
Revisiting the Compositional Generalization Abilities of
Neural Sequence Models

Anonymous ACL submission

Abstract

Compositional generalization is a fundamental001
trait in humans, allowing us to effortlessly com-002
bine known phrases to form novel sentences.003
Recent works have claimed that standard seq-004
to-seq models severely lack the ability to com-005
positionally generalize. In this paper, we focus006
on one-shot primitive generalization as intro-007
duced by the popular SCAN benchmark. We008
demonstrate that modifying the training dis-009
tribution in simple and intuitive ways enables010
standard seq-to-seq models to achieve near-011
perfect generalization performance, thereby012
showing that their compositional generalization013
abilities were previously underestimated. We014
perform detailed empirical analysis of this phe-015
nomenon. Our results indicate that the gener-016
alization performance of models is highly sen-017
sitive to the characteristics of the training data018
which should be carefully considered while de-019
signing such benchmarks in future.020

1 Introduction021

According to the principle of compositionality, the022

meaning of a complex expression (e.g., a sentence)023

is determined by the meaning of its individual con-024

stituents and how they are combined. Humans can025

effectively recombine known parts to form new sen-026

tences that they have never encountered before. De-027

spite the unprecedented achievements of standard028

seq-to-seq networks such as LSTMs and Trans-029

formers in NLP tasks, previous work has suggested030

that they are severely limited in their ability to gen-031

eralize compositionally (Lake and Baroni, 2018;032

Furrer et al., 2020).033

Problem Statement. Our work relates to a034

central challenge posed by compositional gener-035

alization datasets such as SCAN (Lake and Baroni,036

2018) and Colors (Lake et al., 2019), which we037

refer to as one-shot primitive generalization: The038

dataset consists of input-output sentence pairs (e.g.039

‘walk twice → WALK WALK’); input sentences040

swimclapmove

More Primitives

SCAN Train Set

Neural Sequence Models

jump opposite right RTURN RTURN JUMP

jump thrice JUMP JUMP JUMP

jump left LTURN JUMP

jump opposite right RTURN RTURN JUMP

jump thrice JUMP JUMP JUMP

jump left LTURN JUMP

SCAN Generalization Set

Failure Success

move

move left

move twice MOVE MOVE

LTURN MOVE

MOVEmove

move left

move twice MOVE MOVE

LTURN MOVE

MOVEmove

move left

move twice MOVE MOVE

LTURN MOVE

MOVE

clap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAPclap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAPclap

clap right

clap thrice CLAP CLAP CLAP

RTURN CLAP

CLAP

swim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIMswim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIMswim

swim left

swim thrice SWIM SWIM SWIM

LTURN SWIM

SWIM

Same-sized train set with more primitives and their use cases

jump JUMP

jump JUMPjump JUMP

walk

walk opposite right RTURN RTURN WALK

WALK

look

look thrice LOOK LOOK LOOK

LOOK

run

run twice RUN RUN

RUN

Neural Sequence Models

Isolated Primitive

Example Primitives

Isolated Primitive

Example Primitives

Figure 1: Overview of the SCAN generalization task
(left) and our approach (right) that enables standard
neural sequence models to generalize compositionally.

are formed from primitive words (‘walk’) and func- 041

tion words (‘twice’) and are generated by a CFG; 042

output sentences are obtained by applying an inter- 043

pretation function. Crucially, there is a systematic 044

difference between the train and test splits1: While 045

the former has a single example of an isolated prim- 046

itive (e.g., the primitive definition ‘jump→ JUMP’ 047

in SCAN), the latter consists of compositional sen- 048

tences with this isolated primitive (e.g. ‘jump twice 049

→ JUMP JUMP’). See Fig. 1, left. 050

A model with the right inductive bias should 051

generalize on the test data after having seen com- 052

positional expressions with other primitives during 053

training. The need for such inductive bias is jus- 054

tified via psychological experiments (Lake et al., 055

2019) indicating that humans do have the ability 056

to generalize on such tasks. Previous works have 057

suggested that seq-to-seq models lack the appropri- 058

ate inductive bias necessary to generalize on this 059

task since they achieve near-zero accuracy on both 060

1We use the term systematicity in the rest of the paper to
refer to this difference.

