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Abstract

Long-tailed visual recognition has received increasing attention recently. Despite
fine-tuning techniques represented by visual prompt tuning (VPT) achieving sub-
stantial performance improvement by leveraging pre-trained knowledge, models
still exhibit unsatisfactory generalization performance on tail classes. To address
this issue, we propose a novel optimization strategy called Gaussian neighborhood
minimization prompt tuning (GNM-PT), for VPT to address the long-tail learning
problem. We introduce a novel Gaussian neighborhood loss, which provides a tight
upper bound on the loss function of data distribution, facilitating a flattened loss
landscape correlated to improved model generalization. Specifically, GNM-PT
seeks the gradient descent direction within a random parameter neighborhood,
independent of input samples, during each gradient update. Ultimately, GNM-PT
enhances generalization across all classes while simultaneously reducing compu-
tational overhead. The proposed GNM-PT achieves state-of-the-art classification
accuracies of 90.3%, 76.5%, and 50.1% on benchmark datasets CIFAR100-LT (IR
100), iNaturalist 2018, and Places-LT, respectively. The source code is available at
https://github.com/Keke921/GNM-PT.

1 Introduction

Long-tailed visual recognition provides solutions to the challenges posed by the prevalent imbalance
and multitude of classes in real-world data. Its training data mirror the real-world distribution, wherein
a few categories (head classes) boast abundant samples, while a substantial number of categories
(tail classes) exhibit very few samples, conforming to a long-tail distribution [58]. Given its ubiquity
and practicality, long-tailed visual recognition has attracted considerable attention, and numerous
approaches have been proposed in recent years. Based on the data processing workflow, these
methods can be broadly categorized into three types [30]: 1) data manipulation [17, 49, 8, 59, 35], 2)
representation improvement [68, 23, 72, 22], and 3) model output modification [2, 48, 42, 32, 33].
These methods address the challenge of long-tailed learning from diverse perspectives by extending
the traditional training-from-scratch approach.
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Figure 1: Loss landscape comparison of VPT based on ViT-B/16 with CE loss (best view in color).
The dataset used is CIFAR100-LT with an imbalance ratio of 100.

Recently, leveraging the robust discriminative capabilities of pre-trained models through the integra-
tion of multi-head self-attention (MHSA) based networks [54, 11] and parameter-efficient fine-tuning
(PEFT) techniques [21, 69, 63, 15, 16] has led to substantial enhancements in model performance on
long-tailed data. For example, Tian et al. [52] introduced the text modality by CLIP [46] to aid in
visual representation. Dong et al. [10] exploited visual prompt tuning (VPT) to learn class-shared and
group-specific prompts for long-tailed data. These methods essentially increase model compatibility.
However, even with the assistance of large-scale pre-trained knowledge, PEFT represented by VPT
still exhibits inferior generalization performance on tail classes compared to head classes.

Chen et al. [5] emphasize that converged ViTs exhibit extremely sharp local minima, hindering
their generalization [12], particularly for tail classes with limited samples. The imperative neces-
sity to improve tail-class accuracy resides in advancing the generalization capability of PEFT, a
facet extensively elucidated within the optimization framework [18]. Searching for flat minima by
sharpness-aware minimization (SAM) [14] represents a promising optimization technique to improve
model performance (as shown in Figure 1). SAM first captures the sharpness of loss landscape,
which correlates with the generalization gap, based on gradient directions, and then searches for flat
minima. Nevertheless, SAM encounters two challenges when applied to long-tail data: 1) flat minima
primarily target head classes [71, 70], and 2) it involves two sequential gradients computation.

This paper proposes a novel optimization strategy, named Gaussian neighborhood minimization
prompt tuning (GNM-PT), inspired by SAM of flattening the loss landscape to enhance model
generalization. Since the widespread usage, the flexibility of prompt and the suitability amount of
trainable parameters for visualizing the loss landscape, we select VPT as a representative of PEFT
technology to study. GNM-PT shows superior performance than SAM-based methods, particularly
targeting long-tailed visual recognition tasks.

Specifically, we propose to minimize a novel Gaussian neighborhood loss named Gaussian neigh-
borhood minimization (GNM) to obtain flat minima, substantiated by rigorous theoretical proof.
GNM minimizes the mean value of the loss function within the parameter neighborhood, in contrast
to the approaches of minimizing the maximum value of the parameter neighborhood employed by
SAM [14, 26, 36, 43]. The mean value is a tighter upper bound than the maximum. It is evident
from Figure 1(b) that GNM yields a distinctly pronounced convexity, characterized by relatively
lower loss values, thereby leading to a more optimal solution. The calculation is achieved by random
sampling from a normal distribution as the perturbation for the training parameters. The proposed
GNM equally constrains smoothness optimization through a sample-independent perturbation without
extra gradient calculations, which eventually improves model performance for long-tailed data. As
shown in Figure 1(a), GNM, resembling SAM, flattens the landscape of cross-entropy (CE) loss. To
further enhance the classification capability of the PEFT methods exemplified by VPT, we harness
information from high-level prompts by merging the prompt with the class token for the ultimate clas-
sification. We theoretically validate the rationale behind the proposed method. Extensive experiments
on benchmark datasets demonstrate that GNM-PT shows great generalization ability on long-tail
data, surpassing existing methods. Ablation experiments further prove that GNM improves model
performance as well as maintains computational efficiency. Our main contributions are summarized
as follows: 1) We identify pressing concerns, explicitly focusing on the imperative need for pre-
trained models to enhance the generalization abilities across all classes while concurrently mitigating
computational time. 2) We propose the efficient GNM-PT, tailored for long-tailed visual recognition
based on VPT, which can improve model generalization while minimizing computational overhead. 3)
We provide theoretical evidence supporting the superiority of the proposed GNM-PT. Comprehensive
experiments also demonstrate that GNM-PT outperforms its state-of-the-art counterparts.
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2 Related work

