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ABSTRACT

Trajectory inference seeks to recover the temporal dynamics of a population from
snapshots of its (uncoupled) temporal marginals, i.e. where observed particles
are not tracked over time. Prior works addressed this challenging problem un-
der a stochastic differential equation (SDE) model with a gradient-driven drift
in the observed space, introducing a minimum entropy estimator relative to the
Wiener measure and a practical grid-free mean-field Langevin (MFL) algorithm
using Schrödinger bridges. Motivated by the success of observable state space
models in the traditional paired trajectory inference problem (e.g. target track-
ing), we extend the above framework to a class of latent SDEs in the form of
observable state space models. In this setting, we use partial observations to infer
trajectories in the latent space under a specified dynamics model (e.g. the constant
velocity/acceleration models from target tracking). We introduce the PO-MFL al-
gorithm to solve this latent trajectory inference problem and provide theoretical
guarantees to the partially observed setting. Experiments validate the robustness
of our method and the exponential convergence of the MFL dynamics, and demon-
strate significant outperformance over the latent-free baseline in key scenarios.

1 INTRODUCTION

Estimating the temporal dynamics and trajectories of a population from collections of unpaired ob-
servations1 at specific time points is a challenging fundamental problem with many potential appli-
cations such as single-cell genomic data analysis, e.g. Lavenant & Santambrogio (2022); Lavenant
et al. (2023); Chizat et al. (2022). Existing work has focused on trajectory inference in the fully
observed setting, where all variables that are important to the underlying dynamics are directly ob-
served with no hidden states. We note that research in signal processing and control theory has
overwhelmingly shown the importance of being able to handle latent states in dynamics modeling,
e.g. Hespanha (2018); Davis (2013), since the best physical predictive quantities are often unob-
served (for instance velocity and acceleration of an object whose positions are observed). Even
linear state space models have enjoyed a recent resurgence for modeling text sequence data with
large language models, e.g. Gu & Dao (2023).

While in general the problem of recovering a hidden state is not identifiable, Kalman (1960) and fol-
lowing works introduced systems theory and developed observability conditions on the underlying
dynamics model that does allow for such recovery. For instance, in target tracking, e.g. Doucet et al.
(2001); Bar-Shalom & Li (1995), oftentimes only a position variable is observed, yet the tracking
algorithm uses a state space model that includes a hidden velocity state. This hidden state allows
for better predicting the future position of the target, improving the final trajectory inference by not
only better modeling the dynamics, but making it easier to identify which of several targets observed
at any given time correspond to the current track. The hidden states themselves, when interpretable,
may also be of direct interest for downstream applications.

The trajectory inference problem has many similarities to the tracking problem. In particular, at any
given time, a cloud of points is observed, but these points are not labeled, i.e. there is no indication
of which points at time t1 match to the points at time t2. Inferring these “matches” is the task of
trajectory inference, and closely parallels the data association problem described by Kirubarajan &

1This corresponds to distributions being independent, e.g. see (iv) of Theorem C.1.
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Bar-Shalom (2004); Rezatofighi et al. (2015) in target tracking. As a result, we are motivated to
introduce latent state space modeling to the trajectory inference problem.

While itself being a fully observed framework without incorporating a known dynamics, the opti-
mal transport (OT)-based method of Chizat et al. (2022) is particularly amenable to our aims. It
proposes to optimize collections of particles at each time step to minimize a data fit term (a cost
between the particle cloud and the observed data points) and a trajectory fit term consisting of the
entropic Wasserstein distance between sets of particles at adjacent time points. The entropic OT
framework arises naturally from the SDE model (as we will see later), and provides an explicit and
robust procedure for obtaining inferred trajectories from unpaired time series data by following the
OT plan between time points. Representing the inferred time marginal densities as particles is also
particularly amenable to our partially observed framework, as we can have the particles be in the
hidden state space and form a data fit term to the observations using a specified (stochastic) obser-
vation model. In many ways this parallels the observation model/hidden state particle setup used by
the particle filter Arulampalam et al. (2002) and other sequential Monte Carlo methods Doucet et al.
(2001) for the paired-observation trajectory inference setting.

Note that the problem of trajectory inference is much more difficult than simply the track-
ing/estimation of the sequence of state distributions at each time point (e.g. as in Kim et al. (2021)).
While this sequence of time marginals can be extracted from the inferred trajectory distribution,
the inferred trajectory distribution is a joint distribution over time, i.e. it also provides couplings
between the distributions at each time point. Crucially, this coupling allows for the sampling of
trajectories from the learned distribution and implies knowledge of individual dynamics, rather than
simply uncoupled group dynamics.

Applications While our focus is on the theoretical underpinnings of the latent trajectory inference
problem and MFL-based algorithm, we envision our approach being broadly applicable to a variety
of real-world tasks. For instance, the extra smoothing induced by introducing a hidden velocity state
could improve trajectory inference directly in many settings, including possibly the genomic data
analysis setting mentioned by Chizat et al. (2022). Another possible application domain could be
survey or medical data. Specifically, when trajectory data is needed, longitudinal studies are often
designed where individuals are followed over time and continue to be re-interviewed, but significant
logistical challenges are involved in such a procedure, e.g. Thomson & Holland (2003). Trajectory
inference could allow for different individuals to be sampled at each time point, significantly easing
the burden on researchers. Our approach for introducing hidden states (e.g. velocity) would be
particularly impactful, as in both social science and medical data, often individual’s trajectories (e.g.
preferences or health) do carry significant momentum. Finally, our approach could have advantages
in private learning of time series models or private synthetic data generation for time series. This
is because in (differential) privacy, see e.g. Dwork & Roth (2014); Dwork et al. (2006), the goal is
to preserve the statistics of an individual, and trajectory inference allows for each individual’s data
to be limited to a single point in time, not requiring a full trajectory record that may be difficult to
privatize. Our partial observation framework would allow for even more privacy to be maintained
as some variables could remain hidden if an appropriate dynamics model was available.

Related works See Saelens et al. (2019) for a survey and comparison of single-cell trajectory infer-
ence methods. Schiebinger et al. (2019) introduces the use of OT for trajectory inference; however,
the method generates paths that are generally not smooth. Chewi et al. (2021) uses OT to con-
struct measure-valued splines, which yields smooth paths, Bunne et al. (2022) models population
dynamics as a Jordan-Kinderlehrer-Otto (JKO) flow, and Qu et al. (2024) uses OT to analyze gene
trajectories.

Weinreb et al. (2018) consider the limits of trajectory inference from single-cell snapshots in the
equilibrium setting. However, as far as we are aware, Lavenant et al. (2023) was the first work
to provide theoretical guarantees of any estimator for trajectory inference. They introduce a min-
entropy estimator for unknown gradient-driven drift models and prove convergence to the ground
truth in the limit as the number of observations become dense in the observation period. Chizat
et al. (2022) extends the entropy minimization formulation of Lavenant et al. (2023) by considering
a different fitting functional, reducing optimization space, and using MFL dynamics. Zhang et al.
(2021) considers the application of these OT frameworks to the steady-state setting with known cell
birth and death rates. A recent work Ventre et al. (2024) builds on Lavenant et al. (2023) and provides
theoretical guarantees for trajectory inference in the branching case. Kim et al. (2021) considers a
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similar latent space dynamics model as us and aims to recover the time series of a latent population
distribution, but as noted above their work does not infer a trajectory distribution (specifically, the
inferred time marginals are not coupled), and therefore is not designed to generate trajectory samples
or characterize the individual dynamics (as opposed to population dynamics). These works, along
with ours, do not aim to recover the drift dynamics; however, the works Bunne et al. (2022); Tong
et al. (2020); Hashimoto et al. (2016) do study this problem.

Latent variables in generative models Vahdat et al. (2021) uses score-based generative modeling
in latent space. Jiao et al. (2024) uses a pre-trained encoder and decoder, consider diffusion in latent
space, and prove theoretical guarantees that the output distribution is close to the ground truth.
Hamm et al. (2023); Zhang et al. (2023) consider learning latent manifold structures using OT,
Song et al. (2023a) consider gradient flow in latent space to study equivariant networks, Song et al.
(2023b) study the latent space of generative models using OT, and Al-Jarrah et al. (2024) consider
the nonlinear filtering problem using partial observations using OT. There are also some works
considering concrete applications of Schrödinger bridges with non-Wiener reference measures. For
example, Chen et al. (2014) consider Schrödinger bridges where the prior is any Markov evolution
for control theory and Bunne et al. (2023) show that Schrödinger bridges between Gaussians against
reference measures induced by linear SDEs have a closed forms.

Notation For probability measures µ, ν, the relative entropy (e.g. the KL divergence) is H(µ|ν) =∫
log(dµ/dν)dµ if µ ≪ ν and +∞ otherwise. For n ∈ N, let [n] := {1, . . . , n}. We use X to

denote the latent space and Y to denote the observation space. We use the notation P(·) to denote
the probability distributions over a space. The path space is Ω = C([0, 1] : X ), the set of continuous
X -valued paths. In our theoretical discussion, as in Lavenant et al. (2023), we assume without loss
of generality that the end time interval is t = 1. If R ∈ P(Ω) is a probability measure on the space
of paths, its marginal at time t is denoted as Rt ∈ P(X ). We generally use the Greek letters µ, ρ to
denote probability distributions on X ,Y , respectively. We use δx to denote a Dirac delta at x. By an
abuse of notation, we use | · |2 = ⟨·, ·⟩ ∈ R for both the squared norm of a vector and the quadratic
variation of a stochastic process. For a function g : X → Y and a measure µ, we use g♯µ to denote
the pushforward measure, e.g. g♯µ(B) = µ(g−1(B)) for a measurable set B ⊆ Y .

2 LATENT TRAJECTORY INFERENCE

We now state the problem of latent trajectory inference, which informally is depicted in Figure 1.
At a high level, trajectories are modeled as being generated from a stochastic differential equation
model (SDE) which incorporates both known terms (e.g. the latent dynamics model describing
known relationships between states2) and unknown terms that allow for unknown forces or model
misspecification. Note that specifying the dynamics between the latent states is crucial to make
unobserved states identifiable as discussed later. Specifically, let Xt ∈ X be an unobserved state
vector evolving according to the following SDE for t ∈ [0, 1]:

dXt = −Ξ(t,Xt)dt−∇Ψ(t,Xt)dt+
√
τdBt, (1)

where {Bt} is a Brownian motion, τ is the known diffusivity parameter, Ξ ∈ C([0, 1] × X : X )
is a known driving vector field (i.e. the dynamics model), and Ψ ∈ C2([0, 1] × X ) is an unknown
potential function. Let P be the law of the SDE with initial condition P0 where Pt ∈ P(X ) are the
marginals of P at time t ∈ [0, 1]. Our SDE differs from that of Lavenant et al. (2023); Chizat et al.
(2022) by the addition of non-zero known Ξ which allows for idenfiable non-observed latent states.

As this latent space is not observed, we require a model mapping the latent space to the observation
space in which our data samples live. Consider a smooth function g : X → Y transforming Xt into
the observation space Y: Yt = g(Xt). Suppose we have T observation times with 0 ≤ tT1 < · · · <
tTT ≤ 1, and we observe NT

i i.i.d. samples from the marginal distribution of YtTi :

{Y Ti,j}
NT

i
j=1

i.i.d.∼ g♯PtTi
:= QtTi

, (2)

forming empirical distributions ρ̂Ti =
∑NT

i
j=1 δY T

i,j
. Here, note that our framework allows for varying

number of samples at each time point: i indexes the time, j indexes the data points, and the T
superscript is used to highlight the dependence on the number of time points.

2For instance, the fact that a velocity state additively impacts future positions states.
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(a) Ground truth. (b) Reconstructed trajectories. (c) Velocities.

Figure 1: Constant velocity model, where the variance of the ground truth has been rescaled. We
see that our method, PO-MFL, is more robust as the MFL method fails to converge, and provides
per-particle velocity in contrast to MFL. See Section 4 for the experiment setting.

Our goal is to recover the trajectory distribution P given the marginal snapshots in observation space
(ρ̂T1 , . . . , ρ̂

T
T ). In particular, we provide an algorithm to sample trajectories in the latent space (which

can then be mapped to trajectories on the observation space). In general, to make this problem well-
posed and tractable, we make several assumptions on this very general setup. The first of these is a
notion of observability that generalizes the ensemble observability introduced in Zeng et al. (2015):
Definition 1 (CΨ-ensemble observability). Suppose Xt follows (1). Assume that Ψ is unknown but
restricted to a class CΨ. We say the tuple (g,Ξ, CΨ) is CΨ-ensemble observable if, given g, Ξ, τ , and
all marginals Qt = g♯Pt of Yt for all t ∈ [0, 1], the marginals Pt of Xt are uniquely determined
for all t ∈ [0, 1].

