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Abstract

The goal of robust constrained reinforcement learning (RL) is to optimize an agent’s per-
formance under the worst-case model uncertainty while satisfying safety or resource con-
straints. In this paper, we demonstrate that strong duality does not generally hold in robust
constrained RL, indicating that traditional primal-dual methods may fail to find optimal
feasible policies. To overcome this limitation, we propose a novel primal-only algorithm
called Rectified Robust Policy Optimization (RRPO), which operates directly on the primal
problem without relying on dual formulations. We provide theoretical convergence guaran-
tees for RRPO, showing that it converges to an approximately optimal policy that satisfies
the constraints within a specified tolerance. Empirical results in a grid-world environment
validate the effectiveness of our approach, demonstrating that RRPO achieves robust and
safe performance under model uncertainties while the non-robust method will violate the
worst-case safety constraints.

1 Introduction

In many practical reinforcement learning (RL) applications, it is critical for an agent to not only maximize
expected cumulative rewards but also satisfy certain constraints, such as safety requirements (Yao et al.,
2024; Gu et al., 2024b) or resource limitations (Wang et al., 2023c). However, real-world environments often
diverge from the training environment due to model mismatch (Roy et al., 2017; Viano et al., 2021; Zhai et al.,
2024; Wang et al., 2024) and environment uncertainty (Lütjens et al., 2019; Wang & Zou, 2021; Ma et al.,
2023). Such discrepancies can lead to significant performance degradation and, more severely, violations of
constraints, which is unacceptable in safety-critical applications. For instance, an autonomous robot may
encounter unforeseen transitions due to equipment aging or mechanical failures that were not present during
training, potentially leading to unsafe maneuvers. In addition, mission-critical finance systems must respect
value-at-risk (VaR) limits while trading under shifting market dynamics, and healthcare treatment-planning
agents must adhere to strict dose constraints even when patient responses deviate from nominal models.

Despite its practical importance, robust constrained RL has been relatively underexplored in the literature.
Two closely related areas are robust RL (Bagnell et al., 2001; Nilim & Ghaoui, 2005; Iyengar, 2005) and
constrained RL (Altman, 1999; Wachi & Sui, 2020). Robust RL focuses on optimizing performance under
model uncertainties but typically does not consider constraints. Constrained RL aims to optimize perfor-
mance while satisfying certain constraints but often assumes a fixed environment without uncertainties.
Seamlessly combining two fields presents inherent challenges.

To address these challenges, we propose a framework for robust constrained RL under model uncertainty.
Specifically, we consider Markov Decision Processes (MDPs) where the transition dynamics are not fixed
but lie within an uncertainty set, which is commonly known as the robust MDPs (Mannor et al., 2016; Ho
et al., 2018; Tamar et al., 2013; Grand-Clément & Kroer, 2021). Our objective is to optimize the worst-
case cumulative reward over this uncertainty set while ensuring that all constraints are also simultaneously
satisfied in the worst-case scenario. This robust approach ensures that the agent’s policy remains effective
and safe even when the environment deviates from the nominal model.

1



Under review as submission to TMLR

A common approach to solving such constrained problems is the primal-dual method (Altman, 1999; Pater-
nain et al., 2019; Bai et al., 2022; Liang et al., 2018; Chen & Wang, 2016; Mahadevan et al., 2014; Chen et al.,
2022), which leverages the strong duality property to efficiently find optimal policies. Strong duality allows
the original constrained problem to be solved by considering its dual problem, simplifying computations and
enabling convergence guarantees. However, a crucial question arises:

Q1: Does strong duality hold in robust constrained RL?

In this paper, we address this question head-on. We first demonstrate that, unfortunately, strong duality
does not generally hold in robust constrained RL. The presence of model uncertainties breaks the
Fenchel-Moreau condition, the common routine of showing the strong duality in the non-robust constrained
RL (Altman, 1999). We construct a specific counterexample where the duality gap, the difference between
the optimal values of the primal and dual problems, is strictly positive. This finding indicates that traditional
constrained RL algorithm may fail to be directly generalized to the robust constrained setting; we also note
that the non-zero duality gap does not exclude the potential global convergence of primal-dual algorithm.
Recognizing this fundamental issue, we are motivated to ask the following question:

Q2: Can we develop a non-primal-dual algorithm for solving robust constrained RL problems
with provable convergence guarantees?

To address this question, we introduce the Rectified Robust Policy Optimization (RRPO), a primal-only
algorithm adapted from the CRPO (Xu et al., 2021). RRPO is specifically designed for robust constrained
RL, which bypasses the issues associated with the duality gap. Our algorithm operates directly on the
primal problem, ensuring constraint satisfaction and robustness without relying on dual formulations or
strong duality assumptions. We summarize our key contributions as follows:

1. Counterexample—Non-Zero Duality Gap: In Section 3, we provide a concrete example showing that
strong duality does not hold in robust constrained RL. To the best of our knowledge, this negative result
is the first theoretical example showing the non-zero duality gap in the existing literature, which resolves
an open problem in constrained robust RL. We emphasize that establishing such a counterexample is
nontrivial and crucial for understanding the theoretical boundaries of constrained robust RL.

2. Proposed Primal-Only Algorithm—RRPO: Motivated by the lack of strong duality of constrained
robust RL problems, we introduce RRPO, a primal-only algorithm designed to solve robust constrained RL
problems without relying on strong duality. Moreover, in Section 4, we rigorously analyze the convergence
properties of RRPO. Specifically, we prove that under appropriate conditions, RRPO converges to an
approximately optimal feasible policy π∗ within a specified tolerance δ in the worst-case scenario. Our
derived convergence rate and iteration complexity also achieve the best-possible lower bound for
non-robust constrained RL problems (Vaswani et al., 2022).

3. Empirical Validation: We validate the effectiveness of RRPO through experiments in a grid-world
environment and the classical mountain car environment. Our results show that RRPO achieves robust
and safe performance under model uncertainties, outperforming the original CRPO method that may fail
to maintain constraint satisfaction in the worst-case scenario.

1.1 Related Work

Robust Constrained RL Here, we mainly explore the existing literature regarding robust constrained RL.
In Appendix A.1, we provide other related work. Robust constrained RL considers the problem of optimizing
performance while satisfying constraints in the worst-case scenario. Although robust RL and constrained
RL have each been extensively studied, fewer works address their intersection. In Russel & Petrik (2020),
the authors investigate robust constrained RL and propose a heuristic approach that estimates robust value
functions and employs a standard policy gradient method (Sutton et al., 1999), substituting the nominal
value function with the robust one. However, as Wang et al. (2022) points out, this approach overlooks how
the worst-case transition kernel depends on the policy, resulting in updates that do not correspond to actual
gradients of the robust value function and thus lack theoretical convergence guarantees. To remedy this,
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Wang et al. (2022) introduces a robust primal-dual algorithm for solving robust constrained RL problems.
However, this method assumes the strong duality, which we will show later, generally does not hold in robust
constrained RL. Several other studies also examine the strong duality of robust constrained RL problems:
Ghosh (2024) points out that the standard routine in proving the strong duality of constrained RL problems
(Panaganti & Kalathil, 2021) cannot hold in the robust case. Zhang et al. (2024) proves the strong duality
by considering a different policy space, which is different from the space considered in Paternain et al. (2019).
We include further discussion on it in Appendix A.2.

The uncertainty set captures the discrepancy between training and deployment environments. In our work,
we mainly focus on the (s, a)-rectangular uncertainty set (Iyengar, 2005; Nilim & Ghaoui, 2005), where the
transition uncertainty is modeled independently for each state-action pair. As shown by Lu et al. (2024);
Kumar et al. (2023); Wang et al. (2023a); Wang & Zou (2021), this structure induced by a specific norm or
divergence usually enables efficient solution methods through robust value iteration and linear programming,
preserving the tractability of dynamic programming. While our work is also potential to be extended to
other settings when a valid robust policy evaluation algorithm presents, including:

s-Uncertainty Sets The s-rectangular uncertainty set (Li et al., 2022; Li & Shapiro, 2023; Kumar et al.,
2023) relaxes independence by allowing nature to choose transitions jointly across all actions at a given state.
The widely known results include the robust policy gradient formula (Li et al., 2022) and the closed-form
solution for p-norm uncertainty sets (Kumar et al., 2023). These results make it possible to solve the robust
value function more efficiently.

d-Uncertainty Sets More recently, the d-rectangular uncertainty set (Ma et al., 2022) has been proposed
for linear MDPs to further generalize the existing concepts of (s, a)-rectangular uncertainty sets, where the
ambiguity is structured in a low-dimensional decision space, enabling scalable robust value iteration in high-
dimensional settings. Representative works include Blanchet et al. (2023); Liu & Xu (2024a); Liu et al.
(2024); Liu & Xu (2025). Remarkably, this setting has also been widely explored in the offline RL setting
(Tang et al., 2024; Liu & Xu, 2024b). These results make it possible to extend our results potentially to be
able to handle more complicated robust MDPs with the function approximation.

Additionally, we discuss our connection to other setting in the robust reinforcement learning and constrained
reinforcement learning.

Robust RL with Reward and State Uncertainty Modern robust RL tackles misspecified or learned
rewards by optimizing worst-case or risk-aware returns. Early formulations blending nominal and worst-case
objectives (Xu & Mannor, 2006; Delage & Mannor, 2010) have been extended by coupling-aware uncertainty
sets that avoid excessive conservatism (Mannor et al., 2012). Recent work uses Bayesian reward ensembles
and CVaR objectives for preference-based or RLHF settings, giving reliability under noisy learned rewards
(Brown et al., 2020). Newest advances address uncertainty inside the reward or state signal itself. Seeing-
is-Not-Believing RSC-MDPs explicitly model spurious correlations in the state and learn policies robust
to such confounding (Ding et al., 2023). Mirror-Descent inverse RL adds robustness directly to the learned
reward via adversarial mirror steps with O(1/T ) regret (Han et al., 2022). Distributional Reward Estimation
builds a reward-uncertainty distribution whose risk-sensitive aggregation stabilises multi-agent training (Hu
et al., 2022). Moreover, robust MDPs cast dynamics error as a zero-sum game; rectangular ambiguity sets
admit efficient robust DP with deterministic optimal policies (Iyengar, 2005; Nilim & Ghaoui, 2005). Follow-
ups loosen rectangularity to retain tractability while reducing pessimism (Wiesemann et al., 2013; Goyal &
Grand-Clement, 2023). Practical algorithms combine adversarial disturbances or domain randomization with
policy learning to harden policies against dynamics shifts (Pinto et al., 2017).