1

SCAN and Colors benchmarks. This has led to the061

development of many specialized architectures (Li062

et al., 2019; Gordon et al., 2020; Chen et al., 2020),063

learning procedures (Lake, 2019; Conklin et al.,064

2021) and data augmentation methods (Andreas,065

2020; Guo et al., 2020) to solve the task.066

Contributions. The primary claim of our paper067

is that, contrary to prior belief, neural sequence068

models such as Transformers and RNNs do have069

an inductive bias2 to generalize compositionally070

which can be enabled using the right supervision.071

(i) We show that by making simple and intuitive072

changes to the training data distribution, standard073

seq-to-seq models can achieve high generalization074

performance even with a training set of size less075

than 20% of the original training set. In particu-076

lar, if we incorporated examples with more novel077

primitives in the training set without necessarily078

increasing the size of the training set (see right part079

of Fig. 1), then the generalization performance of080

standard seq-to-seq models improves and reaches081

near-perfect score after a certain point. Our re-082

sults also exemplify the importance of the training083

distribution apart from architectural changes and084

demonstrate that providing the right supervision085

can significantly improve the generalization abili-086

ties of the models. (ii) We investigate the potential087

cause behind the improvement in generalization088

performance and observe that the embedding of the089

isolated primitive becomes more similar to other090

primitives when the train set has higher number091

of primitives and their use cases. (iii) To under-092

stand the phenomenon better, we characterize the093

effect of different distributions, model capacity and094

transferability, and show that the parameters of the095

experimental setting play a crucial role while eval-096

uating the generalization abilities of models.097

2 Enabling Generalization by Providing098

the Right Supervision099

Setup. We will focus on the SCAN and Colors100

datasets.3 Both of these datasets have a single iso-101

lated primitive. We refer to all other primitives as102

example primitives. The original training set of103

SCAN has 13.2k examples while the test set has104

7.7k examples. Colors has just 14 training exam-105

ples and 8 test examples. More details on these106

datasets can be found in Appendix B.107

2However, note that this inductive bias is not as strong as
that of specialized architectures designed for these tasks.

3Results on COGS (Kim and Linzen, 2020) can be found
in Appendix D.

0 10 20 50 100
Number of extra primitives added to SCAN

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

SCAN
Transformer
LSTM

0 5 10 20
Number of extra primitives added to Colors

Colors
Transformer
LSTM

Figure 2: Generalization performance (↑) on SCAN
and Colors improves with higher number of example
primitives in the train set.

Adding More Primitives. Both the SCAN and 108

Colors training set have three example primitives. 109

We modify the training set such that the set of ex- 110

ample primitives present in the dataset is higher. To 111

do so, we add new primitives to the language which 112

are simply random words (e.g., ‘swim’, ‘clap’, etc.) 113

that have the same semantics and follow the same 114

grammar rules as other existing primitives (see Fig. 115

1 for illustration). The new primitives act as exam- 116

ple primitives in our training set. For SCAN, we 117

control the size of the training set such that it is at 118

most the size of the original dataset.4 To generate 119

the training set, we randomly sample the examples 120

from the new grammar and add one separate ex- 121

ample with the isolated primitive. The test set is 122

untouched and remains the same. 123

Main Observation. Fig. 2 shows the general- 124

ization performance of Transformers and LSTM 125

based seq-to-seq models. We observe that there is 126

a clear trend of improvement in compositional gen- 127

eralization as we increase the number of example 128

primitives and their use cases. It is also surpris- 129

ing to see that on SCAN, Transformers perform at 130

par with some recently proposed specialized archi- 131

tectures (Li et al., 2019; Gordon et al., 2020) and 132

even better than certain architectures (Russin et al., 133

2019). 134

Implication. Since the training set contains only 135

one example with the isolated primitive and the 136

test set is untouched, one-shot primitive generaliza- 137

tion is preserved. Hence our results clearly show 138

that standard neural sequence models have ‘some’ 139

inductive bias required to generalize on such out- 140

of-distribution tasks even if it is not as strong as 141

that of specialized architectures designed primarily 142

4The training set size |T | is kept fixed by discarding orig-
inal examples and adding (|T |/#primitives) examples per
primitive. Because of extremely small data size, we cannot do
this for Colors while also trying to illustrate our idea.

2

0 10 20 50 100
Number of Primitives

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Av

er
ag

e
Di

st
an

ce
euclidean

Transformer
LSTM

manhattan
Transformer
LSTM

cosine
Transformer
LSTM

Figure 3: Measuring the distance of embedding of iso-
lated primitive with embeddings of example primitives
for learned Transformer and LSTM models as we in-
crease the number of example primitives in SCAN.