With this observability assumption, we can infer the latent dynamics solely from the marginals Qt.
A discussion of the relationship between this condition and that of classical/ensemble observability
is present in Appendix B. There, we also verify the conditions of Definition 1 for several important
setups, e.g., the key velocity-based dynamics model we use in our experiments.

Theoretical assumptions We use the following assumptions for the theoretical analysis and provide
a more thorough discussion in Appendix C. Let X ,Y be Polish spaces, where X is a smooth and
compact Riemannian manifold or a compact and convex subset of Rd. In the manifold setting, we
assume its Ricci curvature K is bounded from below, e.g. K > −∞.

The path space Ω = C([0, 1] : X ) is equipped with the uniform topology and its Borel σ-algebra.
The probability space on paths P(Ω) is equipped with the weak topology, e.g. convergence against
bounded, continuous functions. Assume our probability space (Ω,F ,P) is complete and filtered,
where the filtration is with respect to the process {Xt}. P is a probability measure, and if it is not
specified, expectations are taken with respect to P. Let WΞ,τ be the measure induced by the SDE
dZt = −Ξ(t, Zt) dt+

√
τ dBt.

Assumption 2.1 (Dynamics and Observation Model). Assume Ξ : C([0, 1] × X : X ) is known,
divergence-free, Lipschitz continuous, and satisfies ∥Ξ∥L∞ < +∞. Assume the observation func-
tion g : X → Y is smooth, measurable, bounded, and time invariant.

The divergence-free assumption is required so that the time marginals of WΞ,τ remain vol for
all time if the initial condition is vol,3 where vol denotes the uniform measure on X . Lipschitz
continuity and ∥Ξ∥L∞ < +∞ are technical conditions for our proofs, and there are also some
necessary mild technical conditions on the pair (Ξ,Ψ). Finally, by “bounded” g we mean the image
of a set of finite measure also has finite measure.

3 PO-MFL: APPROXIMATE MINIMUM ENTROPY ESTIMATION

We seek to estimate the trajectory distribution by maximizing its log-likelihood with respect to the
distribution induced by the SDE, subject to matching the observed marginals. Inspired by Lavenant
et al. (2023), we pose the maximum likelihood problem as an equivalent minimum entropy estimation
problem connecting temporal snapshots into continuous trajectories, where the entropy is the relative
entropy (KL divergence) of the estimated trajectory distribution with respect to the known portion of
the SDE. We will show that the optimal point of the minimum entropy objective function converges
to the ground truth trajectory distribution.

3Note that if X has a boundary, we need a zero flux condition on Ξ.
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It is not practical, however, to directly work with the trajectory distribution as it is an infinite-
dimensional object. In what follows, we will show that the minimum entropy objective in trajectory
space can be reduced to an OT-based objective, where marginals at adjacent time points are coupled
via entropic OT. This reduction allows us to perform trajectory inference using only representations
of the latent space time marginals, which can be accomplished via sets of particles. These particles
can then be optimized via MFL dynamics.

3.1 MINIMUM ENTROPY OBJECTIVE FUNCTION

In this section, we specify the minimum entropy objective function on the trajectory distribution.
Let {tTi } ⊂ [0, 1] be our observation times, where ∆ti := tTi+1 − tTi . Recall that, in general, we do
not have exact measurements of the temporal marginals, we will only have samples from them. As
a result, we must introduce a fit function to measure the discrepancy between the observation space
time marginals of the estimated trajectory distribution R and the observed samples.

Let the observed empirical distribution smoothed by the h-wide heat kernel Φh be ρ̂T,hi :=

Φh

(
1
NT

i

∑NT
i

i=1 δY T
i,j

)
∈ P(Y) for i ∈ [T ].4 Consider the fit function Fitλ,σ : P(Y)T → R:

Fitλ,σ(QtT1
, . . . ,QtTT

) :=
1

λ

T∑
i=1

∆tiDFσ(g♯RtTi
, ρ̂T,hi ), (3)

with data-fitting term introduced by Chizat et al. (2022) augmented by observation function g to be

DFσ(g♯RtTi
, ρ̂T,hi ) :=

∫
Y
− log

[∫
X
exp

(
−∥g(x)− y∥2

2σ2

)
dRtTi

(x)

]
dρ̂T,hi (y)

=H(ρ̂T,hi |g♯RtTi
∗ Nσ) +H(ρ̂T,hi ) + C,

(4)

where Nσ is the Gaussian kernel with variance σ2, C > 0 is a constant, and we use the substitution
QtTi

= g♯RtTi
. Notice that the inner integral is over X as the optimization will occur on the latent

space, while the inner integral is over Y as the observations are over Y .

This data-fitting term can be interpreted as the negative log-likelihood under the noisy observation
model Ŷ Ti,j = g(XT

i,j) + σZi,j , where Ŷ Ti,j is the observation and Zi,j
i.i.d.∼ N (0, I). It is easy to

see that DFσ is jointly convex in (RtTi
, ρ̂T,hi ) and linear in ρ̂T,hi . The main difference compared

to Chizat et al. (2022) is that our data-fitting term is in observation space, e,g. the addition of the
function g.

The minimum entropy estimator introduced in Lavenant et al. (2023) is the minimizer of the func-
tional F : P(Ω) → R

F(R) := Fitλ,σ(QtT1
, . . . ,QtTT

) + τH(R|WΞ,τ ). (5)

Recall that our key novelties are the fit term in observation space and entropy minimization in path
space with respect to divergence-free, Markov path measures. Nonetheless, we show that we can
still recover the ground truth in the limit as the number of observations becomes dense.
Theorem 3.1 (Consistency (informal, see Thm. C.1)). Suppose P is the SDE (1) with initial condi-
tion P0 ∈ P(X ) s.t. H(P0|vol) < +∞. Let RT,λ,h ∈ P(Ω) be the unique minimizer of (5):

RT,λ,h := argmin
R∈P(Ω)

F(R).

Then, lim
h→0,λ→0

(
lim
T→∞

RT,λ,h
)
= P.

This weak convergence result parallels Theorem 2.3 in Lavenant et al. (2023), which provides a
consistency result in the fully observed setting where the entire state vector Xt is observed and
Ξ = 0 identically. Due to these differences, the result in Lavenant et al. (2023) cannot be directly
applied to our setting, and while our proof is able to follow a similar overall structure, dense and
nontrivial changes throughout the extensive proof are required. See Appendix C.

4This smoothing h aids the proofs and will be taken to a limit of zero in the following theoretical results.
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3.2 THE REDUCED PROBLEM

As (5) is an infinite-dimensional optimization problem, to apply the MFL dynamics of (Hu et al.,
2020), we need to “reduce” the problem over the space P(X )T , similar to (Chizat et al., 2022).
As before, let ∆ti := tTi+1 − tTi and τi := ∆ti · τ . Consider the following entropic OT cost (see
Appendix A), defined for some τi > 0, as

Tτi,Ξ(µ, ν) := min
γ∈Π(µ,ν)

∫
cΞτi(x, y) dγ(x, y) + τiH(γ|µ⊗ ν) = min

γ∈Π(µ,ν)
τiH(γ|pΞτiµ⊗ ν), (6)

where pΞt is the transition probability density of WΞ,τ over the time interval [0, t] and the cost
function is cΞτi(x, y) := −τi log(pΞτi(x, y)). In general, pΞτi cannot be found explicitly, so we will
discuss how to approximate this below. This optimization problem is exactly a Schrödinger bridge
problem, e.g. see (Chizat et al., 2022, App. A); Léonard (2010; 2013), which inspires the following
reduction. Define the functionalG : P(X )T → R for µ = (µ(1), . . . ,µ(T )) that represents a family
of reconstructed temporal marginals, by

G(µ) := Fitλ,σ(g♯µ) +

T−1∑
i=1

1

∆ti
Tτi,Ξ(µ

(i),µ(i+1)), (7)

where g♯µ ∈ P(X )T is an abuse of notation to mean the element-wise push-forward of each µ(i)

by g. We consider the reduced objective F : P(X )T → R, defined as

F (µ) := G(µ) + τH(µ), (8)

whereH(µ) =
∑T
i=1

∫
log(µ(i))dµ(i) is the negative differential entropy of the family of measures

µ. Similar to Chizat et al. (2022), we have an equivalence of minimizing F , (5), the objective in
path space P(Ω), and F , (8), the reduced objective over P(X )T . The proof is provided in Appendix
D.

Theorem 3.2 (Representer theorem). Let Fit : P(Y)T → R be any function and let Ξ be bounded
and divergence-free.

(i) If F admits a minimizer R∗ then (R∗
tT1
, . . . ,R∗

tTT
) is a minimizer for F .

(ii) If F admits a minimizer µ∗ ∈ P(X )T , then a minimizer R∗ for F is built as

R∗(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at
times tT1 , . . . , t

T
T , respectively and RtT1 ,...,t

T
T

is the composition of the optimal transport plans
γi that minimize Tτi,Ξ(µ

∗(i),µ∗(i+1)), for i ∈ [T − 1].

The composition of the transport plans is obtained as:

Rti,...,tT (dx1, . . . , dxT ) = γ1(dx1, dx2)γ2(dx3|x2) · · · γT−1(dxT |xT−1), (9)

where the OT plans γi(dxi, dxi+1) = γi(dxi+1|xi)µi(dxi) are conditional probabilities (or “dis-
integrations”). As in Chizat et al. (2022), the “reduction” of the optimization space from P(Ω) to
P(X )T is enabled by the Markov property of WΞ,τ , which holds for us due to the Lipschitz conti-
nuity assumption on Ξ and that WΞ,τ remains the uniform measure at all time. Then, Theorem 3.2
allows us to compute a minimizer for F from a minimizer for F and its associated OT plans.

3.3 APPROXIMATING THE ENTROPIC OT COST

Although now we have a reduced problem over P(X )T , we are not yet ready to solve the objective
function F (8), as the entropic OT cost Tτi,Ξ(µ, ν) is defined with the transition function pΞτi , which
is generally not available in closed form. We provide an approximation of Tτi,Ξ(µ, ν) by considering
an Euler-Maruyama discretization, e.g. Kloeden & Platen (1992). Let µ ∈ P(Ω) be a stochastic

6
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process following the SDE dXt = −Ξ(t,Xt) dt+
√
τ dBt with an arbitrary initial distribution. Let

∆t := t2 − t1 and suppose µt1 , µt2 are two time marginals of µ. Recall that if Xt1 ∼ µt1 , and

Xt2 := Xt1 −
∫ t2

t1

Ξ(s,Xs) ds+
√
τ(Bt2 −Bt1) (10)

then Xt2 ∼ µt2 . For small ∆t = t2 − t1, since Ξ and µs are smooth, the integrand of the second
term will be approximately constant over the integration interval. Thus, we can approximate the first
two terms of (10) as

ξ∆t(Xt1) := Xt1 − Ξ(t1, Xt1) ·∆t.
Finally, the last term of (10) is an isotropic Gaussian with variance τ∆t. This suggests approximat-
ing the transition kernel pΞτi as a deterministic drift given by the current Ξ, followed by isotropic
Gaussian noise.5 For Ξ = 0, this would reduce to the kernel used by the MFL method, i.e. the
Brownian motion transition kernel.

This provides an intuition for why our approach is more robust than that of the MFL method when
the true Ξ is non-zero, since ξ∆t(Xt1) − Xt2 ≈ N (0, τ∆t) for small ∆t, while the Xt1 − Xt2
used by the MFL algorithm has non-zero expectation, is non-Gaussian, and often has significantly
higher variance. In a sense, our Euler-Maruyama approximation can be considered a first order
approximation method, while MFL corresponds to a zeroth order method.

To formalize this intuition, first let TV(·, ·) denote the total variation distance. We have the following
bound on the densities, which is a special case of (Bras et al., 2022, Thm. 2.1). Note that this implies
that the difference in probability between the approximate kernel and true kernel for any event is of
order O((∆t)1/3), which converges to 0 as T → ∞.

Proposition 3.3. Let Xt2 be as in (10) and X̃t2 := ξ∆t(Xt1) +
√
τ(Bt2 − Bt1), where Xt1 = δx.

Then,
TV(Xt2 , X̃t2) ≤ C1e

C2|x|2(∆t)1/3,

where the constants C1, C2 > 0 depend only on dimX and the Lipschitz constant of Ξ.