2.1 DNN-Based Model for Long-Tailed Learning

Deep neural networks (DNNs) have made significant advancements in long-tail visual recognition
in the last few decades. Re-balancing the data distribution, including re-sampling the input data [3,
40, 23, 56, 64] and re-weighting the loss function [13, 49, 8, 24, 44] is the most direct and effective
way to improve the performance of the tail classes. Re-margining methods [2, 33, 42, 32, 55]
leave larger margins for tail classes than for head classes to improve the separability of tail classes,
which can alleviate overfitting and improve model generalization. However, these methods, while
improving the performance of tail classes, come at the cost of sacrificing the accuracy in head classes.
Ensembling learning encompasses redundant ensembling [57, 1, 27, 29, 22], which aggregates
separate classifiers or networks in a multi-expert framework, and complementary ensembling [68, 6,
61], which involves statistically selecting different data divisions. Studies have demonstrated that
ensembling methods, particularly redundant ensembling, can achieve SOTA performance and generate
more robust predictions by reducing model variance [27, 57] and/or increasing data diversity [29,
34, 61]. Additionally, various alternative methodologies within the realm of DNN-based long-
tailed learning. For example, data augmentation [45, 65], decoupling representation [23, 66], logit
adjustment [2, 42, 32, 31], to name a few.

2.2 MHSA-Based Fine-Tuning for Long-Tail Learning

Recent advancements in the field of computer vision have harnessed the potential of pre-trained
MHSA-Based models, as exemplified by CLIP [46] and the Visual Transformers (ViTs) [21]. In
contrast to the conventional practice of training DNNs from scratch, recent proposed PEFT tech-
niques [21, 4, 20], adopted in RAC [38], VL-LTR [52], LPT [10], and PEL [50], to name a few,
showcase that the meticulous fine-tuning of pre-trained models can yield surprising improvements in
the performance of long-tailed visual recognition tasks. For example, VL-LTR employs a contrastive
language-image pre-training approach, known as CLIP, and integrates supplementary image-text web
data for fine-tuning. LPT fine-tunes a vision Transformer using visual prompt tuning [21], employing
a two-stage training strategy. Nevertheless, it is worth noting that their performance in tail classes
still exhibits inferior results compared to that in head classes.

2.3 Sharpness-Aware Minimization

Hochreiter and Schmidhuber [18] first pointed out that flat minima corresponds to low network
complexity and high generalization performance. Li et al. [28] proposed to visualize the loss
landscape and used it to find the flat minima. Subsequently, Foret et al. [14] proposed SAM to seek
flat minima and minimize the loss function, so as to improve model generalization capability. Chen
et al. [5] demonstrated that ViTs converge at extremely sharp local minima, and they can surpass
ResNets in both accuracy and robustness when combined with SAM optimizer. As for long-tailed
data, models often showcase varying levels of generalization performance across different classes,
with the tail class typically exhibiting inferior performance. Based on this, CCSAM [71] scales the
intensity of SAM for classifier inversely with the number of samples available for each class. Zhou
et al. [70] observed that, despite the utilization of SAM, the tail classes, due to their substantially
smaller sample sizes in comparison to head classes, have limited influence on model parameters.
As a result, the loss landscape for tail classes lacks the desired flatness. To address this issue, they
proposed ImbSAM, which isolates SAM for head classes and concentrates exclusively on tail classes.
Both CCSAM and ImbSAM are designed to bolster generalization capabilities, particularly for tail
classes, albeit at the cost of a slight reduction in the performance of head classes.

3 Methodology

3.1 Preliminaries

Visual Prompt Tuning. In VPT [21], np prompt tokens P = [p1,p2, · · · ,pnp ] ∈ Rnp×D are
trained to facilitate transfer learning on new datasets with a constraint on the number of learnable
parameters, where D is the dimension of tokens in the pre-trained ViT [11]. The prompt tokens
encode task-specific information through collaboration with patch representations obtained from ViT
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blocks. The only parameters that need training are prompt and classification header. There are two
variations: 1) VPT-Shallow, which inserts prompts only at the first block, and 2) VPT-Deep, which
inserts prompts at all blocks. Take VPT-deep as an example, it is expressed as:[

zlcls,Z
l
]
= Blockl

([
pl−1, zl−1

cls ,Zl−1
])

, (1)

where pl is the learnable prompt, zlcls is the class token, and Zl =
[
zl1, z

l
2, · · · , zlNz

]
represents Nz

patch tokens. Blockl denotes the l-th layer of the pre-trained ViT model.

VPT demonstrates notable efficacy in low-data scenarios and maintains its advantages across varying
data scales [21]. Despite achieving significant performance improvements, it is noteworthy that VPT
exhibits substantial differences in accuracy across different categories. For example, on CIFAR100-
LT, the original VPT achieves Top-1 accuracies of 92.11%, 82.86%, and 64.83% for the head, median,
and tail classes, respectively. Its generalization ability towards tail classes can be further improved.

Sharpness-Aware Minimization. SAM [14] can improve the generalization ability for models by
finding an optimal with low curvature. That is, SAM minimizes a specific point and its neighborhoods
in the loss landscape of criterion LD(θ) w.r.t data distribution D. It is derived from PAC-Bayesian
generalization bound [41] and following [12, 71], which is, for any ρ > 0 and distribution D, with
probability 1− ρ over a training set T i.i.d sampled from D, the criterion LD(θ) satisfies:

LD(θ) ≤ max
∥ε∥2

2≤ρ
LT (θ + ε) + h(

∥θ∥22
ρ2

), (2)

where h is a strictly increasing function. It can be theoretically substituted by an L2 weight decay

regularizer
λ

2
∥θ∥22 due to its monotonicity. λ denotes the weight decay coefficient. Foret et al. [14]

define the sharpness aware loss LSAM
T (θ) = max

∥ε∥2≤ρ
LT (θ + ε) and sharpness of the loss function

L as LSAM
T (θ) − LT (θ), which measures the loss increasing rate by perturbing θ with a nearby

parameter value ρ. They propose a methodology wherein parameter values are selected by solving
the sharpness aware minimization (SAM) problem:

θ∗ = min
θ

max
∥ε∥2≤ρ

LT (θ + ε) +
λ

2
∥θ∥22. (3)

When comparing Equation (3) to the standard training loss, it requires that the maximum loss value of
the parameter within the neighborhood of radius ρ centered on θ also remains low. The direction of the
gradient of LT (θ) indicates the maximum value of the loss within the neighborhood. Subsequently,
for step t, the optimal perturbation vector ε̂t obtained based on the gradient of LT (θ) to obtain LSAM

T .
The parameters are updated w.r.t. the perturbed model parameters θ + ε̂:

ε̂t = ρSAM
∇θLT (θt)

∥∇θLT (θt)∥22
, (4)

θSAM
t+1 = θt − αt (∇θt

LT (θt)|θt+ε̂t
+ λθt) . (5)

where ρSAM represents the radius of the parameter neighborhood for SAM, and αt denotes the
learning rate scheduled in step t.

