Under review as a conference paper at ICLR 2024

A PERSPECTIVE OF IMPROPER DYNAMICS ON OFFLINE
MODEL-BASED PLANNING

Anonymous authors
Paper under double-blind review

ABSTRACT

By learning the dynamics model, estimating, and planning on the latent state,
MuZero and its variants perform well in complex environments. However, the
performance of these algorithms require an accurate dynamics model and predic-
tion model, which may be difficult in offline reinforcement learning since the lack
of interactions with the environment. Recent works attempt to use one-step roll-
outs to reduce the cumulative error of rollout caused by an inaccurate dynamics
model. We argue that the planning issues of MuZero-type methods are mainly
caused by inaccurate models. To address this issue, we propose a robust method,
Constrained Offline Model-based Planning (COMP), for training dynamics or
prediction models more smoothly. COMP introduces a kind of specifically de-
signed noise to the latent state, aiming to align the value and dynamics of these
states with those of states not perturbed. Our method can be combined with
MuZero and its derived algorithms to improve planning performance in offline
settings. Experiments show that our proposed method achieved notable perfor-
mance in most Atari game tasks on RL Unplugged benchmark.

1 INTRODUCTION

Offline reinforcement learning, also known as batch reinforcement learning (Riedmiller| (2005));
Lange et al.| (2012)), is a variant of reinforcement learning in which an agent learns from a fixed
dataset without interacting with the environment, with the goal of achieving the maximum reward.
Offline reinforcement learning is a promising solution for applying reinforcement learning on a large
scale to practical fields (Jaques et al.|(2019); [Ebert et al.| (2018)); |[Kalashnikov et al.| (2018)); |Kahn
et al.| (2021)), especially those with high costs associated with interacting with the environment,
such as autonomous driving (Kiran et al.[|(2021)) and healthcare (Liu et al.| (2020)). One challenge
of offline reinforcement learning is that the agent may overestimate the value of state-action pairs
outside the dataset or select out-of-distribution (OOD) actions, without the ability to interact with
the environment to correct its error estimation. Like other subfields of reinforcement learning, of-
fline reinforcement learning can be divided into two categories to address the challenges it presents:
model-free (calculate a conservative or high-confidence value to constrain the action, e.g. [Kumar
et al.| (2020), Kostrikov et al.[(2021)) and model-based (generate a high credit value for the en-
vironment’s state transition, or plan more carefully, e.g.Kidambi et al.| (2020), Schrittwieser et al.
(2021)). In model-free reinforcement learning, an agent learns to generate actions without explicitly
modeling the environment. On the other hand, model-based reinforcement learning helps agents
generate plans by learning the dynamics of the environment, achieving higher data efficiency than
model-free methods. Researchers hope that the characteristics of model-based reinforcement learn-
ing (RL) will provide an advantage in addressing the challenges of offline settings. Among the
various model-based algorithms, our focus is on the offline method of MuZero because, as a value-
based, model-based planning algorithm, it outperforms other model-based algorithms in complex
environments, such as Atari games (Bellemare et al.|(2013)).

In previous research, MuZero Unplugged (Schrittwieser et al.| (2021)) and ROSMO (Liu et al.
(2022)) are two offline reinforcement learning algorithms that generate actions by planning with
a learned dynamics model. MuZero Unplugged is a simple extension of the MuZero algorithm that
learns a dynamics model and uses Monte Carlo Tree Search (MCTS) (Coulom| (2006)), [Kocsis &
Szepesvari (2006)) for planning. ROSMO is an improvement over MuZero Unplugged in offline
RL. The authors of the paper noted that MuZero Unplugged may perform poorly in situations such

Under review as a conference paper at ICLR 2024

as learning with limited data coverage and using improperly parameterized models given the offline
data, among others. ROSMO uses one-step look-ahead to mitigate these issues and, after incorporat-
ing an advantage filtering regularization term, achieves better performance than MuZero Unplugged.
However, while ROSMO avoids the cumulative error of rollout error by using one-step rollouts, it
has not attempted to solve the problem of rollout error itself. In fact, the error in state translation in-
troduced by an improper dynamics model still influences the agent. This error may mislead planning
by imaging an erroneous, out-of-distribution latent state.

The planning process of above-mentioned algorithms in evaluation requires the model to output the
probability of actions, predicting the value, and translating the latent state for the most probable
action. According to the algorithm, this process repeatedly performs various steps for the action se-
quence, allowing the model to obtain the value of actions and select the action with the highest value.
By examining the plan process of these algorithms, we find that even though ROSMO reduces the
cumulative error, if the rollout error occurs in a one-step rollout, the plan function will be affected.
For value-based planning methods in offline settings, the poor performance of the dynamics model
will have an great impact on the prediction model. If the dynamics model imagines a latent state that
the prediction model has never visited and the prediction may overestimate this latent state, similar to
what is faced by model-free methods. Ultimately, this will impact planning in the evaluation phase,
even if there is a powerful planning function. This is because, in the planning phase, the selection of
an action depends on the value of that action. This may be misled by an erroneous value associated
with a latent state that has never been seen before. To address the challenges faced by value-based
planning algorithms in an offline setting, we have drawn inspiration from the DrQ (Kostrikov et al.
(2020); |Yarats et al.|(2021)). This has led us to design a Constrained Offline Model-based Planning
(COMP) algorithm. We add noise to the latent state to perform robust training. By robustly training
the dynamics or prediction model, the algorithm will perform more smoothly in rollouts. In addition,
as discussed in|[Zheng et al.| (2023)), adding noise can construct a local Lipschitz condition to learn
a better model. Our experiments in Atari games show that our algorithm has a smaller noise loss
than ROSMO and its one-step rollout method. In this paper, we focus on adding our method to the
one-step rollout proposed by ROSMO. The effectiveness of our method on MuZero Unplugged has
been proven by some experiments. We compare our algorithm with state-of-the-art methods such as
MuZero Unplugged (Schrittwieser et al.| (2021))), ROSMO (Liu et al.|(2022))), and Critic Regularized
Regression (Wang et al.| (2020)) in the large-scale RL Unplugged Atari benchmark (Gtilgehre et al.
(2020)). Our algorithm achieved a notable score in several tasks. Besides, ablations provide further
analysis about the sensitivity of hyper-parameters and the effectiveness of the noise design.