Applying this approximate transition kernel yields updated, tractable OT terms in the objective func-
tion. Specifically, instead of Tτi,Ξ(µ

(i),µ(i+1)) in (7), we use Tτi(ξ
ti+1−ti
♯ µ(i),µ(i+1)), where

Tτi(µ, ν) := min
γ∈Π(µ,ν)

τiH(γ|pτiµ⊗ ν)

and pt(x, y) is the transition probability density of the Brownian motion on X over the time interval
[0, t]. This cost is easily computed as pτi is the Gaussian kernel. In particular the cost function is
c̃Ξτi(x, y) := −τi log(pτi(ξ∆t(x), y)), and we use Varadhan’s approximation

c̃Ξτi(x, y) ≈
1

2
∥y − x+∆t · Ξ(t1, x)∥2 ,

which holds for τi small, e.g. see (Norris, 1997). To wrap up our discussion here, it is important
to highlight that we require a generalization of (Lavenant et al., 2023, Thm. 2.3) using our path
measure WΞ,τ , Theorem 3.1, to justify convergence of our estimator when including Ξ in our cost
function in the entropic OT problem (6).

3.4 MEAN-FIELD LANGEVIN DYNAMICS AND EXPONENTIAL CONVERGENCE

We provide a brief description of the MFL dynamics. See Appendix E for a more complete dis-
cussion. MFL dynamics are designed to minimize functionals of the form Fτ = G + τH , where
G : P(X ) → R is smooth and H is minus the differential entropy. Using the first-variation V [µ] of
G given in Proposition E.1, the MFL dynamics is defined as the solution of the following non-linear
McKean-Vlasov SDE, for s ≥ 0:{

dX
(i)
s = −∇V (i)[µs](X

(i)
s ) ds+

√
2τ dB

(i)
s + dΦ

(i)
s , Law(X

(i)
0 ) = µ

(i)
0

µ
(i)
s = Law(X

(i)
s ), i ∈ [T ],

(11)

5Alternative discretizations can be considered, e.g. we use a midpoint discretization for the constant-
velocity experiments, but for clarity, we introduce the method using a standard Euler discretization.
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Algorithm 1 PO-MFL: framework for latent trajectory inference
Require: Collection of observations (ρ̂1, . . . , ρ̂t), collection of T time samples (tT1 , . . . , tTT ), velocity dynam-

ics Ξ, number of iterations for MFL dynamics N , number of particles m, entropic OT parameter λ
1: Initialize m particles for each time: (m̂1, . . . , m̂T ) ∈ Xm×T

2: for N iterations do
3: for i ∈ [T − 1] do
4: ∆ti := tTi+1 − tTi
5: Ci := {Cj,k}mj,k=1 ← 1

2
∥m̂i+1,k − m̂i,j +∆tiΞ(t

T
i , m̂i,j)∥2

6: γi ← Sinkhorn(m̂i, m̂i+1, Ci, λ ·∆ti)
7: end for
8: m̂← MFL(m̂,γ, ρ̂) ▷ m̂ := (m̂1, . . . , m̂t), etc.
9: end for

10: Output collection of particles m̂, trajectories γt−1 ◦ · · · ◦ γ1

Figure 3: Average W2 distance between ground truth and PO-MFL recovered positions in “constant
velocity” model (App. F). (L) Number of time points. (C) Number of observations. (R) Velocity.

where dΦ(i)
s is the boundary reflection in the sense of the Skorokhod problem, e.g. Tanaka (1979).

Note that Ξ affects this equation implicitly via the Schrödinger potentials. For computation, we
discretize the MFL dynamics via noisy particle gradient descent, discussed in Appendix E.2.

In (Chizat et al., 2022; Chizat, 2022), it is shown that the MFL dynamics converges at an exponential
rate to the minimizer. We provide the proof for the following similar result for our partially observed
setting in Appendix E.6

Theorem 3.4 (Convergence). Assume X is the d-torus. Let µ0 ∈ P(X )T be such that F (µ0) <
+∞. Then for τ ≥ 0, there exists a unique solution (µs)s≥0 to the MFL dynamics (11). Let τ > 0
and assume that µ0 has a bounded absolute log-density, it holds

Fτ (µs)−minFτ ≤ e−Cs(Fτ (µ0)−minFτ ),

where C = βe−α/τ for some α, β > 0 independently of µ and τ . Moreover, taking a smooth time-
dependent τs that decays asymptotically as α̃/ log s for some α̃ > α, it holds F0(µs) − F0(µ

∗) ≲
log log s/ log s→ 0 and µs converges weakly to the min-entropy estimator µ∗.

3.5 PO-MFL

Figure 2: (left) Velocity of one particle
at end of optimization. (right) Popula-
tion velocity at beginning of optimiza-
tion, showing exponential convergence.

We summarize our proposed latent trajectory inference
method in Algorithm 1. We recall that discussion on the
cost function (line 4) and MFL dynamics (line 7) can be
found in Sections 3.3 and 3.4, respectively. We use the
Sinkhorn algorithm for entropic OT, which we discuss in
Appendix A. Using N iterations of the MFL dynamics,
the total runtime for our algorithm is O(NTm2), as we
need to solve T − 1 entropic OT problems on m×m size
matrices in each iteration, where we assume that the num-
ber of iterations in the Sinkhorn algorithm is capped at a
constant. We remark that our PO-MFL method has the
same runtime as the baseline FO-MFL (fully-observed
MFL).

6The d-torus assumption is required for technical reasons in (Chizat, 2022).
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Given the set of observed temporal marginal samples in the observation space Y , Algorithm 1 yields
a set of m particles at each time step i representing the temporal marginal distributions in the latent
space X . Simulated trajectories may be recovered by sampling from the composition of entropic
transport plans as shown in (9).

4 EXPERIMENTS

In this section, we briefly provide synthetic experiments that demonstrate the advantages of having
a dynamics prior. More details on the experimental setup can be found in Appendix F.

(a) Ground truth.

(b) Reconstructed trajectories.

(c) Reconstructed velocity from PO-MFL. Note the bimodal
velocity estimate.

Figure 4: Crossing paths experiment under the “con-
stant velocity” SDE.

“Constant velocity” model We compare
the behavior of our method, PO-MFL, to
that of the baseline, FO-MFL, using the
“constant velocity” model popular in tar-
get tracking, e.g. (McIntyre & Hintz,
1998). We provide further details of this
model and its ensemble observability in
Appendix B.1. This model can be inter-
preted as introducing velocity as a hidden
state to be inferred, in order to build mo-
mentum into the dynamics (an object in
motion tends to stay in motion). This is an
extremely generic model and makes min-
imal assumptions on the underlying data,
as evidenced by its use in target tracking.

In this model, the state space is X =
(x, y, ẋ, ẏ) ∈ R4, with Ξ given in
the appendix and observations g(X) =
[I2, 02×2]X . Note that due to non-zero
process noise τ , despite the name, this
model does not imply that the velocity is
constant in time. The particles are ini-
tialized at the origin with velocities set as
ẋ = 5 and ẏ = 7, i.e. X0 = (0, 0, 5, 7).
The ground truth is shown in Figure 1a.

Our optimization method observes
only the positions of the particles, i.e.
g(x, y, ·, ·) = (x, y), but it uses Ξ as being
a constant velocity prior. Results shown
in Figure 1b show that PO-MFL is able to successfully reconstruct the paths trajectories, while
FO-MFL fails to converge. Furthermore, in Figure 1c, we verify that the population average of the
particles’ velocities matches with the ground truth.

Figure 2 (left) displays the y velocity of one particle for the last 500 iterations of optimization.
Although at each iteration, the velocity is stochastic, we can see that the mean is at 7. In Figure 2
(right), we plot the average y velocity in the first 400 iterations of optimization, providing empirical
evidence of the exponential convergence of our algorithm guaranteed by Theorem 3.4.

Figure 4 shows a crossing paths experiment where the population is divided into two groups, one
moving right and down, and the other right and up, with their paths crossing in the middle. In
this particularly illuminating regime, PO-MFL leverages the “constant velocity” model used in this
section to distinguish the downward moving group from the upward moving group. Note that PO-
MFL is not told a priori which samples belong to which group. While FO-MFL here collapses to the
centroid, we point out that even if its optimization was successful, FO-MFL would prefer V -shaped
trajectories, e.g. those that have velocity v for half the time and then −v for the remainder, here
rather than the correct straight-line trajectories, as it does not retain a hidden velocity state and only
seeks to match adjacent time points by their relative position via entropic OT.

9
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(a) Ground truth samples used
to learn a trajectory distribution.

(b) Samples from the learned trajectory distribution
(lines), overlaid with scatter plots of the learned par-
ticle representations of the time marginals.

Figure 5: Wikipedia page traffic data.

We provide a variety of additional experiments in Appendix F illustrating how performance changes
as the number of observed particles, the spacing of time points, and the underlying ground truth
initial velocity affects performance. Figure 3 shows the average W2 distance between the ground
truth positions and recovered positions (averaged by time point) across these experiments. Our
approach remains significantly more robust as these parameters are varied compared to MFL.

Wikipedia traffic data We briefly consider real-world daily traffic data from Wikipedia.7 Because
some of the webpage traffic has large spikes/outliers, we only consider pages whose daily visits are
between 100 and 500. We use the data from 3 pages over the course of 500 days as our ground truth
and seek to learn the trajectory distribution.

For PO-MFL, we do not consider partial observations. Instead, we leverage the dynamics prior Ξ to
set an autoregressive model xt+1 = θ1xt+ θ2xt−6 and let g be the identity function. In this setting,
the state space for MFL is R500, while the state space for PO-MFL is R2×500. The first marginal of
PO-MFL matches the data for MFL, while the second marginal of PO-MFL is the data lagged by 6
days. For the values of θ1 and θ2, we take the average of the regression parameters calculated from
30 trajectories drawn from the same distribution.

m PO-MFL MFL
3 1.01±0.0395 1.61±0.206
6 1.07±0.0726 1.76±0.303
15 1.05±0.0956 1.91±0.443

Table 1: Average (normalized) W2 dis-
tance between true and sampled trajec-
tory distributions for Wikipedia dataset
over 100 MCMC trials. Error bars are
one standard deviation.

We try different number of particles m = 3, 6, 15 and re-
port the results in Table 1. To compute the values in the
table we sample 3 trajectories from the output of the al-
gorithm and use this as our empirical measure. We use
the Wasserstein distance in R500 as our cost metric. Here,
we use just the first dimension for PO-MFL. We see that
both the mean and variance from PO-MFL are signifi-
cantly less than that of MFL. We plot three trajectories
in Figure 5 with them = 3 experiment, and note that PO-
MFL yields less volatile trajectories more in line with the
ground truth trajectories.

5 CONCLUSION

We consider the problem of trajectory inference in latent space based on indirect observation, ex-
tending the theoretical analysis of the min-entropy estimator introduced in Lavenant et al. (2023) and
the MFL dynamics algorithm introduced in Chizat et al. (2022). Experiments were provided show-
ing that the ability to include simple non-informative latent dynamics models, such as the “constant
velocity” model, and autoregressive models, can dramatically improve the trajectory inference per-
formance over the baseline MFL method. For future work, while we do here provide some flexibility
for model misspecification via the unknown Ψ potential, it would be interesting to further explore
the stability of our method when the dynamics model Ξ is misspecified. Further exploration of en-
semble observability to stochastic systems would also be a highly interesting fundamental direction
to explore. Finally, we will seek to explore the various promising empirical use cases outlined in the
introduction.

7We use train 2.csv from https://www.kaggle.com/competitions/web-traffic-time-series-forecasting
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A ENTROPIC OPTIMAL TRANSPORT

We provide a brief exposition to entropic OT. We refer the reader to Cuturi (2013); Peyré & Cuturi
(2020) for a more thorough introduction.

Let X ,Y be arbitrary spaces, c : X × Y → R be a cost function, and µ, ν be probability measures
on X ,Y , respectively. The entropic OT problem is

Tϵ(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

c(x, y)π(dx, dy) + ϵH(π|µ⊗ ν),

where Π(µ, ν) is the set of all probability measures on X × Y with marginals µ on X and ν on Y ,
H is the relative entropy, and ϵ is the regularization parameter. By standard duality theory, this is
equivalent to the following problem

Tϵ(µ, ν) = max
φ∈L1(µ),ψ∈L1(ν)

∫
φdµ+

∫
ψdν + ϵ

(
1−

∫
e

1
ϵ (φ(x)+ψ(y)−c(x,y))dµ(x)dµ(y)

)
,

which admits a unique solution up to a translation (φ + κ, ψ − κ) for κ ∈ R. Furthermore, the
functions (φ,ψ) satisfy the following conditions:{

φ(x) = −ϵ log
∫
exp( 1ϵ (φ(y)− c(x, y)))dν(y)

ψ(y) = −ϵ log
∫
exp( 1ϵ (φ(y)− c(x, y)))dµ(x).

