best solutions within
the time limits, resulting in 93.75 days of computation time for the dataset generation of the job-fixed
setting. (3 types of datasets × 1,500 instances × 1,800 seconds). The original instances from JSPLIB
do not have the release time constraint (c3), so we randomly generated the release times. We sorted the
generated release time according to the job index in order to give regularity to the release times as well as
to the processing time. As an exact algorithm, we used B&B solver. Specifically, we used CBC; CBC
is widely used as a default solver, such as in PuLP (Python modeling library for optimization) or Google
OR-tools. Due to the time limit, the datasets contained sub-optimal solutions; consequently, there is the
possibility that JSP-DNN and JSPformer output better solutions than the dataset solutions. We prepared
the three datasets for both job-fixed and job-variant settings.

5.2 Training Details

In the job-fixed setting, we used an inference model for each dataset, as in the experimental setup of JSP-
DNN.
While JSPformer can handle both job-fixed and job-variant settings, the vanilla JSP-DNN is only available in
the job-fixed setting because JSP-DNN has job-wise neural networks. To use JSP-DNN as a baseline
for JSPformer, we modified JSP-DNN to address this problem by using the input modification; we used the
modified input data (d, γ) as the input of JSP-DNN to reflect the job-release time.
The training and evaluation processes were conducted using an Apple M2 MacBook Pro with 16 GB RAM.
We report the best results after tuning several hyperparameters such as the learning rate (detailed in Ap-
pendix D).

5https://github.com/tamy0612/JSPLIB
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5.3 Experimental Settings

Since we aim to update the schedule within a period of a few minutes, we set one minute as the time limit for
local optimization. In the local optimization, the number of optimization-based jobs K should be adjusted
to this computation time limit. According to the estimated problem complexity (J !/(J − K)!)M , we use
relatively small K when J or M is large (Table 2, 3). To ensure that computation time minimally affected
processing, we chose K jobs with late release times as the optimization-based jobs in the experiment.

5.4 Evaluation Metrics

In the experiments, we used the following four metrics to measure inference and optimization performance.
Here, ↑ or ↓ indicates that a higher or lower value is more favorable, respectively.

• Prediction Error ↓: To measure how well the inference models fit the datasets, the columns for prediction
error report the L2 distance between the output of the inference ŝ and the target solution s obtained by
CBC solver.

• Constraint Violation ↓: To measure the magnitude of the constraint violations (c1)-(c3), the columns for
constraint violation report the L2 distance between the output of the inference before the feasibility recovery
ŝ and the solution after the feasibility recovery s̃.

• Gap ↓: Gap measures the gap of objective values between the two solutions, one obtained by the CBC
solver and the other obtained by the inference model or the hybrid model. Since the CBC solver has a time
limit of 1,800 seconds as mentioned in Section 5.1, the solutions by the CBC solver are not always optimal.
In some cases, the inference solution is better than the solution by the CBC solver, in which case the gap
becomes negative.

• #Better Solutions ↑: As mentioned above, the inference model or the hybrid model may output a better
solution than that by the CBC solver. We count such instances and report them in the column of #better
solutions.

5.5 Experimental Results for Job-fixed Setting

Table 2 shows the numerical results of (i) CBC, an exact solver, (ii) MWR+SB, a classical heuristics
consisted of dispatching rule (Most Work Remained: MWR) (Dominic et al., 2004) and shifting bottleneck
(SB) (Adams et al., 1988), (iii) L2D(+Opt), a reinforcement learning-based model (Zhang et al., 2020), (iv)
JSP-DNN(+Opt), and (v) JSPformer(+Opt). In Appendix E, we report numerical results with other several
dispatching rules (SPT, LWR, LOR, and MOR) and shifting bottleneck. For a fair comparison, we report the
results of JSP-DNN+Opt and L2D+Opt, hybrid models of JSP-DNN and L2D with 1-minute local
optimization (computation time discussed in Section 6.1). From this table, we can see that JSPformer+Opt
produced the best results compared to the other models. Especially, classical heuristics output sub-optimal
solutions, as mentioned in Section 1. Comparing the results for inference (K = 0) of JSPformer and JSP-
DNN, JSPformer inferred more accurate solutions (prediction error and constraint violation) and performed
as well as or better than JSP-DNN (gap). Intuitively, the difference is due to the capability
to handle multiple constraints (c1)-(c3); JSP-DNN is built on the assumption that alljobs
are released simultaneously, which results in less accurate results compared to our proposed
method. In contrast, JSPformer is specifically designed to handle scenarios where jobs have
release times. Further analysis of prediction error and constraint violation in Appendix F
revealed that JSP-DNN struggled particularly with satisfying both the release time and no-
overlap constraints simultaneously.
In combination with local optimization, we obtained an even better solution. Except for La16, JSP-
former+Opt outperformed the 30-minute applications of the CBC solver.
Regarding the comparison between JSPformer and L2D, a possible factor for the difference