2 BACKGROUND

2.1 OFFLINE REINFORCEMENT LEARNING

The goal of reinforcement learning is to train a policy to maximize the expected cumulative reward,
which experts usually set. Many RL algorithms are considered in the Markov decision process
(MDP), which contains a tuple (S, A, T, po,7,7). S,.A represent state spaces of environment and
action spaces of policy, T' (s’ | s, a) is environment dynamics and tell us the transition probability of
state s” when policy uses action a in state s. py defines the initial state distirubtion. r(s, a) represents
reward function, and v € (0, 1) is the discount factor. Typically, model-based reinforcement learning
algorithms need to learn the environment dynamics 7' (s’ | s, a) to generate a new state s’ and reward
(s, a) for a specific state-action pair. mg(a | s) represents behavior policy which use to collect
dataset D, d™#(s) is discount marginal state-distribution of mz(a | s). The goal of the policy is to
maximize returns:

oo
7" = argmaxE, ZVtT (st;ai) | so ~po(-),ae ~m (- [s1), 841 ~p(-|se,a0) (1
4 t=0

2.2 OFFLINE VALUE-BASED PLANNING

Model-based RL usually makes effective use of data by learning an environment dynamics and
reward model (although this is not required for all model-based RL algorithms), making it promising
for solving the offline RL problem. Unlike most model-based methods, MuZero learns a latent state
from observations without reconstructing the observation and learns a dynamics model for planning.

Under review as a conference paper at ICLR 2024

In this way, the MuZero algorithm has notable performance in complex visual environments. For
MuZero and its improved algorithm, they generate actions by planning with model rollouts and
evaluating the value of every potential action for the current state. Therefore, we describe a general
algorithmic framework extended from MuZero as value-based planning.

Given a trajectory 7; = {01, a1,71,...,01;, ar;, 71, } € D and any time step ¢ € [1,7;], the model
encodes the observation of ¢ into a latent state via the representation model hy : s¥ = hg(o;). Then,
the algorithm uses the dynamics model gy to obtain an imagined next state in the latent space and
a reward: 77! P = go(sF as4p), where k € [0, K] represents the imagination depth of the
output (the steps we unroll using the dynamics model gy). In addition, the prediction model predicts
the policy and value 7%, vF = f(s¥) conditioned on the latent state. Finally, when the agent tries to
generate an action, the prediction function outputs a series of potential actions and selects an action
that may have the maximum value in its prediction. This process is called value-based planning.

The above network parameters will be updated by following the loss objective in the training phase,

Ze (rs %) + 07 (0f zeew) + €7 (f , pesk) + £7°4(0) 0]

where [", [V, ™ are loss functions of reward, value and policy respectively. ["“Y is a regularization
term that changes according to the needs of the algorithm. The loss function for the aforementioned
objective is cross-entropy, the details of which will be discussed in the Appendix@ i}, represents
the actual reward from the environment, while 2,1 is computed by adding the discounted actual
reward to the target value of ¢+ k+n (where n is the number of steps required for value calculation.).
De+i represents the improved action, as decided by the algorithm, selected by planning in the target
network. One difference between MuZero and other model-based methods is that it does not require
supervised training of the dynamics and representation functions. In other words, the model does
not need to reconstruct the predicted next latent state back to the input space. The idea behind this
method is the value equivalence principle (Grimm et al.[(2020)): if the value of a state-action pair is
accurate, the model can improve the policy, regardless of whether the latent state can be accurately
reconstructed in the input space.

2.3 PoLiCcY IMPROVEMENT METHOD

MuZero Unplugged and ROSMO have different methods of improvement. MuZero Unplugged
uses Monte-Carlo Tree Search (MCTS) (Coulom| (2006)), Kocsis & Szepesvari (2006)) to compute
the target value and policy in a plan with a simulation budget of N. Starting from the root latent
state sY, the model simulates a series of trajectories based on MCTS with a budget of N. In every
simulation, the model selects an action according to the following pUCT (Rosin|(2011)) rule:

aF = argmax |Q(s,a) + Tprior (s,a) - 721)”(8’) . <01 + log (Eb s, b) et 1))

o 1+ n(s,a) C

3
where n(s, a) is the number of times the state-action pair has been visited, Q(s, a) represents the
current estimate of the state-action value, mppior (S, a) is Computed by the prior policy, and ¢; and co

are constants. Then, the model predicts its reward ! and value | and reaches a leaf node s.**. By
repeating this process until the simulation budget is exhausted, the model completes an MCTS and

obtains the return G% = Y471 R Ampk 14T A1kl Then it computes the target policy and value:

n(s0,a)/"