In the discrete (empirical measure) setting, these potentials give motivation for the Sinkhorn al-
gorithm, which we describe in Algorithm 2. Here, ⊙ is taken to be element-wise multiplication.
Altschuler et al. (2018) shows that the entropic OT problem can be solved in approximately linear
time.

Algorithm 2 Sinkhorn
Require: Probability measures µ, ν, cost matrix C, regularization parameter ϵ, number of iterations N

1: φ(0) ← 1
2: K ← exp(−C/ϵ)
3: for i = 1, . . . , N do
4: ψ(i) ← ν ⊙K⊤φ(i−1)

5: φ(i) ← µ⊙Kψ(i−1)

6: end for
7: Output transport plan diag(φ(N))K diag(ψ(N))

B ENSEMBLE OBSERVABILITY FOR LINEAR SYSTEMS

Recall that in classical observability. e.g. Gajic et al. (1996), the goal is to recover the dynamics
of a single particle, while here we want to recover the dynamics of a probability distribution. The
notion of ensemble observability introduced in Zeng et al. (2015) tackles this problem. Consider the
non-stochastic model with linear Ξ(X) = AΞX +BΞ:

dXt = −(AΞXt +BΞ) dt (12)

with initial condition P0 and linear observations Yt = g(Xt) = CgXt + Dg . For shorthand, we
denote this system as (AΞ, BΞ, Cg, Dg).

The following is the definition of ensemble observability as introduced in Zeng et al. (2015): it does
not consider stochasticity.
Definition 2 (Ensemble observability (Zeng et al., 2015, Def. 1)). The linear system (12) is ensem-
ble observable if given marginals g♯Pt of Yt for all t ∈ [0, 1], the marginals Pt of Xt are uniquely
determined for all t ∈ [0, 1].

We can consider Definition 1 as an extension of ensemble observability. In particular, if we let τ = 0
in Definition 1, we exactly recover ensemble observability. Zeng et al. (2015) showed that classical
observability is a necessary condition for ensemble observability, and provided several sufficient
conditions as well. For a random variable X , we denote φX to be its characteristic function. We
assume the following on the initial distribution X0.
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Assumption B.1. Let X0 be such that s 7→ φX0
(sv) is real-analytic for all non-zero v ∈ Rn.

This assumption is not very strong and most “nice” distributions satisfy it, e.g. if they admit have a
density with respect to the Lebesgue measure. Recall that by (Gajic et al., 1996, Thm. 5.2), classical
observability holds if and only if the observability matrix O := [CΞ, CΞAΞ, . . . , CΞA

n−1
Ξ ] has rank

n. Zeng et al. (2015) provides two useful sufficient conditions8 for ensemble observability of such
systems.
Proposition B.2 ((Zeng et al., 2015, Thm. 8)). Under Assumption B.1, if (AΞ, BΞ, Cg, Dg) is
observable and rankCg = n− 1, then (AΞ, BΞ, Cg, Dg) is ensemble observable.

Corollary B.3 ((Zeng et al., 2015, Cor. 8)). Under Assumption B.1, if X = R2 and
(AΞ, BΞ, Cg, Dg) is observable, then (AΞ, BΞ, Cg, Dg) is ensemble observable.

We now show that these two conditions can be carried over to stochastic systems, i.e., those with
τ > 0. Consider adding stochasticity to (12) with the model

dXt = −(AΞXt +BΞ) dt+
√
τ dBt (13)

with initial condition P0, {Bt} is an Rn-valued Brownian motion, and observations Yt = CgXt +
Dg . We have the following result:
Corollary B.4. Suppose (AΞ, BΞ, Cg, Dg) is ensemble observable (with τ = 0). Then the system
(13) with known τ > 0 is ensemble observable.

Proof. It is easy to see via direct calculation, e.g. using an integrating factor, that the solution to
(13) is

Xt = e−AΞtX0 −
(∫ t

0

e−AΞ(t−s) ds

)
BΞ +

√
τ

∫ t

0

e−AΞ(t−s)dBs, (14)

where we use matrix exponentials. Using arguments similar to those in Vatiwutipong & Phewchean
(2019), we can characterize the covariance:

Σt := Cov [Xt] = τ

∫ t

0

e−(AΞ+A
⊤
Ξ )(t−s)ds.

We also know that

µt := E[Xt] = e−AΞtX0 −
(∫ t

0

e−AΞ(t−s) ds

)
BΞ.

Then as the first two terms on the right-hand side of (14) have zero variance and the Itô integral of a
deterministic integrand is normally distributed with mean zero, we know that (14) is distributed as

Xt ∼ N (µt,Σt).

As we know τ , and the corresponding observability matrix to the system has full-rank, we see that
the pushforward (to observation space) of every term in (14) is also fully recoverable as well. Note
that it is possible to deconvolve, e.g., using the fact that deconvolution is equivalent to division in the
Fourier domain, the known Gaussian noise from Xt, and hence the system is ensemble observable.
This concludes the proof.

Next, we extend Corollary B.3 to independent processes and apply Corollary B.4.
Proposition B.5. Let X = X1×· · ·×Xn, where each Xi = R2. Suppose (AΞi

, BΞi
, Cgi , Dgi) is ob-

servable for each i ∈ [n]. Further, suppose the initial condition joint distribution for the X0,i satis-
fies Assumption B.1 with [X0,i]1, [X0,j ]2 conditionally independent conditioned on [X0,i]2, [X0,j ]1,
for each j ̸= i. If noise parameter τ > 0 is known and {Bt} is an X -valued Brownian motion, then
the system 

AΞ1

...
AΞn

 ,

BΞ1

...
BΞn

 ,

Cg1...
Cgn

 ,

Dg1
...

Dgn




8These are not the only concrete conditions provided therein. Furthermore, a more general sufficient condi-
tion is provided which is possible to check numerically.
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is ensemble observable. Furthermore, the system remains ensemble observable under (known) per-
mutations.

Proof. This follows from a simple application of Corollaries B.3 and B.4.

B.1 EXAMPLE: “CONSTANT VELOCITY” MODEL

The two-dimensional “constant velocity” model, so named because the velocity would be constant
if there were no process noise (τ = 0), uses a state vector

X = (x, y, ẋ, ẏ) ∈ R4,

where here (x, y) are two-dimensional positional coordinates, and (ẋ, ẏ) is the current two-
dimensional velocity. The “constant velocity” dynamics model uses Ξ(X) = AΞX where

AΞ =

 0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,
which is a very simple matrix simply implying that the rate of change of X1 = x is given by the
current state vector X3 = ẋ, and similarly for y.

Having defined the dynamics, in this model, only the positions are observed. In other words, the
observations g(X) = [I2, 02×2]X , i.e. CΞ = [I2, 02×2] and DΞ = 0.

Note that this experimental setting satisfies Proposition B.5 as the x and y dynamics are independent.
Hence, it is sufficient to check if the system is observable. Here C = [1, 0] and A = [0, 1; 0, 0], so
the observability matrix for each of these subsystems becomes[

C
CA

]
=

[
1 0
0 1

]
,

which is the identity and thus full rank. By observability theory, the system is classically observable,
and by the results above, ensemble observable as well.

Note that ensemble observability can be extended to non-zero Ψ in this setting. For instance, in the
“constant velocity” model of the main text, ∇Ψ = [0;ψ] for constant but unknown ψ will serve
simply as a drift term on the mean of the hidden velocity state. Since without this drift the mean of
the velocity is constant, this drift will be identifiable and the system will be ensemble observable.

Finally, as a brief remark, note that in Definition 1, we require Ψ to be restricted to a class of
functions CΨ as otherwise the SDE (1) may fail to satisfy classical observability. Further exploration
of CΨ classes is left to future work.

C PROOFS FOR CONSISTENCY

We make this section as self-contained as possible, although we suppress some of the longer details
when they are very similar to certain corresponding results in Lavenant et al. (2023). Whenever we
do, we point to the fuller arguments in Lavenant et al. (2023). The main result in this section is the
following:

Theorem C.1 (Consistency, (formal version of Thm. 3.1)). Let P be the law of the SDE given in
(1), restated below:

dXt = −Ξ(t,Xt) dt−∇Ψ(t,Xt) dt+
√
τ dBt,

with initial condition P0 ∈ P(X ) such that H(P0|vol) < +∞. Assume we have the following:

(i) g : X → Y is a smooth, measurable, bounded, time invariant function, and (g,Ξ, CΨ) is
CΨ-ensemble observable.

(ii) For every T ≥ 1, we have a sequence of ordered observation times {tTi }Ti=1 between 0 and 1,
and {tTi }Ti=1 becomes dense in [0, 1] as T → +∞.
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(iii) For each T and each i ∈ [T ], we have NT
i ≥ 1 random variables {Y Ti,j}

NT
i

j=1, which are i.i.d.
and distributed according to g♯PtTi

.

(iv) The variables Y Ti,j and Y T
′

i′,j′ are sampled independently from their respective distributions
except when (T, i, j) = (T ′, i′, j′).

Consider the functional (5), restated below:

F(R) := Fitλ,σ(g♯RtT1
, . . . , g♯RtTT

) + τH(R|WΞ,τ ),

and let RT,λ,h ∈ P(Ω) be its unique minimizer:

RT,λ,h := argmin
R∈P(Ω)

F(R).

Then, we have the weak convergence

lim
h→0,λ→0

(
lim
T→∞

RT,λ,h
)
= P,

almost surely.

Proof. We use Theorem C.5 to take the limit T → +∞. By the law of large numbers and the
weak convergence assumption, we have ρt = Φh(Pt), almost surely. Define Rλ,h to be the limit of
RT,λ,h as T → +∞. By Theorem C.5, it is the unique minimizer of

R 7→ Fλ,h(R) :=
1

λ

∫ 1

0

DF(Rt,ΦhPt) dt+ τH(R|WΞ,τ ).

By definition of the data-fitting term, the functional Gλ,h in Theorem C.17 differs from Fλ,h only
by a constant. We see that

Gλ,h(R) = Fλ,h(R)−
∫ 1

0

H(ΦhPt) dt− C,

so Rλ,h must also be the unique minimizer for Gλ,h. Finally, we use Theorem C.17 to take the limit
of Rλ,h as h→ 0 and λ→ 0. This concludes the proof.

C.1 VARIATIONAL CHARACTERIZATION OF THE SDE

We recall some previously introduced preliminaries and notation. Ω = C([0, 1] : X ) is the set
of X -valued paths, {Xt}t∈[0,1] is our canonical process, and F is the Borel σ-algebra generated
by the random variables Xs for s ≤ t such that {Ft}t∈[0,1] is a filtration. We use the notation
| · |2 = ⟨·, ·⟩ ∈ R for the quadratic variation of a process (similarly use this notation for cross-
variation).

For the Girsanov transforms to be martingales, we have the following mild technical assumption.
Assumption C.2 (Novikov conditions on Ξ). Assume that the following Novikov conditions hold:

E
[
exp

(
1

2

∫ 1

0

|Ξ|2 ds
)]

< +∞

and

E
[
exp

(
1

2

∫ 1

0

|Ξ +∇Ψ|2 ds
)]

< +∞.

Also, assume that there exists C < +∞ such that
∫ 1

0
|Ξ|2 ds ≤ C and

∫ 1

0
|Ξ +∇Ψ|2 ds ≤ C.

This last condition is so that we can apply Girsanov’s on manifolds, e.g. (Hsu, 2002, Thm. 8.1.2).
Proposition C.3 (analogous to (Lavenant et al., 2023, Prop. 2.11)). Let P be the law of the SDE in
(1). Then the Radon-Nikodym derivative of P with respect to WΞ,τ is given WΞ,τ -a.e. by

dP

dWΞ,τ
(X) =

dP0

dvol
(X0) exp

(
Ψ(0, X0)−Ψ(1, X1)

τ

)
· exp

(
1

τ

(∫ 1

0

(
∂sΨ− 1

2
|∇Ψ|2 − ⟨Ξ,∇Ψ⟩+ τ

2
∆Ψ

)
(s,Xs) ds

))
.

(15)
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To prove this proposition, we do not use a martingale characterization as in Lavenant et al. (2023),
but directly use the Girsanov theorem (which by our assumption on Ξ, can be applied on manifolds)
and the Itô formula.