to solve these tasks. Our results are in contradiction143

to previously suggested limitations of standard seq-144

to-seq models in terms of primitive generalization145

(Lake and Baroni, 2018; Furrer et al., 2020; Ba-146

roni, 2020). While it is important to develop archi-147

tectures with better compositional generalization148

abilities, we wish to highlight that synthetic bench-149

marks such as SCAN require a model with very150

strong inductive bias and tend to underestimate the151

generalization abilities of baseline models.152

Other findings. We find that model capacity153

critically influences the generalization performance154

of models. We explore this in more detail in Ap-155

pendix C. While we have shown that these models156

can generalize from one-shot exposure to primi-157

tive definitions, our results also hold for the more158

general case where the one-shot exposure of the159

primitive is in a sentence5 (e.g. ‘jump twice →160

JUMP JUMP’).161

Prior Work. Note that our work is unrelated162

to previous works that propose data augmentation163

approaches for compositional generalization tasks164

(Andreas, 2020; Guo et al., 2020; Akyürek et al.,165

2021). (1) The datasets created by some of these166

augmentation methods do not preserve the system-167

atic differences between train and test sets, while168

our datasets do.6 (2) The objective of these works169

was to devise a method to improve the performance170

on compositional generalization whereas the focus171

of our work is not to develop a general method;172

rather we want show that baseline seq-to-seq mod-173

els are capable of generalizing compositionally174

even without breaking systematicity. (3) These175

methods add additional data resulting in datasets176

of larger sizes whereas we control for data size.177

5Details of the experiments are in Appendix E.
6We discuss this in more detail in the Appendix G.

150 100 50 0 50 100

100

50

0

50

100

150

(a) No extra primitives
150 100 50 0 50 100 150

150

100

50

0

50

100

150

(b) 10 extra primitives

75 50 25 0 25 50 75
75

50

25

0

25

50

75

(c) 20 extra primitives
20 15 10 5 0 5 10 15

10

0

10

20

(d) 50 extra primitives

Figure 4: Visualizing the t-SNE reduced embeddings of
isolated primitive (), example primitives () and non-
primitives () from a learned Transformer model as we
increase number of example primitives in SCAN.

2.1 Embedding of Isolated Primitive 178

Our results raise the question: Why do Transform- 179

ers and LSTMs generalize better when the training 180

data has more example primitives? Compositional 181

generalization in our setting requires a model to 182

learn to apply the same rules to the isolated primi- 183

tive as it does to the other example primitives. Thus, 184

we analyze the change in the learned embedding of 185

the isolated primitive (such as ‘jump’) with respect 186

to other primitives in different settings. 187

In particular, we compare the average distance 188

with other primitives before and after adding cer- 189

tain number of primitives to training data (this is the 190

same setting as mentioned earlier in this section). 191

We find that as we increase the number of example 192

primitives in the training set, the embedding of the 193

isolated primitive gets closer to the example prim- 194

itives (Fig. 3) in terms of Euclidean, Manhattan 195

and Cosine Distances. If the embedding of the iso- 196

lated primitive is closer to other primitives, then the 197

model is more likely to operate over it in a similar 198

fashion and apply the same rules as it does over the 199

other primitives. 200

This phenomenon is also illustrated in t-SNE 201

plots (Fig. 4) of the learned embeddings where the 202

embedding of the isolated primitive seems closer to 203

example primitives when there are more example 204

primitives in the dataset. Hence, a possible reason 205

behind improved generalization performance could 206

be the difference in the learned embeddings.7 207

7More fundamental reasons for difference in learned em-
beddings, such as learning dynamics, are beyond our scope.

3

20 25 30 35 40 50 75 100
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Linear
Quadratic
Uniform-100
Skewed

(a) Other Distributions

20 50 100 200 500 1000
Number of Examples per Primitive

10

20

50

75

100

Nu
m

be
r o

f P
rim

iti
ve

s

0.0 0.3 0.8 1.5 1.6 8.7

0.0 8.3 12.7 14.4 43.6 66.0

13.4 32.2 49.0 91.3 93.7 95.4

43.0 81.1 90.5 94.2 98.7 99.6

83.4 96.2 98.7 97.7 98.9 99.1

(b) Uniform Distribution

Figure 5: Measuring the generalization performance of
Transformer on different types of train set distributions
of the SCAN dataset.