1T
Syn (s9,0)"
S) t+n—1
2mets (s1) =7 Z(Nﬂ;é b)) Q (51 @) + Y S

On the other hand, ROSMO simulates a one-step process and selects the policy by following the
given equation.

pmcts (a | St)

“4)

Gs=-p'logm (5)

Under review as a conference paper at ICLR 2024

where policy target p is computed as:
Tprior (@ | 8) exp (advy(s, a))

plals) = 70

where adv, = (gq4(s,a) — v(s)), Z(s) is normalization term.

(6)

3 METHOD

3.1 ACCUMULATED ERROR OF DYNAMICS MODEL

As we discussed above, model-based planning algorithms need model to predict latent states, sim-
ulate future probability transitions, and predict the value of latent states to improve policy. In this
process, the accuracy of the dynamics or prediction model is important because the critic value of
every action will influence the final selection of the agent. When the dynamics model generates
an out-of-distribution state, the prediction model will predict an erroneous value for this state. This
value may mislead the improvement process to select an improper action by overestimating the state.
In MuZero Unplugged, depending on the simulation depth, this rollout error will accumulate because
the improper dynamics model will pull the imagined latent state far from the distribution. Although
ROSMO uses one-step look-ahead to reduce the accumulation of error, the error still influences the
improvement process because it is never solved.

We analyze the improvement process of ROSMO and MuZero Unplugged to understand why action
selection errors occur and how to reduce them. We begin this process with ROSMO:

p(als)—pla|s) = Tprior (@ | 5) exp (adv} (s, a)) _ Tprior (@ | 5) exp (advy (s, a))

Z(s) Z(s)
_ o exp (adv}(s,a)) — exp (advgy(s,a)) @
prior Z(S)

To select the correct action, the model must reduce the error when the dynamics model generates an
improper latent state. Because the exponential function is a monotonic function, reducing the differ-
ence between exp (adv;(s,a)) and exp (advy (s, a)) can be translated as minimizing the difference
between adv (s, a) and advy(s,a). Then, by introducing the concept of advantage value, we can
obtain the following equation:

V(s)))

min(advy(s,a) —advy(s,a)) = min((Q"(s,a) — V(s)) — (Q(s,a) —
=min((r(s,a) + V(s") = V(s)) = (r(s,a) + V(s) = V(s))) ®)
=min(V (s = V(s')) = min(V(s') = V(s' + pw))
where s+ pw represents the true latent state with a noise component along unit vector w with weight
.

Although MuZero Unplugged uses the visit count for action selection during the evaluation phase,
the value of state-action pairs is still significant when the model simulates a fixed number of steps.
This value can influence the visit count for each action and may ultimately alter policy selection.
Similar to ROSMO, we also present the error of MuZero Unplugged when an inadequate dynamics
model provides an improper latent state during the simulation phase. The pUCT rule, which controls
action selection during simulation, is composed of two parts: the value of state-action pairs and the
prior policy probability distribution related to the visit count. In this phase, the value of state-action
pairs holds more importance than the visit count, leading us to overlook any errors in the visit count.

a*f — ak = argmax [Q(s,a)* — Q(s,a))

I—1—k I-1—k
_ arg max [Z ,y'r *k+1+7‘ l k‘ *l Z ,y'r k+1+7‘ VZ_kUI]

1—1—k)
_ arg max [Z A7 k:+1+7' k:+1+7') + ’ylikv(sl)—

7=0

l—1—k
Z ’}/TT(Sk+1+T +qk+1+7wk+l+T,ak+l+T)+’Yl_kU(Sl +qlwl)‘|

Under review as a conference paper at ICLR 2024

COMP Framework Overview poemeeesenoeeeeene,

: Data/LossE
A Perturbed : E
Latent States |] Model
) Origin
Offline Observation Representation Latent : ¢
Dataset Model State i ——3% Our
Dynamics Reward/ Next v
Model State
Prediction
Model
- '
Policy/ Value
g ’ WMJ;‘N‘\"M‘MNMMM“M
e (Y

LA v
* envstepaxionn Perturbed Perturbed MuZero/OneStep
Dynamics Loss Value Loss Normal Losses

Figure 1: This figure illustrates the framework of our COMP algorithm. Our algorithm utilizes
two methods:(1) we introduce noise into the initial latent state and generate a state sequence, then
compute the cosine similarity; (2) we introduce noise into all state sequences and generate their
values, then compute the difference. The aim of our algorithm is to bring the state with noise closer
to the state without noise by using a perturbed loss function. The left side of the figure displays the
cosine similarity and difference between the state with noise and the state without noise for both the
RMOS and OneStep algorithms. It reveals that previous algorithms have not reduced these values.

By utilizing Equation [§] and Equation [9] we discover that minimizing the error of action selection
necessitates minimizing the difference between the value of the state and the value of the noise
state, or in other words, minimizing the translation error. Additionally, it’s important to note that
simulations in MuZero Unplugged can cause the error to spread to the reward of the state-action.
Thus, minimizing the discrepancy between the reward of a state and the reward of a noise state can
contribute to the selection of the correct action.