Proof. By the chain rule, we have

dP

dWΞ,τ
(X) =

dP0

dvol
(X0) ·

dP

dWτ
· dWτ

dWΞ,τ
.

The first term follows from an averaging argument identical to that of (Lavenant et al., 2023, Prop.
2.11). For the second term, recall that P is the measure induced by the process dXt = −(Ξ +
∇Ψ) dt+

√
τ dBt and Wτ is the measure induced by the process dYt =

√
τ dBt. We have

dP

dWτ
= exp

(
1√
τ

∫ t

0

(Ξ +∇Ψ)(s,Xs) dBs −
1

2τ

∫ t

0

|Ξ +∇Ψ|2(s,Xs) ds

)
= exp

(
1√
τ

∫ t

0

∇Ψ(s,Xs) dBs −
1

2τ

∫ t

0

|∇Ψ|2(s,Xs) ds

)
· exp

(
1√
τ

∫ t

0

Ξ(s,Xs) dBs −
1

2τ

∫ t

0

(|Ξ|2 + 2⟨Ξ,∇Ψ⟩)(s,Xs) ds

)
= exp

(
1

τ

(
Ψ(0, X0)−Ψ(1, X1) +

∫ t

0

(
∂sΨ− 1

2
|∇Ψ|2 + τ

2
∆Ψ

)
(s,Xs) ds

))
· exp

(
1√
τ

∫ t

0

Ξ(s,Xs) dBs −
1

2τ

∫ t

0

(|Ξ|2 + 2⟨Ξ,∇Ψ⟩)(s,Xs) ds

)
= exp

(
1

τ

(
Ψ(0, X0)−Ψ(1, X1) +

√
τ

∫ t

0

Ξ(s,Xs) dBs

))
,

· exp
(
1

τ

∫ t

0

(
∂sΨ− 1

2
|Ξ +∇Ψ|2 + τ

2
∆Ψ

)
(s,Xs) ds

) (16)

where the first line follows from the Girsanov theorem, (Øksendal, 2010, Thm. 8.6.6) and the
third line follows from Itô’s formula, (Øksendal, 2010, Thm. 4.2.1). Letting WΞ,τ be the measure
induced by the process dZt = −Ξ(t, Zt) dt+

√
τ dBt, we have

dWτ

dWΞ,τ
= exp

(
1

2τ

∫ t

0

|Ξ|2 ds− 1√
τ

∫ t

0

Ξ dBs

)
(17)

by Girsanov. Combining (16) and (17) yields (15). The claim follows.

The next result is the variational characteristic of the SDE.
Theorem C.4 (analogous to (Lavenant et al., 2023, Thm. 2.1)). Suppose (g,Ξ, CΨ) is CΨ-ensemble
observable. Let Ξ : [0, 1] × X → X be a smooth function and Ψ : [0, 1] × X → R be a smooth
potential. Let P be the law of the SDE

dXt = −Ξ(t,Xt) dt−∇Ψ(t,Xt) dt+
√
τ dBt

with initial condition P0 ∈ P(X ) such that H(P0|vol) < +∞. If R ∈ P(Ω) is such that g♯Rt =
g♯Pt for all t ∈ [0, 1], we have

H(P|WΞ,τ ) ≤ H(R|WΞ,τ )

with equality if and only if P = R.

The argument follows that of Lavenant et al. (2023) with our ensemble observable assumption and
reference measure. Here, the proof is the same, but now we use the fact that our reference measure
“cancels out” the stochastic integral, e.g. see Proposition C.3.

Proof. Let P be the law of the solution of (1) and suppose R ∈ P(Ω) is another path measure such
that H(R|WΞ,τ ) < +∞. Let p, r ∈ L1(Ω,WΞ,τ ) denote the Radon-Nikodym derivative of P,R
with respect to WΞ,τ , respectively. By strict convexity of x 7→ x log x, we have

r log r − p log p ≥ (1 + log p)(r − p),
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WΞ,τ -almost everywhere, with equality if and only if r = p. Integrating with respect to WΞ,τ , we
see

H(R|WΞ,τ )−H(P|WΞ,τ ) ≥ ER[1 + log p]− EP[1 + log p]. (18)
Using Proposition C.3, we have

ER[1 + log p] = ER

[
1 + log

(
dP0

dvol

)
(X0) +

Ψ(0, X0)−Ψ(1, X1)

τ

+
1

τ

∫ 1

0

(
∂sΨ− 1

2
|∇Ψ|2 − ⟨Ξ,∇Ψ⟩+ τ

2
∆Ψ

)
(s,Xs) ds

]
.

By definition of ensemble observability, if g♯Rt = g♯Pt for all t ∈ [0, 1], this implies Rt = Pt for
all t ∈ [0, 1]. Because this expression only depends on the temporal marginals of R as the Radon-
Nikodym derivative of P with respect to WΞ,τ does not contain a stochastic integral, the right-hand
side of (18) vanishes if g♯Rt = g♯Pt for all t ∈ [0, 1]. This concludes the proof.

C.2 THE MAIN TECHNICAL RESULT: THEOREM C.5

Theorem C.5 (analogous to (Lavenant et al., 2023, Thm. 2.7)). Fix λ > 0 and assume we have the
following:

(i) For every T ∈ N, we have a sequence of ordered observation times {tTi }Ti=1; a sequence of
data smoothed by the heat-kernel ρ̂Ti (a collection of T probability measures on Y); and a
sequence of non-negative weights {ωTi }Ti=1.

(ii) There exists a P(Y)-valued continuous curve ρ ∈ C([0, 1] : P(Y)) such that the following
weak convergence holds: for all continuous functions a : [0, 1]× Y → R,

lim
T→+∞

T∑
i=1

ωTi

∫
X
a(tTi , x)ρ̂

T
i (dx) =

∫ 1

0

∫
X
a(t, x)ρ(dx) dt.

For each T , let RT ∈ P(Ω) be the unique minimizer of

R 7→ FT (R) := τH(R|WΞ,τ ) +
1

λ

T∑
i=1

ωTi DF(g♯RtTi
, ρ̂Ti ). (19)

Then as T → +∞, the sequence {RT } converges weakly on P(Ω) to the unique minimizer of

R 7→ F (R) := τH(R|WΞ,τ ) +
1

λ

∫ 1

0

DF(g♯Rt, ρt).

Before proving this theorem, we state the following result that is immediate from the non-negativity
of our data-fitting term.
Fact C.6 (Non-negativity). With the assumptions of Theorem C.5, the functionals FT and F are
bounded from below by 0.

Proof of Theorem C.5. The argument follows that of Lavenant et al. (2023). Let R be a minimizer
of F and RT be the minimizer of FT . By optimality of the minimizers, we have G0R = R and
G0R

T = RT . Using Proposition C.15, we can find a sequence R̃T that converges weakly to R as
T → +∞ such that

F (R) ≥ lim sup
T→+∞

FT (R̃
T ) ≥ lim sup

T→+∞
min
P(Ω)

FT = lim sup
T→+∞

FT (R
T ).

In particular, the sequence is bounded, which by Fact C.6, implies the sequence H(RT |WΞ,τ ) is
bounded. Then from the compactness of the sublevel sets of the entropy, we have a limit point R̂ of
the sequence {RT }. Using the optimality of R and Proposition C.16, we see

F (R) ≤ F (G0R̂) ≤ lim inf
T→+∞

FT (R
T ).
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Thus, we have equalities everywhere, so

F (R) = lim sup
T→+∞

FT (R̃
T ) = lim

T→+∞
FT (R

T ).

Then we see
FT (R̃)− FT (R

T ) = FT (R̃
T )− min

P(Ω)
FT

converges to 0 as T → +∞. By (Lavenant et al., 2023, Lem. B.3), relative entropy is 1-convex with
respect to the total variation, i.e. if p, q, r are three probability measures,

H

(
p+ q

2

∣∣∣∣∣r
)

≤ 1

2
H(p|r) + 1

2
H(q|r)− 1

2
∥p− q∥2TV.

Since the data-fitting term is also convex, the full objective FT (·) is 1-convex with respect to the
total variation. By a classic strong convexity argument, since FT (R̃) converges to the minimum
value minP(Ω) FT achieved at RT , ∥R̃T − RT ∥TV must also converge to 0 as T → +∞. Recall
that TV convergence is stronger than weak convergence. Then, using the weak convergence of R̃T

to R, we see that RT converges weakly to R as T → +∞. This concludes the proof.

The remainder of Appendix C.2 is dedicated towards proving Theorem C.5.

C.2.1 HEAT FLOW AND REGULARIZATION OF THE MARGINALS

Recall that we use Φs to denote the heat flow with width s. We use the heat flow to regularize the
marginals. First, we have the following result showing that the density of ΦsRt is continuous jointly
in t and x.
Proposition C.7 (analogous to (Lavenant et al., 2023, Prop. 2.12)). Let s > 0. There exists a
constant C depending only on X and Ξ for which the following hold:

(i) For each R ∈ P(Ω), its heat flow regularization ΦsRt has density ρ(s)(t, ·) (with respect to
the volume measure) that satisfies for all t ∈ [0, 1], x ∈ X , we have

ρ(s)(t, x) ≥ 1

Cs
.

(ii) For all t1, t2 ∈ [0, 1] and x1, x2 ∈ X , we have

|ρ(s)(t1, x1)− ρ(s)(t2, x2)| ≤ C

(√
τ
√
H(R|WΞ,τ ) + C + Cτ

√
|t1 − t2|+ dX (x1, x2)

)
.

Proof. The first estimate is directly from Lavenant et al. (2023). The second estimate follows from
Lavenant et al. (2023) and the following proposition.

Proposition C.8 (analogous to (Lavenant et al., 2023, Lem. 2.13)). There exists a constant C
depending only on X and Ξ such that for each R ∈ P(Ω),

ER[dX (Xt1 , Xt2)
2] ≤ C

(
H(R|WΞ,τ ) + C + Cσ2

)
σ2|t1 − t2|.

Proof. The argument follows that of Lavenant et al. (2023). For any η > 0, using the dual represen-
tation of entropy with the function X 7→ ηdX (Xt1 , Xt2), we have

ηER[dX (Xt1 , Xt2)
2] ≤ H(R|WΞ,τ ) + logEWΞ,τ [exp(ηdX (Xt1 , Xt2)

2].

Using an upper bound on the heat kernel from (Li & Yau, 1986, Cor. 3.1) and that ∥Ξ∥L∞ < +∞,
we have the following bound on the transition probability for WΞ,τ :

pτ (x, y, t) ≤
Ce∥Ξ∥2

L∞

(τt)d/2
exp

(
Cτt− dX (x, y)2

Cτt

)
.

Then the remainder of the argument of the proof of (Lavenant et al., 2023, Prop. 2.13) yields the
desired result.
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C.2.2 HEAT FLOW AND ENTROPY ON THE SPACE OF PATHS

We introduce an auxiliary variational problem in which all the temporal marginals are fixed.
Definition 3. Let ρ ∈ C([0, 1] : P(X )) be a P(X )-valued continuous curve with respect to the
weak topology. Define the problem Aτ (ρ) to be

Aτ (ρ) := inf
R∈P(Ω)

{τH(R|WΞ,τ ) | ∀t ∈ [0, 1], g♯Rt = g♯ρt}.

We use the convention that Aτ (ρ) = +∞ if the above problem has no admissible competitor.

Using a dual representation of A, we can use PDE theory to solve this problem. First, we give a
martingale characterization of a class of stochastic processes:

Proposition C.9. Suppose W̃Ξ,τ is the law of the SDE dXt = −Ξ dt +
√
τ dBt with arbitrary

initial distribution. Let φ : [0, 1]× X → R be a smooth function. Then, the process whose value at
t ∈ [0, 1] is given by

exp

(
1

τ

(
φ(t,Xt)− φ(0, X0)−

∫ t

0

[
∂sφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

]
(s,Xs) ds

))
(20)

is an Ft-martingale under W̃Ξ,τ .

Proof. By Assumption C.2 on Ξ, the process

Mφ
t = φ(t,Xt)− φ(0, X0)−

∫ t

0

[
∂sφ− ⟨Ξ,∇φ⟩+ τ

2
∆φ
]
(s,Xs) ds (21)

is an Ft-martingale under W̃Ξ,τ by (Øksendal, 2010, Thm 8.3.1). We calculate the quadratic varia-
tion ⟨Mφ⟩t similar to (Hsu, 2008, Prop. 1.3.1). First, we have

φ(t,Xt)
2 = φ(0, X0)

2 +Mφ2

t +
1

2

∫ t

0

[−⟨Ξ,∇φ2⟩+∆φ2](s,Xs) ds

= φ(0, X0)
2 +Mφ2

t +
1

2

∫ t

0

[−2φ⟨Ξ,∇φ⟩+∆φ2](s,Xs) ds.