RL with Hard Constraints CMDP theory guarantees optimal stationary policies and LP or primal–dual
solutions (Altman, 1999; Borkar, 2005). Deep RL implementations such as CPO (Achiam et al., 2017) and
RCPO (Tessler et al., 2019) enforce budget or safety limits during learning. Runtime shielding synthesised
from temporal-logic specifications now guarantees safety even under partial observability (Carr et al., 2023).
Quantile-Constrained RL enforces outage-probability bounds by constraining the cost distribution’s tail
rather than its expectation (Jung et al., 2022). Trust-Region Safe Distributional Actor–Critic simultaneously
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handles multiple constraints with distributional critics and provable convergence (Kim et al., 2023). Model-
predictive safety filters based on learned control-barrier functions enforce hard state constraints in unknown
stochastic systems while optimizing performance (Wang et al., 2023b). Together these methods wrap (or
jointly train) base policies to guarantee constraint satisfaction without relying on soft penalties.

Safe RL Safe exploration confines learning to recoverable states (Moldovan & Abbeel, 2012) or certified
Lyapunov safe sets (Berkenkamp et al., 2017). Action-level intervention layers correct unsafe commands
on the fly (Dalal et al., 2018a), while risk-sensitive criteria such as CVaR directly penalize catastrophic
tails (Chow et al., 2018a). These threads, alongside recent hard-constraint and shielding techniques above,
provide complementary, constraint-respecting alternatives that our revised Related-Work section now covers.

2 Preliminaries and Problem Formulation

In this section, we formalize our problem setting in the context of online robust constrained RL, where the
transition probabilities are unknown. We re-use an existing robust policy evaluation algorithm to estimate
the approximate value function.

2.1 Robust MDPs

A Robust Markov Decision Process (Robust MDP) is defined by the tuple (S,A,P, r, γ), where S is a finite
state space, A is a finite action space, P represents the uncertainty set of transition probabilities with ∆(S)
denoting the probability simplex over S, r : S × A → R is the reward function, γ ∈ [0, 1) is the discount
factor. We denote µ ∈ ∆(S) as the initial state distribution.

In an robust MDP, the transition probabilities are not fixed but belong to an uncertainty set; usually, the
uncertainty set P is defined as the s-rectangular set (Derman et al., 2021; Wang et al., 2023a; Wiesemann
et al., 2013; Kumar et al., 2023)

P := ×s∈SPs,

or (s, a)-rectangular set (Wiesemann et al., 2013; Kumar et al., 2023)

P := ×(s,a)∈S×AP(s,a).

Here, instead of assuming a specific type of uncertainty set as in many existing literature (Wang & Zou,
2021; Wang et al., 2022), we work on general uncertainty sets but simply assume that the robust value
function over these uncertainty set is computationally available. Notably, for many well-known uncertainty
sets, such as the p-norm (Kumar et al., 2023), IPM (Zhou et al., 2024), and R-contamination (Wang & Zou,
2021) uncertainty set, the robust value function can be efficiently calculated without hurting the sample
complexity.

Let the policy π : S → ∆(A) map each state to a probability distribution over actions. In robust RL,
the robust value function V π(s) under policy π starting from state s is defined as the worst-case expected
discounted cumulative reward:

V π(s) = inf
P ∈P

Eπ,P

[ ∞∑
t=0

γtr(st, at)
∣∣∣∣ s0 = s

]
,

where the expectation is taken over the trajectories generated by following policy π, with at ∼ π(· | st) and
st+1 ∼ P (· | st, at) for P ∈ P. The objective is to find an optimal policy π∗ that maximizes the worst-case
expected cumulative reward from the initial state distribution µ:

V π∗
(µ) = max

π
V π(µ),

where V π(µ) := Es∼µ[V π(s)].
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2.2 Robust Constrained MDPs

In many applications, it is essential to optimize the reward while satisfying certain constraints, even under
model uncertainty. Constrained robust MDPs (Wang et al., 2022; Zhang et al., 2024; Sun et al., 2024; Ghosh,
2024) extend the robust MDP framework by incorporating multiple constraints.

Let there be I constraint reward functions ri : S×A → R for i = 1, 2, . . . , I. The robust expected cumulative
reward under policy π for constraint i is given by:

V π
i (s) = inf

P ∈P
Eπ,P

[ ∞∑
t=0

γtri(st, at)
∣∣∣∣ s0 = s

]
,

and V π
i (µ) = Es∼µ[V π

i (s)] is the robust expected cumulative cost from the initial distribution µ.

The constrained robust MDP aims to find a policy that maximizes the worst-case reward while ensuring
that each constraint is satisfied under the worst-case transition dynamics:

max
π

V π
0 (µ) (1)

s.t. V π
i (µ) ≥ di, for i = 1, 2, . . . , I,

where V π
0 (µ) denotes the robust expected cumulative reward, and di are the specified thresholds for the

constraints. That is, a constrained robust MDP is defined by the tuple (S,A,P, {ri}I
i=0, {di}I

i=1, γ), where
{ri}I

i=0 and {di}I
i=1 extend the original robust MDP to include these constraint reward function ri and the

threshold di.

2.3 Duality Gap of Robust Constrained MDPs

In constrained optimization, the concept of duality plays a pivotal role in formulating and solving problems
(Boyd & Vandenberghe, 2004; Bertsekas et al., 2003). The duality gap is the difference between the optimal
values of the primal problem and its dual. When this gap is zero, we say that strong duality holds, allowing the
primal and dual problems to have the same optimal value. This property is instrumental in many optimization
algorithms, particularly in convex optimization, where it enables efficient computation of optimal solutions
via dual methods. For the constrained robust MDP defined earlier, we incorporate the constraints into
the optimization objective, formulating the Lagrangian of the constrained robust RMDP. The Lagrangian
combines the objective function and the constraints using Lagrange multipliers λ = (λ1, λ2, . . . , λI) ≥ 0:

L(π, λ) = V π
0 (µ)−

I∑
i=1

λi (di − V π
i (µ)) . (2)

In this formulation, L(π, λ) is the Lagrangian function, and λi ≥ 0 are the Lagrange multipliers associated
with the constraints. The primal problem is defined by maximizing over π, after minimizing the Lagrangian
over λ ≥ 0. That is,

max
π

min
λ≥0
L(π, λ). (3)

The dual problem is then obtained by minimizing the Lagrangian over λ ≥ 0, after maximizing over π.
Specifically, the dual problem is:

min
λ≥0

max
π
L(π, λ). (4)

The duality gap D is defined as the difference between the optimal value of the primal problem and the
optimal value of the dual problem.
Definition 2.1 (Duality gap of robust constrained MDPs). Let M := (S,A,P, {ri}I

i=0, {di}I
i=1, γ) be a

robust constrained MDP. The duality gap D of M is defined as

D :=
[
max

π
min
λ≥0
L(π, λ)

]
−

[
min
λ≥0

max
π
L(π, λ)

]
, (5)

where L is the Lagrangian function of M defined by Equation (2).
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It has been widely known that, in standard constrained MDPs without robustness considerations, under
certain regularity conditions, strong duality holds (Altman, 1999). This means that the duality gap D is
zero, and the optimal value of the primal problem equals that of the dual problem. This property allows us
to use primal-dual algorithms effectively to find optimal policies that satisfy the constraints. However, in
the next section, we will show that the constrained robust MDPs may not have such nice property, which
presents a significant challenge for solving constrained robust RL problems.

3 Constrained Robust RL Has Non-Zero Duality Gap

In this section, we present a counterexample demonstrating that the duality gap in robust constrained MDPs
(Definition 2.1) can be strictly positive.
Theorem 3.1. There exists a constrained robust MDP such that its duality gap is strictly positive.

Here, we describe the construction of this counterexample. Then we will briefly describe the analysis of the
duality gap. The full proof can be found in Appendix B.

3.1 Construction of the Counterexample

Consider a simple MDP with two states, s0 and s1, and two actions, a0 and a1, as depicted in Figure
1. The MDP is defined as follows: (i) Transitions: The initial state is s0. From state s1, any action
deterministically transitions back to state s0. From state s0, action a0 deterministically remains in s0. From
state s0, action a1 transitions to s0 with probability p and to s1 with probability 1 − p. (ii) Robustness:
There is model uncertainty in the transition probability p, such that p ∈ [p, p], representing the uncertainty
set. (iii) Reward: The reward function for the objective is r0(s0) = 1 and r0(s1) = 0. The reward function
for the constraint is r1(s0) = 0 and r1(s1) = 1. (iv) Constraints: The goal is to maximize the expected
cumulative reward of r0 while ensuring that the expected cumulative reward of r1 meets a specified threshold
ρ under the worst-case transition probabilities.

(a) Transitions under action a0 (b) Transitions under action a1

Figure 1: The transition diagram of the MDP considered in Theorem 3.1. At state s1, the agent always
moves to state s0 with probability 1, regardless of the action taken. At state s0, the agent has a probability
p of staying in the current state when taking action a1, and a probability of 1 of staying in state s0 when
taking action a0. The uncertainty only occurs in the transition probability p; we let it vary from [p, p].

3.2 Analysis of the Duality Gap

The robust control problem can be formulated as:

max
π

Ṽ π
0 (s0) (6)

s.t. Ṽ π
1 (s0) ≥ ρ, (7)

where Ṽ π
i (s0) denotes the worst-case value function for reward ri starting from state s0.
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The associated Lagrangian is:

L(π, λ) = Ṽ π
0 − λ(ρ− Ṽ π

1 ) = 1
1− γ + π1(1− p)(γ − γ2) − λ

(
ρ− γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)

)
.

with λ ≥ 0, where π1 := π(a1|s0).

We proceed to analyze the Lagrangian function and compute the duality gap by evaluating both the primal
and dual formulations:

Primal Problem The primal optimization problem given by Equation (3) aims to find the policy π that
maximizes Ṽ π

0 (s0) while satisfying the constraint (7). Here, we directly solve it and obtain

max
π

min
λ
L(π, λ) = 1

1− γ −
ρ

1− p
1− p

1− ρ(1− γ) + ρ(1− γ)
1− p
1− p

.

Dual Problem The dual problem given by Equation (4) involves minimizing the Lagrangian over λ ≥ 0
for a fixed policy π, and then maximizing over π. The lack of convexity in the robust setting leads to a
discrepancy between the solutions obtained from the primal and dual problems.

min
λ

max
π
L(π, λ) = 1

1− γ −
1− p
1− p

1 + (1− p)γ
1 + (1− p)γ ρ.