3 Exploring the Impact of Training208

Distributions209

In this section, we analyze the influence of different210

training distributions on the generalization perfor-211

mance of the model. In the previous experiments,212

the data generating distribution was uniform over213

all possible samples. Here, we alter the distribution214

by varying the number of examples for each prim-215

itive. We experiment with linearly, quadratically216

and exponentially increasing probability distribu-217

tion functions. For instance, in the quadratically218

increasing case, a training set with 10 primitives219

will have one primitive with 1 example, the next220

one with 4, another one with 9 examples and so on.221

The general idea is that all the example primitives222

do not have equal representation in the training223

data. Upon training the models on different distri-224

butions, we observed that the models generalize225

well even with fewer number of example primitives226

when their distribution is linearly or quadratically227

increasing (Fig. 5a). On the other hand models228

struggle to generalize when the distribution is very229

skewed (exponential). In that case, most primitives230

(∼ 60%) appear in only one sentence in the train-231

ing data and some primitives (∼ 10%) appear in232

over hundred sentences each. The failure to gen-233

eralize on such data implies that extra primitives234

must be added as part of multiple sentences; just235

adding the definition or a single example for each236

primitive does not help the model to leverage it.237

We then try to characterize the relationship be-238

tween the number of example primitives and the239

amount of data required for the model to general-240

ize well on the test data, when the example prim-241

itives are uniformly distributed. We create dif-242

ferent training sets by varying the total number243

of example primitives #primitives; for each ex-244

ample primitive, we draw #examples number of245

samples uniformly from the CFG. Fig. 5b shows246

the generalization performance of Transformers 247

for each of these training sets. The size of each 248

training set is the product of the row and column 249

values (#primitives ×#examples). As expected, 250

the upper-right triangle has higher scores indicat- 251

ing that the sample requirement decreases as we 252

add more primitives to the dataset. Surprisingly, 253

the top-left cell indicates that Transformers can 254

achieve high performance even with 2k training 255

examples which is less than 20% of the original 256

SCAN training set. 257

Transfer. We wish to check whether the induc- 258

tive bias that is enabled when a model is trained on 259

more number of example primitives can be trans- 260

ferred to a scenario where the number of example 261

primitives is limited. We create a pretraining set 262

with 50 example primitives uniformly distributed, 263

each of them having 200 examples. The finetuning 264

set is the original SCAN training set and the test 265

set is the original SCAN test set. The model is first 266

trained from scratch on the pretraining set and then 267

finetuned on the finetuning set. We find that if we 268

allow all the parameters of a Transformer Model to 269

be updated during the finetuning phase on the orig- 270

inal SCAN training set, then the model generalizes 271

very poorly. On the other hand, when we freeze the 272

weights of the encoder and decoder after the pre- 273

training phase, and only allow the embedding and 274

output layers to be updated then the model general- 275

izes near-perfectly on the test set. Our hypothesis 276

is that in the latter setting, the task becomes simpler 277

for the model since it only has to align the embed- 278

dings of the primitives in the finetuning phase with 279

the embeddings of the primitives seen during the 280

pretraining phase. This experiment also indicates 281

that the previously learned rules during pretraining 282

can help a model to compositionally generalize on 283

novel primitives. 284

4 Conclusion 285

While it is essential to make progress in building 286

architectures with better compositional generaliza- 287

tion abilities, we showed that the generalization 288

performance of standard seq-to-seq models (often 289

used as baselines) is underestimated. A broader 290

implication of our experiments is that although 291

systematicity must be preserved when designing 292

such benchmarks, it is imperative to carefully ex- 293

plore different parameters associated with the ex- 294

perimental setup to draw robust conclusions about 295

a model’s generalization abilities. 296

4

References297

Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas.298
2021. Learning to recombine and resample data for299
compositional generalization. In International Con-300
ference on Learning Representations.301

Jacob Andreas. 2020. Good-enough compositional data302
augmentation. In Proceedings of the 58th Annual303
Meeting of the Association for Computational Lin-304
guistics, pages 7556–7566, Online. Association for305
Computational Linguistics.306

Anonymous. 2022. From SCAN to real data: Sys-307
tematic generalization via meaningful learning. In308
Submitted to The Tenth International Conference on309
Learning Representations. Under review.310

Marco Baroni. 2020. Linguistic generalization and311
compositionality in modern artificial neural networks.312
Philosophical Transactions of the Royal Society B,313
375(1791):20190307.314

Paul Bloom. 2000. How Children Learn the Meanings315
of Words. MIT Press.316

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song,317
and Denny Zhou. 2020. Compositional generaliza-318
tion via neural-symbolic stack machines. In Ad-319
vances in Neural Information Processing Systems,320
volume 33, pages 1690–1701. Curran Associates,321
Inc.322

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan323
Titov. 2021. Meta-learning to compositionally gen-324
eralize. In Proceedings of the 59th Annual Meet-325
ing of the Association for Computational Linguistics326
and the 11th International Joint Conference on Natu-327
ral Language Processing (Volume 1: Long Papers),328
pages 3322–3335, Online. Association for Computa-329
tional Linguistics.330

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.331
2021. The devil is in the detail: Simple tricks im-332
prove systematic generalization of transformers. In333
Proceedings of the 2021 Conference on Empirical334
Methods in Natural Language Processing, pages 619–335
634, Online and Punta Cana, Dominican Republic.336
Association for Computational Linguistics.337

Daniel Furrer, Marc van Zee, Nathan Scales, and338
Nathanael Schärli. 2020. Compositional generaliza-339
tion in semantic parsing: Pre-training vs. specialized340
architectures.341

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and342
Diane Bouchacourt. 2020. Permutation equivariant343
models for compositional generalization in language.344
In International Conference on Learning Representa-345
tions.346

Demi Guo, Yoon Kim, and Alexander Rush. 2020.347
Sequence-level mixed sample data augmentation. In348
Proceedings of the 2020 Conference on Empirical349
Methods in Natural Language Processing (EMNLP),350
pages 5547–5552, Online. Association for Computa-351
tional Linguistics.352