3.2 ROLLOUT ERROR IN OFFLINE SETTING

Although a poor dynamics model can spread error through simulation and lead the prediction model
to generate misleading values, RL agents can correct it through interaction with the environment.
In an online setting, the RL algorithm can interact with the environment to explore more states to
correct this error. However, in an offline setting, the RL algorithm trains with a fixed dataset. The
prediction model cannot correct the errors introduced by improper latent states without interaction.
Therefore, these errors will accumulate during the training phase. During the evaluation phase,
these errors can influence the model’s improvement process and lead to the selection of suboptimal
actions. Consequently, both ROSMO and MuZero Unplugged continue to be affected by this error.

We calculate the difference between the value of the state and the value of the noise state, as well
as the cosine similarity between these states. The noise of a state follows a distribution where the
mean is the state itself and the standard deviation is a function of the state’s weight and a base
value:pw ~ N(0,s * w + b). For both cosine similarity and state value difference, we employ
two methods to introduce noise into the latent state. When calculating the state value difference,
we add noise to all five steps of the unroll process, prompting the prediction model to generate
a noisy value. Conversely, for cosine similarity, we introduce noise into the initial state and then
allow the dynamics model to roll out and generate a noisy state sequence. As shown in Figure [T] for
the MsPacman task, we observe that the ROSMO, OneStep prediction model, and dynamics model
are all affected by noise. Furthermore, due to the significant numerical differences within the latent
state itself and the number-insensitive nature of cosine similarity, the cosine similarity between these
states may be greater than their actual similarity.

Under review as a conference paper at ICLR 2024

3.3 FRAMEWORK AND METHOD

To minimize the error caused by improper latent state translation, we are focusing on constraining the
difference between the state and the noise state. This idea is inspired by the DrQ algorithm, which
uses image augmentation to enhance performance. Instead of augmenting the dataset in observation
as done in DrQ, we have decided to add noise in the latent state layer. As shown in Figure[I] these
model-based planning methods operate within the latent state layer. The improper translation also
occurs in the latent state layer. Therefore, by adding noise to the latent state and computing the
difference between them, we can constrain the policy.

Our algorithm only modifies the training phase of OneStep or MuZero Unplugged. As shown in
Figure [I] after the representation model generates the latent state, we add noise using different
methods according to the constraining aim. Then, we use different objective losses as regular terms
to update the network. Through analysis and experimentation, we have used two methods to add
noise at different positions. In this paper, we employ two types of noise: (1) sampling from a
normal distribution with weights, and (2) sampling from a uniform distribution within the range that
is controlled by a parameter, and adding it to the state on a one-to-one basis with weights. Although
the error of the state may have a complex form, we opt for these simple methods.

3.3.1 CONSTRAINED DYNAMICS

One of the two methods involves adding noise to constrain the dynamics model. Inspired by Ef-
ficientZero (Ye et al| (2021)), we measure the difference between states using cosine similarity.
EfficientZero computes the cosine similarity between the state generated by the dynamics model
and the state from the representation model. However, unlike EfficientZero, which constrains the
image latent state to closely resemble the real latent state, we constrain the image state sequence
starting from a state with noise to closely resemble the state sequence without noise.

As shown in Figure [T| we introduce noise into the initial latent state, which is generated by the
representation model. The dynamics model then rolls out ‘n’ steps to obtain a state sequence. We
compute the cosine similarity between this state sequence and another state sequence generated
through a normal process. Although the error in the latent state is more complex, our experiments
demonstrate that our simple method can enhance the performance of the algorithm.

3.3.2 CONSTRAINED VALUE

Another method to introduce noise into the model is by constraining the values generated by the
prediction model. The goal of this method is to smooth the state values to generate appropriate
values for out-of-distribution states. Moreover, both experimental and theoretical analyses of Zheng
et al.[(2023)) demonstrate that a robust regularization term achieves local Lipschitz conditions. This
can enhance performance and train a more accurate prediction model.

Unlike the dynamics constraint method, which only adds noise to the initial latent state, our method
introduces noise to all latent states and generates their values. We then compute the difference
between these states and their counterparts without noise to smooth the values. As discussed in
Section [3.3.1] our experiments demonstrate that our method improves the model’s performance,
even though it may be too simplistic to simulate complex conditions of improper state transitions.

4 EXPERIMENT

In this section, we first compare the cosine similarity and the difference between the state and noise
state of our algorithm and other methods to validate the effectiveness of our method in reducing
errors introduced by improper state translation (Section [.T). Next, we compare our algorithm with
MuZero Unplugged, ROSMO, and OneStep in the RL Unplugged Atari benchmark. Detailed results
will be provided in the Appendix [C] Finally, in Section f.3] we analyze the impact of position,
number, and weight of noise through experimental analysis.

Under review as a conference paper at ICLR 2024

MsPacman MsPacman MsPacman

10 W .
e
2

N

— onestep — onestep
—— ROSMO —— ROSMO
—— COMP (Dynamics) —— COoMP (value)

Cosine Similarity

— onestep
ROSMO

—— COMP (value)

—— COMP (Dynamics)

Noise Value Loss
Value Prediction Mean

o 100 500 [100 500 0 100 400 500

200 300 400 200 300 200 300
Env Step (4x10°2) Env Step (4x10°2) Env Step (4x10°2)

Figure 2: In these figures, we compare our algorithm with ROSMO and OneStep in Atari games. We
plot the cosine similarity and mean squared error (MSE) difference between the state and the noise
state. The left and middle sections of this figure illustrate that our algorithm constrains the value of
counterpart criteria. Additionally, we demonstrate the prediction of in-dataset values to substantiate
that our algorithm has a small impact on the in-dataset state value.