3.2 Prompt Tuning with Gaussian Neighborhood Minimization

Despite the effectiveness of SAM and its strong theoretical foundation, it exhibits twofold deficiencies:
• For long-tailed data, ε̂ for tail classes is often negligible due to the dominance of head classes
with a large number of samples in determining the gradient direction. Consequently, this leads to a
challenge in achieving effective generalization for tail classes [71, 70].
• At each step, two gradient computations are required, namely ∇θLT (θt) and ∇θLT (θt + ε̂t),
resulting in a duplication of the computational overhead.

To address the aforementioned issues of head-class dominant optimization and double gradient
computation, we propose GNM-PT.

Gaussian Neighborhood Minimization (GNM). To mitigate the presence of sharp minima and
enhance the performance of VPT on long-tailed data, we can directly minimize the loss within the
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parameter neighborhood, thereby attaining a flattened loss landscape. We introduce the Gaussian
neighborhood loss LGN

T on T , which is defined as:

LGN
T (θ) = Eεi∈N (0,σ2) [LT (θ + ε)] . (6)

��̃

�
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�������

�������

Figure 2: Schematic of optimization direction
in GNM3. θOri

t+1 and θGNM
t+1 represent the gra-

dient update w.o. and w. GNM for step t+ 1.

Optimizing LGN
T is equivalent to optimizing an upper

bound of the distribution D using the training set T
sampled i.i.d. from D. The detailed theoretical proof
will be discussed in the following section. Then,
substituting LSAM

T in Equation (3) with LGN
T , we

can obtain the parameter update strategy of GNM:

ε̃t = ρGNM · [εi]ki=1 , εi ∼ N (0, σ2), (7)

θGNM
t+1 = θt − αt (∇θt

LT (θt)|θt+ε̃t
+ λθt) . (8)

ρGNM in Equation (7) represents the radius of the pa-
rameter neighborhood for GNM. The detailed deriva-
tion of the gradient for GNM can be found in Ap-
pendix A. Figure 2 schematically illustrates a single
GNM parameter update.

Remark 1. Handling Long-Tailed Data. GNM is better suited for long-tailed data.

Proof. If T is a long-tailed training set i.i.d. sampled from D, the direction of gradients in existing
methods such as SGD and SAM is predominantly influenced by head classes. (The detailed proof
can be found in Appendix B.) Consequently, optimization through Equation (4), which is sample-
dependent, will be determined mainly by the head classes. Conversely, Equation (7) is in a sample-
independent manner, avoiding classes with large numbers of samples that dominate the direction of
the perturbation vector.

Remark 2. Computational Time. GNM saves computational overhead compared to SAM.

Proof. Even when disregarding second- and higher-order terms (for example, see Foret et al. [14],
Zhou et al. [71], Mi et al. [43] for more details), it is apparent from Equation (4) that solving for ε̂t
necessitates the computation of one gradient involving a forward and backward pass, while calculating
θt+1 requires another forward and backward pass. As a result, in SAM calculation, which retains
only first-order terms, the parameter update already requires an additional forward and backward pass,
undesirably doubling the computation time. Conversely, Equation (7) mitigates the computational
burden and improves the precision of perturbations.

Remark 3. Loss landscape. GNM can achieve a flat loss landscape for VPT.

Figure 1 and Section 4.4 empirically demonstrate the loss landscape obtained by GNM for VPT is
flattened than the original VPT and SAM. Appendix I and Appendix L demonstrate that besides VPT,
GNM can also improve other PEFT methods such as AdapterFormer [4] and other backbones such as
ResNet based models.

Although GNM is not affected by class sizes and improves the generalization performance of each
category equally, head-class bias caused by the classifier still exists. Two-stage strategy [56, 23, 10] is
effective. Classifier re-balance strategy, including deferred re-weighting/sampling (DRW or DRS) [2],
classifier Re-training (cRT) [23], nearest class mean classifier (NCM) [23], to name a few, can be
employed. The overall training procedure of GNM-PT is summarized in Appendix D.

3.3 Theoretical Analysis of GNM

This section explains GNM from the theoretical perspective. We introduce the following theorem to
demonstrate the compactness of the upper bound of the loss function across the distribution D.

3The loss landscape for the background adheres to the same settings in Figure 2 of SAM [14].
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Theorem 1. For any 0 < δ < 1, and number of samples n ∈ N+, with probability 1− δ over the
training set T sampled i.i.d. from a distribution D, the following generalization bound w.r.t. model
parameters θ holds:

LD(θ) ≤ Eεi∈N (0,σ2) [LT (θ + ε)] + h(
∥θ∥22
4σ2

), (9)

where h : R+ → R+ is a strictly increasing function.