It can be obviously observed that when the robustness is absent (i.e. p = p), the primal problem presents
the same value as the dual problem.

Demonstration of the Duality Gap By selecting values for the parameters (e.g., p = 0.5, p = 0.25,
p = 0.75, γ = 0.5, and ρ = 1), we can compute the exact values of the duality gap:

D = max
π

min
λ≥0
L(π, λ)−min

λ≥0
max

π
L(π, λ) = 21

22 .

As the result, the strong duality does not hold for robust constrained MDPs.

Implications of a Non-Zero Duality Gap We have just presented a counterexample showing that strong
duality does not generally hold in robust constrained MDPs, which resolves an open problem regarding the
strong duality of robust constrained RL problems, highlighting the importance of designing solution methods
that do not rely solely on duality. In the subsequent sections, we address these challenges by proposing the
primal-only approach, RRPO.

4 Solving Robust Constrained RL with Unknown Transition Kernel

The lack of strong duality in robust constrained RL presents significant challenges for traditional primal-dual
optimization methods. The presence of a non-zero duality gap means that these methods may fail to find
feasible and optimal policies in robust constrained settings. To overcome this obstacle, we develop a primal-
only algorithm specifically designed for solving robust constrained RL with unknown transition kernel, which
we call RRPO.

4.1 Algorithm Design

Given the primal optimization problem:

max
π

V π
0 (µ)
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Algorithm 1: Rectified Robust Policy Optimization
Input : initial policy parameters θ0, empty set N0

for t = 0, · · · , T − 1 do
// Robust Policy Evaluation (e.g. Algorithm 2)
Evaluate value functions under πt := πθt

: Q̂πt
i (s, a) ≈ Qπt

i (s, a) for i = 0, 1, . . . , I ;
Sample state-action pairs (sj , aj) from the nominal distribution ;
Compute value estimates V πt

i for i = 0, . . . , I ;
if V πt

i ≥ di − δ for all i = 0, 1, . . . , I then
// Threshold Updates
Add θt to set N0 and track the feasible policy achieving the largest value πout = πt;
Update d0: dt+1

0 ← V πt
0 ;

else if V πt
i < di − δ for some i = 1, . . . , I then

// Constraint Rectification
Maximize V πt

i using Equation (8);
else if V πt

0 < d0 − δ then
// Objective Rectification
Maximize V πt

0 using Equation (8);

return: πout

Algorithm 2: Robust Linear Temporal Difference (Zhou et al., 2024)
Input : policy π, number of steps K, value function approximation Vw = ψ⊤w

Initialize: w0, s0;
for k = 0, . . . ,K − 1 do

Sample action ak ∼ π(· | sk);
Sample transition batch yk+1 according to the nominal kernel P0(·|sk, ak);
// For IPM estimator: (Zhou et al., 2024)

Update wk+1 ← wk + αk ψ(sk)
[(
r(sk, ak) + γVwk

(yk+1)− γδ∥wk,2:d∥ − ψ(sk)⊤wk

]
;

return wK

s.t. V π
i (µ) ≥ di, for i = 1, 2, . . . I.

Here, we note that all V π
i (i = 0, 1, . . . , I) represent the robust value functions; when i = 0, we call V π

0 the
objective value function, while when i ̸= 0, we call V π

i the constraint value function. The core concept of
the CRPO algorithm (Xu et al., 2021) is to iteratively update the policy by taking gradients with respect
to either the objective function or the constraints, depending on whether the current policy violates any
constraints:

• If the constraint V π
i (i = 1, 2, . . . , I) is violated, then the CRPO algorithm updates the violated constraint

value function V π
i .

• If all constraints are not violated, then the CRPO algorithm updates the objective value function V π
0 .

However, when constraints are near their boundaries, this method can lead to oscillations, making it difficult
to track the performance of feasible policies and potentially resulting in unsafe policy outcomes when the
model uncertainty presents. As the result, the algorithm cannot “remember" the highest objective value
achieved by the feasible policy. To mitigate these limitations, our RRPO algorithm adopts a reformulated
approach. Rather than following the standard CRPO routine, we leverage the constrained form of the
original optimization problem to employ the CRPO algorithm as follows. We reformulate it into the following
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constrained maximization problem by introducing an auxiliary variable d0:

max
d0,π

d0

s.t. V π
0 (µ) ≥ d0,

V π
i (µ) ≥ di, for i = 1, 2, . . . I.

At each iteration, the algorithm evaluates the robust value functions V πt
i for all i = 0, 1, . . . , I. Based on

these evaluations, the algorithm proceeds in one of three categories:

1. Threshold Updates: If the current policy satisfies all constraints within a specified tolerance δ (that is,
V πt

i ≥ di − δ for i = 0, 1, . . . , I), the algorithm updates the boundary threshold by setting d0 ← V πt
0 (µ).

2. Constraint Rectification: If any constraint is violated beyond the tolerance δ (that is, there exists
i = 1, 2, . . . , I, V πt

i (µ) > di − δ), the algorithm performs policy improvement steps to maximize the
violated constraint, aiming to reduce constraint violation.

3. Objective Rectification: If the objective value V πt
0 (µ) is less than the current best boundary threshold

d0 − δ, the algorithm performs policy improvement steps to recover the objective value.

This procedure ensures that the policy maintains pursuing the feasibility while making progress towards
optimizing the objective function. This procedure is summarized in Algorithm 1.

Robust Policy Evaluation Subroutine We consider the robust policy evaluation subroutine as a mod-
ular component decoupled from policy optimization. This procedure estimates the Q-function used in the
natural policy gradient update. At each iteration, the agent interacts with the environment under the current
policy πt to collect trajectories consisting of (s, a, r, s′) tuples. These samples are used to estimate the robust
Q-function Qπt

i (s, a) for both the objective (i = 0) and each constraint (i = 1, . . . , I). For value approxima-
tion, we adopt robust temporal-difference (TD) learning methods tailored to the chosen uncertainty model
(e.g., p-norm or IPM uncertainty). Specifically, given a nominal transition model and an uncertainty set,
we compute the worst-case expected value using closed-form solutions or dual formulations from prior work
(e.g., Kumar et al. (2023); Zhou et al. (2024); Wang & Zou (2021)). These robust Q-estimates are then used
to guide policy updates via a natural policy gradient step. The data collection procedure incorporated with
this subroutine is further described in the Algorithm 1.

4.2 Handling Uncertainty

In our proposed algorithm design, we apply the robust natural policy gradient (Lemma 2, Zhou et al. (2024))
to maximize the value function. The update rule of maximizing V πt

i (µ) is given by

πt+1(a|s) = πt(a|s)
exp

(
ηQπt

i (s, a)/(1− γ)
)

Zt
, (8)

where the normalization factor Zt is defined as Zt :=
∑

a∈A πt(a|s) exp
(
ηQπt

i (s, a)/(1−γ)
)
. When consider-

ing the softmax parametrization πθ(a|s) := exp(θ(s,a))∑
a′ exp(θ(s,a′)

, it is shown by Zhou et al. (2024) that this update
rule is equivalent to

θt+1(s, a) = θt(s, a) + ηQπt
i (s, a), (9)

where θ is taken over RS×A. Throughout this paper, we will use the parametric and policy representations
interchangeably. In updating the policy, accurate evaluation of Qπ

i (s, a) is critical. To achieve this, we
decouple the robust value function evaluation from the policy optimization step. This modular design allows
us to integrate existing robust RL methods for value function approximation effectively.

Below, we highlight several promising approaches for approximating the robust value function:

9
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• p-norm uncertainty set (Kumar et al., 2023): For each state-action pair (s, a), define

U(s,a) = {u ∈ R|S| | ⟨u,1⟩ = 0, ∥u∥p ≤ β}.

Let P0 be the nominal transition distribution. Then the corresponding uncertainty sets for transition
probabilities are given by

P(s,a) :=
{
P0(· | s, a) + u | u ∈ U(s,a)

}
, and P := ×(s,a)∈S×AP(s,a). (10)

As shown in Proposition 2.3 of Kumar et al. (2023), the standard TD-learning algorithm can be applied,
with adding a correction term, to compute the robust value function under this p-norm uncertainty model.

• The integral probability metric (IPM) uncertainty set (Zhou et al., 2024): Let F ⊂ R|S| be a
function class including the zero function. The IPM is defined as dF (p, q) = supf∈F{p⊤f − q⊤f}. The
IPM uncertainty set is defined as

P(s,a) :=
{
Ps,a | dF (Ps,a, P0(·|s, a)) ≤ β

}
, and P := ×(s,a)∈S×AP(s,a).

Using the robust TD-learning algorithm (Algorithm 2, Zhou et al. (2024)), we can compute an approximate
robust value function V̂ π

i (µ). By leveraging the relationship between the robust value function and the
robust Q-function (Proposition 2.2, Li et al. (2022)), along with the analytical worst-case formulation
(Proposition 1, Zhou et al. (2024)), we can derive an approximate robust Q-function.

We acknowledge that other approaches also exist for approximating the robust Q-value function, such as
Wang et al. (2023a); Sun et al. (2024); we omit these results due to the limited pages.

4.3 Global Convergence Guarantees

In this subsection, we establish the global convergence guarantee for RRPO under certain assumptions.
Specifically, we assume: (1) The robust policy evaluation provides sufficiently accurate estimates. (2) Under
the worst-case scenario, the policy still maintains sufficient exploration.
Assumption 4.1 (Policy Evaluation Accuracy). The approximate robust value functions Q̂π

i (s, a) satisfy
|Q̂π

i (s, a)−Qπ
i (s, a)| ≤ ϵapprox for all s ∈ S, a ∈ A, and i = 0, . . . , I.

This assumption of sufficient accuracy in policy evaluation is mild and is widely adopted in the existing
reinforcement learning literature (Wang et al., 2019; Cayci et al., 2022; Xu et al., 2021; Hong et al., 2023).
As previously noted, this condition can be readily satisfied for specific uncertainty sets. We will discuss the
value of ϵapprox in the appendix.
Assumption 4.2 (Worst-Case Exploration). For any policy π and its worst-case transition P , there exists
pmin > 0 such that its state visitation probability satisfies dπ,P

µ (s) ≥ pmin for all s ∈ S, where dπ,P
µ is the

state visitation distribution starting from initial distribution µ under policy π and transition P .

The exploration assumption is also mild, especially with classical exploration techniques e.g. the initial
state randomization; instead of a fixed initial state, we may use a uniform distribution over the state space,
ensuring the state visitation measure is always lower bounded.