Najoung Kim and Tal Linzen. 2020. COGS: A compo- 353
sitional generalization challenge based on semantic 354
interpretation. In Proceedings of the 2020 Confer- 355
ence on Empirical Methods in Natural Language 356
Processing (EMNLP), pages 9087–9105, Online. As- 357
sociation for Computational Linguistics. 358

Brenden Lake and Marco Baroni. 2018. Generalization 359
without systematicity: On the compositional skills 360
of sequence-to-sequence recurrent networks. In Pro- 361
ceedings of the 35th International Conference on 362
Machine Learning, volume 80 of Proceedings of Ma- 363
chine Learning Research, pages 2873–2882. PMLR. 364

Brenden M Lake. 2019. Compositional generalization 365
through meta sequence-to-sequence learning. In Ad- 366
vances in Neural Information Processing Systems, 367
volume 32. Curran Associates, Inc. 368

Brenden M. Lake, Tal Linzen, and Marco Baroni. 2019. 369
Human few-shot learning of compositional instruc- 370
tions. 371

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hest- 372
ness. 2019. Compositional generalization for primi- 373
tive substitutions. In Proceedings of the 2019 Confer- 374
ence on Empirical Methods in Natural Language Pro- 375
cessing and the 9th International Joint Conference 376
on Natural Language Processing (EMNLP-IJCNLP), 377
pages 4293–4302, Hong Kong, China. Association 378
for Computational Linguistics. 379

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, 380
Zeqi Lin, Yan Gao, Bin Zhou, Nanning Zheng, 381
and Dongmei Zhang. 2020. Compositional gener- 382
alization by learning analytical expressions. In Ad- 383
vances in Neural Information Processing Systems, 384
volume 33, pages 11416–11427. Curran Associates, 385
Inc. 386

Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, and 387
Zachary Fisher. 2021. Making transformers solve 388
compositional tasks. 389

Adam Paszke, Sam Gross, Francisco Massa, Adam 390
Lerer, James Bradbury, Gregory Chanan, Trevor 391
Killeen, Zeming Lin, Natalia Gimelshein, Luca 392
Antiga, Alban Desmaison, Andreas Kopf, Edward 393
Yang, Zachary DeVito, Martin Raison, Alykhan Te- 394
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, 395
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An 396
imperative style, high-performance deep learning li- 397
brary. In Advances in Neural Information Processing 398
Systems, volume 32. Curran Associates, Inc. 399

Jake Russin, Jason Jo, Randall C. O’Reilly, and Yoshua 400
Bengio. 2019. Compositional generalization in a 401
deep seq2seq model by separating syntax and seman- 402
tics. 403

5

https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/2020.acl-main.676
https://openreview.net/forum?id=9qKAGxS1Tq2
https://openreview.net/forum?id=9qKAGxS1Tq2
https://openreview.net/forum?id=9qKAGxS1Tq2
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/12b1e42dc0746f22cf361267de07073f-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://doi.org/10.18653/v1/2021.acl-long.258
https://aclanthology.org/2021.emnlp-main.49
https://aclanthology.org/2021.emnlp-main.49
https://aclanthology.org/2021.emnlp-main.49
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
http://arxiv.org/abs/2007.08970
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://openreview.net/forum?id=SylVNerFvr
https://doi.org/10.18653/v1/2020.emnlp-main.447
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
http://arxiv.org/abs/1901.04587
http://arxiv.org/abs/1901.04587
http://arxiv.org/abs/1901.04587
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://doi.org/10.18653/v1/D19-1438
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
http://arxiv.org/abs/2108.04378
http://arxiv.org/abs/2108.04378
http://arxiv.org/abs/2108.04378
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708
http://arxiv.org/abs/1904.09708