Proof. Based on the condition that adding Gaussian perturbation should not decrease the test error,
LD satisfy:

LD(θ) ≤ Eεi∈N (0,σ2) [LD(θ + ε)] . (10)
By Theorem 2 in Foret et al. [14] and Theorem 1 in Zhou et al. [71], the Gaussian perturbation satisfy:

Eεi∈N (0,σ2) [LD(θ + ε)] ≤ Eεi∈N (0,σ2) [LT (θ + ε)]

+

√√√√√ 1

4
k log

(
1 +
∥θ∥22
kσ4

)
+ log(

n

δ
) + 2 log(6n+ 3k) +

1

4

n− 1
, (11)

where k is the dimension of θ. Since log(1 + x) < x holds for all x > 0, Equation (11) can be
simplified to:

Eεi∈N (0,σ2) [LD(θ + ε)] ≤ Eεi∈N (0,σ2)LT (θ + ε)

+

√√√√ ∥θ∥22
4σ2

+ log(
n

δ
) +O(1)

n− 1
. (12)

The term containing square roots in the above expression is a strictly increasing function. Therefore,
by combining it with Equation (10), Theorem 1 is proved.

Similar to [14, 71], h in Equation (9) can be replaced by L2 weight decay regularizer λ
2 ∥θ∥

2
2.

Minimizing LD can be achieved by solving the following GNM problem:

min
θ

LGN
T (θ) +

λ

2
∥θ∥22. (13)

Hence, the parameter updates given by Equation (7) and Equation (8) for GNM can minimize the
upper bound given of LD(θ) by Theorem 1.
Remark 4. Upper Bound for Loss Function. GNM achieves a tighter upper bound for loss function
than SAM.
Proof. According to Equation (2), LSAM

T is obtained by minimizing the maximum of the loss within
the parameter neighborhood of radius ρSAM . By adjusting the variance σ, LGN

T is obtained by
minimizing the average value of the loss function within the parameter neighborhood rGNM . It
is evident that when ρSAM ≥ ρGNM , EρSAM

[LT (θ + ε)] ≤ maxρGNM
[LT (θ + ε)]. Therefore,

LGN
T is a tighter upper bound on the loss over D than LSAM

T .

4 Experiment

4.1 Datasets

CIFAR100-LT. We adopt the same settings utilized in [8, 2] to establish the long-tailed version by
downsampling the original CIFAR100 dataset [25] with different imbalance ratios IR = nmax/nmin,
where nmax, nmin represent the class sizes of the most and the least frequent classes, respectively.
Following [32], we set the imbalance ratios at 200, 100, 50, and 10.

Places-LT. It is artificially truncated from its balanced version, Places365 [67]. The long-tailed
version was first created by Liu et al. [37]. Places-LT consists of 62.5K training images with an
imbalance ratio of 996.

iNaturalist2018. iNaturalist is a substantial real-world dataset that inherently exhibits an exceedingly
imbalanced distribution. In our experiments, we leverage the widely employed 2018 version [53]
(iNat for short), encompassing 437.5K images across 8,142 distinct species. This dataset features an
imbalance ratio of 512.
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4.2 Implementation Details

Evaluation Protocol. Following the fundamental assumption that every class carries equal impor-
tance, all classes with varying frequencies in the training set are granted an equal number of samples
during testing. Top-1 classification accuracy is the primary metric for assessing the performance of
various methods. Following Liu et al. [37], we additionally provide accuracy measurements for three
class splits based on the number of training data: Head (> 100 images), Medium (Med for short,
20 ∼ 100 images), and Tail ( ≤ 20 images).

Model and Parameter Settings. Following Dong et al. [10], we employ ViT-B/16 pre-trained on
ImageNet-21K and VPT-deep for prompt tuning, and GCL [32] as the loss function. The same data
augmentation strategies outlined in [48, 29, 22] are adopted, consistent with widely adopted practices
among mainstream methods. We employ SGD with GNM as an optimizer and set the batch size
to 128, a learning rate of 0.01, accompanied by a cosine learning rate scheduler. For parameter
settings of the Gaussian distribution parameters (0, σ2) mentioned in Section 3.2, we exploit the same
strategy as Li et al. [32]. Specifically, we set σ = 1

3 meanwhile clamping ε within the range [−1, 1] to
ensure that its amplitude remains within one and use a hyper-parameter ρ to control the perturbation
magnitude. We adopt DRW for classifier re-balance. Notably, LPT [10] also employs a re-balance
strategy during the group prompt tuning stage. For CIFAR100-LT and iNat, we fine-tuned models
for 70 epochs, with the final 10 epochs for DRW. For Places-LT, the models undergo a fine-tuning
process spanning 100 epochs, with the last 40 epochs for DRW.

4.3 Comparison with Prior Arts

4.3.1 Compared Methods

We compare our proposed GNM-PT with several state-of-the-art methods, broadly categorized into
two main types.

Table 1: Comparison on CIFAR100-LT w.r.t top-1
classification accuracy (%).

Method 200 100 50 10
DNN-based model (Backbone: ResNet32)

BBN [68] 37.2 42.6 47.0 59.1
RIDE [57] 45.8 50.4 55.0 -
MisLAS [66] 43.5 47.0 52.3 63.2
BCL [72] - 51.9 56.6 64.9
GCL [32] 44.8 48.6 53.6 -
NCL [29] - 54.2 58.2 -
GPaCo [7] - 52.3 56.4 65.4
SHIKE [22] - 56.3 59.8 -

DNN-based model with SAM
CCSAM [71] 45.7 50.8 53.9 -
ImbSAM [70] - 54.8 59.3 59.7
Self-attention-based model (Backbone: ViT-B/16)
VPT [21] 72.8 81.0 84.8 89.6
LiVT [62] - 58.2 - 69.2
LPT [10] 87.9 89.1 90.0 91.0
GNM-PT (ours) 89.2 90.3 91.2 91.8

Note: The best and second-best results are shown
in underline bold and bold, respectively.

DNN-based model. We compare with (1)
two-stage methods, namely BBN [68], LWS
[23], MiSLAS [66]; (2) logit adjustment meth-
ods, i.e., GCL [32] and LDAM [2]; (3) ensem-
bling learning methods, including, RIDE [57],
NCL [29], and SHIKE [22]; and (4) contrastive
learning, represented by GPaCo [7]. Addi-
tionally, we compared two recently proposed
SAM-based methods, CCSAM [71] and Imb-
SAM [70], explicitly designed to address long-
tail data.

MHSA-based model.