Our main theoretical result is as follows. Here, we present a simplified version to highlight the most critical
components, including the convergence rate and sample complexity. The detailed upper bound is provided
in Appendix C.
Theorem 4.3. Consider the NPG update rule Equation (8) with the learning rate η = Θ( 1√

T
). Let the

constraint violation tolerance δ = Θ( 1√
T

) and the approximation error ϵapprox = Θ( 1√
T

). Under these
conditions, there exists an iteration T such that the output policy πout is approximately optimal and has
small constraint violation. More specifically,

E[V ∗(µ)− V πout(µ)] = O( 1√
T

),

10
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where V ∗ := V π∗ for the optimal feasible policy π∗ and

max
i

{
di − V πout

i (µ)
}
≤ δ.

Remark 4.4. The full version of Theorem 4.3 and the detailed proof are provided in Appendix C. This result
indicates the Algorithm 1 presents the O(ϵ−2) iteration complexity to achieve the ϵ-accuracy; with specific
settings on the uncertainty set, Algorithm 1 presents the O(ϵ−4) sample complexity, which we will discuss
later.

4.4 Discussion

As shown in Theorem 4.3, to achieve ϵ-accuracy to the optimal feasible policy π∗, it takes at most O(ϵ−2)
iterations. We note that this complexity has matched the theoretical lower bound of constrained RL problems
and cannot be improved.

Here, we use a specific uncertainty set to illustrate how the O(ϵ−4) sample complexity is obtained. Assume
we are considering the (s, a)-rectangular uncertainty set defined by the p-norm:

U(s,a) = {u ∈ R|S| | ⟨u,1⟩ = 0, ∥u∥p ≤ β}.

Let P0 be the nominal distribution. Then

P(s,a) := {P0(·|s, a) + u | u ∈ U(s,a)}, and P := ×(s,a)∈S×AP(s,a),

are the uncertainty set we consider. At each step t, we learn an ϵ-accurate robust Q-function, which takes
O(ϵ−2) samples; this complexity is guaranteed by applying its Proposition 4.7, Kumar et al. (2023), to the
standard TD-learning algorithm. Since Algorithm 1 requires T = O(ϵ−2) iterations and the ϵ-accurate policy
evaluation requires K = O(ϵ−2) samples, the total sample complexity is given by T ·K = O(ϵ−4).

5 Numerical Examples

To better illustrate the impact of model uncertainty on the algorithm performance, especially on the worst-
case feasibility, we conducted experiments comparing the proposed RRPO and the CRPO (Xu et al., 2021).
For all experiments, we used a discount factor γ = 0.99 and the 2-norm uncertainty set defined by Equa-
tion (10).

5.1 The FrozenLake-Like Gridworld

First, we consider a specific 4× 6 FrozenLake-like gridworld environment: The agent starts from the left-top
corner posstart = [1, 1] and can make four actions,

A = {UP,DOWN,LEFT,RIGHT},

to move to the target point postarget = [2, 5].

Figure 2: Illustration of two paths to the target in the grid-world environment. The shortest path (Left)
prioritizes efficiency but risks violating constraints in slippery conditions, whereas the longer path (Right)
always ensures safety in the worst-case scenario.

11
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(a) Illustration of two paths to the target in the grid-
world environment. The shortest path (Left) prioritizes
efficiency but risks violating constraints in slippery con-
ditions, whereas the longer path (Right) always ensures
safety in the worst-case scenario.

(b) Reward and cost comparison across nominal and
worst-case transitions for the mountain car environment.
In the nominal environment, both algorithms learn the
desired strategies to reach the goal; however, in the worst-
case scenario, the RRPO algorithm can learn more robust
strategy to avoid exceeding the speed constraint.

Figure 3: Reward and cost trajectories for CRPO and RRPO under nominal and worst-case transitions in
Grid World (Figure 3a) and Mountain Car (Figure 3b) environments.

We define two reward functions. The main reward function r0 is defined as

r0(s, a, s′) =


+1 if s′ is the target
−1 if s′ is a brown block
−0.1 otherwise

.

It gives +1 for reaching the target, −1 for landing on a brown block, and −0.1 otherwise. The constraint
reward function r1 is defined as:

r1(s, a, s′) =


−1 if s′ is out of the boundary
−1 if s′ is a brown block
0 otherwise

.

It assigns −1 for stepping out of the boundary or onto a brown block, and 0 otherwise, leading to a cost
function c(s, a) := −E[r1(s, a, s′)]. We require −V π

1 (µ) < 0.2, ensuring the agent avoids hitting brown blocks
or moves out of the boundary. The training environment is deterministic, where each action leads to the
intended movement with probability one unless the agent hits a boundary or a brown block. When this
happens, the agent’s position is not changed (if it hits the boundary) or is reset to the starting position (if
it hits the brown block). The test environment introduces a “slippery" dynamic, where every move has a
probability p of resulting in an unintended slip. This slippery setting mimics conditions that may not have
been foreseen during training, effectively representing a worst-case scenario. Under this setting, the obstacles
construct two distinct paths routing to the target, which is illustrated in Figure 2.

We apply our proposed RRPO to solve this constrained robust RL problem, comparing it with the baseline
CRPO method. As shown in Figure 3a, our method successfully learns the safer path, while the non-robust
algorithm converges to the shortest path.

12
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Figure 4: Comparison among our proposed RRPO algorithm and other robust RL baselines in the robust
HalfCheetah environment (shown in the left panel). The standard robust policy gradient algorithm achieves
the highest score but violates the energy constraint as shown in the right panel. Within the given constraint,
RRPO outperforms the primal-dual approach as shown in the middle panel.

5.2 Mountain Car

We also consider the classical Mountain Car environment from Gymnasium (Towers et al., 2024) to test the
performance of the proposed RRPO in the classical control problem. We use its default reward function r0,
which penalizes −1.0 each step and rewards 0 if the agent reaches the goal; that is,

r0(s, a, s′) =
{

0 if the agent reaches the goal,
−1 otherwise.

To emphasize safety, we add a constraint reward function r1(s, a, s′) defined as

r1(s, a, s′) =
{
−1 if the car’s speed exceeds 0.06,
0 otherwise.

It returns −1.0 whenever the car’s speed exceeds 0.06 and returns 0 otherwise, which encourages the agent to
maintain a safe speed throughout its run. We also consider its cost description as c(s, a) := −Es′ [ r1(s, a, s′)].
For the environment uncertainty, we perturb the “gravity" parameter of the Mountain Car environment. In
the worst-case scenario, the gravity is increased from the nominal value 0.0025 to 0.003. The experiment
results are shown in Figure 3b; the proposed RRPO method receives much less cost in the worst-case
environment.

6 Extended Experiments: Robust Control

Additionally, we compare the performance of the RRPO algorithm with other robust RL baselines, including
the robust policy gradient and the robust primal-dual policy gradient methods, on the HalfCheetah-v4
environment from Robust Gymnasium (Gu et al., 2025). We also conduct an ablation study to evaluate the
impact of our modification to the original robust CRPO algorithm, demonstrating that it effectively reduces
oscillations near the constraint boundary. Although the Safety MuJoCo environment (Gu et al., 2024a), also
available in Robust Gymnasium, offers benchmarks with hard safety constraints, its formulation requires
additional adaptation to fit our setting. Therefore, we employ a custom energy constraint that penalizes
energy consumption at each step. We include the experiment details and the hyper-parameter setting in
Appendix D.4.

6.1 Comparison with Other Robust RL Algorithms

We conducted a comparative evaluation of three robust RL algorithms on the HalfCheetah-v4 environment
from Robust Gymnasium (Gu et al., 2025): (i) Robust Policy Gradient. (ii) Robust Primal-Dual Policy
Gradient. (iii) Our proposed RRPO algorithm.
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The agent learns to maximize forward locomotion speed while respecting energy consumption constraints.
The reward function follows the standard HalfCheetah formulation:

r0(s, a) = forward_velocity− 0.1∥a∥2,

encouraging rapid forward movement while penalizing excessive control effort. Crucially, we implement a
separate energy constraint defined as the squared L2 norm of the action vector

r1(s, a) = −∥a∥2

with a threshold of −0.25 (note that this threshold is applied to the value function instead of the current step
cost; it does not apply to the constraint cost shown in Figure 3). We include the detailed hyper-parameter
setting in Appendix D.4.

6.2 Ablation: Robust CRPO Algorithm

In the ablation experiment, we compare our RRPO algorithm with the robust version of CRPO algorithm.
The main difference presented here is the rectification mechanism used in Algorithm 1 where the RRPO
algorithm tracks the best feasible policy as the πout in the threshold update step. We follow the same setting
as described in Appendix D.4. To compare both methods, we evaluate the variance of the primal reward
of the output policy. In the RRPO algorithm, this variance primarily stems from inherent randomness in
the policy and environment. In CRPO, however, an additional source of variance arises from the random
sampling of the output policy. As a result, CRPO exhibits substantially higher variance than RRPO.

Figure 5: Comparison of the variance of the primal reward r0 of the output policy from CRPO (Xu et al.,
2021) and the RRPO (Algorithm 1). The CRPO method exhibits substantially higher variance than RRPO.

7 Conclusion

In this paper, we investigated robust constrained RL problems and demonstrated that strong duality gen-
erally does not hold in this setting, thereby limiting the effectiveness of some methods which rely on the
strong duality. To address this challenge, we introduced RRPO, a primal-only algorithm that directly opti-
mizes the policy while rectifying constraint violations without relying on dual formulations. Our theoretical
analysis provided convergence guarantees for RRPO, ensuring that it converges to an approximately opti-
mal policy that satisfies the constraints within a specified tolerance under worst-case scenarios. Empirical
results validate the effectiveness of our approach. We believe our work opens new avenues for exploring and
designing non-primal-dual approaches to solve robust constrained RL problems, and potentially leads to an
interesting direction to identify when the strong duality of robust constrained RL holds.
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A Further Discussions on Related Work

In this section, we include further discussions on existing literature include other closely related areas and
clarification of existing results on the strong duality of robust constrained RL problems.

A.1 Other Related Work

In this section, we further explore the two closely related areas: robust RL and constrained RL.