A Implementation Details404

We use 8 NVIDIA Tesla P100 GPUs each with 16405

GB memory to run our experiments. All models406

are implemented in PyTorch (Paszke et al., 2019).407

We do not use any pretrained models and all em-408

beddings are learnt from scratch. Parameters are409

updated using Adam Optimization. All results are410

an average of 5 different runs with random seeds.411

The dataset-specific hyperparameters used for each412

model are shown in Table 1.413

B Primitive Generalization Datasets414

In this paper, we show results on three datasets that415

evaluate primitive generalization.416

SCAN (Lake and Baroni, 2018) is a super-417

vised sequence-to-sequence semantic parsing task418

wherein the natural language input command has419

to be transformed to the corresponding set of ac-420

tions. The complete dataset consists of all the com-421

mands (a total of 20,910) generated by a phrase-422

structure grammar and the corresponding sequence423

of actions, produced according to a semantic inter-424

pretation function. The benchmark consists of 4425

splits: random, add jump, turn left and length. We426

work on the ‘add jump’ split which was designed427

to test primitive generalization. In this split, the428

test set (size: 7706) is made up of all the composi-429

tional sentences with the primitive ‘jump’ (which430

we refer to as the isolated primitive). The train set431

(size: 13,2048) has just one example of the isolated432

primitive (i.e. the primitive definition ‘jump →433

JUMP’) and other examples demonstrating the def-434

initions and compositions of the three other primi-435

tives (which we refer to as the example primitives).436

Table 2 illustrates the task.437

Colors (Lake et al., 2019) is a sequence-to-438

sequence task that was designed to measure hu-439

man inductive biases. Apart from the challenge of440

primitive generalization, this dataset poses an addi-441

tional challenge of low-resource learning for neural442

sequence models. The train set has just 14 exam-443

ples that are either primitive definitions of the four444

primitives or examples with compositions of the445

three example primitives and three operations (con-446

catenation, repetition and wrapping). The test set447

has 8 examples9 with compositions of the isolated448

8The dataset released by (Lake and Baroni, 2018) is of size
14,670 which has many repetitions of the ‘jump → JUMP’
primitive definition. In this work, we remove all these repeti-
tions since they do not significantly help in generalization.

9The original dataset has two additional examples which

150K 372K 1.03M 3.25M 12.8M 31M
Transformer Model Size (Number of Parameters)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

100 primitives
50 primitives
20 primitives
10 primitives

Figure 6: Measuring the generalization performance
of a Transformer of varying capacity across increasing
number of primitives in the SCAN train set.

6.7K 8.7K 24.1K 91.2K 118K 354K
Transformer Model Size (Number of Parameters)

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

20 primitives
10 primitives
5 primitives

Figure 7: Measuring the generalization performance of
an LSTM of varying capacity across increasing number
of primitives in the Colors train set.

primitive (‘zup’). Table 2 illustrates the task. 449

COGS (Kim and Linzen, 2020) is a semantic 450

parsing task of mapping english natural language 451

sentences to their corresponding logical forms. 452

Apart from primitive generalization, COGS also 453

evaluates other types of systematic generalization 454

such generalizing to higher depths or generalizing 455

to novel syntactic structures. The size of the train 456

set is 24,155 and that of the test set is 21,000. 457

C How model capacity affects 458

compositional generalization 459

We analyze the relationship between the model ca- 460

pacity and the number of example primitives in the 461

training set. We vary the number of primitives as 462

per the description in Section 2. We evaluate the 463

generalization performance of the models while 464

gradually increasing the number of parameters by 465

increasing the size of its embeddings and interme- 466

diate representations. For each experiment, we 467

exhaustively finetune the rest of the hyperparame- 468

ters (eg. dropout, learning rate, batch size ...etc) to 469

select the best model. We observe a general trend 470

(refer to Fig. 6 and Fig. 7) where models start to 471

overfit and have poor generalization performance 472

evaluate length generalization. Since we focus only on primi-
tive generalization, we do not evaluate on these.

6

SCAN COLORS COGS

Hyperparameters Transformer LSTM Transformer LSTM Transformer LSTM

Embedding Size [64, 128, 256] [64, 128, 256] [16, 32, 64] [16, 32, 64] [384, 512] [64, 128, 256]
Hidden/FFN Size [256, 512] [64, 128] [16, 32, 64] [16, 32, 64] [512, 1024] [128, 256, 512]
Heads [2, 4] N/A [4, 8] N/A [2, 4] N/A
Number of Layers [2, 3] [1, 2] [2, 3] [1, 2] [2, 3] [1, 2]
Learning Rate [3e-4, 5e-4, 8e-4] [5e-3, 8e-3, 1e-2] [8e-4, 1e-3] [5e-3, 8e-3, 1e-2] [3e-4, 5e-4, 8e-4] [5e-3, 8e-3, 1e-2]
Batch Size [128, 256] [128, 256] [1, 2] [1, 2] [128, 256] [128, 256]
Dropout [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2]

Epochs 150 150 150 150 150 150
Avg Time/Epoch 30 40 2 3 60 80

Table 1: Different hyperparameters and the values considered for each of them in the models. The best hyperpa-
rameters for each model for all the datasets (with maximum number of primitives of all the settings studied in this
paper) are highlighted in bold. Average Time/Epoch is measured in seconds.

TRAIN:

jump JUMP
run after run left LTURN RUN RUN
run RUN
look left twice and look opposite right LTURN LOOK LTURN LOOK RTURN RTURN LOOK

TEST:

jump twice after look LOOK JUMP JUMP
turn left after jump twice JUMP JUMP LTURN
jump right twice after jump left twice LTURN JUMP LTURN JUMP RTURN JUMP RTURN JUMP

Table 2: An illustration of the primitive generalization task in SCAN.