Recently, MHSA-based models represented
by ViT have been employed in long-tail vi-
sual recognition. We compare with visual-only
methods, including LiVT [62], VPT [21], BAL-
LAD [39], LPT [10], and Decoder [60]. All
methods were implemented using ViT-B/16 for
a fair comparison. In addition, VL-LTR [52],
RAC [38] and GML [51] are also MHSA-based
models which use supplementary data (i.e., text
information). We also report the results ob-
tained by these methods for reference.

4.3.2 Comparison Results

Comparison on CIFAR100-LT. We present the comparison results for CIFAR100-LT in Table 1.
Our proposed GNM-PT exhibits superior performance across all commonly used imbalance ratios
compared to the competing methods. Notably, as the imbalance ratio increases, the effectiveness of
our GNM-PT becomes increasingly apparent on CIFAR100-LT. Specifically, our proposed method
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achieves improvements of 1.3%, 1.2%, 1.2%, and 0.8% over the second-best method, namely
LPT [10], for imbalance ratios of 200, 100, 50, and 10, respectively.

Comparison on iNat. Table 2 provides results on iNat. The proposed GNM-PT achieves a top-1
classification accuracy of 76.5%, surpassing DNN-based methods. Compared with other visual-only
MHSA-based methods that exclusively rely on visual data, our improvement may not be substantial
(76.5% However, it is noteworthy that GNM-PT is trained with a relatively small number of epochs
(70 and 80 epochs without and with DRW, respectively). In contrast, LPT [10] requires 160 epochs
(80 for shared prompt tuning and 80 for group prompt tuning), while LiVT [62] requires 100 epochs.
Our proposed method can even achieve results comparable to those with supplementary data. For
example, VL-LTR [52], which requires image-text pairs, achieves an accuracy of 76.8%, only 0.3%
and 0.5% higher than GNM-PT with and without DRW, respectively. Notably, the adoption of DRW
in GNM-PT has the potential to enhance overall performance, albeit with the trade-off of sacrificing
head-class accuracy to bolster tail-class accuracy. This observation may be attributed to suboptimal
parameter selection in calculating effective numbers in DRW, an aspect that we plan to delve into in
future work.

Table 2: Acc. (%) comparison on iNat.

Method Head Med Tail Overall
DNN-based model (Backbone: ResNet50)

LWS [23] 72.9 71.2 69.2 70.5
RIDE [57] 76.5 74.2 70.5 72.8
MisLAS [66] 73.2 72.4 70.4 71.6
GCL [32] - - - 72.0
NCL [29] 72.7 75.6 74.5 74.9
GPaCo [7] - - - 75.4
SHIKE [22] - - - 75.4

DNN-based model with SAM
LDAM+SAM [47] 64.1 70.5 71.2 70.1
CCSAM [71] 65.4 70.9 72.2 70.9
ImbSAM [70] 68.2 72.5 72.9 71.1

MHSA-based model (Backbone: ViT-B/16)
Supplementary with linguistic data

VL-LTR [52] - - - 76.83

RAC [38] 75.9 80.5 81.1 80.23

Visual-only
Decoder [60] - - - 59.2
LPT [10] - - 79.3 76.1
LiVT [62] 78.9 76.5 74.8 76.1
GNM-PT (ours) 61.5 77.1 79.3 76.5
GNM-PT (ours) 76.3 77.6 75.0 76.34

Table 3: Acc. (%) comparison on Places-LT.

Method Head Med Tail Overall
DNN-based model (Backbone: ResNet152)

LWS [23] 40.6 39.1 28.6 37.6
RIDE [57] 44.4 40.6 33.0 40.4
MisLAS [66] 39.6 43.3 36.1 40.4
GCL [32] 38.6 42.6 38.4 40.3
NCL [29] - - - 41.8
GPaCo [7] 39.5 47.2 33.0 41.7
SHIKE [22] 43.6 39.2 44.8 41.9

DNN-based model with SAM
CCSAM [71] 41.2 42.1 36.4 40.6

MHSA-based model (Backbone: ViT-B/16)
Supplementary with linguistic data

VL-LTR [52] 54.2 48.5 42.0 50.13

RAC [38] 48.7 48.3 41.8 47.23

Visual-only
Decoder [60] - - - 46.8
LPT [10] 47.6 52.1 48.4 49.75

LiVT [62] 48.1 40.6 27.5 40.8
GNM-PT (ours) 46.6 53.3 49.4 50.1
GNM-PT (ours) 48.6 52.1 47.9 50.04

Comparison on Places-LT. From Table 3, we can observe that GNM-PT continues to outperform
existing methods. Similarly to iNat, GNM-PT obtains performance equivalent to LPT with fewer
training epochs and outperforms LiVT by nearly 10%. Even when compared to VL-LTR and
RAC, which leverage additional auxiliary data, GNM-PT still achieves satisfying performance.
Additionally, from Table 3, it can be observed that DRW improves tail classes at the expense of
significant degradation in head classes on Places-LT. While it resulted in an overall improvement of
1%, the head classes decreased by 2%. This indicates that the chosen effective number employed by
DRW may not be optimal, warranting further investigation. More results on imageNet-LT can be
found in Appendix G.

3The results are obtained with the assistance of textual data.
4The result is obtained without DRW.
5The results are obtained by reproducing the original paper with the recommended settings.
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4.4 Further Analysis

To ensure a fair comparison, the experiments in this section are all executed on the following hardware:
Core(TM) i9-13900K, operating at 3.00GHz, equipped with 128GB RAM, and a single NVIDIA
GeForce RTX 4090 GPU. The dataset is CIFAR100-LT with IR = 100.