Robust RL Robust reinforcement learning (RL) aims to develop policies that perform well under the
worst-case transitions. Early works on robust RL primarily focused on model-based approaches, where the
uncertainty set of transition probabilities is known or can be estimated, and robust policies are computed
using robust dynamic programming techniques (Bagnell et al., 2001; Iyengar, 2005; Nilim & Ghaoui, 2005;
Satia & Lave Jr., 1973; Wiesemann et al., 2013; Lim & Xu, 2013). These methods consider worst-case
scenarios over the uncertainty set to ensure robustness. In the model-free setting, robust RL algorithms
have been proposed that do not require explicit knowledge of the uncertainty set but instead utilize samples
to estimate robust value functions and policies (Roy et al., 2017; Wang & Zou, 2021; Panaganti & Kalathil,
2021). These methods often involve solving a robust optimization problem over the estimated uncertainties.
Recent theoretical advancements overcome the issues of directly solving the worst-case transitions. Wang &
Zou (2022) considers the R-contamination model to obtain the unbiased estimator for the policy gradient
method. Zhou et al. (2024) applies the double sampling method or the structure of the IPM uncertainty
structure to obtain the unbiased estimation involving the worst-case transition probability. And Kumar
et al. (2023) provides the analytical solution for the p-norm uncertainty set. These advancements allow us
to directly obtain the robust policy gradient or the robut value function without estimating the worst-case
transition probability.

Constrained RL Constrained reinforcement learning extends the standard RL framework by incorporat-
ing constraints into the agent’s decision-making process, aiming to optimize performance while satisfying
certain safety, resource, or risk constraints (Altman, 1999). A widely used approach for solving constrained
RL problems is the primal-dual method (Paternain et al., 2019; Tessler et al., 2019; Liang et al., 2018; Stooke
et al., 2020), which leverages the strong duality property of constrained RL (Altman, 1999) to formulate a
Lagrangian that combines the objective function with the weighted constraints. These methods iteratively
update the policy and the Lagrange multipliers, and convergence guarantees have been established under
certain conditions (Ding et al., 2020; Liu et al., 2021). However, these methods rely on the assumption of
strong duality, which may not hold in more complex settings. Alternative methods, known as primal meth-
ods, enforce constraints directly by projecting policies onto the feasible set or using safe policy improvement
techniques (Achiam et al., 2017; Chow et al., 2018b; Dalal et al., 2018b; Xu et al., 2021; Yang & Zhang,
2020). These methods aim to ensure constraint satisfaction without relying on dual variables.

A.2 Strong Duality in Robust Constrained RL Problems

In this section, we provide more detailed discussions in the existing literature discussing the strong duality
in robust constrained RL problems.

In the existing literature, Ghosh (2024) provide an intuitive explanation for why existing primal-dual methods
for non-robust constrained RL problems could fail in robust case: In the standard routine of showing the
strong duality (Paternain et al., 2019; Altman, 1999), the state-action occupancy measure dπ,P is convex
in the policy π; that is, there always exists a policy π′ such that (1 − α)dπ,P + αdπ,P = dπ′,P . However,
this relation obviously does not hold, which makes the strong duality of robust constrained RL problems
unclear. Our counterexample offers a theoretical justification of this conjecture by providing a concrete
example where the duality gap is strictly positive.

Additionally, Zhang et al. (2024) has proved the strong duality for robust constrained RL problems by
employing the “randomization trick" that modifies the optimization problem’s policy space. However, their
results do not apply to our setting. Specifically, it doesn’t consider the space of all random policies; instead,
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it only considers the distribution of deterministic policies. The choice of deterministic policy is made at
the beginning of each round. This approach redefines the robust constrained RL problem to ensure strong
duality, differing from the classical definition used in constrained RL (Altman, 1999; Paternain et al., 2019).
Our work, instead, aims to align with this classical definition, highlighting that without such extensions,
strong duality may not hold.

As the result, existing literature has not addressed the critical question in the robust constrained RL prob-
lems, which is what we aim to solve in this paper.

B Counterexample: Robust Constrained RL with Non-Zero Duality Gap

Proof. We divide the proof into three parts: (1) The construction of counterexample constrained robust
MDP. (2) The evaluation of Lagrangian function. (3) The evaluation of the duality gap.

1. Construction of the constrained robust MDP:
We consider the constrained robust MDP described in Figure 6 (which is the same as Figure 1). The
nominal transition probability is explicitly defined as follows:

P (s0 | a0, s0) = 1,
P (s1 | a0, s0) = 0,
P (s0 | a1, s0) = p,

P (s1 | a1, s0) = 1− p,
P (s0 | a0, s1) = 1,
P (s1 | a0, s1) = 0,
P (s0 | a1, s1) = 1,
P (s1 | a1, s1) = 0.

Then we obtain the state transition probability induced by the policy π:

Pπ =
[
π0 + π1p 1
π1(1− p) 0

]
,

where π0 := π(a0|s0) and π1 := π(a1|s0). The action at the state s1 doesn’t make any differences. The
(i, j)-th entry of Pπ represents the probability of moving from sj to si by following the policy π. We fix

the initial state to s0. Its corresponding distribution is given by µ0 =
[
1
0

]
. The reward for the objective

value function is r0 =
[
1
0

]
. The reward for the constraint is r1 =

[
0
1

]
. Here, we only consider a single

constraint.
Lastly, we consider the following (s, a)-uncertainty set defined by the L∞ distance:

Vs,a := {0}, for (s, a) ̸= (s0, a1)
Vs0,a1 := {v ∈ R|S| | ⟨v, 1|S|⟩ = 0, ∥v∥∞ ≤ β},
Us,a := Vs,a + P.

Given this uncertainty set, the value of p varies from p − δ to p + δ. Here, we further assume that p is
strictly less than 1, δ < p, and p+ δ < 1. We denote p := p+ δ and p := p− δ.

2. Evaluate the Lagrangian function:
Now we evaluate the discounted visitation measure of the policy π. Define the discounted visitation
measure as d := (I − γPπ)−1µ0. Because I − γPπ =

[
1− γ(π0 + π1p) −γ
−γπ1(1− p) 1

]
, where µ0 is the initial state
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(a) Transition when taking the action a0. (b) Transition when taking the action a1.

Figure 6: The transition diagram of the MDP considered in Theorem 3.1. At state s1, the agent always
moves to state s0 with probability 1, regardless of the action taken. At state s0, the agent has a probability
p of staying in the current state when taking action a1, and a probability of 1 of staying in state s0 when
taking action a0. The uncertainty only occurs in the transition probability p; we let it vary from [p, p].

distribution. Then we obtain

d = 1
|I − γPπ|

[
1 γ

γπ1(1− p) 1− γ + γπ1(1− p)

] [
1
0

]
= 1
|I − γPπ|

[
1

γπ1(1− p)

]
.

Here, | · | represent the determinant. And we choose γ to ensure ∥γPπ∥2 < 1.
Given the discounted visitation measure, we immediately obtain the non-robust value function of each
reward by using V π(µ0) = r⊤d:

V π
0 (µ0) = 1

1− γ + π1(1− p)(γ − γ2) ,

V π
1 (µ0) = γπ1(1− p)

1− γ + π1(1− p)(γ − γ2) .

From our definition of the uncertainty set, we have p ∈ [p, p]. Then the robust value function of each
reward is:

Ṽ π
0 (µ0) = min

p
V π

0 (µ0) = 1
1− γ + π1(1− p)(γ − γ2) ,

Ṽ π
1 (µ0) = min

p
V π

1 (µ0) = γπ1(1− p)
1− γ + π1(1− p)(γ − γ2) .

Therefore, the Lagrangian function is given by

L(π, λ) = Ṽ π
0 − λ(ρ− Ṽ π

1 )

= 1
1− γ + π1(1− p)(γ − γ2) − λ

(
ρ− γπ1(1− p)

1− γ + π1(1− p)(γ − γ2)

)
.

3. Evaluate the duality gap:
It suffices to evaluate both minλ maxπ L(π, λ) and maxπ minλ L(π, λ).

• Solve minλ maxπ L(π, λ):
We will solve ∂L

∂π ≥ 0 to find monotone intervals of the function L(·, λ) : π 7→ L(π, λ). Then we will
obtain when L(·, λ) : π 7→ L(π, λ) achieves its maxima.

∂L
∂π

=
−(1− p)(γ − γ2)[

1− γ + π1(1− p)(γ − γ2)
]2
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+ λ
γ(1− p)

[
1− γ + π1(1− p)(γ − γ2)

]
− γπ1(1− p)

[
(1− p)(γ − γ2)

]
[1− γ + π1(1− p)(γ − γ2)]2

=
−(1− p)(γ − γ2)[

1− γ + π1(1− p)(γ − γ2)
]2 + λ

(1− p)(γ − γ2)
[1− γ + π1(1− p)(γ − γ2)]2

.

Let ∂L
∂π ≥ 0. We obtain

λ
1− p

[1 + π1(1− p)γ]2
≥

1− p[
1 + π1(1− p)γ

]2

=⇒ λ
1− p
1− p

[
1 + π1(1− p)γ

]2 ≥ [1 + π1(1− p)γ]2

=⇒
√
λ

1− p
1− p

[
1 + π1(1− p)γ

]
≥ [1 + π1(1− p)γ] .

Then we obtain √
λ

1− p
1− p − 1 ≥ π1γ

[
(1− p)− (1− p)

√
λ

1− p
1− p

]
.

It is easy to notice that when λ ≤ 1−p
1−p , the coefficient of π1[
(1− p)− (1− p)

√
λ

1− p
1− p

]
≥ 0.

When λ ≥ 1−p
1−p , the coefficient of π1[

(1− p)− (1− p)
√
λ

1− p
1− p

]
≤ 0.

We separately consider each case to solve the monotone intervals.
◦ Case 1: λ ≤ 1−p

1−p . In this case, (1− p)− (1− p)
√
λ 1−p

1−p ≥ 0. It solves:

π1 ≤

[√
λ 1−p

1−p − 1
]

γ
[
(1− p)− (1− p)

√
λ 1−p

1−p

] .
We further consider if this upper bound is positive or negative.
▷ Case 1.1: λ ≥ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≥ 0. It violates λ ≤ 1−p

1−p .

▷ Case 1.2: λ ≤ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≤ 0.

Therefore, in the Case 1 (λ ≤ 1−p
1−p ), we always have π1 ≤ 0. It indicates that L(π, λ) is decreasing

in π1 when π1 ∈ [0, 1]. The maximum is achieved when setting π1 = 0. That is,

max
π
L(π, λ) = L(0, λ) = 1

1− γ − λρ,

where 0 ≤ λ ≤ 1−p
1−p .