Using Itô’s formula, we have

φ(t,Xt)
2 = φ(0, X0)

2 + 2

∫ t

0

φ(s,Xs)dφ
2(s,Xs) + ⟨Mφ⟩t

= φ(0, X0)
2 + 2

∫ t

0

φ(s,Xs)dM
φ
s +

∫ t

0

φ(s,Xs)[−⟨Ξ,∇φ⟩+∆φ](s,Xs)ds+ ⟨Mφ⟩t.

Equating the bounded variation parts, we see

⟨Mφ⟩t =
1

2

∫ t

0

[
−2φ⟨Ξ,∇φ⟩+∆φ2 + 2φ⟨Ξ,∇φ⟩ − φ∆φ

]
(s,Xs) ds

=
1

2

∫ t

0

[
∆φ2 − φ∆φ

]
(s,Xs) ds

=

∫ t

0

|∇φ(s,Xs)|2 ds.

Then, (20) is the exponential martingale of Mφ
t .

Here, recall that Assumption C.2 ensures that (21) is a martingale. Otherwise, it is only a local mar-
tingale and we would need to check the L1 convergence of the stopped process with an increasing
sequence of stopping times that goes to +∞. This is a standard argument in stochastic calculus, e.g.
see Øksendal (2010).

Now we give the dual representation mentioned above.
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Proposition C.10 (analogous to (Lavenant et al., 2023, Prop. 2.15)). Let ρ ∈ C([0, 1] : P(X )) be a
P(X )-valued continuous curve. We have

Aτ (ρ) = τH(ρ0|vol)

+ sup
φ

{
−
∫
X
φ(0, x)ρ0(dx)−

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρt(dx) dt

}
,

where the supremum is taken over all φ ∈ C2([0, 1]×X ) such that φ(1, ·) = 0.

Proof. The argument follows that of Lavenant et al. (2023). From the duality result of (Arnaudon
et al., 2017, Prop. 2.3), we have

Aτ (ρ) = τH(ρ0|vol)+τ sup
ψ

{∫ 1

0

∫
X
ψρt(dx) ds−

∫
X

[
logEWΞ,τ,x exp

(∫ 1

0

ψ dt

)
ρ0(dx)

]}
,

where WΞ,τ,x is the measure such that WΞ,τ
0 = δx and the supremum is taken over ψ ∈ C([0, 1]×

X ). Here, the characterization holds because the argument in Arnaudon et al. (2017) only requires
the reference measure to be uniform at all marginals.

Let −ψ := 1
τ (∂tφ+

1
2 |∇φ|

2−⟨Ξ,∇φ⟩+ τ
2∆φ) for some smooth φ satisfying the terminal condition

φ(1, x) = 0. By Proposition C.9, we see

EWΞ,τ,x

[
exp

(
−φ(0, X0)

τ
+

∫ t

0

ψ(t,Xt) dt

)]
= 1.

As X0 = 0 under WΞ,τ,x, we have∫
X

[
logEWΞ,τ,x exp

(∫ t

0

ψ(t,Xt) dt

)]
=

∫
X

[
log eτ

−1φ(0,x)
]
ρ0(dx)

=
1

τ

∫
X
φ(0, x) ρ0(dx).

The remaining argument of Lavenant et al. (2023) follows through.

The main idea is that there is a contraction of Aτ under the heat flow, which we can think of as a
space-time counterpart of the contraction of entropy under the heat flow.
Proposition C.11 (analogous to (Lavenant et al., 2023, Prop. 2.16)). Let ρ ∈ C([0, 1] : P(X )) be
a P(X )-valued continuous curve and for s ≥ 0, define the new curve ρ(s) : t 7→ Φsρt. Let K be a
lower bound on the Ricci curvature of the manifold X . Then, for any s ≥ 0, we have

Aτ (ρ
(s)) ≤ e−2KsAτ (ρ).

Proof. Consider the dual formulation in Proposition C.10. If φ : [0, 1] × X → R is a C2 function
with boundary condition φ(1, ·) = 0, then by the self-adjointness property of the heat semigroup,
we have∫

X
φ(0, ·)ρ(s)0 +

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρ
(s)
t dt

=

∫
X
{Φsφ}(0, ·)ρ0 +

∫ 1

0

∫
X

(
∂tΦsφ+

1

2
Φs|∇φ|2 − Φs⟨Ξ,∇φ⟩+

τ

2
∆Φsφ

)
ρt dt,

where Φs∂tφ = ∂tΦsφ by Schwarz’s theorem and Φs∆φ = ∆Φsφ by simple calculation. By
properties of the carré du champ operator (Bakry et al., 2013, Cor. 3.3.19) and expanding out the
inner product, we see that ⟨ΦsΞ,∇Φsφ⟩ ≤ e−2KsΦs⟨Ξ,∇φ⟩. Thus, letting φ̃ = e2KsΦsφ and
Ξ̃ = e2KsΦsΞ, we have

−
∫
X
φ(0, ·)ρ(s)0 −

∫ 1

0

∫
X

(
∂tφ+

1

2
|∇φ|2 − ⟨Ξ,∇φ⟩+ τ

2
∆φ

)
ρ
(s)
t dt

≤ −e−2Ks

[∫
X
φ̃(0, ·)ρ0 −

∫ 1

0

∫
X

(
∂tφ̃+

1

2
|∇φ̃|2 − ⟨Ξ̃,∇φ̃⟩+ τ

2
∆φ̃

)
ρt dt

]
≤ e−2Ks[Aτ (ρ)− τH(ρ0|vol)],
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where the last inequality is due to Proposition C.10. Taking a supremum over φ, we see that

Aτ (ρ
(s)) ≤ e−2KsAτ (ρ) + τ

[
H(Φsρ0|vol)− e−2KsH(ρ0|vol)

]
.

By (Lavenant et al., 2023, Eq. B.3), the second term in the right-hand side is always non-positive,
so the claim follows.

Next, we define the regularizing operator Gs that acts at the level of laws on the space of paths.
Definition 4. For each R ∈ P(Ω) with H(R|WΞ,τ ) < +∞ and for each s ≥ 0, define

Gs(R) := argmin
R̃∈P(Ω)

{H(R̃|WΞ,τ ) | ∀t ∈ [0, 1], g♯R̃t = g♯ΦsRt}.

That is, among all probability distributions on the space of paths whose marginals in hidden space
coincide with t 7→ g♯ΦsRt, the measure Gs(R) ∈ P(Ω) is the one with the smallest entropy.

Note that Gs(R) is well-defined because thanks to Proposition C.11, Aτ ((ΦsRt)t) ≤
e−2KsAτ ((Rt)t) ≤ e−2KsH(R|WΞ,τ ) < +∞, so the minimization problem has admissible solu-
tions. Since sublevel sets of entropy are compact, there exists a minimizer, and from strict convexity
of the entropy functional, it is unique. Now note that

Aτ ((Φs(Rt)t) = H(Gs(R|WΞ,τ )).

This gives us the following result.
Proposition C.12 (analogous to (Lavenant et al., 2023, Prop. 2.18)). For each R ∈ P(Ω) such that
H(R|WΞ,τ ) < +∞, we have the following:

(i) For any s ≥ 0, H(Gs(R)|WΞ,τ ) ≤ e−2KsH(G0(R)|WΞ,τ ) ≤ e−2KsH(R|WΞ,τ ).

(ii) Gs(R) converges to G0(R) weakly as s→ 0+.

Proof. The argument follows that of Lavenant et al. (2023). The first property is a rewriting of
Proposition C.11 together with the definition of Gs and Aτ . The second property follows from our
observability assumption and an analogous argument to that of the proof of (Lavenant et al., 2023,
Prop. 2.18). Consider the following sequential characterization. Let {sn}n∈N be a sequence with
sn → 0 as n → +∞. By the contraction estimate in (i) and that the Ricci curvature is bounded
from below, we know that H(GsnR|WΞ,τ ) is uniformly bounded in n. Let R̃ be any limit point of
GsnR. Notice that this limit point exists due to the compactness of the sublevel sets of H(·|WΞ,τ ).

We show that R̃ = G0R by a standard analytic argument. We consider a subsequence (which we do
not relabel) GsnR that converges to R̃ as n → +∞. The marginals of R̃ agree with those of R as
we easily see that the marginals of GsnR are the {ΦsnRt}t∈[0,1], and Φsnf → f in L1(X , vol) as
sn → 0. Then, using the lower semi continuity of entropy, the definition of Gsn , and the contraction
estimate for A, we have

H(R̃|WΞ,τ ) ≤ lim inf
n→+∞

H(GsnR|WΞ,τ )

= lim inf
n→+∞

Aτ ((ΦsnRt)t)|WΞ,τ )

≤ lim inf
n→+∞

e−2KsnAτ ((Rt)t) = Aτ ((Rt)t).

This shows that R̃ = G0R, which concludes the proof.

C.2.3 THE DATA-FITTING TERM

We recall the definition of the data-fitting term here:

DFσ(g♯RtTi
, ρ̂T,hi ) :=

∫
Y
− log

[∫
X
exp

(
−∥g(x)− y∥2

2σ2

)
dRtTi

(x)

]
dρ̂T,hi (y)

:= H(ρ̂T,hi |g♯RtTi
∗ Nσ) +H(ρ̂tTi ) + C,

where Nσ is the Gaussian kernel. First, we have the following result, which is immediate from
properties of entropy.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proposition C.13. The function r 7→ DF(r, p) is convex and lower semi continuous on P(X ).

We will require a quantitative control on the effect of the heat flow on the data-fitting term.

Proposition C.14 (analogous to (Lavenant et al., 2023, Prop. 2.22)). Assume g : X → Y is measure
preserving.9 Let p, r ∈ P(X ). There exists a constant C > 0 depending only on X , g, and σ such
that for every s > 0,

DF(g♯Φsr, g♯p) ≤ DF(g♯r, g♯p) + s · C.

Above, for simplification of the notation, we pushforward both parameters of the data-fitting term
by g. This makes the argument below much cleaner.

Proof. The argument follows that of Lavenant et al. (2023), but it is much simpler due to our differ-
ent data-fitting term. In particular, we do not need a bound on the Fisher information. By an abuse
of notation, denote r ∈ L1(X , vol) the density of r with respect to vol. Denote r(s, ·) to be the
density of Φsr with respect to r. It satisfies the heat equation

∂r

∂s
= ∆r.

Then, we have

d

ds
DF(g♯Φsr, g♯p) =

d

ds

∫
Y
− log

[∫
X
exp

(
−∥g(x)− g(y)∥2

2σ2

)
r(s, x)vol(dx)

]
p(y)vol(dy)

= −
∫
Y
log

[∫
exp

(
−∥g(x)− g(y)∥2

2σ2

)
∂

∂s
r(s, x)vol(dx)

]
p(y)vol(dy)

= −
∫
Y
log

[∫
X
exp

(
−∥g(x)− g(y)∥2

2σ2

)
∆r(s, x)vol(dx)

]
p(y)vol(dy)

≤ C

∫
Y
p(y)vol(dy) ≤ C,

where the inequality follows from properties of the Gaussian integral and the fact that∫
∆r(s, x)vol(dx) = 1. Integrating yields the desired result.

C.2.4 TWO RESULTS ON LIMITS OF FUNCTIONALS

We require two results of the functional FT defined in (19). We use these for the Γ-convergence
theory required in the proof of Theorem C.5.

Proposition C.15 (analogous to (Lavenant et al., 2023, Prop. 2.24)). Use the notation and assump-
tions of Theorem C.5. Suppose R ∈ P(Ω) with F (R) < +∞ and G0R = R. Then there exists a
sequence R̃T which converges weakly to R as T → +∞ and

lim sup
T→+∞

FT (R̃
T ) ≤ F (R).

Proof. The argument follows that of Lavenant et al. (2023). Let s > 0. Combining Proposition
C.14 for the data-fitting term and Proposition C.12 for the relative entropy on the space of paths, we
see that

F (Gs(R) = τH(GsR|WΞ,τ ) +
1

λ

∫ 1

0

DF(ΦsRt, ρt) dt

≤ τe−2KsH(R|WΞ,τ ) +
1

λ

∫ 1

0

DF(Rt, ρt) dt+ s · C,

so we have
lim sup
s→0

F (GsR) ≤ F (R).