GNM vs. SAM. To demonstrate the superiority of GNM, we conducted a comparative analysis with
the SAM from two perspectives: classification accuracy and computational efficiency. We employ
both CE loss and GCL loss utilizing the CIFAR100-LT dataset with an imbalance ratio of 100. Except
for incorporating the optimization of SAM or GNM, all other settings remain identical. Table 4 shows
the results. We can observe that SAM entails a computation time exceeding 1.8 times that of the
original method compared to the baseline methods without additional optimization technologies. In
contrast, GNM incurs only a negligible increase in computation time, namely, less than 2 seconds
per epoch. In addition to time savings, GNM also manifests a discernible improvement in accuracy.
Despite our straightforward adoption of random perturbation vector ε̃ (as detailed in Section 3.2),
its performance is superior to that of the theoretical optimal perturbation vector ε̂ for seeking the
maximum loss value within the neighborhood. It is worth noting that all experiments in this section
employ the same number of training epochs. SAM and GNM do not affect the convergence speed
of the network. The effectiveness across various classes is visualized in Figure 3. While SAM
declines the performance of GCL within the tail classes, our proposed GNM consistently improves
performance across all categories in every scenario. Additional comparison results for the long-tailed
SAM method can be found in Appendix J and Appendix K. Further comparisons for balanced softmax
(BASM) [48] and ResNet-152 backbone can be found in Appendix L

Table 4: Comparison between SAM and the proposed GNM. NET represents Native Execution Time.

Method Acc. (%) NET (s)
CE 81.02 39.78
CE+SAM 82.48 72.51
CE+GNM 82.50 40.16 (↓ 44.61% )
GCL+DRW 89.58 40.00
GCL+DRW+SAM 89.69 74.36
GCL+DRW+GNM 90.28 41.87 (↓ 43.69% )
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Figure 3: Effectiveness comparison of different classes.

Visualization of Loss Landscape. We employ the method in [28] to visualize the loss landscape of
the model. Figure 4 shows the results of the learnable prompts obtained by different optimizers. The
absence of a perceptible change in flatness explains the marginal improvement of GCL+DRW+SAM
over GCL+DRW in Table 4. In comparison, GNM, by inducing a flattened loss landscape, further
accentuates the improvement over GCL+DRW. An unforeseen advantage is that GNM results in a
smaller loss, indicating that GNM enhances the model fitting to the training data. A flatter landscape
with lower minima contributes to discovering a more optimal solution. By referring to Figure 1 in
Section 1, it can be observed that GNM is effective across various loss functions.
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GCL GCL+SAM GCL+GNM

Figure 4: GCL loss landscapes based on ViT-B/16 (best view in color).

5 Concluding Remarks

In this paper, we observed that class biases persist even when employing large-scale pre-trained
models such as VPT in long-tail learning. While SAM can enhance the generalization performance
of the VPT model on long-tailed data, it still exhibits several shortcomings: neglecting higher-order
terms leads to a suboptimal perturbation vector, additional forward and backward passes double
the computational time, and the generalization is relatively affected by gradients predominantly
originating from head classes. Based on this, we have proposed GNM-PT, which involves fine-tuning
pre-trained models using the innovative Gaussian Neighborhood Minimization (GNM) optimizer.
GNM leverages random noise as a substitute for gradients in the initial step of SAM. The proposed
GNM not only balances the generalization capabilities of both head and tail classes but also reduces
computational time. To fully leverage model information, enhance classifier robustness, and enable
end-to-end training, we additionally employ merging prompt strategy. We have conducted extensive
comparative experiments and ablation studies to demonstrate the effectiveness of the proposed method
and the individual component.

While GNM-PT proves effective, it is not exempt from limitations. Table 2 and Table 3 show that we
still need to further re-balance the classifier. However, the re-balanced strategy adopted compromises
performance in head classes to enhance overall performance. Our further research will focus on a
more effective optimization strategy that simultaneously improves feature representation and classifier
performance, while also enhancing the generalization ability across all classes.
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Appendix

A Gradient Computation for GNM

We replace the expectation computation in LGN
T with random sampling during training. For a single

gradient computation, we have:

∇θL
GN
T (θ) ≈ ∇θLT (θ + ε̃) (14)

=
d(θ + ε̃)

dθ
∇θLT (θ)|θ+ε̃ = ∇θLT (θ)|θ+ε̃. (15)

For simplicity, we omit the subscript indicating the training epoch t.

B Detail Proof of Remark 1

If T is a long-tail training set i.i.d. sampled fromD, the direction of gradients in existing methods such
as SGD and SAM is predominantly influenced by head classes. For the most widely adopted SGD,
a lot of previous works, such as Wang et al. [55], Hsieh et al. [19], Li et al. [31] have theoretically
and empirically demonstrated that the gradient for head classes far exceeds that of tail classes.
Therefore, the optimization is dominated by head classes. Here, we provide proof establishing that
the perturbations within SAM are dominated by head classes.

Proof. For SAM, we analyze the perturbations class by class. Through Eq. (4), we have:

ε← ε̂ = ρ
∇θLT Tail(θ) +∇θLT Head(θ)

∥∇θLT (θ)∥22
. (16)

The ρ 1
∥∇θLT (θ)∥2

2
can be considered to be the same value V for both the head and tail classes. Wang

et al. [55], Li et al. [31] have theoretically and empirically shown that the gradient for head classes
far exceeds that of tail classes, that is, ∇θLT Tail ≫ ∇θLT Tail . Therefore, the perturbation obtained
based on tail classes can be ignored:

ε ≈ ρ
∇θLT Head(θ)

∥∇θLT (θ)∥22
= V · ∇θLT Head(θ). (17)

Consequently, SAM optimization tends to prioritize generalization for head classes.

In contrast, the perturbations obtained by GNM are:

ε← ε̃t = [εi]
k
i=1 , εi ∼ N (0, σ2) (18)

This perturbation remains unaffected by the input samples and their quantities.

C Robust Training strategy for Prompt Tuning.

In Eq. (1), only zlcls is fed into the linear classifier for classification. However, all the learnable
prompts are trained on the fine-tuning dataset and thus contain newly learned information. As the
deep block output incorporates global attention [11], we propose merging prompt (MP) that merges
the last prompt with zLcls (assuming that we have L blocks). Subsequently, we utilize this merged
token as the ultimate class token:

ẑcls = Merge
([
wp · pL−1, wz · zLcls

])
, (19)

where wp and wz are hyper-parameters used to control the merging ratio. ẑcls is eventually fed into
the linear classifier for classification. We use this Merge Prompt technique in our experiments.