◦ Case 2: λ ≥ 1−p
1−p . In this case, (1− p)− (1− p)

√
λ 1−p

1−p ≤ 0. It solves:

π1 ≥

[√
λ 1−p

1−p − 1
]

γ
[
(1− p)− (1− p)

√
λ 1−p

1−p

] .
Again, we further consider if this lower bound is positive or negative:
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▷ Case 2.1: λ ≥ 1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≥ 0. It indicates that L(π, λ) is increasing in π1

when π1 ∈ [0, 1]. The maximum is achieved at x1 = 1.
▷ Case 2.2: 1−p

1−p ≤ λ ≤
1−p

1−p . In this case,
[√

λ 1−p
1−p − 1

]
≤ 0. It indicates that L(π, λ) is decreasing

then increasing within π1 ∈ [0, 1]. The maximum is either achieved at x1 = 1 or x1 = 0. We need
to decide which one is larger: When x1 = 1, we have

L(1, λ) = 1
1− γ + (1− p)(γ − γ2) − λ

(
ρ− γ(1− p)

1− γ + (1− p)(γ − γ2)

)
or when x1 = 0,

L(0, λ) = 1
1− γ − λρ.

By letting L(1, λ) ≥ L(0, λ), we solve the boundary is

λ̂ =
1− p
1− p

1 + (1− p)γ
1 + (1− p)γ .

It means if λ ≥ λ̂, then L(1, λ) ≥ L(0, λ). If λ ≤ λ̂, then L(1, λ) ≤ L(0, λ).
Combining both Case 2.1 and Case 2.2, we obtain

max
π
L(π, λ) =

{
L(1, λ) λ ≥ λ̂
L(0, λ) λ̂ ≥ λ ≥ 1−p

1−p

,

where λ̂ = 1−p

1−p
1+(1−p)γ
1+(1−p)γ .

Now, combining both Case 1 and Case 2, we have

max
π
L(π, λ) =

{
L(1, λ) λ ≥ λ̂
L(0, λ) λ̂ ≥ λ ≥ 0

,

where λ̂ = 1−p

1−p
1+(1−p)γ
1+(1−p)γ . When λ = λ̂, the function maxπ L(π, ·) : λ 7→ maxπ L(π, λ) achieves its

minimum. That is,
min

λ
max

π
L(π, λ) = 1

1− γ −
1− p
1− p

1 + (1− p)γ
1 + (1− p)γ ρ.

• Solve maxπ minλ L(π, λ):
We let the constraint be satisfied; that is

ρ− γπ1(1− p)
1− γ + π1(1− p)(γ − γ2) ≤ 0.

Otherwise, simply letting λ = +∞ will lead to −∞ function value. It solves

ρ(1− γ) ≤ [1− ρ(1− γ)]γ(1− p)π1.

Since ρ must be less than 1
1−γ (so, 1− (1− γ)ρ ≥ 0), we have

π1 ≥
ρ(1− γ)

[1− ρ(1− γ)]γ(1− p) .

Therefore, the maximum is achieved at π1 = ρ(1−γ)
[1−ρ(1−γ)]γ(1−p) :

max
π

min
λ
L(π, λ) = max

π
Ṽ π

0

= 1
1− γ + ρ(1−γ)2

1−ρ(1−γ)
1−p

1−p

= 1
1− γ −

ρ
1−p

1−p

1− ρ(1− γ) + ρ(1− γ) 1−p

1−p

.
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Therefore, the duality gap is given by

D(L) = max
π

min
λ
L(π, λ)−min

λ
max

π
L(π, λ)

=
1− p
1− p

1 + (1− p)γ
1 + (1− p)γ ρ−

ρ
1−p

1−p

1− ρ(1− γ) + ρ(1− γ) 1−p

1−p

.

When p = p, the duality gap turns to be exactly 0. It is because the constrained non-robust RL problem has
zero duality gap. However, when we set p = γ = 0.5, p = 0.75, p = 0.25, and ρ = 1. We have the non-zero
duality gap

D(L) = 21
22 .

C Proof of Theorem 4.3

In this section, we provide the detailed proof of Theorem 4.3.

C.1 Assumptions

In this subsection, we recap the assumptions used in this proof. We additionally restrict all rewards to [0, 1];
however, this restriction is not crucial. It only affects the constant upper bound of robust value (or Q)
functions V π and Qπ. We can relax this assumption to a general [−rmax, rmax] with changing the upper and
lower bound of these value functions to be rmax

1−γ .

Assumption C.1 (Policy Evaluation Accuracy). The approximate robust value functions Q̂π
i (s, a) satisfy

|Q̂π
i (s, a)−Qπ

i (s, a)| ≤ ϵapprox for all s ∈ S, a ∈ A, and i = 0, . . . , I.
Assumption C.2 (Worst-Case Exploration). For any policy π and its worst-case transition P , there exists
a positive constant pmin > 0 such that its state visitation probability satisfies dπ,P

µ (s) ≥ pmin for all s ∈ S,
where dπ,P

µ is the state visitation distribution starting from initial distribution µ under policy π and transition
P .
Assumption C.3 (Bounded Rewards). For all rewards ri : S ×A → R, it satisfies

0 ≤ ri(s, a) ≤ 1

for all (s, a) ∈ S ×A.

C.2 Supporting Lemmas

We summarize all required lemmas in this subsection. These lemmas will be used to prove the main result.

The following performance difference lemma is originally developed by Zhou et al. (2024) for bounding the
value function difference of two policies π′ and π. Here we apply Assumption 4.2 to turn the upper and
lower bound to transition this inequality to the desired distribution needed in our convergence analysis.
Lemma C.4 (Robust performance difference lemma). Let π, π′ be two policies and P, P ′ be their worst-case
transition kernels. Suppose that µ is the initial distribution over the state space S. Then

1
1− γEs∼dπ′,P ′

µ
Ea∼π′(·|s)[Aπ(s, a)] ≤ V π′

(µ)− V π(µ) ≤ 1
1− γEs∼dπ′,P

µ
Ea∼π′(·|s)[Aπ(s, a)]. (11)

Moreover, suppose that Cℓ = 1 and Cu = maxs∈S
dπ′,P

µ (s)
dπ′,P ′

µ (s)
. Then

Cℓ

1− γE(s,a)∼dπ′,P ′
µ ⊗π′ [Aπ(s, a)] ≤ V π′

(µ)− V π(µ) ≤ Cu

1− γ
1

1− γE(s,a)∼dπ′,P ′
µ ⊗π′ [Aπ(s, a)]. (12)
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Proof. See Lemma 8 from Zhou et al. (2024).

Lemma C.5. Let the NPG update rule be given by

πt+1(a|s) = πt(a|s)
exp

(
ηQ̂πt(s, a)/(1− γ)

)
Zt

,

where the normalization factor Zt :=
∑

a∈A πt(a|s) exp
(
ηQ̂t(s, a)/(1− γ)

)
. Then

Q̂πt(s, a) = 1− γ
η

logZt
πt+1(a|s)
πt(a|s)

.

Proof. See Lemma 4 from Xu et al. (2021).

The following lemma tells how much the worst-case value function of a given reward ri is im-
proved by updating πt to πt+1 using its corresponding robust policy gradient. The first term
Cℓ

η E
s∼d

πt+1,P ′
ν

[dKL (πt+1(·|s)∥πt(·|s))] is always non-negative. The second term ∆t will be merged with
other errors later.
Lemma C.6. Under the NPG update rule with learning rate η, the robust value functions with an arbitrary
initial distribution ν satisfy the following inequality:

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

η
E

s∼d
πt+1,P ′
ν

[dKL (πt+1(·|s)∥πt(·|s))] + ∆t,

where the error term ∆t is given by

∆t := Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

[πt(a | s)− πt+1(a | s)]
(
Qπt

i (s, a)− Q̂πt
i (s, a)

)
+ Cℓ(1− γ)

η
Es∼ν [logZt]− CℓEs∼ν [V πt

i (s)]− CℓEs∼ν

∑
a∈A

πt(a | s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

Proof. Let the worst-case transition probability of the policy πt and πt+1 be P and P ′, respectively. Their
corresponding visitation probabilities are dπt,P

ν (s) and dπt+1,P ′

ν (s). Applying Lemma C.4 to the robust value
function V πt

i (ν) and V
πt+1

i (ν) (i = 0, 1, . . . , I), we obtain

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)Aπt
i (s, a)

= Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− V πt

i (s)]

= Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Q̂πt
i (s, a)]

+ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
ν

[V πt
i (s)].

where the first equality applies the definition of the worst-case advantage function Aπ(s, a) := Qπ(s, a) −
V π(s), and the second equality applies the decomposition of the Q-function with its approximation error.
By the NPG update rule (Lemma C.5), we have

Q̂πt
i (s, a) = 1− γ

η
logZt

πt+1(a|s)
πt(a|s)

.
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Then we obtain

V
πt+1

i (ν)− V πt
i (ν) ≥ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)
[

1− γ
η

logZt
πt+1(a|s)
πt(a|s)

]
+ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
ν

[V πt
i (s)]

= Cℓ

η
E

s∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)
[
logZt + log πt+1(a|s)

πt(a|s)

]
+ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
ν

[V πt
i (s)]

(i)= Cℓ

η
E

s∼d
πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) + Cℓ

η
E

s∼d
πt+1,P ′
ν

logZt

+ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
ν

[V πt
i (s)].

where (i) applies the definition of KL-divergence dKL(πt+1(·|s)∥πt(·|s)) =
∑

a∈A πt+1(a | s)
[
log πt+1(a|s)

πt(a|s)

]
.

By the definition of Zt, we have
Cℓ

η
E

s∼d
πt+1,P ′
µ

logZt(s) = Cℓ

η
E

s∼d
πt+1,P ′
µ

log
∑
a∈A

πt(a|s) exp
(
ηQ̂πt

i (s, a)/(1− γ)
)

(i)
≥ Cℓ

η
E

s∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s) log exp
(
ηQ̂πt

i (s, a)/(1− γ)
)

= Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)
)

= Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a) +Qπt

i (s, a)
)

(ii)= Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+ Cℓ

1− γEs∼d
πt+1,P ′
µ

V πt
i (s, a),

(13)
where (i) applies the Jensen’s inequality, and (ii) applies the relation between Q-function and value function
(Proposition 2.2. from Li et al. (2022)). As the result, we obtain

V
πt+1

i (ν)− V πt
i (ν)

≥ Cℓ

η
E

s∼d
πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) + Cℓ

η
E

s∼d
πt+1,P ′
ν

logZt −
Cℓ

1− γEs∼d
πt+1,P ′
ν

[V πt
i (s)]

− Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+ Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+ Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]
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(i)
≥ Cℓ

η
E

s∼d
πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) + Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+ Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+ Cℓ(1− γ)

η
Es∼ν logZt − CℓEs∼ν [V πt

i (s)]− CℓEs∼ν

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

where (i) we apply the change of measure to replace dπt+1,P ′

ν with ν: (1) logZt(s) + η
1−γ

∑
a∈A πt+1(a |

s)[Qπt
i (s, a)− Q̂πt

i (s, a)]− η
1−γ [V πt

i (s)] ≥ 0 for all s by Equation (13), and (2) d
πt+1,P ′
ν

ν (s) ≥ 1− γ.

