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Abstract

This work presents a workflow designed to enhance economic efficiency in indus-
trial processes by optimizing material synthesis through thermodynamic modeling,
cellular automata, machine learning (ML), and commercial databases. The method-
ology enables the systematic identification and evaluation of synthesis routes that
balance thermodynamic performance with economic profitability. As a proof of
concept, the workflow was applied to the production of Ca2SiO4, a key refractory
material for boilers and ship engines. Three efficient synthesis recipes and four
optimal commercial reagents (CaO, SiO2, Ca3SiO5, and Si3N4) were identified,
demonstrating both improved process efficiency and cost-effectiveness. Beyond
this case study, the approach is broadly applicable to a wide range of inorganic
systems, offering a scalable path toward maximizing economic efficiency in solid-
state synthesis. These results highlight the potential of data-driven workflows to
accelerate the development of sustainable and competitive industrial manufactur-
ing.

1 Introduction

Silicon-based compounds have gained increasing relevance in the naval and defense sectors due
to their unique combination of mechanical strength, thermal stability, and corrosion resistance —
properties that are essential for critical structural components. Materials such as ZrSiO4, Al2SiO5,
and Ca2SiO4 are widely employed in thermal coatings and heat barriers for naval engines and high-
performance propulsion systems, owing to their high refractory capacity and excellent oxidation
resistance. However, the synthesis of these compounds often entails high energy consumption and
significant raw material demand. In this context, the development of novel and more cost-effective
synthesis routes represents a strategic advancement for the sector.

Optimizing the synthesis of these compounds in terms of both profitability and performance is
inherently a multifactorial challenge. It requires balancing thermodynamic efficiency, commercial
adaptability, and technical effectiveness. Furthermore, the criteria and constraints for defining an
optimal synthesis pathway are diverse, as summarized in Table 1. Even when focusing exclusively on
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thermodynamic efficiency, the optimization problem is highly complex: it involves exploring millions
of possible combinations of reactants and environmental conditions within the vast physicochemical
space. This complexity increases further when economic considerations are introduced, since the
profitability of a synthesis route depends not only on its energy and material efficiency but also on
the price and commercial availability of the precursors. These economic variables are dynamic, being
influenced by technological advances, regulatory frameworks, fiscal incentives, and geopolitical
factors.

Table 1: Criteria and Constraints Governing the Optimal Synthesis of Materials.

Technical Commercial
Criteria Thermodynamic performance, energy

efficiency, isolation feasibility
Profitability, economic efficiency

Constraints Purity and stability of reactants Commercial availability, logistical ca-
pacity, legislation

To address this challenge, this work presents a developed workflow capable of systematically propos-
ing the most cost-effective synthesis recipes by integrating thermodynamic modeling of chemical
reactions with the commercial evaluation of reactants. The workflow is designed to be both versatile
and customizable, allowing adaptation to different technical objectives and logistical conditions. This
makes it a valuable tool for both manufacturing industries and academic research groups. Figure 1
illustrates the modular structure of the workflow, whose individual components are detailed in the
following section.

Figure 1: Modular flowchart for the identification of optimal synthesis recipes.

2 Methods

2.1 Design Module

Based on predefined conditions, the design module constructs a chemical space of materials from
both computational and experimental origins, using databases such as Materials Project Jain et al.
[2013] and JANAF Chase [1985]. Once this is completed, the module applies the SISSO-learned
descriptor Bartel et al. [2018] to estimate the energetic properties of the materials at different synthesis
temperatures, as extensively done in the pymatgen library Ong et al. [2013]. The training details of
this standard method can be found in the cited reference. Next, the module uses the reaction-network
library Kitchin [2018] to select the best synthesis recipes based on thermodynamic principles. Finally,
the best proposed recipes are cross-checked against the PubChem database to discard those whose
reactants are commercially unavailable. As a result, the module outputs a set of recipes that proceed
to the next module.
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2.2 Simulation Module

The simulation module is built on the React-CA cellular automaton framework Gallant et al. [2024].
The first task of this framework is to identify all possible reactions in the chemical system corre-
sponding to a given synthesis recipe ’x’ and to score them according to their probabilities of success.
Once this is done, the framework executes the simulation of synthesis recipe ’x’ as a series of
preprogrammed thermodynamic stages. Essentially, at each stage of the simulation, the different
reactants may undergo a change of state and position, or a chemical reaction from among those
previously identified and weighted. After a significant number of generations, the system tends to
evolve toward the products with the highest likelihood of occurrence. Both the scoring function for
the possible reactions and the stopping criteria of the simulation are described in detail in the original
paper. To enhance the interpretability of the results, the simulation module can generate comparative
graphs that depict the entire evolutionary process of the simulated chemical systems using React-CA.
Regarding the characteristic uncertainty of these processes, the authors account for it both at the
reaction level and at the phase transition level. However, this uncertainty is not reflected in any way
in the final yield results, which we acknowledge as a limitation of the workflow.

2.3 Analysis Module

The analysis module gathers the thermodynamic results generated by the simulation module and
complements them with various customizable criteria and constraints to produce a range of descriptors
tailored to the predefined needs and objectives. For example, while a manufacturing company can
typically afford to purchase reactants in tons, an academic research group may not be able to acquire
quantities above ten kilograms. Such a seemingly trivial constraint alters both the potential price of
the reactants and the profitability analysis metrics, which can significantly change the final list of
optimal recipes depending on the context. To achieve this versatility, the analysis module leverages
commercial supplier databases such as ChemSpace. In addition, predictive AI models such as
CrabNet Wang et al. [2021] will be applied to calculate descriptors related to the technical feasibility
of both the synthesis itself and the subsequent isolation of the target products. In this way, the
analysis module will be able to estimate the solubility or volatility of the reaction products, enabling
recommendations at both the recipe level and the purification method level.