4.1 HYPOTHESIS VERIFICATION

As demonstrated in Section [3.2] the previous offline model-based planning algorithm encounters
errors due to improper state translation. Therefore, when given a state with noise, the algorithm
exhibits significant errors in value and state translation. In contrast, our algorithm improves perfor-
mance by constraining the value difference or the cosine similarity between perturbed states.

To validate the effectiveness of our algorithm, we conducted a comparative analysis of the corre-
sponding results under the two aforementioned metrics between our algorithm, ROSMO, and On-
eStep. Figure2]illustrates that these two methods achieve their respective aims independently, with-
out any mutual interference. Furthermore, as depicted on the right side of Figure [2 our algorithm
does not alter the values and rewards of in-dataset states. This is because all values of the dataset’s
states fluctuate within a similar range. As a result, our algorithm enhances smoothness and has
minimal negative impact on the original method.

4.2 MAIN EXPERIMENT

After verifying the effectiveness of our algorithm in constraining values and dynamics, we com-
pared our method with other offline reinforcement learning algorithms the Atari Games Benchmark
provided by RL Unplugged (Gtil¢ehre et al.[(2020)). In this section, we compare our algorithm with
ROSMO, OneStep, and MuZero Unplugged respectively in three Atari games. Additional compari-
son results will be presented in the Appendix

Network. For a fair comparison, we run our algorithm, ROSMO, OneStep, and MuZero Unplugged
with a similar network. We use the implementation of ROSMO) and run other methods by adding
MCTS, a simulation function, or other regularization terms. In addition, we add our constraint
regularization term to MuZero Unplugged and OneStep respectively to demonstrate the effectiveness
of our algorithm in one-step rollout and multi-step rollout. Notably, the ROSMO algorithm is the
OneStep method with an added behavior regularization term.

Result. First, we compare our algorithm with ROSMO and OneStep to verify that our algorithm can
improve performance in the one-step method. As Figure[3|shows, although the ROSMO method has
a faster convergence speed, compared to its biased method OneStep, our algorithm achieves better
performance, particularly in the Amidar game. In addition, the main factor of the convergence speed
of ROSMO is the behavior regularization term, which can combine with our regularization term.

Then, we compare our algorithm with MuZero Unplugged by adding a regularization term. As
discussed in Section @], in MCTS, the reward will also generate an error, so we constrain both
the value and the reward in this experiment. Figure 4| demonstrates that our algorithm surpasses
MuZero Unplugged. Multi-step rollout simulations introduce a more complex error in state transla-
tion. Therefore, a more sophisticated perturbation process will yield better effectiveness. For a more
in-depth study of noise addition in MuZero Unplugged, we have put it into our future research.

https://github.com/sail-sg/rosmo

Under review as a conference paper at ICLR 2024

MsPacman Breakout Amidar

7000 Onestep 600 onestep onestep
6000 500
5000
4000

3000

Episode Return
Episode Return
Episode Return

2000

1000 20

o 2 150 175 200 o 2 150 175 200 0 25 s 150 175 200

s0 75 100 125 0 75 100 125 o 75 100 125
Env Step (x10"3) Env Step (x10”3) Env Step (x10~3)

Figure 3: In these figures, we compare our algorithm with ROSMO and OneStep in Atari games. We
plot the IQM score for the MsPacman, Amidar, and Breakout tasks. Notably, in these comparative
experiments, we add our regularization term to OneStep to ensure fairness.

MsPacman Breakout Amidar

H

MuZero Unplugged MuZero Unplugged MuZero Unplugged
6000 —— COMP(Mutli Rollout) —— COMP(Mutli Rollout) —— comP(Mutli Rollout)

&

5000

4000

8

80

Episode Return

Episode Return
Episode Return

2000

1000 20

G 25 s 75 w0 135 10 175 200 G 25 m 75 w0 15 10 15 200 0 2 s 75 100 15 150 175 200
Env Step (x10~3) Env Step (x10°3) Env Step (x10"3)

Figure 4: In these figures, we compare our algorithm with MuZero Unplugged in Atari games.
We plot the IQM score, calculated over 3 seeds, for the MsPacman, Amidar, and Breakout tasks.
Notably, in these comparative experiments, we add our regularization term to MuZero Unplugged
and use similarity parameters for MCTS to ensure fairness.