Therefore, we conclude that

V
πt+1

i (ν)− V πt
i (ν)

≥ Cℓ

η
E

s∼d
πt+1,P ′
ν

dKL(πt+1(·|s)∥πt(·|s)) + Cℓ

1− γEs∼d
πt+1,P ′
ν

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+ Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
+ Cℓ(1− γ)

η
Es∼ν logZt − CℓEs∼ν [V πt

i (s)]− CℓEs∼ν

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

It completes the proof.

The following lemma is the main bound that we will deal with.
Lemma C.7. Under the NPG update rule with learning rate η, the robust value functions satisfy the following
inequality:

V π∗

i (µ)− V πt+1
i (µ) ≤ Cu

η
(Es∼ν∗DKL(π∗(·|s)∥πt(·|s))− Es∼ν∗DKL(π∗(·|s)∥πt+1(·|s)))

+ Cu

(1− γ)Cℓ

[
V

πt+1
i (ν∗)− V πt

i (ν∗)
]

+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

(1− γ)2
Cℓ

1− γEs∼d
πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

(1− γ)2Es∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
.

Proof. Let the worst-case transition probability of the worst-case optimal policy π∗ be P ∗ and the visitation
probability of π∗ be

ν∗(s) := dπ∗,P ∗

µ (s).

Applying Lemma C.4 to the robust value function V π∗

i and V πt
i (i = 0, 1, . . . , I), we obtain

V π∗

i (µ)− V πt
i (µ) ≤ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)Aπt
i (s, a)

= Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− V πt

i (s)]

= Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Q̂πt
i (s, a)] + Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γEs∼ν∗ [V πt
i (s)].
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where the first equality applies the definition of the worst-case advantage function Aπ(s, a) := Qπ(s, a) −
V π(s), and the second equality applies the decomposition of the Q-function with its approximation error.
By the NPG update rule (Lemma C.5), we have

Q̂πt(s, a) = 1− γ
η

logZt
πt+1(a|s)
πt(a|s)

.

Then we obtain

V π∗

i (µ)− V πt
i (µ) ≤ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)
[

1− γ
η

logZt
πt+1(a|s)
πt(a|s)

]
+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γEs∼ν∗ [V πt
i (s)]

= Cu

η
Es∼ν∗

[
logZt +

∑
a∈A

π∗(a | s) log πt+1(a|s)
πt(a|s)

]

+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cu

1− γEs∼ν∗ [V πt
i (s)]

(i)= Cu

η
Es∼ν∗ [logZt + dKL (π∗(·|s)∥πt(·|s))− dKL (π∗(·|s)∥πt+1(·|s))]

+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]− Cu

1− γEs∼ν∗ [V πt
i (s)]

= Cu

η
Es∼ν∗ logZt + Cu

η
Es∼ν∗ [dKL (π∗(·|s)∥πt(·|s))− dKL (π∗(·|s)∥πt+1(·|s))]

+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]− Cu

1− γEs∼ν∗ [V πt
i (s)]

where (i) applies the definition of KL-divergence. By Lemma C.6, we have

Cℓ(1− γ)
η

Es∼ν∗ logZt − CℓEs∼ν∗ [V πt
i (s)]− CℓEs∼ν∗

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
≤V πt+1

i (ν∗)− V πt
i (ν∗)− Cℓ

η
E

s∼d
πt+1,P ′

ν∗
dKL(πt+1(·|s)∥πt(·|s))

− Cℓ

1− γEs∼d
πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

)
Then we obtain

V π∗

i (µ)− V πt+1
i (µ) ≤ Cu

η
(Es∼ν∗DKL(π∗(·|s)∥πt(·|s))− Es∼ν∗DKL(π∗(·|s)∥πt+1(·|s)))

+ Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+ Cu

(1− γ)Cℓ

[
V

πt+1
i (ν∗)− V πt

i (ν∗)− Cℓ

η
E

s∼d
πt+1,P ′

ν∗
DKL(πt+1(·|s)∥πt(·|s))
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− Cℓ

1− γEs∼d
πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

) ]
which is the final upper bound after applying the last inequality. Then we omit the term containing
−DKL(πt+1(·|s)∥πt(·|s)) since it is always non-positive.

Lemma C.8. Consider the NPG update rule with learning rate η and let δ > 0 be chosen such that

δ >
Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+ CuηL

(1− γ)2Cℓ
+ ϵ̄approx,

where ϵ̄approx is an error term depending on the approximation error terms and L is the Lipschitz constant
of the robust value function V π

i (ν∗). Under these conditions,

N0 := {t : V π∗

0 (µ)− V πt
0 (µ) ≥ di − δ for all i}

is always non-empty.

Proof. When t ∈ Ni := {t : V πt
i is sampled to update}, we have

V π∗

i (µ)− V πt+1
i (µ) ≥ V π∗

i (µ)− di + δ + V̂
πt+1

i (µ)− V πt+1
i (µ)

≥ δ −
[
V̂

πt+1
i (µ)− V πt+1

i (µ)
]
.

We sum the inequality obtained from Lemma C.7 over t = 1, 2, . . . , T . Since the robust value function V π(µ)
is Lipschitz in π (Wang & Zou, 2021; Zhou et al., 2024), we have

|V πt+1(ν∗)− V πt(ν∗)| ≤ L∥πt+1 − πt∥ ≤
Lη

1− γ .

Then we obtain

η
∑

i∈N0

(
V π∗

i (µ)− V πt+1
i (µ)

)
+ ηδT ≤ CuηEs∼ν∗DKL(π∗(·|s)∥π1(·|s)) + Cuη

2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx,

where ϵ̄approx is a constant upper bound of Capprox which is defined as

Capprox := Cu

1− γEs∼ν∗

∑
a∈A

π∗(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

+ Cu

(1− γ)Cℓ

[
−

[
V̂

πt+1
i (µ)− V πt+1

i (µ)
]
− Cℓ

1− γEs∼d
πt+1,P ′

ν∗

∑
a∈A

πt+1(a | s)[Qπt
i (s, a)− Q̂πt

i (s, a)]

− Cℓ

1− γEs∼d
πt+1,P ′
µ

∑
a∈A

πt(a|s)
(
Q̂πt

i (s, a)−Qπt
i (s, a)

) ]
.

By appropriately choosing the policy evaluation algorithm (discussed in Appendix C.3), ϵ̄approx can be
arbitrarily small. If N0 = ∅, then

ηδT ≤ CuηEs∼ν∗DKL(π∗(·|s)∥π1(·|s)) + Cuη
2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx.

Here, we let

δ >
Cu

T
Es∼ν∗DKL(π∗(·|s)∥π1(·|s)) + CuηL

(1− γ)2Cℓ
+ ϵ̄approx.

This hyper-parameter setting ensures that N0 is non-empty.
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C.3 Robust Policy Evaluation

In this section, we collect two important robust policy evaluation techniques to discuss how to use these
methods to obtain the robust value function with sufficient accuracy. Though we use a simplified result in
this subsection, these results have been extended to more general setting in original sources.

C.3.1 Option 1: The IPM Uncertainty Set

Lemma C.9 (Theorem 3, Zhou et al. (2024)). Let the value function V π is parameterized by w ∈ R|S| with
the linear feature ϕ ∈ R|S|. Then using the Robust Linear TD-Learning proposed by Zhou et al. (2024) with
step sizes αk = Θ(1/k), the output satisfies E∥wK − w∗∥2 = Õ( 1

K ).

As shown by Li et al. (2022), the robust Q-function can be calculated using the robust value function learned
by the robust TD-learning algorithm described above. That is,

Qπ(s, a) = r(s, a) + γ inf
P ∈P

V π(s′).

The second term infP ∈P V
π(s′) is given by Proposition 1 from Zhou et al. (2024). This result indicates that

we can obtain the robust Q-function with the convergence rate 1√
K

(for the L∞-norm).

C.3.2 Option 2: The p-Norm Uncertainty Set

We consider the following uncertainty set:

V := {v ∈ R|S| | ⟨v, 1|S|⟩ = 0, ∥v∥p ≤ β},
U := V + P0.

Let q satisfy 1
q + 1

p = 1. Then Oβ,p(·) : R|S| → R|S| is defined as:

Oβ,p(V )(s′) := β
sign(V (s′)− ωq(V ))|V (s′)− ωq(V )|q−1

κq(V )q−1 ,

where ωq(V ) := arg minω ∥V − ω1|S|∥q and κq(V ) := minω ∥V − ω1|S|∥q.
Lemma C.10 (Theorem 4.2, Kumar et al. (2023)). If the uncertainty set is defined as the p-norm (s, a)-
rectangular set, then the worst-case transition probability P+(·|s, a) can be represented as

P+(·|s, a) = P0(·|s, a)− βOβ,p(V )

where β is the radius of the uncertainty set and Oβ,p(V ) is the balanced robust value function (Kumar et al.,
2023).