D Algorithm for GNM-PT

The training procedure for GNM-PT is outlined in Algorithm 1.
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Algorithm 1 GNM-PT
Input: Training set T , pre-trained model
Output: Fine-tuned model
Initialize the prompt randomly with parameters θ
for t = 1 to T1 do {robust training}

Sample batches data Bt ∼ T
Compute perturbation ε̃t → εt by Eq. (7)
Obtain class token ẑcls by Equations (1) and (19)

Compute GNM gradient: gt = ∇θ
1

|Bt|
LBt(ẑcls,θt) |θt+εt

Update fine-tuning parameters: θt+1 = θt − αt · gt
end for
for t = T1 + 1 to T2 do {re-balance classifier}

Sample batches data Bt ∼ T
Compute perturbation ε̃t → εt by Eq. (7)
Obtain class token ẑcls by Equations (1) and (19)
Compute re-weight parameter wc for class c

Compute GNM gradient: gt = ∇θ
1

|Bt|
∑C

c=1 wcL
c
Bt
(ẑcls,θt) |θt+εt

Update fine-tuning parameters.
end for

E Schematic Comparison of SAM and GNM

Figure 5 compares the optimization directions of SAM and GNM. SAM achieves the flattening of the
loss landscape by introducing perturbations in the opposite direction of gradient descent. In contrast,
GNM accomplishes the flattening of the loss landscape by introducing random perturbations in the
parameter neighborhood using the Monte Carlo method.
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Figure 5: Comparison of optimization directions. θOri
t+1, θSAM

t+1 and θGNM
t+1 represent the original

gradient update, gradient update with SAM and with GNM for step t+ 1, respectively.

F Ablation Study for GNM and Merge Prompt

To validate the effectiveness of each proposed component, we conducted an ablation study using
the CIFAR100-LT dataset with an imbalance ratio of 100, employing GCL loss. For “Merge” in
Eq. (19), we employ addition and assign equal weights to both wp and wz , setting them to 0.5. The
summarized results are presented in Table 5. Incorporating DRW has been observed to enhance
overall performance, resulting in a performance improvement of 1.07%. Additionally, GNM-PT
derives benefits from the design choices made in each individual component. The proposed merge
prompt and GNM optimization further improve the performance from 89.32% to 89.58% and 90.28%,
respectively.
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Table 5: Effect of each component in the proposed GNM-PT on CIFAR-100-LT with
imbalance ratio = 100.

DRW Merge Prompt GNM Acc. (%)
✗ ✗ ✗ 88.25
✓ ✗ ✗ 89.32
✓ ✓ ✗ 89.58
✓ ✓ ✓ 90.28

G Comparison on ImageNet-LT

Similar to Place-LT, imageNet-LT is also artificially truncated from its balanced version, namely
ImageNet [9] and its long-tailed version is created by Liu et al. [37]. ImageNet-LT comprises 115.8K
training images spanning across 1,000 categories, with an imbalance ratio of 256.

We report the accuracy in Table 6. Considering that the model pre-trained on ImageNet-21K contains
information about ImageNet-1K, namely the balanced version of ImageNet-LT, we compare GNM-PT
only with the methods using the same pre-trained models. GNM-PT achieves superior performance,
attaining an 80.4% top-1 classification accuracy, outperforming GML and VPT with a notable margin
of 2.4% and 3.2%, respectively. Furthermore, GNM-PT surpasses competing methods across all
scale classes, demonstrating its outstanding performance.

Table 6: Comparison results on ImageNet-LT.

Method Head Med Tail Overall
Backbone: ViT-B/16

Supplementary with linguistic data
VL-LTR [52] 84.5 74.6 59.3 77.23

GML [51] - - - 78.03

Visual-only
BALLAD [39] 79.1 74.5 69.8 75.7
VPT [21] 79.5 76.5 72.8 77.2
Decoder [60] - - - 73.2
GNM-PT 80.6 81.1 78.2 80.4

H Ablation Study for Hyperparameters

In the comparison experiment with SAM, we used the radius (rSAM ) recommended by the paper
in SAM, which is 0.05. For GNM, we set the amplitude (a) for Gaussian noise based on the radius
in SAM, that is, the actual radius (rGNM ) used in GNM is ρGNM = a × ρSAM . We use a = 0.1
in all experiments. We conducted the ablation study towards the hyper-parameter a in GNM using
CIFAR100 with an imbalance ratio of 100. The results are listed in Table 7. When α → 0, the
interference becomes negligible, effectively restricting the loss function to attain its minimum value
within a small area. The extreme case is α = 0, meaning no additional optimization techniques
are employed. Therefore, the smaller α is, the less pronounced its effect. When α increases: the
disturbance area expands. A large α introduces significant perturbations, potentially deviating from
the basic gradient descent path. Excessively large values of α, for example α = 2, lead to performance
degradation. In the extreme case of α =∞, the model fails to converge.

Table 8 presents ablation studies on the different choices of the variance of the Gaussian distribution.
Additionally, we include the results of using a uniform distribution within the range of [-1,1]. The
results indicate that the variance impacts model performance. This finding demonstrates that, in
addition to the amplitude of ϵ̃, the distribution also influences model performance and is worthy of
further study.

3The results are obtained with the assistance of textual data.

17



Table 7: Ablation study for a on CIFAR-100-LT with imbalance ratio = 100.

a 0.01 0.05 0.1 0.2 0.5 1.0 2.0 SAM (ρSAM = 0.05)
Acc. (%) 90.03 90.31 90.28 90.05 89.54 89.71 88.45 89.69

Table 8: Ablation study for variance on CIFAR-100-LT with imbalance ratio = 100.