4.3 ABLATION EXPERIMENT

Position of noise: In Section 3.1} we analyze the error introduced by improper state translation
and its influence on the model. Through this analysis, we discover that minimizing the error of
the dynamics model and prediction model proves to be effective. Our experiments show whether
other parts of the model also improve performance. We modify the regularization term of OneStep to
compute the difference in policy, reward, value, and cosine similarity between the state and the noise
state. Figure[5|left demonstrates that constraining cosine similarity and value difference can improve
the algorithm’s performance and validates our analysis. In addition, since the policy depends only

MsPacman MsPacman MsPacman

— reward

7000 { — Value 7000
— reward and value

6000
5000 5000

4000

g

3000

Episode Return
Episode Return
Episode Return

2000

1000 1000

B0 175 200] 150 175 200 o 2 10 175 200

0 75 100 15 0 75 100 125 0 75 100 125
Env Step (x10"5) Env Step (x10"5) Env Step (x10"3)

Figure 5: We demonstrate the performance of our algorithm under various conditions. On the left,
we compare the impact of different regularization terms on various parts of the model. In the middle,
we examine whether the number of noise instances influences the performance of our method. On
the right, we illustrate the effect of different noise weights. The noise follows a specific distribution:
pw ~ N(0,s *xw+b)

Under review as a conference paper at ICLR 2024

on the current state, constraining the policy yields little benefit. As for constraining the reward, it
also offers little benefit in one-step rollouts, but in multi-step rollouts, it improves performance.

Number of noise: We wonder that whether the number of noise factors may influence our algorithm.
Thus we set the number of noise factors to n = 5, 10, 20, 50, 100 to demonstrate this effect. As
shown in the middle of Figure[5] n = 10 performs better and within a proper range, the algorithm
maintains nearly consistent performance. This result relates to the analysis of |[Zheng et al.| (2023).
Its author points out that local Lipschitz conditions are sufficient. A strong regularization even can
negatively impact the model. Therefore, we set this parameter as 10 in most environments.

Weight of noise: The weight of noise is an important parameter for our algorithm. We utilize noise
in accordance with a distribution controlled by two parameters: pw ~ N (0,s * w + b). We set
w = 0.25,0.5,20.0 and b = 0.1,0.25,20.0 respectively. Experiments demonstrate that within a
proper range, the algorithm maintains nearly consistent performance. Notably, if the noise has an
improper weight, the algorithm will fail. More discussion are listed in Appendix [D]

5 RELATED WORK

Previous works, namely [Levine et al.| (2020) and |Prudencio et al.[(2023)), provide a comprehensive
survey of recent advancements in Offline RL research. These works categorize Offline RL meth-
ods based on various factors such as policy constraints, uncertainty estimation, and model-based
approaches, among others. In this section, we will discuss some methods that are either compared
or related to our algorithm.

Conservative Q-Learning (CQL |Kumar et al.[(2020)) is a regularization method that constrains the
Q-value of out-of-dataset (OOD) state-action pairs to be lower than those of in-dataset state-action
pairs. This algorithm belong to the category of model-free offline methods. In contrast, our al-
gorithm falls under the model-based method category. Model-based offline reinforcement learning
involves learning the dynamics function and reward function of the environment.

Model-based methods can be divided into two classes based on the method of action generation. One
class includes algorithms that learn a world model to assist the agent in learning the policy, such as
MOReL (Kidambi et al.| (2020)), MOPO (Yu et al.|(2020)), COMBO (Yu et al.| (2021)), and others.
These algorithms compute the uncertainty quantification of the transition state and process states
with lower uncertainty. Although the theory and experiments of MOReL, MOPO, and COMBO
have shown that their policies achieve notable results on state-based benchmarks such as D4RL, it
remains unclear whether these algorithms are also effective in image-based domains such as Atari
in the RL Unplugged benchmark. Additionally, there has been limited research on transferring these
frameworks to image-based domains. The other class includes methods that use the world model
to plan a future probability trajectory and select the action with the highest return, such as MuZero
Unplugged (Schrittwieser et al.|(2021)) and ROSMO (Liu et al.| (2022)). These algorithms operate
dynamics and prediction models on the latent state layer to enhance performance in image-based
domains. Our algorithm falls into this category of algorithms.

6 CONCLUSION

In this paper, we analyze the improvement process of the value-based model-based planning. We
identify latent errors originating from improper latent state translations during the evaluation phase.
These errors propagate to the prediction model, generating misleading values. Consequently, an
overestimated value impacts the improvement process by selecting a suboptimal action. Rather
than reducing the rollout steps with ROSMO to avoid the accumulation of errors, we address this
issue by introducing noise into the latent state. Through analysis and experimentation, we find
that the dynamics and value components are more critical than others for value-based model-based
planning. Therefore, we design two methods to separately introduce noise into the latent state
for these two components. Experiments demonstrate that our algorithm effectively constrains the
difference between the state and the noise state, thereby achieving state-of-the-art results.

Under review as a conference paper at ICLR 2024

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72—83. Springer, 2006.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence princi-
ple for model-based reinforcement learning. Advances in Neural Information Processing Systems,
33:5541-5552, 2020.

Caglar Giilgehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez Colmenarejo, Kon-
rad Zolna, Rishabh Agarwal, Josh Merel, Daniel] Mankowitz, Cosmin Paduraru, et al. Rl un-
plugged: A collection of benchmarks for offline reinforcement learning. In NeurIPS, 2020.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Gregory Kahn, Pieter Abbeel, and Sergey Levine. Badgr: An autonomous self-supervised learning-
based navigation system. IEEE Robotics and Automation Letters, 6(2):1312-1319, 2021.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810-21823, 2020.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909-4926, 2021.

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282-293. Springer, 2006.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning: State-of-the-art, pp. 45-73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review. and Perspectives on Open Problems, 5, 2020.

Siqi Liu, Kay Choong See, Kee Yuan Ngiam, Leo Anthony Celi, Xingzhi Sun, and Mengling Feng.