Based on this result, we apply the following TD-learning update rule:

V (s)← V (s) + α

r(s, a) + γV (s′)− V (s)︸ ︷︷ ︸
stand. TD err. under P0

−γOβ,p(V )(s′)V (s′)

 . (14)

Here Oβ,p(·) : R|S| → R|S| is an operator determined by the uncertainty set. It is easy to observe that this
update rule is equivalent to the TD-learning over the worst-case transition probability:

Es′∼P0(s′|s,a)[r(s, a) + γV(s
′)]− γ⟨Oβ,p(V π), V ⟩

=r(s, a) + γ
∑
s′,a

P0(s′|s, a)π(a|s)V (s′)− γ
∑

s′

Oβ,p(V π)(s′)V (s′)

=r(s, a) + γ
∑
s′,a

P0(s′|s, a)π(a|s)V (s′)− γ
∑
s′,a

π(a|s)Oβ,p(V π)(s′)V (s′)
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Algorithm 3: Rectified Robust Policy Optimization
input : initial policy parameters θ0, empty set N0
for t = 0, · · · , T − 1 do

Evaluate value functions under πt := πθt
: Q̂πt

i (s, a) ≈ Qπt
i (s, a) for i = 0, 1, . . . , I ;

Sample state-action pairs (sj , aj) from the nominal distribution ;
Compute value estimates V πt

i for i = 0, . . . , I ;
if V πt

i ≥ di − δ for all i = 0, 1, . . . , I then
// Threshold Updates
Add θt to set N0 and track the feasible policy achieving the largest value πout = πt;
Update d0: dt+1

0 ← V πt
0 ;

else if V πt
i < di − δ for some i = 1, . . . , I, 0 then

// Constraint Rectification & Objective Rectification
Maximize V πt

i using Equation (8);

output: πout

=r(s, a) + γ
∑
s′,a

π(a|s)[P0(s′|s, a)− Oβ,p(V π
0 )(s′)]V (s′)

(i)=r(s, a) + γ
∑
s′,a

π(a|s)P+(s′|s, a)V (s′)

=r(s, a) + γEs′∼P+(s′|s,a)V (s′),

where (i) applies the remarkable result from Theorem 4.2, Kumar et al. (2023): the worst-case transition
P+ is the rank-one perturbation of the nominal transition P0. Therefore, by applying existing TD-learning
convergence analysis (Brandfonbrener & Bruna, 2019; Asadi et al., 2024; Li et al., 2024), we obtain that the
convergence rate is also 1√

K
.

C.4 A Compact Algorithm

We also include a compact version of Algorithm 1 in Algorithm 3 which merges the constraint rectification
and objective rectification together.

C.5 The Proof of Main Theorem

Here, we state the full version of Theorem 4.3.
Theorem C.11. Consider the NPG update rule with learning rate η. Let the constraint violation tolerance
δ > 0 be chosen to satisfy

δ >
2Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+ 2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx,

where ϵ̄approx is the error caused by the robust policy evaluation step. Under these conditions, the output
policy πout satisfies:

E [V ∗(µ)− V πout(µ)] ≤ 2Cu

T
Es∼ν∗DKL

(
π∗(·|s)∥π1(·|s)

)
+ 2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx,

where the constraint violation of πout is guaranteed to be at most δ. Moreover, if setting

(1− γ)2Cℓ

2CuL

ϵ

4 ≤ η ≤
(1− γ)2Cℓ

2CuL

ϵ

3 ,

the robust policy evaluation error ϵapprox ≤ (1−γ)2

12Cu
ϵ, and the number of iteration step

T ≥ 2CuL

(1− γ)2Cℓ

12
ϵ2

Es∼ν∗DKL(π∗(·|s)∥π1(·|s)),
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then the output policy satisfies the ϵ-accuracy; that is

E [V ∗(µ)− V πout(µ)] ≤ ϵ.

Proof. By the update rule, the boundary value d0 is non-decreasing. Since it is upper bounded, we conclude
that {dt

0} converges and we denote
dt

0 → d̄0

as t→∞. More explicitly, we have

d̄0 = sup{V πt
0 : V πt

i < di + δ}.

There are only two cases for the output policy πout:

(1) The policy is better than the optimal policy while the relaxed constraint is violated; i.e.

V π∗

i (µ)− V πt+1
i (µ) ≤ 0.

(2) The output policy is worst than the optimal policy but upper bounded by O( 1√
T

).

When (1) holds, then it is desired. When (1) doesn’t hold (i.e. V π∗

i (µ)−V πt+1
i (µ) > 0.), we assume |N0| < T

2 .
It implies

∑I
i=1 |Ni| ≥ T

2 . Then we have

1
2ηδT ≤ CuηEs∼ν∗DKL(π∗(·|s)∥π1(·|s)) + Cuη

2LT

(1− γ)2Cℓ
+ ηT ϵ̄approx. (15)

Then we let

δ >
2Cu

ηT
Es∼ν∗DKL(π∗(·|s)∥π1(·|s)) + 2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx.

This hyper-parameter setting ensures that Equation (15) doesn’t hold. Therefore, it leads to a contradiction.
We obtain |N0| ≥ T

2 . In this case, we have

0 ≤ E [V ∗(µ)− V πout(µ)] ≤ Eπ∼N0 [V ∗(µ)− V π(µ)]

≤ 2Cu

ηT
Es∼ν∗DKL(π∗(·|s)∥π1(·|s)) + 2CuηL

(1− γ)2Cℓ
+ 2ϵ̄approx.

Here the non-negativity is because V ∗(µ) is the largest-possible value function over the feasible policy. From
the construction of N0 and the output policy πout, they are all feasible policies.

To obtain the sample complexity, we set all three terms to be O(ϵ):

• Let 2CuηL
(1−γ)2Cℓ

≤ ϵ
3 . Then we obtain

η ≤ (1− γ)2Cℓ

2CuL

ϵ

3 .

• To make the last term 2ϵ̄approx ≤ ϵ
3 , we set the robust policy evaluation error (Assumption 4.1) to be

∥Q̂−Q∥∞ ≤ ϵapprox.

It leads to

Cu

1− γ ϵapprox + Cu

(1− γ)Cℓ

[
ϵapprox + Cℓ

1− γ ϵapprox + Cℓ

1− γ ϵapprox

]
≤ ϵ

3 .

It solves ϵapprox ≤ (1−γ)2

12Cu
ϵ.
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• Let 2Cu

ηT Es∼ν∗DKL(π∗(·|s)∥π1(·|s)) ≤ ϵ
3 . We obtain

T ≥ 2Cu

ηT
Es∼ν∗DKL(π∗(·|s)∥π1(·|s))3

ϵ

≥ 2CuL

(1− γ)2Cℓ

12
ϵ2

Es∼ν∗DKL(π∗(·|s)∥π1(·|s)).

In the second step, we require the learning rate η is not too small; that is, we let it larger than (1−γ)2Cℓ

2CuL
ϵ
4 .

This result indicate that the iteration complexity is T = O(ϵ−2), with choosing an appropriate learning
rate η = Θ(ϵ) and the approximation error ϵapprox = O(ϵ).

D Experiment Setting

This section outlines the information for replicating our experiments.

D.1 Hardware Specification and System Environment

We conducted our experiments on a computing desktop running Windows 10 Education, equipped with
3200MHz DDR4 DRAM memory, AMD Ryzen 7 3800X 8-Core, 16-Thread processor, and one NVIDIA
GeForce RTX 2070 Super graphics cards. All experiments are executed using Python version 3.10.14.

D.2 FrozenLake-Like Gridworld Experiment

The reward function is defined as follows:

r0(s, a, s′) =


+1 if s′ is the target
−1 if s′ is a brown block
−0.1 otherwise

and define r(s, a) := Es′ [r0(s, a, s′)]. The constraint reward function is defined as:

r1(s, a, s′) =


−1 if s′ is out of the boundary
−1 if s′ is a brown block
0 otherwise

.

Here, we further define the cost function c(s, a) := −Es′ [r1(s, a, s′)] to better distinguish it with the rewards.
In this experiment, we require the cost value function −V π

1 (µ) less than 0.2, which means that the agent
should avoid hitting the brown block or move out of the box.

We used a discount factor γ = 0.99. The learning rates for both algorithms are set to 0.0001 and the tolerance
for constraint violations is δ = 0.01. The robustness of the environment was simulated by introducing a
slipping probability p = 0.2 in the test environment, which differs from the deterministic dynamics used
during training. For both methods, we run 1M steps.

During the training, we use the neural network taking a 2-dimensional input (the position of the agent) and
processes it through a single fully connected layers of size 64 followed by a ReLU activation then fed into a
final linear layer that produces 4 logits (four actions: Up, Down, Left, and Right).

D.3 Mountain Car Experiment

We use the standard Mountain Car environment provided by Towers et al. (2024). Once the car reaches the
goal, it is reset to the original starting point. The reward function is defined using the environment’s default
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setting:

r0(s, a, s′) =
{

0 if the agent reaches the goal,
−1 otherwise,

and we set r(s, a) := Es′ [r0(s, a, s′)]. To emphasize safety, we introduce the constraint reward function:

r1(s, a, s′) =
{
−1 if the car’s speed exceeds 0.06,
0 otherwise,

and define the cost function c(s, a) := −Es′ [ r1(s, a, s′)]. In this experiment, we account for environment
uncertainty by perturbing the “gravity” parameter from its nominal value 0.0025 to 0.003 in the worst-case
scenario. In this experiment, we set the constraint to be −4 (i.e. we require −V π

1 (µ) < 4). As shown in
Figure 3b, both CRPO and RRPO learn a feasible solution.

Given that the MountainCar environment has a continuous state space (i.e., the car’s position and velocity),
we employ radial basis function (RBF) features to achieve a linear approximation of the policy. Specifically,
each state s is first transformed into an RBF feature vector ϕ(s), which is then multiplied by the policy
parameters θ (one column per action) to generate logits; these logits are passed through a softmax function
to produce the policy distribution over actions. Additionally, we incorporate an ϵ-greedy strategy with an
initial ϵ = 0.1, decaying at a rate of 0.9999, to encourage exploration in the early stages of training.

We set the 2-norm (s, a)-rectangular uncertainty set defined by Equation (10). Since the state space is contin-
uous, when evaluating the centered value function, we uniformly sample 100 states from the state space to es-
timate the mean and the variance value of V π(s). The radius of the p-norm uncertainty set is set to be 0.0002.
This value is manually tuned from a preset hyper-parameter set {0.00001, 0.0001, 0.0002, 0.0003, 0.001}.
When the radius value is too high, the policy tends to be too conservative; when the radius value is too
small, the policy performs similar as the non-robust case.

D.4 Robust Control Experiment

In this experiment, we adopt the common PPO tricks to stablize the training. Each algorithm was trained for
2 million timesteps using identical hyperparameters to ensure fair comparison: learning rate of 3×10−4, batch
size of 256, discount factor γ = 0.99, and PPO clip range of 0.2. We incorporated energy-based constraints
with a threshold of 0.25, representing a moderate constraint that provides meaningful limitations without
being overly restrictive. For the constrained algorithms, Primal-Dual Policy Gradient (Wang et al., 2022)
employed a constraint learning rate of 3× 10−4 with Lagrange multiplier initialization of 0.1 and maximum
value of 100.0. On the construction of the uncertainty set, we follow Hou et al. (2020)’s robust Actor-Critic
algorithm to obtain the desired robust value function approximation. The radius of the uncertainty set is
set as 0.001.
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