9Suppose that (X , λX ), (Y, λY) are measure spaces with Lebesgue measure. g is measure preserving if for
every Borel set B ∈ X , λX (A) = λY(g♯A).
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Now as − log[GsR]t is a continuous function of t and x by Proposition C.7, we can use the weak
convergence of ρ̂T to ρ to write, for s > 0,

lim
T→+∞

T∑
i=1

ωTi DF
(
[GsR]tTi , ρ̂

T
i

)
=

∫ 1

0

DF([GsR]t, ρt) dt.

This implies for all s > 0, we have limT→+∞ FT (GsR) = F (GsR), so it is sufficient to let
R̃ := GsTR for a sequence {sT }T≥1 that decays to 0 sufficiently slowly as T → +∞. This
concludes the proof.

Proposition C.16 (analogous to (Lavenant et al., 2023, Prop. 2.25)). Use the notation and assump-
tions of Theorem C.5. For each T ≥ 1, let R̃T ∈ P(Ω) and assume that it converges weakly to some
R ∈ P(Ω) as T → ∞. Then

F (G0R) ≤ lim inf
T→+∞

FT (R̃
T ).

Proof. The argument follows that of Lavenant et al. (2023). Assume that lim infT→+∞ FT (R̃
T ) <

+∞ otherwise we are done. Then, up to a subsequence (that we do not relabel), we have
supT H(R̃T |WΞ,τ ) < +∞. Combining Proposition C.14 for the data-fitting term and Proposi-
tion C.12 for the relative entropy on the space of paths, we have

FT (GsR̃T ) = τH(GsR̃T |WΞ,τ ) +
1

λ

T∑
i=1

ωTi DF
(
g♯ΦsR̃

T
tTi
, ρ̂Ti

)
≤ τe−2KsH(R̃T |WΞ,τ ) +

1

λ
DF

(
R̃T
tTi
, ρ̂Ti

)
+
sc

λ
.

Now we rewrite the above as
FT (R̃

T ) ≥ FT (GsR̃T )− C(s),

where
C(s) = τ |e−2Ks − 1| sup

T
H(R̃T |WΞ,τ ) +

sc

λ

is upper bounded by a quantity independent of T and lims→0+ C(s) = 0. For the data-fitting term,
define the sequence of functions aTs (t, x) to be

aTs (t, x) := − log

[∫
exp

(
−∥g(z)− x∥2

2σ2

)
dΦsR̃

T
t (z)

]
,

which is parametrized by T . Notice that from the definition of the data-fitting term, we have
T∑
i=1

ωTi DF(g♯ΦsR̃
T
tTi
, ρ̂Ti ) =

T∑
i=1

ωTi

∫
X
aTs (t

T
i , x)ρ̂

T
i (dx).

For a fixed s > 0, the family of functions aTs (t, x) indexed by T is uniformly equicontinuous due
to g being continuous and Proposition C.7. Then there exists a subsequence (that we do not relabel)
that converges uniformly on [0, 1]× Y as T → ∞ to the function

aTs (t, x) = − log

[∫
exp

(
−∥g(z)− x∥2

2σ2

)
dΦsRt(z)

]
= − log

[∫
exp

(
−∥g(z)− x∥2

2σ2

)
d[GsR]t(z)

]
.

Using this uniform convergence with the weak convergence of ρ̂Ti to ρt, we see

lim
T→+∞

T∑
i=1

ωTi DF
(
ΦsR

T
tTi
, ρ̂Ti

)
= lim
T→+∞

T∑
i=1

ωTi

∫
X
aTs (t

T
i , x)ρ̂

T
i (dx)

=

∫ 1

0

∫
X
as(t, x)ρt(dx) dt

=

∫ 1

0

DF(GsRt, ρt) dt.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Using lower semi continuity of entropy, we have F (GsR) ≤ lim infT→∞ FT (GsR̃T ). Thus, for
each s > 0, we have

lim inf
T→+∞

FT (R̃
T ) ≥ F (GsR)− C(s).

Finally, we use Proposition C.12 to take s → 0+ using the lower semi continuity of F and the
convergence of GsR to G0R when s→ 0+.

C.3 Γ-CONVERGENCE: TAKING h→ 0, λ→ 0

Theorem C.17 (analogous to (Lavenant et al., 2023, Thm. 2.9)). Let P ∈ P(Ω) with
H(P|WΞ,τ ) < +∞. For each λ > 0 and h > 0, let Rλ,h be the minimizer of the functional

R 7→ Gλ,h(R) := τH(R|WΞ,τ ) +
1

λ

∫ 1

0

H(ΦhPt|Rt ∗ Nσ) dt.

Then, as h→ 0, λ→ 0, the measure Rλ,h converges to the minimizer of R 7→ H(R|WΞ,τ ) among
all measures such that g♯Rt = g♯Pt for all t ∈ [0, 1]. Furthermore, if P is the law of the SDE in
(1), then Rλ,h converges to P.

Proof. The argument follows that of Lavenant et al. (2023). First, consider R := GhP ∈ P(Ω) as a
competitor in Gλ,h. Using the contraction estimate given by Proposition C.12, we have

min
P(Ω)

Gλ,h = Gλ,h(R
λ,h) ≤ τH(GhP|WΞ,τ ) ≤ τe−KhH(G0P|WΞ,τ ).

As K > −∞ and H(P|WΞ,τ ) by assumption, we see that Gλ,h(Rλ,h) is uniformly bounded in λ
and h. Thus, H(Rλ,h|WΞ,τ ) is uniformly bounded as well. Due to (Lavenant et al., 2023, Prop.
B.2), this implies that the family Rλ,h belongs to a compact set in the weak topology. Let R̃ be any
limit point in the limit as λ→ 0, h→ 0. We only need to show that R̃ = G0P. Note that

τH(Rλ,h|WΞ,τ ) ≤ Gλ,h(R
λ,h) ≤ τe2KhH(G0P|WΞ,τ ).

By taking h→ 0 and using the lower semi continuity of entropy, we see

H(R̃|WΞ,τ ) ≤ H(G0P|WΞ,τ ).

Now using Fatou’s lemma, the chain rule for relative entropy, and joint lower semi continuity of the
entropy, we have ∫ 1

0

H(Pt|R̃t ∗ Nσ) dt ≤ lim inf
λ→0,h→0

∫ 1

0

H(ΦhPt|Rλ,h
t ∗ Nσ) dt

≤ lim inf
λ→0,h→0

∫ 1

0

H(ΦhPt|Rλ,h
t ) dt

≤ lim inf
λ→0,h→0

(
λ sup
λ,h

Gλ,h(R
λ,h)

)
= 0.

Thus, it follows that g♯R̃t = g♯Pt for almost every t. Therefore, by definition of G0, we have
R̃ = G0P. This concludes the proof.

D REDUCED FORMULATION

D.1 PROOF OF THEOREM 3.2

We use the following result to prove Theorem 3.2. Here, the statement is identical to that of Chizat
et al. (2022), but we consider a different reference measure.
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Lemma D.1 (analogous to (Chizat et al., 2022, Prop. B.2)). There exists a constant C > 0 such
that, for any R ∈ P(Ω) and tT1 , . . . , t

T
T a collection of time instants, it holds

H(R|WΞ,τ )
(†)
≥ H(RtT1 ,...,t

T
T
|WΞ,τ

tT1 ,...,t
T
T

)

(∗)
≥

T−1∑
i=1

H(RtTi ,t
T
i+1

|pΞτi(RtTi
⊗RtTi+1

))−
T−1∑
i=1

H(RtTi
|WΞ,τ

tTi
) + C.

The first inequality (†) becomes an equality if and only if

R(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at times
tT1 , . . . , t

T
T , respectively. In addition, the second inequality (∗) becomes an equality if and only if R

is Markovian.

Proof. Using the fact that Ξ is divergence-free and that WΞ,τ has the Markov property, the proof
from Chizat et al. (2022) holds. We provide the full proof for completeness. The first inequality (†)
and the equality case follows from the behavior of entropy with respect to a Markov measure under
conditioning, e.g. (Léonard, 2010, Eq. 11). In particular, we have

H(R|WΞ,τ ) = H(RtT1 ,...,t
T
T
|WΞ,τ

tT1 ,...,t
T
T

)

+

∫
H
(
R(·|x1, . . . , xT )|WΞ,τ (·|x1, . . . , xT )

)
dRtT1 ,...,t

T
T
(x1, . . . , xT ),

where the second term vanishes if and only if the conditional distributions R(·|x1, . . . , xT ) follow
the law of WΞ, for RtT1 ,...,t

T
T

almost every (x1, . . . , xT ). The second inequality (∗) follows from
(Benamou et al., 2019, Lem. 3.4), which states

H(RtT1 ,...,t
T
T
|WΞ,τ

tT1 ,...,t
T
T

) ≥
T−1∑
i=1

H(RtTi ,t
T
i+1

|WΞ,τ

tTi ,t
T
i+1

)−
T−1∑
i=2

H(RtTi
|WΞ,τ

tTi
) =: E,

with equality if and only if RtT1 ,...,t
T
T

is Markovian. As in Chizat et al. (2022), we reorganize the
terms in E.

Without loss of generality, assume that RtTi
are absolutely continuous with density dRtTi

(x)/dx :=

ri(x) and let VX be the Lebesgue volume of X . Since WΞ,τ

tTi
is the uniform measure on X for every

tTi , we have
H(RtTi

|WΞ,τ

tTi
) = H(RtTi

) + log VX .

Letting τi := τ(tTi+1 − tTi ), we also have

WΞ,τ

tTi ,t
T
i+1

(dx, dy) =
1

VX
pΞτi(x, y) dx dy.

Thus, we see that for any µ, ν ∈ P(X ) with finite differential entropy and γ ∈ Π(µ, ν), we have

H(γ|WΞ,τ

tTi ,t
T
i+1

) =

∫
log

(
dγ

dx⊗ dy

VX
pΞτi

)
dγ(x, y)

= log VX +

∫
log

(
dγ

pΞτid(µ⊗ ν)

dµ

dx

dν

dy

)
dγ

= log VX +H(γ|pΞτi(µ⊗ ν)) +H(µ) +H(ν),

where the last line follows from (Marino & Gerolin, 2019, Lem. 1.6). Now using the fact that
RtTi ,t

T
i+1

∈ Π(RtTi
,RtTi+1

), we have

E = log VX +

T∑
i=1

H(RtTi ,t
T
i+1

|pΞτi(RtTi
⊗RtTi+1

)) +

T−1∑
i=1

H(RtTi
),

which proves the formula.
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Theorem D.2 (Thm. 3.2, restated). Let Fit : P(Y)T → R be any function and let Ξ be bounded
and divergence-free.

(i) If F admits a minimizer R∗ then (R∗
tT1
, . . . ,R∗

tTT
) is a minimizer for F .

(ii) If F admits a minimizer µ∗ ∈ P(X )T , then a minimizer R∗ for F is built as

R∗(·) =
∫
XT

WΞ,τ (·|x1, . . . , xT ) dRtT1 ,...,t
T
T
(x1, . . . , xT ),

where WΞ,τ (·|x1, . . . , xT ) is the law of WΞ,τ conditioned on passing through x1, . . . , xT at
times tT1 , . . . , t

T
T , respectively and RtT1 ,...,t

T
T

is the composition of the optimal transport plans
γi that minimize Tτi,Ξ(µ

∗(i),µ∗(i+1)), for i ∈ [T − 1].

Proof. The proof from Chizat et al. (2022) holds using our transition probability densities and OT
plans. We provide it for completeness. First, note that a minimizer R∗ ∈ P(Ω) of F(R) =
Fit(QtT1

, . . . ,QtTT
)+τH(R|WΞ,τ ) is of the form in Lemma D.1. Let µ(i) := R∗

tTi
be its marginals

and γ(i) := R∗
tTi ,t

T
i+1

, which clearly satisfies γ(i) ∈ Π(µ(i),µ(i+1)). Using C := log VX , we see
that

F(R∗) = Fit(g♯µ
(1), . . . , g♯µ

(T )) + τ

T−1∑
i=1

H(γ(i)|pΞτi(µ
(i) ⊗ µ(i+1))) + τH(µ) + C

≥ Fit(g♯µ
(1), . . . , g♯µ

(T )) +
τ

τi

T−1∑
i=1

Tτi,Ξ(µ
(i),µ(i+1)) + τH(µ) + C,

where the inequality becomes an equality if and only if R∗
tTi ,t

T
i+1

= γ(i) is optimal in the definition

of Tτi,Ξ(µ
(i),µ(i+1)). The claim follows.