between L2D and JSPformer could be the use of the training dataset. While JSP-DNN and
JSPformer learn from the solutions in the training dataset, L2D does not use these solutions.
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Table 2: Experimental Results of (i) exact solver with 1-minute time limit (CBC (1min.)), (ii)
classical heuristics (MWR+SB), (iii) reinforcement learning-based model (L2D(+Opt)), (iv)
JSP-DNN(+Opt), and (v) our model, JSPformer(+Opt) in the job-fixed setting. For a fair
comparison, a hybrid model of L2D(JSP-DNN) and the local optimization is also presented as
L2D+Opt(JSP-DNN+Opt), respectively. K denotes the number of jobs to optimize after the inference
and K = 0 refers to the results of inference solutions.

base instance model K Prediction Error ↓ Constraint Violation ↓ Gap ↓ # Better Sol. ↑

La21 (i) CBC (1 min.) - - - 0.042±0.049 3/10
(J=15, M=10) (ii) MWR+SB - - - 0.367±0.086 0/10

(iii) L2D 0 - - 0.043±0.053 1/10

L2D+Opt
2 - - 0.008±0.064 6/10
3 - - -0.028±0.057 9/10
4 - - -0.032±0.035 8/10

(iv) JSP-DNN 0 2,028 843 -0.012±0.026 9/10

JSP-DNN+Opt
2 - - -0.058±0.038 9/10
3 - - -0.051±0.037 8/10
4 - - -0.024±0.031 7/10

(v) JSPformer 0 1,971 873 -0.033±0.037 9/10

JSPformer+Opt
2 - - -0.067±0.044 9/10
3 - - -0.069±0.036 9/10
4 - - -0.041±0.029 9/10

La16 CBC (1 min.) - - - 0.051±0.032 0/10
(J=10, M=10) (ii) MWR+SB - - - 0.299±0.080 0/10

(iii) L2D 0 - - 0.180±0.047 0/10

L2D+Opt
2 - - 0.102±0.030 0/10
4 - - 0.072±0.032 0/10
6 - - 0.049±0.024 0/10

(iv) JSP-DNN 0 1,243 691 0.077±0.017 0/10

JSP-DNN+Opt
2 - - 0.071±0.014 1/10
4 - - 0.059±0.022 1/10
6 - - 0.032±0.014 0/10

(v) JSPformer 0 1,248 454 0.053±0.014 0/10

JSPformer+Opt
2 - - 0.037±0.010 0/10
4 - - 0.016±0.014 0/10
6 - - 0.049±0.028 0/10

La11 CBC (1 min.) - - - 0.121±0.088 2/10
(J=20, M=5) (ii) MWR+SB - - - 0.128±0.107 1/10

(iii) L2D 0 - - -0.058±0.029 10/10

L2D+Opt
2 - - -0.080±0.029 10/10
4 - - -0.070±0.029 10/10
6 - - -0.041±0.035 9/10

(iv) JSP-DNN 0 2,519 1,371 -0.097±0.035 10/10

JSP-DNN+Opt
2 - - -0.102±0.035 10/10
4 - - -0.094±0.032 10/10
6 - - -0.080±0.035 10/10

(v) JSPformer 0 2,502 1,362 -0.082±0.053 9/10

JSPformer+Opt
2 - - -0.106±0.036 10/10
4 - - -0.094±0.037 10/10
6 - - -0.056±0.056 7/10
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Table 3: Experimental Results of JSPformer and JSPformer+Opt in job-variant settings. K denotes the
number of jobs to optimize after the inference and K = 0 refers to the results of JSPformer. L denotes the
number of removed jobs. As a baseline, results of a heuristic method (MWR+SB) are also reported.

base instance K / model Gap(total) Gap(L = 0) ↓ Gap(L = 1) ↓ Gap(L = 2) ↓ Gap(L = 3) ↓ # Better Sol. ↑