Reinforcement learning for clinical decision support in critical care: comprehensive review. Jour-
nal of medical Internet research, 22(7):e18477, 2020.

10

Under review as a conference paper at ICLR 2024

Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng Yan, and Zhongwen Xu. Efficient offline policy
optimization with a learned model. arXiv preprint arXiv:2210.05980, 2022.

Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden,
Gabriel Barth-Maron, Hado Van Hasselt, John Quan, Mel Vecerik, et al. Observe and look further:
Achieving consistent performance on atari. arXiv preprint arXiv:1805.11593, 2018.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 2023.

Martin Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural reinforce-
ment learning method. In Machine Learning: ECML 2005: 16th European Conference on Ma-
chine Learning, Porto, Portugal, October 3-7, 2005. Proceedings 16, pp. 317-328. Springer,
2005.

Christopher D Rosin. Multi-armed bandits with episode context. Annals of Mathematics and Artifi-
cial Intelligence, 61(3):203-230, 2011.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580-27591, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768-7778, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476-25488, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129-14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954-28967, 2021.

Ruijie Zheng, Xiyao Wang, Huazhe Xu, and Furong Huang. Is model ensemble necessary?
model-based rl via a single model with lipschitz regularized value function. arXiv preprint
arXiv:2302.01244, 2023.

11

Under review as a conference paper at ICLR 2024

A ALGORITHM PSEUDOCODE

We demonstrate the core procedure of COMP, which differs from ROSMO and MuZero Unplugged,
as shown in the Algorithm [T]and 2]

Algorithm 1 COMP (Constrained Dynamics)

Require: dataset D, model parameters 6, unroll step K, weight c, init latent state s? of trajectory
T, noise number n, noise wegith w
function COSINE SIMILARITY (6, 9, a;. 14+ r—1)
s < Unroll(0,s?,a;. 11r-1)
Sample n instances of noise with w from a normal distribution
noise s¥* < s¥ + noises
noises* < Unroll(0, s0* a;. 111—1)
fori=1—ndo
Compute cosine similarity for s (stop gradient) with s}
end for
return consine similarity
end function

Algorithm 2 COMP (Constrained Value)

Require: dataset D, model parameters 6, unroll step K, weight «, latent state sg of trajectory T,
noise number n, noise wegiht w
function UNROLL(O, s¥*, at, . 14 —1)
fori =0— K —1do
7ot fo(s?)
pitl i+l go(siay)
Sample n instances of noise with w from a normal distribution
noise s* < s' + noises
noise %, v%* < fy(s™)
end for
L (1ChY
return r, s, T, v, v*
end function

For the loss functions of policy, value, and reward prediction, we employ the same functions as
ROSMO and MuZero Unplugged. Specifically, the loss functions are:

(*(w,p) = —p ' logm
0 (v,2) = —¢ () logv (10)
() =—¢ ()" logr

where we use the transform (rescale) function, h(x) = sign(z)(y/|z| + 1 — 1 + ex), to obtain the
invertible target value and reward, resulting in 2’ = h(z),u’ = h (r). For the transform function h,
we set € = 0.001 in accordance with |Pohlen et al.|(2018). To compute the cross-entropy loss of the
distribution predictions with the target, we apply the transformation ¢ to obtain the corresponding
categorical representations of scalars.

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETTING
The behavior regularization for ROSMO is set at 0.2. The simulation budget for MuZero Unplugged

is 20, with no limit on depth. For our algorithm, we sample noise from a normal distribution, apply
a weight to it, and add it to the latent state to create a noise state. We have incorporated the official

12

Under review as a conference paper at ICLR 2024

Parameter | Value
Frames stachked 4
Sticky action True
Discount factor 0.9977
Batch size 512
Optimizer Adamw
Optimizer learning rate 7x 1072
Optimizer weight decay 1077
Learning rate decay rate 0.1
Max gradient norm 5
Target network update interval 200
Policy loss coefficient 1
Value loss coefficient 0.25
Unroll length 5
TD steps 5
Bin size 601

Table 1: Atari hyperparameters shared by MuZero Unplugged, ROSMO and COMP

Environment \ noise weight consine similarity weight noise value weight
Frostbite 0.25 0.2 0.25
Pong 0.025 0.2 0.25
Other Atari games 1 0.2 0.25

Table 2: Atari hyperparameters of our algorithm. Different environments have varying tolerances
for noise. Therefore, we select different noise weights and metrics as discussions in Appendix [C]

MCTS library into ROSMO to implement MuZero Unplugged, adhering to the original parameter
settings. The OneStep method, which is a baseline method of ROSMO, is implemented without
behavior regularization. For all experiments conducted in Atari, we utilize 3 seeds. The comparison
between the one-step and multi-step rollout methods with COMP involves merely the addition of a
regularization term to the respective algorithm.

B.2 NETWORK ARCHITECTURE

We utilize the same network architecture for MuZero Unplugged, ROSMO, and COMP in our Atari
experiments. The representation, dynamics, and prediction functions in visual domains are modeled
using ResNet v2 style pre-activation residual blocks with layer normalization.

We utilize the same network as introduced by ROSMO. Therefore, for the stacked grayscale image
input of size 84 x 84 x 4, we first employ a downsampling network. Then, the representation function
employs 6 residual blocks, while the dynamics function and prediction function utilize 2 residual
blocks. All network blocks are kept consistent across different algorithms to ensure a similar neural
network capacity. Additionally, all residual blocks have 64 hidden channels.