3 Results

To evaluate the applicability of the proposed workflow, a synthesis recipe recommendation experiment
was conducted for Ca2SiO4, a compound of strategic importance in the naval industry. This material
is widely used as a coating in boilers and marine engines due to its high refractory capacity. The
search for improved synthesis routes was restricted to the chemical space defined by the elements Ca,
Si, O, C, N, H, Al, and B, and to a temperature range of 800–1600 ◦C.

Upon execution, the analysis module suggested 261 synthesis recipes involving 36 commercially
accessible reactants. The average execution time of the 261 simulations was 311.4 seconds, with a
standard deviation of 121.26 seconds. The time distribution for these recipes is shown in detail in
Figure 2. Additionally, Table 2 summarizes the most relevant statistics of the 36 reactants analyzed
in terms of commercial availability. Figure 3 illustrates the dynamic evolution of the three best-
performing synthesis recipes, selected on the basis of economic efficiency. This metric was calculated
by jointly considering the thermodynamic performance of each synthesis process and the average
market price of the required reactants (minimum purity 95%). The final results are presented in
Table 3, which compares the three recipes across their main evaluation metrics.

Table 2: Statistics of the 36 commercial reactants analyzed for the synthesis of Ca2SiO4.

Min. price Avg. price Max.price Avg. purity Avg. delivery Avg. suppliers

0.015 (C/g) 100.74 (C/g) 8526.31 (C/g) 91.79 (%) 17.19 (days) 6.18

Notably, the recipe combining CaO and SiO2 emerges as nearly twenty times more cost-effective
than the alternatives, despite being approximately 30% less productive in thermodynamic terms. This
trade-off arises from the currently low price of CaO relative to compounds such as Ca3SiO5 or Si3N4.
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Figure 2: Distribution of simulation times for the Ca2SiO4 recipes. The simulations were run on an
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz.

Figure 3: Simulation of the three best Ca2SiO4 recipes in terms of grams produced per euro invested.
Gray lines correspond to undesired synthesis byproducts, and the percentages are calculated by mass.
The time variable is representative and does not reflect actual values, as the simulations consider
thermodynamic principles rather than kinetics.

However, shifts in raw material prices could reverse this situation, making the latter reactants more
profitable in the future. In an era of geopolitical turbulence and volatile supply chains, access to
such predictive insights can provide a decisive competitive advantage, potentially determining the
economic resilience of manufacturing companies. Importantly, the methodology described here can
be extended to generate similar analyses for thousands of technologically relevant materials.

Despite its promise, the current implementation of the tool is subject to certain limitations. First,
the enumeration of all possible reactions within a chemical system is computationally demanding,
with costs scaling steeply with the number of chemical elements considered. This constraint reduces
the breadth of the search space and highlights the need for further research into computational
acceleration strategies, such as process parallelization or GPU-based implementations. Moreover, the
present economic efficiency metrics do not yet account for factors such as the energy consumption
associated with heating (heat capacities of reactants and products) or the purification costs required to
isolate the target compound from byproducts. Future developments of the workflow will incorporate
predictive models capable of estimating key physicochemical properties (e.g., solubility, volatility,
and phase stability), thereby enabling the construction of more accurate and robust descriptors. Such
improvements will enhance the precision of economic assessments for Ca-based silicates, but still
remain limited to solid-state synthesis and do not apply to methods like sol-gel or hydrothermal.
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Table 3: Performance descriptors of the 3 best synthesis recipes for Ca2SiO4.

Recipe Economic efficiency
(avg. market price)
(g/C)

Economic efficiency
(min. market price)
(g/C)

Thermodynamic
yield (mass %)

CaO+SiO2 0.977 1.313 28.75
Ca3SiO5+SiO2 0.051 0.170 42.83
Ca3SiO5+Si3N4 0.045 0.177 44.11

4 Conclusion

This study demonstrates that the most thermodynamically favorable synthesis pathway is not always
the most economically viable, as profitability can be strongly influenced by market fluctuations in
reactant prices. The results emphasize the strategic value of the proposed workflow, which enables the
anticipation of optimal synthesis strategies under dynamic economic and geopolitical conditions. By
systematically combining thermodynamic modeling, cellular automata simulations, and commercial
data, the workflow provides a versatile tool for supporting decision-making in both industrial and
academic contexts.

Nevertheless, the current implementation presents limitations. The computational cost of exhaustively
exploring chemical reaction networks increases sharply with the number of elements considered,
constraining the size of the accessible search space. In addition, the present economic metrics do not
yet incorporate critical variables such as energy consumption for heating and cooling cycles, or the
costs associated with the purification of target compounds relative to synthesis byproducts. Moreover,
it would be advisable to add an explicit treatment of uncertainty in both the simulation and analysis
modules.

Future work will focus on addressing these challenges by integrating predictive models capable of
estimating key physicochemical properties such as solubility, volatility, and phase stability. These
enhancements will enable the construction of more accurate and robust descriptors of synthesis
feasibility and economic efficiency. Ultimately, the continued development of this workflow has the
potential to accelerate the design of cost-effective synthesis routes across a wide range of inorganic
materials, contributing to more sustainable and competitive industrial solid-state syntheses.
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