TRAIN:

dax RED
lug BLUE
wif GREEN
zup YELLOW
lug fep BLUE BLUE BLUE
lug blicket wif BLUE GREEN BLUE
dax kiki lug BLUE RED

TEST:

zup fep YELLOW YELLOW YELLOW
zup blicket lug YELLOW BLUE YELLOW
zup kiki dax RED YELLOW

Table 3: An illustration of the primitive generalization
task in Colors.

as we increase the model size. Note that all these473

models are able to achieve near-perfect accuracies474

on the SCAN random split. This shows that care-475

fully controlling the model size is important for476

achieving compositionally generalization since all477

these model achieve near-perfect accuracies on ran-478

dom splits. On such small datasets, larger models479

might simply memorize the input-output mappings480

in the train set10. We also find that as we increase481

the number of example primitives, the models are482

10Such memorization has been cited as a potential reason
why models fail at compositional generalization (Conklin
et al., 2021).

100 75 50 25 0
Percentage of Primitives kept

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Transformer

Figure 8: Decrease in generalization performance on our
COGS primitive generalization test set with a decrease
in the percentage of example primitives and their use
cases present in the train set.

less susceptible to overfitting and achieve relatively 483

better generalization performance. 484

D Removing Primitives hurts 485

Generalization on COGS 486

Unlike SCAN and Colors, both of which have a 487

single isolated primitive and only three example 488

primitives, COGS has 3 isolated primitives - a 489

verb, a common noun and a proper noun which 490

are supported by 80 verbs, 40 common nouns and 491

20 proper nouns as example primitives. We hypoth- 492

esize that this high number of example primitives 493

might be one of the reasons behind the high perfor- 494

7

COMPLEXITY SENTENCE

1 jump twice
2 jump thrice and look
3 run twice after jump opposite left
4 jump around left and walk opposite left twice

Table 4: Sentences of varying complexities featuring
the isolated primitive ‘jump’.

mance of Transformers on COGS (Csordás et al.,495

2021; Ontañón et al., 2021), as far as primitive496

generalization is concerned.497

To validate our hypothesis, we systematically498

reduce the number of example primitives in COGS499

and evaluate the model. The test set of COGS500

focusing on primitive generalization consists of501

5000 examples. If we directly start removing the502

primitives from the train set, we risk having out-503

of-vocabulary tokens in the test set. Hence we504

select a portion of the test set of size 1218 which505

exludes 129 example primitives. We will hold this506

test set fixed and vary the percentage of the 129507

example primitives to be inserted in the train set.508

For each example primitive, samples are drawn509

uniformly from the original COGS train set. Note510

that even though the number of example primitives511

and their use cases will vary in the train set, we512

control the total train set size to be always 2500 for513

fair evaluation.514

The results of our experiment can be seen in515

Fig. 8. We see a clear trend of decrease in gener-516

alization performance as we decrease the number517

example primitives and their use cases. This is in518

tandem with the results shown in Section 2 and519

further validates the idea that providing more ex-520

ample primitives and their use cases helps neural521

sequence models generalize on the primitive gener-522

alization task. Our results help explain that the gap523

in performance of neural sequence models on prim-524

itive generalization tasks in COGS and primitive525

generalization tasks in SCAN or Colors is at least526

partially caused by the difference in the number527

of example primitives and their use cases in these528

datasets.529

E Implicit Word Learning530

Drawing analogy from human vocabulary acquisi-531

tion (Bloom, 2000), our primitive generalization532

setting corresponds to the case when a child is533

explicitly explained the meaning of a word. But534

children can learn word meaning from implicit us-535

age. In our setting this would translate to using536

0 5 10 20
Number of Primitives

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

Di
st

an
ce

euclidean
Transformer
LSTM

manhattan
Transformer
LSTM

cosine
Transformer
LSTM

Figure 9: Measuring the similarity of the embedding
of isolated primitive with the embeddings of example
primitives for learned Transformer and LSTM models
as we increase the number of example primitives in the
Colors train set.