B.3 PARAMETERS VALUE

We share a multitude of hyperparameters for ROSMO, MuZero Unplugged, and our algorithm, as
shown in Table[I] Besides, hyperparameters specific to our algorithm are introduced in Table [2]

C MORE EXPERIMENT RESULTS

Table 2 presents the IQM return results for various Atari games. In these experiments, we utilized
the one-step rollout method of COMP. Our algorithm outperforms other algorithms in nearly all
Atari games. In our algorithm, we found that the constraint value method performs better between

13

Under review as a conference paper at ICLR 2024

MsPacman Pong

Value Prediction Std
Episode Return
|

Value Predition Std

o 100 400 500 o 25 100 125 150 175 200 [100

0 7 500
Env Step (x10”3)

200 300 200 300 400
Env Step (4x10°2) Env Step (4x10°2)

Figure 6: In these figures, we compare standard deviation of value of different noise weight. left:
Standard deviation corresponding to the right figure in Figure [5| middle: Performance of different
weight noise in Pong. right: Strandard devistion corresponding middel.

the two methods. This is because correcting errors in state translation is more complex than in value.
Additionally, a smooth value tends to produce a more robust policy.

| cQL MZU ROSMO COMP (dynamics) COMP (value)
Amidar 51.286i18 821 76.452&.(1 107 38.405i5’,301 67:&.(5,1 82.467:&’15.8“7
Asterix 26890.476 5106420 29061.905 3067557 25740.476 557143 25366.667 :21353 25813.333 201067
Breakout 418.238 275 390.119.455 440.905:57m 408.6:2.4 479.933: 10133
Frostbite 3337.381 51013 4051.19:1075 3996.19-223.006 3983.667 <1507 4086.667 155067
Gravitar 52.381 sa07s6 792.857 s10502 753.571 005 736.667 136667 776.667 20355
MsPacman 2141.667 <ss6.420 4539.048 516756 5019.762-60s76s 5072.667 -is007 5892.:iu
Phoenix 3510.238 1066120 6103.81 172213 21550.476 2650013 22701.333 255007 213581
Pong 18.762.10505 18.452:1100 20.452.055 19.867 20267 20.267 1013
Qbert 13114.286 1973 13121.429: 05302 15848.81 s 10m.107 16758.333 1673 16940.0:5

Table 3: Numerical results of the IQM episode return of individual Atari games. The results of CQL,
MUZ, ROSMO are sourced from Table 8 in the |Liu et al.| (2022)

D PARAMETER SELECT

D.1 NOISE WEIGHT

The ablation experiment presented in Section [4.3] demonstrates that the weight of the noise has a
significant impact on the performance of the algorithm. An improper range of noise weight can
degrade the performance of the algorithm. We discuss how to identify an improper range of noise
weight. One effective method to determine whether a weight is within a proper range is to observe
the standard deviation of value prediction during the training phase. Figure [6]compares the standard
deviation of value prediction for two noise methods, contrasting improper and proper weights. The
figure on the left demonstrates that even if the standard deviation of value prediction varies slightly in
the initial phase, it can still degrade performance. When comparing the performance of two weights
in Pong, we discovered that the impact of an improper weight may be reduced, but it requires more
steps. Furthermore, we can easily determine whether a weight is appropriate. Additionally, when
comparing the left and right figures, we naturally conclude that the proper range may differ for
different environments. This is related to the characteristics of the environment. Therefore, in a new
environment, we can establish a standard by training with a smaller weight and shorter steps. For
almost all Atari games, setting the weight to 1 is an appropriate value.

D.2 NOISE NUMBER
Excluding the MsPacman game, we ran our algorithm with different noise numbers. As shown in

Figure[7] in all environments, a noise number of 10 yields notable performance and better computa-
tional efficiency. Therefore, in all experiments, we set the noise number to 10.

14

Under review as a conference paper at ICLR 2024

Amidar

Breakout
175 —— noise_num=>5 7001 noise_num=5
—— noise_num=10 —— noise_num=10
150 —— noise_num=20 6001 — noise_num=20
—— noise_num=50 —— noise_num=50
s 125 —— noise_num=100 & 5004 — noise_num=100
£ I S
S F]
K] @ 00
100
x <
3 3
75 300
]]
2 k4
) Q
w & 200
25 100
0 0
o 25 50 75 100 125 150 175 200 o 25 50 75 100 125 150 175 200
Env Step (x10"5) Env Step (x10"5)

Figure 7: We utilize varying levels of noise to run other Atari games, demonstrating the impact of
noise quantity.

15

	Introduction
	Background
	Offline Reinforcement Learning
	Offline Value-Based Planning
	Policy Improvement Method

	Method
	Accumulated Error of dynamics model
	Rollout Error In Offline Setting
	Framework And Method
	Constrained Dynamics
	Constrained Value

	Experiment
	HYPOTHESIS VERIFICATION
	Main Experiment
	Ablation Experiment

	Related Work
	Conclusion
	Algorithm Pseudocode
	Experiment Details
	Experiment Setting
	Network Architecture
	Parameters Value

	More Experiment results
	Parameter Select
	Noise Weight
	Noise Number