La21
(J=15, M=10)

0 0.069±0.068 0.003±0.048 0.084±0.062 0.072±0.034 0.118±0.065 5/40
2 0.007±0.061 -0.035±0.061 0.021±0.068 0.002±0.027 0.039±0.052 15/40
3 -0.014±0.052 -0.042±0.060 -0.016±0.049 -0.011±0.029 0.014±0.046 26/40
4 0.013±0.062 0.006±0.064 0.028±0.076 0.022±0.043 -0.003±0.052 20/40

MWR+SB 0.323±0.131 0.356±0.168 0.362±0.107 0.287±0.069 0.288±0.137 0/40

La16
(J=10, M=10)

0 0.136±0.065 0.176±0.051 0.135±0.048 0.155±0.061 0.078±0.052 0/40
2 0.064±0.037 0.105±0.029 0.056±0.028 0.073±0.015 0.022±0.016 0/40
4 0.030±0.026 0.053±0.031 0.036±0.013 0.026±0.019 0.007±0.009 0/40
6 0.032±0.039 0.076±0.045 0.041±0.017 0.010±0.015 -0.000±0.000 1/40

MWR+SB 0.380±0.118 0.308±0.092 0.456±0.123 0.380±0.096 0.377±0.107 0/40

La11
(J=20, M=5)

0 -0.009±0.046 -0.028±0.033 -0.026±0.038 -0.005±0.039 0.025±0.051 22/40
2 -0.018±0.045 -0.009±0.061 -0.022±0.044 -0.020±0.033 -0.021±0.033 27/40
4 0.020±0.052 0.003±0.036 0.019±0.063 0.039±0.041 0.019±0.056 15/40
6 0.029±0.086 0.020±0.103 0.036±0.090 0.016±0.075 0.046±0.068 17/40

MWR+SB 0.225±0.108 0.183±0.123 0.172±0.077 0.265±0.091 0.279±0.089 1/40

Instead, it relies on the objective value as the reward in reinforcement learning, requiring the
model to independently search for good solutions. This approach may result in an insufficient
solution exploration during the training of L2D, likely due to the abundance of local optima
in the scheduling problem addressed in this study. For example, the average objective value
of L2D for the La16 training dataset is 12.8% worse than that in the solutions of the training
dataset (1430.85: L2D, 1268.01: dataset), indicating that L2D could not find better solutions
than the solutions in the training dataset.
By carefully reviewing Table 2, we can see that the neighborhood of the inference of JSPformer is better
than that of JSP-DNN. With the La11 dataset, JSP-DNN inferred better solutions than JSPformer, but the
opposite result was obtained when incorporating local optimization. This result means that it is difficult
to find a better solution in the neighborhood of the inference solution of JSP-DNN, while a better solution
can be easily obtained in the neighborhood of the inference solution of JSPformer. The same tendency can
be observed for the other datasets; when using JSP-DNN+Opt, the performance is better with a relatively
large K. This suggests the necessity to search for solutions that are far from the inference of JSP-DNN.

5.6 Experimental Results for Job-variant Setting

The experimental results for job-variant settings are shown in Table 3, which lists the gap for each number
of removed jobs L in addition to the overall results. As a baseline, we also reported numerical results with
MWR and a shifting bottleneck which performed best among classical heuristics in the previous experiment.
Comparing Table 3 with Table 2, we can see that JSPformer worked well for training with a variable number
of jobs. For the La21 and La11 datasets, the accuracy tended to decrease as the number of removed jobs L
increased. Considering the fact that JSPformer worked well for these two datasets in the job-fixed setting,
the decrease was caused by the number of instances per set of jobs. The larger L results in more patterns of
a set of jobs; for example, 3!=6 patterns of a set of jobs are created from the original instance by removing
3 jobs. In contrast, the gap remained large for the La16 dataset. In this dataset, the number of machines
is equal to or less than the number of jobs; therefore, the machines are relatively free when L is large. In
such a condition, many schedules are nearly optimal, resulting in a smaller gap when L is large. After local
optimization, the effect of L became smaller, which implies that the local optimization efficiently compensates
for the small datasets during the training. Particularly in the La21 and La16 datasets, better results were
produced with a larger K when using L = 3. This suggests that when the number of training data is small,
it is effective to use relatively large K for the local optimization to supplement the solution accuracy.
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6 Discussions