a primitive in a more complex construction, say 537

‘jump twice→ JUMP JUMP’ instead of the original 538

‘jump→ JUMP’. It would be interesting to evalu- 539

ate how well seq-to-seq models learn the meanings 540

of words from a single sentence and whether they 541

learn to use that word compositionally with other 542

words. 543

We consider the ‘add jump’ split in SCAN. In- 544

stead of providing the ‘jump→ JUMP’ primitive 545

definition in the train set, we instead provide one 546

compositional sentence featuring ‘jump’. We vary 547

the complexity of this sentence as shown in Table 4. 548

Similar to the case of providing only the primitive 549

definition, we observe that models are unable to 550

generalize and achieve near-zero accuracies. 551

We now wish to see whether the presence of 552

more number of primitives and their sentences in 553

the train set helps a model generalize in this sce- 554

nario (like it did for primitive definitions as shown 555

in Section 2). We consider the setup of having 100 556

primitives and their sentences in the train set (Sec- 557

tion 2) apart from the one sentence with the word 558

‘jump’. We find that models are able to achieve 559

near-perfect generalization accuracies. 560

This shows that our idea holds more generally: 561

Adding more primitives and their sentences helps a 562

model effectively learn the meaning of a new prim- 563

itive, whether specified explicitly via a primitive 564

definition or implicitly in a sentence. 565

F Details of Experimental Setups and 566

Other Results 567

F.1 Embedding of Isolated Primitive 568

We scale the embedding vectors to unit L2-norm 569

for calculating the euclidean distance and unit L1- 570

norm for calculating the manhattan distance. For 571

8

600 400 200 0 200
600

400

200

0

200

400

600

(a) No extra primitives
400 200 0 200

200

0

200

400

600

(b) 10 extra primitives
500 400 300 200 100 0 100 200

200

0

200

400

600

(c) 20 extra primitives

Figure 10: Visualizing the t-SNE reduced embeddings of isolated primitive (), example primitives () and non-
primitives () from a learned LSTM model as we increase the number of example primitives in the Colors train set.

3035404550 100 150
Number of Primitives

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Linear
Quadratic
Uniform-100
Skewed

(a) Other Distributions

20 50 100 200 500 1000
Number of Examples per Primitive

10

20

50

75

100

Nu
m

be
r o

f P
rim

iti
ve

s

0.0 0.0 0.8 1.1 1.8 4.2

0.7 1.3 9.9 11.3 12.8 35.6

7.6 15.3 27.4 45.9 73.2 84.1

21.0 41.7 53.6 74.8 79.6 85.9

43.6 65.4 88.8 90.3 92.1 93.7

(b) Uniform Distribution

Figure 11: Measuring the generalization performance
of LSTM on different types of train set distributions of
the SCAN dataset.

Colors dataset as well, we compare the average dis-572

tance with other primitives before and after adding573

primitives to the training data. We again find that574

as we increase the number of example primitives in575

the training set, the embedding of the isolated prim-576

itive (‘zup’) gets closer to the example primitives577

(refer to Fig. 9) in terms of Euclidean, Manhattan578

and Cosine Distances.579

We additionally show the t-SNE plots of the580

learned embeddings for the LSTM model on the581

Colors dataset (Fig. 10).582

F.2 Distributions583

In Section 3, we showed results of the Transformer584

model on various train set distributions of the585

SCAN dataset. We also experimented with the586

LSTM model, the results of which can be found587

in Fig. 11. We see the same trend as we saw for588

Transformers.589

G A Note on Other Data Augmentation590

Methods591

Applying data augmentation methods such as592

GECA (Andreas, 2020) on SCAN will lead to ad-593

dition of augmented training examples containing594

combinations of the isolated primitive ‘jump’.595

Concurrent to this work, Anonymous (2022) pro-596

posed a data augmentation method based on the597

theory of meaningful learning. Similar to our work, 598

they also augment the train set by adding more 599

primitives (e.g. ‘jump_0’, ‘jump_1’, ..., ‘jump_n’). 600

However, compared to our work, their setup is com- 601

pletely different: The new primitives that they add 602

to the train set are all still mapped to the output to- 603

ken of an example primitive ‘jump’ (i.e. ‘JUMP’). 604

Their train set has examples showing compositions 605

of ‘jump’ while their test set evaluates for novel 606

compositions of the newly added primitives. We 607

argue that their setup cannot be considered one- 608

shot primitive generalization since now the model 609

can see the output token ‘JUMP’ in composition 610

with other words. We claim that this familiarity 611

with the output token enables a model to general- 612

ize well on the test data even if the newly added 613

primitives are only presented one-shot in the train 614

set. Indeed, Lake and Baroni (2018) also suggested 615

that the reason why models are able to do well on 616

the ‘turn left’ split of SCAN is because the train 617

set consists of many examples that have the output 618

token ‘LTURN’ used compositionally. 619

To validate our claim, we propose a simple exper- 620

iment. In the original SCAN ‘add jump’ split, we 621

map ‘jump→WALK’ instead of ‘jump→ JUMP’ 622

for all examples (primitive definitions as well as 623

compositional sentences) in both the train and test 624

sets. In this setup, even though the input word 625

‘jump’ is seen only once at train time, it’s mapping 626

‘WALK’ is used compositionally in many examples. 627

On evaluating a Transformer model on this split, 628

we found that it achieves near-perfect accuracies. 629

This shows that providing compositional examples 630

with the output token of the isolated primitive not 631

only breaks systematicity, but is the main reason 632

behind the high performance of models in that set- 633

ting. 634

9