ρ 3 2 1 0.8 0.6 0.4 (1/3) 0.2 (uniform distribution)
Acc. (%) 90.03 89.99 90.14 90.23 90.01 90.06 (90.28) 90.12 (90.17)

I Experimental Results for Applying GNM on AdapterFormer

AdapterFormer [4] is one of the recently proposed PEFT techniques. We show the efficacy of GNM
when applied to AdapterFormer. The results are summarized in Table 9. In contrast to prompt tuning-
based approaches, GNM demonstrates relatively modest improvements on AdapterFormer. The
reason is that, compared to prompt tuning methods, AdapterFormer has fewer learnable parameters,
comprising 1.01M and 0.18M parameters, respectively.

Table 9: Results for AdaptFormer with different pre-trained ViT on CIFAR-100-LT with
imbalance ratio = 100. IN21K is short for ViT pre-trained with imageNet-21K. CLIP is intro-
duced by Radford et al. [46].

Method IN21K-SGD IN21K-SAM IN21K-GNM CLIP-SGD CLIP-SAM CLIP-GNM
Acc. (%) 89.14 89.07 89.26 81.70 81.88 81.96

J Comparison with SAM-based Method

Table 10 and Table 11 compare the SAM-based method for long-tailed data, that is, CC-SAM [71].
GNM consistently enhances generalization performance across each class compared to CC-SAM.

Overall, GNM can serve as an optimization method that not only enhances the performance of the VPT-
based model but also improves the performance of CNNs trained from scratch or with full fine-tuning.

Table 10: Comparison results on CIFAR-100-LT.
The backbone is ResNet32.

Imbalance ratio 200 100 50
CC-SAM 45.66 50.83 53.91
GNM 46.33 51.13 54.50

Table 11: Comparison results on Places-LT. The
backbone is ResNet152.

Method Head Med Tail All
CC-SAM 43.69 41.95 31.95 40.46
GNM 43.92 42.13 32.74 40.79

K Comparison Results w.r.t. Optimization Strategies Under the Same
Backbone

Tables 12 and 13 present the comparison of existing optimization strategies and our GNM under the
same training paradigm. We implement the experiments using CIFAR-100-LT with an imbalance
ratio of 100 and take fine-tuning pre-trained ViT-B/16 by VPT with GCL loss as a base training
paradigm, named Base. The re-balancing strategy employed in the second stage can influence the
performance of optimization methods on a per-class level. We conducted a comparative analysis for
various optimization methods, both without and with the application of the rebalancing strategy and
exhibit the result in Tables 12 and 13, respectively. DRW is utilized as the re-balancing strategy. LPT
also employs two stages that include a re-balance strategy, therefore we present it in Table 13.

As observed from Table 12, without the re-balancing strategy to adjust the classifier bias, imbSAM
achieves better overall accuracy. However, ImbSAM has little impact on the head and middle classes.
Additionally, both CCSAM and ImbSAM require two back propagations, thereby doubling the
computation time. Compared to VPT with GCL, which does not include additional optimization,
GNM incurs only a small computational overhead.
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Table 13 shows that the re-balancing strategy sacrifices a small amount of head class performance in
exchange for significantly improving tail class performance. imbSAM essentially does not employ
additional optimization for head classes, whereas CCSAM and GNM use additional optimization for
all classes. However, compared to imbSAM, CCSAM and GNM result in a greater reduction in the
accuracy of head classes. The optimization strategies may have a limited impact on the rebalancing
training process. We will investigate this in detail in future work.

Besides, we provide a detailed analysis of why GNM-PT cannot outperform imbSAM in the first
stage but outperform in the second stage as shown in Table 12 and Table 13. Stage 1 of ImbSAM
already applies strong regularization to tail classes, the rebalancing strategy in stage 2 essentially
duplicates this effect. In contrast, GNM applies the same level of regularization to all classes without
specifically intensifying it for tail classes and thus the strong regularization for tail classes can still
work in stage 2.

Table 12: Optimization strategy comparison. Mod-
els are trained with stage 1 only. NET represents
native execution time (s).

Method Head Med Tail All NET
Base 92.86 88.94 79.28 87.76 40.32
Base + CCSAM 92.81 88.31 79.31 87.84 80.47
Base + ImbSAM 92.92 88.43 84.00 89.02 88.97
Base + GNM-PT 93.67 89.03 81.10 88.46 42.77

Table 13: Optimization strategy comparison (with
stage 2). The listed decreases in accuracy (%) of
head classes are compared to that in Table 12.

Method Head Med Tail All
LPT - - - 89.10
Base 90.08 (↓ 2.78) 89.60 88.14 89.40
Base + CCSAM 90.47 (↓ 2.34) 89.63 88.03 89.54
Base + ImbSAM 91.75 (↓ 1.17) 88.71 87.90 89.62
Base + GNM-PT 91.94 90.17 88.21 90.28

L Experimental Results for Applying GNM with balanced softmax

Table 14 presents the results of applying GNM with balanced softmax (BASM) [48]. The backbone
is ResNet-152 pretrained on imageNet-1k. GNM exhibits improvements across all classes, especially
tail classes. Consequently, the overall performance is enhanced in comparison to SAM.

Figure 6 presents the visualization results for the places-LT trained with Resnet-152. Although, the
performance differences are small as shown in Table 14, it can still be observed that SGD and SAM
exhibit steeper gradients and some irregular protrusions.

Table 14: Comparison results on Places-LT with balanced softmax (BASM).

Method Head Med Tail All
BASM-SGD 43.71 42.66 27.05 39.75
BASM-SAM 43.79 42.85 27.31 39.91
BASM-GNM 43.93 41.96 30.57 40.27

(a) Side view (b) Top view

Figure 6: Loss landscape comparison of ResNet-152 with BASM [48] (best view in color). The
dataset used is Places-LT.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Section 3.2, Section 3.3 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The source code is provided in the Abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The datasets used in this work are publicly available, and the source code is
provided in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 and Appendix H.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 4.3.2 and Section 4.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer:[Yes]
Justification: Section 4.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in the paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. It constitutes foundational research and is not tied to particular applications, let
alone deployments.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The benchmark datasets used in this paper are publicly available. The original
paper that produced the code package and the dataset are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The source code is temporarily available at the anonymized URL provided in
the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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