E MEAN-FIELD LANGEVIN DYNAMICS

Recall that the MFL dynamics is defined as the solution of (11), which we restate below:{
dX

(i)
s = −∇V (i)[µs](X

(i)
s ) ds+

√
2τ dB

(i)
s + dΦ

(i)
s , Law(X

(i)
0 ) = µ

(i)
0

µ
(i)
s = Law(X

(i)
s ), i ∈ [T ],

where dΦ(i)
s is the boundary reflection in the sense of the Skorokhod problem. The family of laws

{µs}s≥0 of this stochastic process are characterized by the following system of PDEs:

∂sµ
(i)
s = ∇ · (∇V (i)[µs]µ

(i)
s ) + τ∆µ(i)

s , (22)

which are coupled via the quantity ∇V (i)[µs]. The link between (11) and (22) follows from the
Itô-Tanaka formula, see e.g. (Javanmard et al., 2019, Lem. C.3). This is a multi-species PDE where
each of the species µ(i) attempts to minimize ∆ti

λ Fitλ,σ(·, ρ̂Ti )+ τH via a drift-diffusion dynamics,
and it is connected to µ(i−1) and µ(i+1) via Schrödinger bridges.

E.1 PROPERTIES OF G AND F

We describe some properties of functions G (7) and F (8).

Recall that the first-variation of G : P(X )T → R at µ is the unique (up to an additive constant)
function V [µ] ∈ C(X )T such that for all ν ∈ P(X )T ,

lim
ϵ→0

1

ϵ
[G(1− ϵ)µ+ ϵν)−G(µ)] =

T∑
i=1

V (i)[µ](x) d(ν − µ)(i)(x).
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Proposition E.1 (analogous to (Chizat et al., 2022, Prop. 3.2)). The function G is convex separately
in each of its inputs (but not jointly), weakly continuous and its first-variation is given for µ ∈
P(X )T and i ∈ [T ] by

V (i)[µ] =
δFit

δµ(i)
[µ] +

φi,i+1

tTi+1 − tTi
+

ψi,i−1

tTi − tTi−1

,

and
δFit

δµ(i)
[µ] : x 7→ −∆ti

λ

∫
Nσ(g(x)− y)

(Nσ ∗ g♯µ(i))(y)
dρ̂(y),

where (φi,j , ψi,j) ∈ C∞(X ) are the Schrödinger potentials for Tτi,Ξ(µ
(i),µ(j)), with the con-

vention that the corresponding term vanishes when it involves ψ1,0 or φT,T+1. The function F is
jointly convex and admits a unique minimizer µ∗, which has an absolutely continuous density (again
denoted by µ∗) characterized by

(µ∗)(i) ∝ e−V
(i)[µ∗]/τ , for i ∈ [T ].

Here, the Schrödinger potentials are classically L1 by standard (entropic) OT theory, but we can
extend them to C∞ functions, as discussed in Chizat et al. (2022).

Proof. The argument is similar to that of Chizat et al. (2022). The properties of G and its first-
variation are clear. In particular, the first-variation of Tτi,Ξ follows from the fact that g is smooth
and (Santambrogio, 2015, Prop. 7.17), and the first-variation of Fit follows by direct calculation.
The convexity of G follows from the convexity of Tτi,Ξ and the fact that the pushforward of g is
linear. The joint convexity of F , its unique minimizer, and the characterization of the minimizer
follow directly from the argument in the proof of (Chizat et al., 2022, Prop. 3.2).

E.2 NOISY PARTICLE GRADIENT DESCENT

Let m ∈ N be the number of particles used in the discretization for each of the time marginals
µ(i). For computation, we approximate the MFL dynamics by running noisy gradient descent on
the function Gm : (Xm)T → R defined as Gm(X̂) := G(µ̂X̂), where

µ̂
(i)

X̂
:=

1

m

m∑
j=1

δ
X̂

(i)
j
.

From (Chizat, 2022, Prop. 2.4), we see that m∇
X

(i)
j
Gm(X̂) = ∇V (i)[µ̂X̂ ](X̂

(i)
j ). Thus, this yields

the discretization of (11):{
X̂

(i)
j [k + 1] = X̂

(i)
j [k]− η∇V (i)[µ̂[k]](X̂

(i)
j [k]) +

√
2ητZ

(i)
j,k, X̂

(i)
j [0]

i.i.d.∼ µ
(i)
0

µ̂(i)[k] = 1
m

∑m
j=1 δX̂(i)

j [k]
, i ∈ [T ],

(23)

where η > 0 is a step-size, the Z(i)
j,k are i.i.d. standard Gaussian variables, and all the particles should

be projected onto X at each step if X has boundaries. The MFL dynamics are recovered in the limit
as m→ ∞ and η → 0, e.g. see Suzuki et al. (2023); Nitanda et al. (2022); Chizat (2022).

Recently, Suzuki et al. (2023); Chen et al. (2023) have shown a uniform-in-time propagation of chaos
for the MFL dynamics: the “distance” between the m-particle distribution and the infinite-particle
limit is order O( 1

m ) for all t > 0.

E.3 EXPONENTIAL CONVERGENCE

Theorem E.2 (Thm. 3.4, restated). Assume X is the d-torus. Let µ0 ∈ P(X )T be such that
F (µ0) < +∞. Then for τ ≥ 0, there exists a unique solution (µs)s≥0 to the MFL dynamics (11).
Let τ > 0 and assume that µ0 has a bounded absolute log-density, it holds

Fτ (µs)−minFϵ ≤ e−Cs(Fτ (µ0)−minFτ ),

where C = βe−α/τ for some α, β > 0 independently of µ and τ . Moreover, taking a smooth time-
dependent τ that decays asymptotically as α̃/ log s for some α̃ > α, it holds F0(µs) − F0(µ

∗) ≲
log log s/ log s→ 0 and µs converges weakly to the min-entropy estimator µ∗.
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Proof. As in Chizat et al. (2022), we simply need to verify the assumptions in (Chizat, 2022, Thm.
3.2). Recall that the objective function is of the form F = G + τH . The stability and regularity
of the first-variation V , (Chizat, 2022, Assumption 1), is immediate from (Chizat et al., 2022, Prop.
C.2) and that g is bounded. The convexity of F0 and existence of a minimizer for Fϵ, (Chizat, 2022,
Assumption 2), follows from Proposition E.1.

For the uniform log-Sobolev inequality (LSI), (Chizat, 2022, Assumption 3), first note that the ith
component of the first-variation of F0 is given by V (i)[µ] + τ logµ(i). Define D := diamX
and E := diam g♯X , where D < +∞ by assumption and E < +∞ as g is bounded. Note
that oscV (i)[µ] < +∞ as the gradient formula for δFit/δµ(i) is non-negative and is bounded by
EeE

2/(2σ2) and by (Chizat et al., 2022, App. A, Eq. 17), the Schrödinger potential φi,i+1 has an
oscillation bounded by

sup
x,y∈X

ctTi ,tTi+1
(x, y)− inf

x,y∈X
ctTi ,tTi+1

(x, y) ≤ D2/2.

Following the argument in the proof of (Chizat, 2022, Thm. 3.3), the probability measure propor-
tional to e−(V (i)[µ]+τ logµ(i))/τ satisfies a LSI with constant ρ ≥ αe−β/τ for some α, β independent
of s, ϵ,µ0.

Then, (Chizat, 2022, Thm. 3.2) guarantees the exponential convergence with rate e−Cs with C =
2τρ. Furthermore, the convergence result with simulated annealing follows from (Chizat, 2022,
Thm. 4.1).

F ADDITIONAL EXPERIMENTS

F.1 SETTINGS FOR EXPERIMENTS IN MAIN TEXT

All experiments were run on an M1 Macbook Air with 16 GB of RAM. Synthetic experiments take
a few minutes to run, and Wikipedia experiments take a few hours to run.

“Constant velocity” model In this experiment, the diffusivity parameter is set at τ = 0.05. Par-
ticles are initialized from X0 ∼ N (0, 0.12 · I) and simulated over the time interval t ∈ [0, 5] with
marginals sampled at 5 evenly spaced intervals. Both PO-MFL and MFL are applied usingm = 100
particles, we observe 32 particles at each time point, and we use a kernel width of σ = 1.0 for the
data-fitting term. The optimization procedure is initialized with η = 0.5 and continues for 2,000
iterations. The number of Sinkhorn iterations for entropic OT is capped at 500 iterations.

For the crossing paths experiment, the diffusivity parameter is set at τ = 0.0005, and the time inter-
val is [0, 2.25], and marginals are sampled at 10 evenly spaced intervals we use m = 50 particles.

Wikipedia data In this experiment, the diffusivity parameter is set at τ = 0.001. Particles are
initialized uniformly over the interval [100, 300]. We use a kernel width of σ = 1.0 for the data-
fitting term. The optimization is initialized with η = 0.5 and continues for 2,000 iterations. The
number of Sinkhorn iterations for entropic OT is capped at 250 iterations. We scale the data by 1/50
for stability during optimization.

The three websites we use are:

https://ja.wikipedia.org/wiki/%E5%B2%A1%E6%9D%91%E6%98%8E%E7%BE%8E

https://ja.wikipedia.org/wiki/%E4%B8%89%E5%AE%85%E6%B4%8B%E5%B9%B3

https://ja.wikipedia.org/wiki/%E5%A5%A5%E5%B1%B1%E4%BD%B3%E6%81%B5

F.2 CIRCULAR MOTION MODEL

In the circular motion experiment, the diffusivity parameter is set at τ = 0.0002. Particles are
initialized fromX0 ∼ N (0, 0.12 ·I) and simulated over the time interval t ∈ [0, 3.14] with marginals
sampled at 15 evenly spaced intervals. Both PO-MFL and MFL are applied usingm = 100 particles,
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Figure 6: Varying velocity. We see that as the ground truth initial velocity increases, MFL breaks
while PO-MFL remains robust.

we observe 32 particles at each time point, and we use a kernel width of σ = 1.0 for the data-fitting
term. The optimization procedure is initialized with η = 0.5 and continues for 4,000 iterations. The
number of Sinkhorn iterations for entropic OT is capped at 500 iterations.

In our second model, the particles (θ, θ̇, θ̈) ∈ S×R2 represent a constant acceleration model on the
unit circle, starting from the initial condition (0, 0.5, 1). Here, we use angular velocity and angular
acceleration. In this experiment, we only observe the position, e.g. g(θ, ·, ·) = θ. In Figure 7a, we
show the ground truth with position on the left and angular velocity on the right. In Figure 7b, we
show that PO-MFL successfully reconstruct the positions while although MFL converges, it does
not recover the ground truth. In Figure 7c, we show that the reconstructed velocity matches that of
the ground truth in Figure 7a.

In the following sections, if a parameter is not stated, we assume the same setting of parameters as
in the main text.

F.3 VARYING VELOCITY

Experiments varying the mean of the ground truth initial velocity distribution are shown in Figure 6.
At the endpoints, we observe 32 particles, and in the intermediate stages, we observe just 2 particles
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(a) Ground truth. (b) Reconstructed position marginals.

(c) Reconstructed angular velocity marginals from PO-MFL.

Figure 7: Circular motion model.

Figure 8: Varying number of observations at the intermediate times. Increasing number of observa-
tions improves the optimization.

per time point. Note that in the small velocity regime, although MFL converges, it converges to the
wrong distribution.

F.4 VARYING NUMBER OF OBSERVED PARTICLES

Figures 8 and 9 show results when the number of observed samples at the intermediate time points
are varied (the number of observations at the endpoints is held constant at 32). Here, we try the same
settings as above, but now we consider velocity (ẋ, ẏ) = (2, 4). We try the number of observations
1, 2, 4, 8, 16, 32, 128, 256. Even in a large number of observation regime, the MFL algorithm is
not capable of reconstructing the full trajectory, instead clustering around the center of the overall
trajectory.
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Figure 9: A high observation regime at the intermediate time points.

F.5 VARYING TEMPORAL SAMPLING DENSITY ∆t

In Figure 10, we show results for increasing the density of temporal sampling. At the endpoints, we
observe 32 particles, and in the intermediate stages, we observe 2 particles. MFL was sensitive to
hyperparameter values as we needed to try different parameters to get semi-reasonable results for
the figure. We used σ = 0.1,m = 25.
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Figure 10: Varying the number of observed time points for fixed time window, i.e. varying ∆t. Note
that PO-MFL is always robust. MFL does better with more observations, but the method still tends
to collapse inwards because its model suggests that, in expectation, particles should not be moving
(as the Brownian motion reference measure has 0 expectation).
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