6.1 Relations among Optimization Time Limit, Problem Size, and Solution Quality

Figure 6 shows an example of the evolution of the objective value and its lower bound over time while
changing the time limit from one minute to five minutes and changing the number of optimization-based
jobs K = |Jo| using an La21 instance. In application, it is reasonable to choose an appropriate K after
testing with several instances and checking their objective values and their best bounds. We can see that a
too-small K causes the simplified problem (P’) to have a worse optimal solution than (P), while a too-large K
causes a larger gap to remain between the incumbent (the best solution found) and the best bound. For this
instance, the local optimization with K = 4 output the best solution of 1,563 compared to other solutions
(1,631 for K = 2, 1,569 for K = 3, and 1,637 for K = 6). In general, the size of K affects the computation
time exponentially. In our computing environment, however, the objective values after five minutes were not
much better than the solutions at one minute; for this reason, we experimented with the computation time
set to one minute for the local optimization.

6.2 Limitations

Figure 6: Evolution of objective value and its lower bound
over time calculated by CBC while changing the number
of optimization-based jobs K = |Jo|. Incumbent refers to
the best objective value at the time. Calculation is finished
when the time limit is reached or the objective value matches
the lower bound.

We have discussed the advantages of JSP-
former for both job-fixed and job-variant set-
tings, but our model also has limitations.
We currently recognize three main difficulties:
(d1) preparing a dataset with a more accu-
rate solution and more complex instances, (d2)
handling instances with more practical
and complex constraints, and (d3) creat-
ing a general inference model concerning
the task assignment.
The first difficulty derives from the fact that
the JSP is NP-hard and hence the com-
putation time to prepare the exact solu-
tion grows exponentially along with the
problem size. To tackle this problem, we
need to improve the exact algorithm or reduce
the problem size which can be solved within a
few hours. This difficulty also implies that it
is challenging to make evaluation metrics us-
ing optimal solutions. The second difficulty
stems from the first difficulty of creating
datasets; for this problem, a more specialized solver, such as CP-SAT, can be used. How-
ever for a broader range of problems with more complex constraints, as used in this paper, a
general-purpose solver remains necessary.
Regarding the third difficulty, our study focuses on constructing a model tailored to specific
situations, rather than addressing unknown task assignments, similar to the existing JSP-
DNN. We believe this is reasonable in scenarios where similar instances are repeatedly solved.
However, we acknowledge that constructing a general-purpose model capable of handling un-
known task assignments is another important research direction. To evaluate the generality
of JSPformer, we additionally trained using multiple datasets of different task assignments
(see Appendix G). While this experiment demonstrates that our model can be trained across
multiple datasets, there remain limitations when dealing with unknown task assignments.
Therefore, further research will be needed to efficiently solve instances with unknown task
assignments.
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7 Conclusion and Future Work

In this paper, we have proposed JSPformer, a data-driven inference model for the scheduling in the job-
variant settings, and JSPformer+Opt, a hybrid model of JSPformer and local optimization, to solve the
JSPRT within a few minutes. Our approach has addressed two key challenges: (i1) handling a variable
number of jobs and (i2) improving the solution quality within a given time limit using local optimization.
JSPformer tackles the first challenge by the first issue by encoding the input data to job-wise features
and using Set Transformer, while local optimization manages the second challenge by efficiently adjusting
the problem size. We conducted numerical experiments through two settings; namely, job-fixed and job-
variant settings. The first experiment in the job-fixed setting show that JSPformer+Opt inferred a better
solution than the existing inference-based models. Furthermore, the second experiment showed the
capability of JSPformer(+Opt) to handle job-variant setting.
Looking ahead, two key directions for future research stand out. First, it is essential to

develop methods that automatically select the optimal approach based on the available time
constraints. For example, when sufficient computational time is available, exact algorithms
may prove to be more effective. Second, it is crucial to explore how data-driven approaches can
be used to address a broader range of optimization problems. In this study, we prepared the
dataset using a B&B solver, but the same method can be applied to other mixed-integer opti-
mization problems. Moreover, considering that large language models can now handle discrete
and combinatorial structures, machine learning is expected to further improve the efficiency
of solving combinatorial optimization problems. In this paper, we adopted an approach that
combined partial exact solutions depending on the available computation time. However, an
important future research challenge is to develop data-driven methods that can determine the
optimal combination of techniques under time constraints. Our findings mark an important
first step in this direction, and we believe they will make a meaningful contribution to the
ongoing academic development in this field.
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